
A Hardware and Software Monitor for High-Level System-on-Chip Verification

Mohammed El Shobaki and Lennart Lindh
Mälardalen Real-Time Research Centre
Department of Computer Engineering

Mälardalen University, V¨asteras, SWEDEN
mei@mdh.se, llh@mdh.se

Abstract

Verification of today’s Systems-on-Chip (SoC) occur at
low abstraction-levels, typically at register-transfer level
(RTL). As the complexity of SoC designs grows, it is increas-
ingly important to move verification to higher abstraction-
levels. Hardware/software co-simulation is a step in this
direction, but is not sufficient due to inaccurate processor
models, and slow hardware simulation speeds. System-
level monitoring, commonly used for event-based soft-
ware debugging, provides information about task schedul-
ing events, inter-task communication and synchronisation,
semaphores/resources, I/O interrupts, etc.

We present MAMon1, a monitoring system that can
both monitor the logic-level and the system-level in
single/multiprocessor SoCs. A small hardware probe-unit
is integrated in the SoC design and connects via a parallel-
port link to a host-based monitoring tool environment. The
probe-unit collects all events in the target system in run-
time, and timestamps them with a resolution of 1�s. The
events are then stored in a database on the host for fur-
ther processing. The paper will describe MAMon and how
it works for software and hardware monitoring. The paper
also describe how system-level monitoring can be achieved
non-instrusively by using a hardware-based Real-Time Ker-
nel.

1 Introduction

Already today many System-on-Chip (SoC) applica-
tions are hard to verify and optimise. The complexity is
increasing and to verify a whole system using computer
model simulations is time consuming, and some times
impossible due to inaccurate models. It is also difficult to
model the real-world (i.e. the environment) around the SoC.

1Multipurpose/Multiprocessor Application Monitor

Often a bug in a system is traced from a high-level view
of the system, commonly referred to as thesystem-level,
downto theregister-transfer level(RTL) (or even lower
levels if things are really bad). In this paper we refer to
the system-level as to denote both the process/task-level
information in software, and the behavioural-level inform-
ation in hardware. As figure 1 illustrates, the number of
events occuring in a system are fewer at the system-level,
which motivates a top-down debugging strategy.

Target
System

System-Level

RTL

Gate-Level

Few events/s

Many events/s

Figure 1. Events in a target system

Observability into SoC designs is today mostly sup-
ported for RTL verification. As SoC designs tend to
increase in size and complexity, the verification process
need also to take place at the system-level. Support for
system-level verification already exist for the software
part of a SoC, where a common technique is the use of
software monitors. These monitors are typically found in
RTOS (Real-Time Operating System) development tool
environments ([10, 1]), and provides the developer with
process-level information such as task-scheduling events
(start/stop, block/resume, taskswitch, etc.), inter-process
communication events (e.g. send and receive messages),
synchronisation and resource utilization (CPUs, sema-
phores, I/O), external interrupts, etc. For this information to
be extracted it is often required to instrument the software
with special monitor instructions or processes, which later



can be removed after the validation phase. The drawbacks
of instrumentation is that it utilizes target resources such
as memory space and execution time from the CPUs.
Also, when the instrumentation is removed, the system
may change behaviour due to timing differences. This
problem, commonly referred to as theprobe effect([6, 9])
causes many timing- and synchronisation-related errors in
concurrent/distributed systems and real-time systems [12].

In this paper we present MAMon, a hardware-based
monitoring system that makes a SoC observable at different
abstraction-levels both in hardware and software. MAMon
is a solution that integrates a small hardware component
into the SoC. It works like a probe, either by listening to
logic- or system-level events in a passive manner, or by
being activated by software that writes to a specific register.
Detected events are time-stamped and sent via a link to a
host-based tool environment where the events are stored in
a database. The tool environment includes a set of fascilites
to view, search, and analyse the events in the database.
Depending on the capacity of the database disk system,
and the rate at which events occur, a monitoring session (or
execution history) may be several days long.

In systems running a software RTOS, the process-level
events can be extracted by instrumenting the code with
hook routines that writes information to the MAMon
hardware. Hook routines are small functions that can
be attached to the RTOS functions, e.g. task scheduling
events, system-calls, and so on. Except the extra recourses
that the instrumentation would require, it may also render
problems if it has to be removed after system validation. An
alternative could be to monitor the RTOS via the CPU’s bus
activities. This would however require that bus activities
be visible outside the CPU, so cache-memories may need
to be turned off if the CPU does not support monitoring of
internal bus logic.

When using a hardware-based RTOS kernel [7] for
the management of SoC software, we will show how
the process-level events can be monitored without soft-
ware overhead and with no instrusion on the system’s
timing behaviour. Moreover, since it is non-instrusive, it
gives the SoC developer the free choice of either keep-
ing or removing the monitor component in the final product.

The use of MAMon may be different for FPGA SoCs
and ASIC SoCs. Leading FPGA manufacturers (Xilinx [4]
and Altera [3]) are now promising SoC solutions with
embeddedsoft or hard processor cores (IP). In such
FPGA-based SoCs, MAMon’s probe component could be
instantiated and connected to the RTL and system-level
description of the design during the verification and valida-

tion phase. After synthesis for the FPGA, the connections
to the design are easy to change, and re-synthesise. For
ASIC implementations, however, it is much more costly
to redesign. In this case MAMon may be more suitabel
for long-term usage as a monitor for CPU busses, and
hardware-based real-time kernel events.

The paper is organised as follows: Section 2 gives an
overview of MAMon and how it is used for hardware and
software monitoring respectively. Moreover, we give a de-
tailed description of the internal layout of the hardware, and
the host interface to the tool environment. The tool envir-
onment is only described slightly. Finally, section 4 and 5
summarizes the paper with a discussion on further work and
some concluding remarks.

2 MAMon

The proposed monitoring system, called MAMon,
aims at providing means for event-based hardware and
software debugging of single- and multiprocessor SoCs.
An overview of MAMon is depicted in figure 2. In this
approach the monitoring system is comprised of three
parts; (i) the Probe Unit which connects to internal SoC
logic, (ii) a Tool environmentresiding on a host computer
system, and(iii) the communication link between the Probe
Unit and the Tool environment, called the Host Interface.

IP

Core

IP

System Bus

Probe

� � � 	

EPP

Host InterfaceTarget System Board

Tool Environment

System-on-Chip

Figure 2. Overview of MAMon

The Probe Unit (PU, described in next section) is
integrated in the design HDL code, and connected to
signals that constitue the events to be monitored. For
instance, an event could be defined as an access of a SoC
component (IP), a certain condition on a bus (address, data,
or control), arrival/contents of communication data, or an
interrupt assertion, and so on. Then, in run-time, the PU
performs detection, timestamping, and recording of events.



Recorded events are transferred, via the Host Interface, to
the Tool environment, where a database is used to store the
events for further processing in display and analysis tools
(section 2.3).

In certain cases there is need to cause events from
software, for instance to monitor the system-level events
occuring in a software real-time kernel. Such events are
produced by inserting software instructions (software
probes) that writes to a PU register connected to the
system/processor bus. Software probes can also be used
as checkpoints in the code (flags), or to report memory
contents.

Not only may system-level events be monitored, but
also the hardware logic itself can be analysed and depicted
against higher-level events, e.g. in waveform graph tools.
This feature is useful for tracking down hardware logic er-
rors which cannot be analysed using conventional probing
methods (e.g. logic analysers and oscilloscope).

2.1 The Probe Unit

Figure 3 shows a block-diagram of PU’s internal or-
ganisation. The component illustrated in top of the figure
is the event-detectorwhich merely performs conditional
comparisons (comparator) on input signals. The input
signals are hard-wired (in HDL) from selected points in
the SoC. Also the condition expressions that defines events
are hard-coded in the event-detector. When a certain
condition for an event is detected, a sample is collected
and stored immediately along with a timestamp in an
on-chip memory buffer. Events generated by software,
i.e. software probes, are detected as write-accesses to a
32-bit register (SWPROBEREG) in the PU’s bus-interface
(address/data/control).

An event-sample comprises the event-type, the
timestamp, and an event-defined parameter field, see
figure 4. The parameter field is used to store additional
information about an event. For instance, for various
access-events to IP-components to be enough informat-
ive, the parameter field might contain call parameters,
e.g. a bus-vector. The parameter field for a software-
probe constitutes the 32-bit value that was written to
SWPROBEREG.

The timestamp comes from a 32-bit timer device which
denotes the relative system time with a resolution of 1�s
per tick. A default timer device is included in the PU.

Since the amount of event samples can be rather large
before it can be communicated to a host computer, the
on-chip memory requirements may not be feasable because
of area or economical constraints, especially in FPGA

Event Detector

T
im

er

From SoC: e.g. chip-select,
address/data, ctrl, registers,
irq, etc.

Event 4

Event 3

Event 2

Event 1

empty

MMU
RAM

EPP Host
Interface

IRQ
GEN

To Host

SWPROBE_REG

Decode
Logic

System/CPU Bus

Probe Unit

Figure 3. Internal organisation of the Probe
Unit

SoCs. Therefore an external (off-chip) RAM buffer could
be required. If an external RAM buffer is used, the on-chip
buffer would still be needed in order to avoid write-access
latencies to the external RAM. With this buffer configura-
tion it is possible to detect and store up to 5 events occuring
within 1 �s, if a clock speed of 10 MHz is assumed. This
is quite useful in some extreme situations, for instance,
when monitoring timing-dependant response to external
interrupts when there are several sources of competing
interrupts.

The Memory Management Unit (MMU) is responsible
for moving event samples from the internal buffer to the ex-
ternal RAM. Both buffers are organised as circular FIFO
buffers for maximum space utilisation. The current ver-
sion of MAMon is implemented with a 128kB RAM buffer.
With an event sample size of 10 bytes (figure 4) this means
that more than 13 000 events can be stored before the buf-
fer needs to be emptied. Furthermore, the MMU manages
requests to move sample data from RAM to the host com-
puter by way of the parallel port interface (described in next
section).



4 Bytes1 Byte

ParametersParameters

EventEvent

5 Bytes

TimestampTimestamp

Figure 4. The event sample format

2.2 Host interface

Since the on-board event buffer is limited it is important
that event samples are transferred to the host with a guar-
anteed high communication bandwidth. Therefore, a paral-
lel port implementing the bi-directionalEnhanced Parallel
Port protocol (EPP 1.9 [2]) is used as the host communic-
ation interface. With EPP the event samples can be trans-
ferred with a rate up to 2MB/s, or more than 200k events
per second.

As part of the host interface is theinterrupt generator,
refer to figure 3. This component can be programmed to
interrupt the host computer whenever there are new events
in the buffer. When enabled, the interrupt generator can be
set into one of three modes:

� Interrupt whenever new events are detected

� Interrupt when the RAM buffer is half-full

� Interrupt when the RAM buffer is full

The first two modes are useful when continous monitor-
ing is desired. The third mode is more useful if the PU is set
to sample from a given command until the buffer becomes
full, and then stop. Providing the ability to choose the in-
terrupt mode gives a customised solution that best suits the
capabilities of the host computer performance, the tools, or
the user. When the interrupt function is disabled, events can
still be acquired inpolled mode. Control of the PU’s be-
haviour, and acquisition of event samples and other status
information, is all done via the EPP register interface, i.e.
from the host computer system.

2.3 The tool environment

The proposed tool environment provides the user with
facilities to view and search the event samples received
from PU. In order to manage possibly huge amounts of
events that can be produced from long system runs, the re-
ceived data must be stored in file-structures that are optimal
for searching. A database will therefore be used for storage

of the event samples. As illustrated in figure 5, the data-
base then acts as a server for various requests from the tools.

Event
Database

Event-graph
Tool Statistics

Utilities

Debug Query
Tool MAMon Interface

+
Evt Database Control EPP I/F

Figure 5. MAMon’s tool environment

An event-graph that displays portions of the event his-
tory is a necessity in order to help the user in finding erro-
neous execution patterns. The event-graph tool, illustrated
in figure 6, collects events from the database, and displays
them along a timeline. Apart from standard functions such
as zooming and scrolling, there is also support for time-
markers that are used for timing measurements, and search-
markers that can be used to locate event conditions and pat-
terns. For logic-level events, the tool looks and behaves
similar to a waveform graph. The difference however, is that
the tool is able to show a mix between logic- and system-
level information on the same timeline, giving the user the
ability to correlate events in the hardware and software.

In order to ease visibility, and understandability of the
execution, an event-filter can be used to hide excess in-
formation. The filter-tool can also reduce the search-space
which will improve performance of the database.

The event-database is also suitable for other post-
analysis, such as extraction of various statistics. Examples
on such applications are; diagrams and histograms showing
task’s execution-time, processor utilisation, IPC frequen-
cies, interrupt-response times, etc.

3 An Ideal Example: Monitoring a Hard-
ware Real-Time Kernel

When connecting the MAMon system to a hardware-
based RTOS kernel, the process-level can be extracted
with zero software overhead, and thus, without chan-
ging the timing behaviour of the system. A hardware
RTOS kernel implements traditional (software) RTOS func-
tions (e.g. scheduling algorithms, task management, inter-
process communication primitives, synchronisation, sema-
phores, event flags, etc.) in hardware. The RTU (Real-Time
Unit [7, 5]) is such a component that has proven to be suc-



Figure 6. Example tools: Event-graph and
event-filter

cessful for increasing RTOS performance and operational
predictability. Moreover, it can also be used as the single
RTOS for both single- and multiprocessor systems [8].

The connection between MAMon’s Probe Unit and the
RTU is done using signals in VHDL ([11]). The recor-
ded events are then transferred to the host-based tool en-
vironment, where a process-view can be displayed using the
event-graph tool. The provided fascilities in the event-graph
tool can help the designer to find erroneus execution pat-
terns and/or be used to tune performance and load-balance
in a multiprocessor SoC.

RTU MAMon
Probe Unit

CPU 1..n,
RAM

Special
Hardware

MAMon
Tool Environment

SoC

Figure 7. A RTL and system-level monitoring
configuration using MAMon

Figure 7 illustrates a SoC configuration using the RTU
for scheduling of one or more CPUs, and MAMon for mon-
itoring the system at both the RTL and system-level. In this
configuration no additional monitoring software is required
on the target.

4 Current and Further Work

A first version of MAMon is currently being implemen-
ted together with a simple tool environment including the
event-graph display tool. In this version only tasking activ-
ities inside the RTU are monitored. Further work will
primarily focus on adding support for monitoring the other
RTU features, such as inter-process communication man-
agement, and handling external interrupts. Moreover, there
will be extensive work on development and improvement
of the tool environment. The results will be published in a
forthcoming paper, together with a case study showing the
use of MAMon for debugging of typical timing and syn-
chronisation errors. There are also plans to extend the Probe
Unit with support for run-time detection of user-defined
event-patterns which then can be used to halt the software,
either completely (all CPUs) or partially as per CPU or task,
or groups of CPUs and tasks. This feature could be utilised
to implement synchronous and consistently halting break-
points for use in cooperation with traditional source-level
debuggers.

5 Conclusions

On-chip support for monitoring and debugging is be-
coming critically important since traditional solutions that
uses in-circuit emulation (ICE) techniques, logic analysers,
and oscilloscope, do not keep pace with today’s system
speeds. Moreover, on-chip approaches are motivated
because of limited pinouts in chip-packaging, and even
difficulties in reaching the physical pins (e.g. Ball-Grid
Arrays, BGA).

The approach of integrating MAMon on a SoC offer an
on-chip solution that also gives non-intrusive, synchronous,
and consistent RTL and system-level monitoring. This, in
turn, is ideal for event-based debugging and profiling of em-
bedded real-time SoC applications. MAMon together with
a hardware RTOS kernel gives a simple solution to process-
level monitoring without requiring additional software over-
head.

In a FPGA solution it is also convenient to monitor a
mix between RTL system-level to get an effective debug and
optimisation environment. In an ASIC solution MAMon is
more suitable for run-time system-level monitoring, e.g. for
process views.

All monitored data are time-stamped with a resolution
of 10 times the system clock freqency. This capability is
important so that events at different abstraction-levels can
be compared and correlated with a high precision.

The requirement to manually connect SoC logic and
signals to MAMon’s Probe Unit, and then define event-



conditions, is unconvenient and can be tricky to handle for
SoCs with many small submodules. Here, it is desirable to
have a tool, preferable an interactive GUI, that automates
the necessary connections and definitions in HDL. In this
case, the HDL code would probably need pre-processing
before compilation and synthesis.

References

[1] H. Bawtree. Real-time monitoring with StethoScope 5.1.
Software Development, 7(9), September 1999.

[2] Enhanced parallel port v. 1.9. IEEE 1284.
[3] Altera corporation. http://www.altera.com/. 101 Innovation

Drive, San Jose, CA 95134.
[4] Xilinx inc. http://www.xilinx.com/prsrls/ibmpartner.htm.

2100 Logic Drive, San Jose, CA 95124-3400.
[5] J. Furunas, J. Starner, L. Lindh, and J. Adomat.RTU94 -

Real-Time Unit 1994 - Reference Manual. Computer Ar-
chitecture Lab, Dept. of Computer Engineering, Malardalen
University, Vasteras, Sweden, January 1998.

[6] J. Gait. A probe effect in concurrent programs.Software -
Practise and Experience, 16(3):225–233, March 1986.

[7] L. Lindh et al. Hardware accelerator for single and multi-
processor real-time operating systems. InSeventh Swedish
Workshop on Computer Systems Architecture, Goteborg,
Sweden, June 1998.

[8] L. Lindh, T. Klevin, and J. Furunas. Scalable architec-
tures for real-time applications - SARA. InCAD & CG’99,
December 1999.

[9] C. E. McDowell and D. P. Helmbold. Debugging concur-
rent programs. ACM Computing Surveys, 21(4):593–621,
December 1989.

[10] Mentor Graphics, Microtec Division. XPERT Profiler -
Measurement and Evaluation Tool.

[11] S. Sjoholm and L. Lindh.VHDL for Designers (473 pages).
Prentice-Hall, January 1997.

[12] J. J.-P. Tsai et al.Distributed Real-Time Systems: Mon-
itoring, Visualization, Debugging, and Analysis. Wiley-
Interscience, 1996.


