

AES DECRYPTION CORE

FOR FPGA

SPECIFICATION
REV. 0.1 PRELIMINARY

Author

scheng

schengopencores@opencores.org

http://www.opencores.org/

 OpenCores

www.opencores.org

2

January 27, 2014

2

AES Decryption Core for FPGA
Rev.0.1 Preliminary

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK

 OpenCores

www.opencores.org

3

January 27, 2014

3

AES Decryption Core for FPGA
Rev.0.1 Preliminary

REVISION HISTORY
Rev. Date Author Description

0.1 27 Jan 2014 scheng First release

 OpenCores

www.opencores.org

4

January 27, 2014

4

AES Decryption Core for FPGA
Rev.0.1 Preliminary

CONTENT

Introduction 5

Highlights 5

Top level symbol 5

Benchmarks 6

Architecture 7

I/O Ports 9

Operations 10

Basic 128-bit decryption cycle 11

Decryption cycle for back-to-back ciphertext 12

Simulation 13

Testbench 13

Running simulation with Modelsim 13

Retargeting Guidelines 15

 OpenCores

www.opencores.org

5

January 27, 2014

5

AES Decryption Core for FPGA
Rev.0.1 Preliminary

INTRODUCTION
The AES Decryption Core for FPGA implements the decryption portion of the AES (a.k.a.

Rijndael) algorithm described in the FIPS-197 specification. Key lengths of 128 / 192 /

256 bits are supports, each with a separate instantiation wrapper. The core logic is

carefully designed to take advantage of 6-input lookup table (LUT6) based FPGA

architecture. As a result, it can achieve a peak throughput of over 3Gbps for 256-bit key,

yet occupies about 2000 LUTs only. The core has been verified with random test vectors

as well as selected test vectors in FIPS-197, SP-800a, and AESAVS specifications.

HIGHLIGHTS
 Supports 128/192/256-bit AES decryption.

 Separate wrappers for each key length. Not changeable at runtime.

 Key expansion takes 11/13/15 clock cycles for 128/192/256-bit key. The

computed key schedule is stored internally and can be used on multiple

ciphertext.

 Once the key schedule is computed, decryption of each 128-bit ciphertext takes

11/13/15 clock cycles.

 Separate interfaces for ciphertext, key text, and plaintext, with simple

valid/ready style handshaking.

 Fully synchronous design with one clock domain only.

 Source code in SystemVerilog

TOP LEVEL SYMBOL

ct[0:127]

ct_vld

ct_rdy

kt[0:n-1]

kt_vld

kt_rdy

pt_vld

pt[0:127]

clk

rst

AES

Decryption

Core

 OpenCores

www.opencores.org

6

January 27, 2014

6

AES Decryption Core for FPGA
Rev.0.1 Preliminary

BENCHMARKS
 128-bit 192-bit 256-bit

LUT 1909 2125 2029

FF 299 423 439

BRAM 0 0 0

Latency w/ key switching 22 clk 26 clk 30 clk

w/o key switching 11 clk 13 clk 15 clk

Fmax 364MHz 360MHz 357MHz

Peak throughput 4.235Gbps 3.544Gbps 3.046Gbps

Test conditions

For the purpose of benchmarking, the core is wrapped in a shift-register-like structure

to reduce I/O pin count, synthesized and implemented with Xilinx Vivado 2013.4 using

“Performance_Explore” implementation strategy with a period constraint. Target device

is Xilinx Kintex family xc7k325tffg900-3.

The latency is a measure of the no. of clock cycles starting from the arrival of the key

text and ciphertext to the clock edge when the plaintext is available at the output. That

is the sum of the key expansion latency and the decryption engine latency. For

subsequent ciphertext blocks which use the same key text as before, key expansion

latency is zero since the previously computed key schedule will be re-used, only the

decryption engine latency counts.

 OpenCores

www.opencores.org

7

January 27, 2014

7

AES Decryption Core for FPGA
Rev.0.1 Preliminary

ARCHITECTURE

In
vS

h
if

tR
o

w
s

In
vS

u
b

B
yt

es

In
vA

d
d

R
o

u
n

d
K

ey

In
vM

ix
C

o
lu

m
n

s

klen_sel
2

ct_vld

ct_rdy

ct

128

128

pt

pt_vld

decryption engine

Key schedule buffer

128

RoundKey Register

128

RotWord

SubWord

Rcon

0

Key Expander

kt_vld

kt_rdy

kt
128 /
192 /
256

 OpenCores

www.opencores.org

8

January 27, 2014

8

AES Decryption Core for FPGA
Rev.0.1 Preliminary

The block diagram of the AES decryption core is shown in the figure above. The core

accepts ciphertext and key text from their respective interface, performs the AES

decryption algorithm described in FIPS-197 specification, and outputs the plaintext at

the pt interface. The decryption engine and key schedule buffer are common to all key

lengths, while there is a separate key expander for each supported key length. For ease

of use, a separate wrapper is provided for each key length which instantiates the proper

key expander and other modules. Dynamic switching of key length at runtime is not

supported.

The decryption engine implements the inverse cipher algorithm in figure 12 of the FIPS-

197 specification. Key length is selected via klen_sel[0:1], which is pulled to the right

value in the wrappers provided. The transformations InvShiftRows, InvSubBytes,

InvAddRoundKey, and InvMixColumns in the inverse cipher algorithm are implemented

as separate blocks. Ciphertext enters the decrypt engine from the ct interface and loops

through 11/13/15 rounds for 128/192/256 bit key respectively. During each round the

decryption engine consumes one round key from the key schedule buffer. Intermediate

result of each round is stored in a 128-bit state register. Plaintext is presented at the

end of the last round at the pt interface.

The key expander implements the key expansion algorithm in figure 11 of the FIPS-197

specification. It expands the key text into a key schedule which is then exported to the

key schedule buffer. The key text loops through the key expander for a pre-defined

number of rounds. Each round involves a number of transformations such as SubWord,

RotWord, and XOR with round constant Rcon. While most of the processing in the key

expansion algorithm is common to all key lengths, there are still minor differences for

each key length. In order to achieve the highest Fmax, the decision here is to implement

a separate key expander for each supported key length. This eliminates the need for

extra multiplexors which increases the critical path delay. The whole key schedule is

generated in 11/13/15 clock cycles for 128/192/256 bit keys.

The key schedule buffer sits between the key expander and the decrypt engine. It is a

16-deep by 128-wide dual port RAM with associated read and write pointers and

handshake logic to interface with the key expander and the decryption engine. The key

schedule buffer is needed because the inverse cipher algorithm consumes round keys in

reversed order than they are generated by the key expansion algorithm. As a result, the

whole key schedule has to be stored in a buffer as it exits from the key expander to

allow the decrypt engine to access in reversed order.

 OpenCores

www.opencores.org

9

January 27, 2014

9

AES Decryption Core for FPGA
Rev.0.1 Preliminary

I/O PORTS

Ports Width Direction Description

clk 1 Input Core clock. All logic is synchronous to the rising
edge of clk.

rst 1 Input Core reset. Active high synchronous reset. This
signal must be asserted for at least one clock cycle
to reset the core.

kt[0:n] 128/
192/
256

Input Key input. Width equals to the selected key length.
A key must be loaded to the core first before a
decryption can start. Once loaded, the same key
can be used on multiple ciphertext.

kt_vld 1 Input Key valid. Active high. This signal is driven high by
the application to tell the core that a valid key is
present on kt[0:n]. Key transfer occurs at the clock
rising edge when both kt_vld and kt_rdy are high.

kt_rdy 1 output Kt interface ready. Active high. This signal is driven
high by the core when it is ready to accept a new
key.

ct[0:127] 128 Input Ciphertext input.

ct_vld 1 Input Ciphertext valid. Active high. This signal is driven
high by the application to indicate the presence of
a valid ciphertext on ct[0:127]. The ciphertext is
transferred to the core at the clock rising edge
when both ct_vld and ct_rdy are high.

ct_rdy 1 output Ct interface ready. Active high. This signal is driven
high by the core to indicate that it is ready to
accept a new ciphertext.

pt[0:127] 128 output Plaintext output

pt_vld 1 output Plaintext valid. Active high. This signal is driven high
by the core when it has placed a valid plaintext on
pt[0:127].

 OpenCores

www.opencores.org

10

January 27, 2014

1
0

AES Decryption Core for FPGA
Rev.0.1 Preliminary

OPERATION

The basic decryption cycle involves 3 steps

1. Load crypto key

2. Load ciphertext

3. Read plaintext

Once the plaintext is available at the pt interface, the next decryption cycle can starts by

loading either the next key or ciphertext. In case the next ciphertext uses the same key

as before, there is no need to load the key again since the previous key schedule is

already stored in the key schedule buffer.

If a new ciphertext is loaded before the previous plaintext is read, the core will start to

decrypt the new ciphetext immediately and the previous plaintext will be over-written.

Loading a new key will only start a key expansion cycle internally and will not alter the

previous plaintext.

Lo
ad

 K
t

Lo
ad

 C
t

R
ea

d
 P

t

Lo
ad

 K
t

Lo
ad

 C
t

R
ea

d
 P

t

Lo
ad

 C
t

R
ea

d
 P

t

Lo
ad

 C
t

R
ea

d
 P

t

Time

New key for each ciphertext Back-to-back ciphertext

 OpenCores

www.opencores.org

11

January 27, 2014

1
1

AES Decryption Core for FPGA
Rev.0.1 Preliminary

BASIC 128-BIT DECRYPTION CYCLE

The timing diagram of a basic 128-bit decryption cycle is shown above.

1. The core asserts kt_rdy to high when it is ready to accept a new key.

2. The application presents the key to kt and asserts kt_vld to high to inform the

core that a valid key is present.

3. The core asserts ct_rdy to high when it is ready to accept new ciphertext.

4. The application presents the ciphertext to ct and asserts ct_vld to high to

inform the core that a valid ciphertext is present.

5. The core presents the plaintext to pt and asserts pt_vld to high when the

decryption process is finished.

The key expansion starts when kt_vld is high and finishes when kt_rdy goes high again.

This process takes 11 clock cycles for 128-bit key. The decryption engines starts when a

valid key schedule is present and both ct_vld and ct_rdy are high and finishes when

pt_vld is high. This process takes 11 clock cycles for 128-bit key.

Decryption cycle for 192 and 256-bit key are similar except the latencies are different.

Refer to the benchmark section for exact latency numbers.

1

2

3

4

5

 OpenCores

www.opencores.org

12

January 27, 2014

1
2

AES Decryption Core for FPGA
Rev.0.1 Preliminary

DECRYPTION CYCLE FOR BACK-TO-BACK CIPHERTEXT

The timing diagram above shows the decryption cycle for back-to-back ciphertext.

1. The core asserts ct_rdy to high when it is ready to accept new ciphertext.

2. The application drives the ciphertext to ct and asserts ct_vld to high to inform

the core that a valid ciphertext is present.

3. The core asserts pt_vld to high when a valid plaintext is available on pt. At the

same time it also asserts ct_rdy to high again to indicate it is ready to accept a

new ciphertext.

4. The application drives the next ciphertext to ct and asserts ct_vld to high to

inform the core that a new ciphertext is present.

5. The core asserts pt_vld to high when the second plaintext is available on pt.

It can be seen that the availability of the plaintext (pt_vld at 3) and the loading of next

ciphertext (ct_vld at 4) can be overlapped. No dead cycle is incurred.

1

2

3

4

5

 OpenCores

www.opencores.org

13

January 27, 2014

1
3

AES Decryption Core for FPGA
Rev.0.1 Preliminary

SIMULATION

The core is verified against selected test vectors from FIPS-197, AESAVS, and SP-800a. It

is also tested against an AES behavioral model with random test vectors. All the

necessary files for simulation are provided under the bench/ and sim/ directory so that

the verification result can be reproduced.

TESTBENCH
The testbenches are located under the bench/ directory. There is a separate testbench

for each supported key length, while the test set is common to all key lengths. The tests

performed are listed below.

1. FIPS-197 sample vector test

2. Back-to-back ciphertext test

3. ECB-AES128/192/256.Decrypt sample vector test. SP800-38a appendix F

4. GFSbox Known Answer Test. AESAVS appendix B

5. KeySbox Known Answer Test. AESAVS appendix C

6. VarTxt Known Answer Test. AESAVS appendix D

7. VarKey Known Answer Test. AESAVS appendix E

8. Random vector test

For back-to-back ciphertext test and random vector test, the core is driven with random

vectors and the output verified against the AES SystemVerilog Behavioral Model

available from Opencores.org, by the same designer of this core. Source code of the

behavioral model can be found under the sim/rtl_sim/src/ directory.

The testbench compares the core output against either known good results or golden

model output. In case of a mismatch, it prints an error message and the simulation

continues. Once all tests are finished either “OK” or “Failed” will be printed to indicate

whether all tests are passed.

RUNNING SIMULATION WITH MODELSIM
Shell scripts for simulation and Modelsim .do files are provided under the

sim/rtl_sim/bin/ directory. Simulation can be run either directly from the shell or from

the Modelsim GUI. As the simulation runs, messages are dumped to the screen and at

the same time to a log file in the sim/rtl_sim/out/ directory.

http://opencores.org/project,aes_beh_model
http://opencores.org/

 OpenCores

www.opencores.org

14

January 27, 2014

1
4

AES Decryption Core for FPGA
Rev.0.1 Preliminary

Make sure the path to the Modelsim executable (vsim in this case) is included in your

PATH environment before you execute the shell script. Also, you may need to add

execute permission to the shell script to be able run from UNIX shell.

Here is an example of simulating the 128-bit core from the Windows command prompt

1. Change directory to sim/rtl_sim/bin

2. Type “sim128.bat” from the command prompt

3. Examine sim/rtl_sim/out/sim128.out for simulation results

To simulate the 128-bit core from Modelsim GUI

1. Launch Modelsim

2. Change directory to sim/rtl_sim/bin from Modelsim prompt

3. Type “do sim128.do” from Modelsim prompt

To include a waveform view in Modelsim GUI, uncomment the line “add wave *” from

the file sim128.do.

To run simulation for other key lengths, replace sim128.* above with sim192/256.*.

 OpenCores

www.opencores.org

15

January 27, 2014

1
5

AES Decryption Core for FPGA
Rev.0.1 Preliminary

RETARGETING GUIDELINES

The core is designed with the objective of maximizing performance and resource

utilization when implemented on modern LUT6 based FPGA. This is realized by carefully

written source codes which limit combinational logic to use at most 6 input signals

whenever possible so that they can fit well into LUT6s. Other than that, the source code

is technology independent and portable to FPGA architecture of different vendors. This

section describes the recommended modifications to the core for retargeting to bring

out the full performance of the target technology.

Inclusion of generic_muxfx.v

The source file “generic_muxfx.v” located under rtl/verilog/generic/ directory defines

technology independent 2-to-1 multiplexors MUXF7 and MUXF8 which are used in the

source file “Sbox.sv”. This file should NOT be included while targeting Xilinx FPGA to

allow the synthesis tool to use the MUXF7 and MUXF8 in the Xilinx library. When

targeting other FPGA technologies, either provides a technology specific definition of

those MUX, or include “generic/generic_muxfx.v” if a technology specific version is not

available.

Tool specific synthesis attributes

Xilinx Vivado synthesis attributes are used throughout the source codes to hint the

inference of specific logic resources and to preserve the design hierarchy for better

packing into FPGA slices. Those attributes are essential to achieve maximum

performance on the target FPGA.

The table below shows the Vivado synthesis attributes that need to be replaced when

retargeting to other FPGA technologies or using a different synthesis tool.

 OpenCores

www.opencores.org

16

January 27, 2014

1
6

AES Decryption Core for FPGA
Rev.0.1 Preliminary

Vivado synthesis attribute Used in Description

(* RAM_STYLE="distributed" *) KschBuffer.sv Infer LUT RAM for the key schedule
buffer.

(* KEEP_HIRARACHY = "yes" *) decrypt128_wrapper.sv
decrypt192_wrapper.sv
decrypt256_wrapper.sv
decrypt.sv
InvSbox.sv
Sbox.sv

Maintain the design hierarchy as
specified in the source code.

(* keep = "true",
max_fanout = 1 *)

KeyExpand128.sv
KeyExpand192.sv
KeyExpand256.sv

This combination hints the synthesizer
not to optimize away the target signal
and to limit the fanout of that signal to
one. The objective is to force the
synthesizer to infer separate logic to
drive every signal which this attribute
combination is applied. Refer to the
comments in the corresponding source
codes for details.

