
Description of LPM modules LPM 2 2 0

1. DESCRIPTION OF LPM MODULES

This section describes in detail the functionality and semantics of each module in LPM.

1.1 MODULE CATEGORIES

The LPM modules fall into five major categories:

CATEGORY DESCRIPTION
GATES
LPM_CONSTANT Constant value
LPM_INV, LPM_AND, LPM_OR, LPM_XOR Basic combinatorial gates
LPM_BUSTRI Tri-State buffer
LPM_MUX Multiplexer
LPM_DECODE Decoder
LPM_CLSHIFT Combinatorial shifter

ARITHMETIC COMPONENTS
LPM_COUNTER Counter
LPM_ADD_SUB Adder/Subtracter
LPM_COMPARE Comparator
LPM_MULT Multiplier
LPM_ABS Absolute Value
LPM_DIVIDE Divider

STORAGE COMPONENTS
LPM_ROM Read Only Memory
LPM_LATCH Transparent latch
LPM_FF D-type or T-type flip-flop
LPM_SHIFTREG Shift Register
LPM_RAM_DQLPM_RAM_IO, Random Access Memory
LPM_RAM_DP Dual-Port Ramdom Access Memory
LPM_FIFO Single colock First-In-First-Out Memory
LPM_FIFO_DC Double colocks First-In-First-Out Memory

TABLE PRIMITIVES
LPM_FSM Finite state machine
LPM_TTABLE Truth table

PAD PRIMITIVES
LPM_INPAD, LPM_OUTPAD, LPM_BIPAD Input/Output/Bidrectional pads

LPM 2 2 0 Description of LPM modules

Note that truth table, finite state machine, RAM and ROM modules require more
information than can be contained in the LPM netlist to define their function. These
modules use supporting files to describe their function. These supporting files use the
standard Intel HEX, Berkeley PLA and KISS formats.

1.1.1 Logic Conventions

Where logic equations or logic models are used, the following symbols are used for both
single bit operations and bit-wise vector operations:

AND &
OR |
XOR ^
NOT or INVERT ~ on vectors this is 1’s complement
NAND ~&
NOR ~|
XNOR ~^
LEFT SHIFT << vector only
RIGHT SHIFT >> vector only
Two’s Complement
or Unsigned Add

+

Two’s Complement
or Unsigned Subtract

–

Two’s Complement
or Unsigned Multiply

×

Description of LPM modules LPM 2 2 0

1.1.2 Drawing Conventions

The drawings of all modules in this document use the following conventions (shown in
the figure below):

Data Inputs Are shown going into the left of the module symbol.
Data Outputs Are shown coming out of the right side of the module symbol except

on bidir module symbols that have bi-directional port where they are
on the left side.

Control Inputs Are shown going into the top of the module symbol.
Status Outputs Are shown coming out of the bottom of the module symbol.
Data I/Os Are shown on the right side of the bidir module symbol.
Width & Size Width refers to LPM_Width and Size refers to LPM_Size

CONTROL

DATA_IN
DATA_I/O

STATUS

DATA_OUT

MODULE
SYMBOL

CONTROL

DATA_OUT
DATA_IN BIDIR

MODULE
SYMBOL

1.1.3 Scan Test Conventions
All of the modules that have scan-test ports (LPM_COUNTER, LPM_LATCH,
LPM_FF, LPM_TFF, LPM_FSM) use the same convention. The TestOut port always
has the same value as the most significant bit of the output (Q or State). When
TestEnab is high, the data on TestIn is shifted into the least significant bit of the
associated register as the contents of the register are shifted towards the most significant
bit.

LPM 2 2 0 Description of LPM modules

1.2 GATES
1.2.1 LPM_CONSTANT

CONST

Result0

Result1

Result2

Result(LPM_Width-1)

…

1.2.1.1 Ports
Port Name Type Usage Description Comments

Result O Required Value specified by
CValue

Output vector LPM_Width wide
LPM_Cvalue is truncated or sign
extended to LPM_Width bits

1.2.1.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of output vector
LPM_CValue Required LPM Value Value of constant
LPM_Strength Optional WEAK If present, this indicates a pullup or

pulldown strength

1.2.1.3 Function
Result = LPM_Cvalue

Description of LPM modules LPM 2 2 0

1.2.2 LPM_INV

INV

Data0

Data1

Data(LPM_Width-1)

Result0

Result1

Result(LPM_Width-1)

… …

1.2.2.1 Ports
Port Name Type Usage Description Comments

Data I Required Data input Vector, LPM_Width wide
Result O Required Inverted Result Vector, LPM_Width wide

1.2.2.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input and output vectors

1.2.2.3 Function
Result = ~ Data

LPM 2 2 0 Description of LPM modules

1.2.3 LPM_AND

AND

Data0X0

Data1X0

…

Data(LPM_Size-1)X0

Data0X1

Data1X1

…

Data(LPM_Size-1)X1

Result0

Result1

Result(LPM_Width-1)

Data0X(LPM_Width-1)

Data1X(LPM_Width-1)

…

Data(LPM_Size-1)X(LPM_Width-1)

… …

1.2.3.1 Ports
Port Name Type Usage Description Comments

Data I Required Data input Vector, LPM_Size times LPM_Width
wide

Result O Required Result of AND operators Vector, LPM_Width wide

1.2.3.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of output vector.
Number of AND gates.

LPM_Size Required LPM Value > 0 Number of inputs to each AND gate.
Number of input buses.

1.2.3.3 Function
Result0 = Data0X0 & Data1X0 & Data2X0 & … & Data LPM_Size-1X0

Result1 = Data0X1 & Data1X1 & Data2X1 & … & Data LPM_Size-1X1

Result2 = Data0X2 & Data1X2 & Data2X2 & … & Data LPM_Size-1X2

…

Resulti = Data0Xi & Data1Xi & Data2Xi & … & Data LPM_Size-1Xi

Where i goes from 0 to (LPM_Width - 1).

Description of LPM modules LPM 2 2 0

1.2.3.4 Example
Suppose the designers have three 8-bit buses and they want to AND the corresponding
bits of the three buses. This is done using an LPM_AND with an LPM_Width = 8 and
an LPM_Size = 3. The LPM_Width of eight indicates that there are eight AND gates,
and the LPM_Size of three indicates that each AND gate has three inputs.

A[7:0]

B[7:0]

C[7:0]

Data Result

Out[7:0]

LPM_TYPE = LPM_AND
LPM_Width = 8
LPM_Size = 3

This diagram is for illustrative purposes only and is not intended to specify any
implementation details.

The function performed by the LPM_AND gate in this case is:

Out[0] = Result0 = Data0X0 & Data1X0 & Data2X0 = C[0] & B[0] & A[0]

Out[1] = Result1 = Data0X1 & Data1X1 & Data2X1 = C[1] & B[1] & A[1]

Out[2] = Result2 = Data0X2 & Data1X2 & Data2X2 = C[2] & B[2] & A[2]

Out[3] = Result3 = Data0X3 & Data1X3 & Data2X3 = C[3] & B[3] & A[3]

Out[4] = Result4 = Data0X4 & Data1X4 & Data2X4 = C[4] & B[4] & A[4]

Out[5] = Result5 = Data0X5 & Data1X5 & Data2X5 = C[5] & B[5] & A[5]

Out[6] = Result6 = Data0X6 & Data1X6 & Data2X6 = C[6] & B[6] & A[6]

Out[7] = Result7 = Data0X7 & Data1X7 & Data2X7 = C[7] & B[7] & A[7]

LPM 2 2 0 Description of LPM modules

1.2.4 LPM_OR

OR

Data0X0

Data1X0

…

Data(LPM_Size-1)X0

Data0X1

Data1X1

…

Data(LPM_Size-1)X1

Result0

Result1

Result(LPM_Width-1)

Data0X(LPM_Width-1)

Data1X(LPM_Width-1)

…

Data(LPM_Size-1)X(LPM_Width-1)

… …

1.2.4.1 Ports
Port Name Type Usage Description Comments

Data I Required Data input Vector, LPM_Size times LPM_Width
wide

Result O Required Result of OR operators Vector, LPM_Width wide

1.2.4.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of output vector.
Number of OR gates.

LPM_Size Required LPM Value > 0 Number of inputs to each OR gate.
Number of input buses.

1.2.4.3 Function
Resulti = Data0Xi | Data1Xi | Data2Xi | … | DataLPM_Size-1Xi

Where i goes from 0 to (LPM_Width - 1).

Description of LPM modules LPM 2 2 0

1.2.4.4 Example
Suppose the designers have three 8-bit buses and they want to OR the corresponding bits
of the three buses. This is done using an LPM_OR with an LPM_Width of 8 and an
LPM_Size of three. The LPM_Width of eight indicates that there are eight OR gates, and
the LPM_Size of three indicates that each OR gate has three inputs.

A[7:0]

B[7:0]

C[7:0]

Data Result

Out[7:0]

LPM_TYPE = LPM_OR
LPM_Width = 8
LPM_Size = 3

This diagram is for illustrative purposes only and is not intended to specify any
implementation details.

The function performed by the LPM_OR gate in this case is:

Out[0] = Result0 = Data2X0 | Data1X0 | Data0X0 = A[0] | B[0] | C[0]

Out[1] = Result1 = Data2X1 | Data1X1 | Data0X1 = A[1] | B[1] | C[1]

Out[2] = Result2 = Data2X2 | Data1X2 | Data0X2 = A[2] | B[2] | C[2]

Out[3] = Result3 = Data2X3 | Data1X3 | Data0X3 = A[3] | B[3] | C[3]

Out[4] = Result4 = Data2X4 | Data1X4 | Data0X4 = A[4] | B[4] | C[4]

Out[5] = Result5 = Data2X5 | Data1X5 | Data0X5 = A[5] | B[5] | C[5]

Out[6] = Result6 = Data2X6 | Data1X6 | Data0X6 = A[6] | B[6] | C[6]

Out[7] = Result7 = Data2X7 | Data1X7 | Data0X7 = A[7] | B[7] | C[7]

LPM 2 2 0 Description of LPM modules

1.2.5 LPM_XOR

XOR

Data0X0

Data1X0

…

Data(LPM_Size-1)X0

Data0X1

Data1X1

…

Data(LPM_Size-1)X1

Result0

Result1

Result(LPM_Width-1)

Data0X(LPM_Width-1)

Data1X(LPM_Width-1)

…

Data(LPM_Size-1)X(LPM_Width-1)

… …

1.2.5.1 Ports
Port Name Type Usage Description Comments

Data I Required Data input Vector, LPM_Size times LPM_Width
wide

Result O Required Result of XOR operators Vector, LPM_Width wide

1.2.5.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of output vector.
Number of XOR gates.

LPM_Size Required LPM Value > 0 Number of inputs to each XOR gate.
Number of input buses.

1.2.5.3 Function
Resulti = Data0Xi ^ Data1Xi ^ Data2Xi ^ … ^ DataLPM_Size-1Xi

Where i goes from 0 to (LPM_Width - 1).

Description of LPM modules LPM 2 2 0

1.2.5.4 Example
Suppose the designers have three 8-bit buses and they want to XOR the corresponding
bits of the three buses. This is done using an LPM_XOR with an LPM_Width of 8 and
an LPM_Size of three. The LPM_Width of eight indicates that there are eight XOR
gates, and the LPM_Size of three indicates that each XOR gate has three inputs.

A[7:0]

B[7:0]

C[7:0]

Data Result

Out[7:0]

LPM_TYPE = LPM_XOR
LPM_Width = 8
LPM_Size = 3

This diagram is for illustrative purposes only and is not intended to specify any
implementation details.

The function performed by the LPM_XOR gate in this case is:

Out[0] = Result0 = Data2X0 ^ Data1X0 ^ Data0X0 = A[0] ^ B[0] ^ C[0]

Out[1] = Result1 = Data2X1 ^ Data1X1 ^ Data0X1 = A[1] ^ B[1] ^ C[1]

Out[2] = Result2 = Data2X2 ^ Data1X2 ^ Data0X2 = A[2] ^ B[2] ^ C[2]

Out[3] = Result3 = Data2X3 ^ Data1X3 ^ Data0X3 = A[3] ^ B[3] ^ C[3]

Out[4] = Result4 = Data2X4 ^ Data1X4 ^ Data0X4 = A[4] ^ B[4] ^ C[4]

Out[5] = Result5 = Data2X5 ^ Data1X5 ^ Data0X5 = A[5] ^ B[5] ^ C[5]

Out[6] = Result6 = Data2X6 ^ Data1X6 ^ Data0X6 = A[6] ^ B[6] ^ C[6]

Out[7] = Result7 = Data2X7 ^ Data1X7 ^ Data0X7 = A[7] ^ B[7] ^ C[7]

LPM 2 2 0 Description of LPM modules

1.2.6 LPM_BUSTRI
Connection to a Tri-State Bus.

BUSTRI

Data0

Data1

Data(LPM_Width-1)

Result0

Result1

TriData0

TriData1

TriData(LPM_Width-1)

EnableDT

EnableTR

… …

Result(LPM_Width-1)

1.2.6.1 Ports
Port Name Type Usage Description Comments

TriData IO Required Bi-directional bus signal Vector, LPM_Width wide
Data I Note 1 Data input to TriData bus Vector, LPM_Width wide. One of

Data or Result must be used.
EnableDT I Optional If HIGH, enables Data

onto the TriData bus.
Default value is Low. Required if
Data is used.

Result O Note 1 Output from TriData bus. Vector, LPM_Width wide. One of
Data or Result must be used.

EnableTR I Optional If HIGH, enable TriData
onto the Result bus.

Default value is Low. Required if
Result is used

Note 1: Either the Result or Data port is required. Both may be used.

1.2.6.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input and output vectors

Description of LPM modules LPM 2 2 0

1.2.6.3 Functions
EnableDT EnableTR Data Result TriData

L L X Hi-Z Hi-Z Note 1
L H X VALUE

(From TriData)
VALUE

H L VALUE Hi-Z VALUE
(From Data)

H H VALUE VALUE
(From Data)

VALUE
(From Data)

Note 1: When both control ports (EnableDT and EnableTR) are inactive (LOW) the
Result port is high impedance, and the TriData port will take its value from the
attached net (i.e. it is not driven by the LPM_Bustri).

LPM 2 2 0 Description of LPM modules

1.2.7 LPM_MUX

MUX

Data0X0

Data1X0

…
Data(LPM_Size-1)X0

Data0X1

Data1X1

…
Data(LPM_Size-1)X1

Result0

Result1

Result(LPM_Width-1)

Data0X(LPM_Width-1)

Data1X(LPM_Width-1)

…
Data(LPM_Size-1)X(LPM_Width-1)

Sel(LPM_WidthS-1)

… …

Sel1

Sel0

…

Clock

Aclr

ClkEn

1.2.7.1 Ports
Port Name Type Usage Description Comments

Data I Required Data input Vector, LPM_Size times LPM_Width wide

Result O Required Selected input vector Vector, LPM_Width wide

Sel I Required Selects one of the input
vectors

Vector, LPM_WidthS wide

Clock I Optional Clock for pipelined usage Note 1

ClkEn I Optional Clock enable for pipelined Note 2

Aclr I Optional Asynchronous Clear Note 3

Note 1: The Clock port provides for pipelined operation of the LPM_MUX. If a lpm_pipeline
other than 0 (default value) is specified, then the clock port must be connected.

Note 2: The ClkEn port provides a clock enable for pipelined operation.

Note 3: The pipeline initializes to undefined. The Aclr port may be used at any time to reset the
pipeline to all 0’s asynchronously to the clock.

Description of LPM modules LPM 2 2 0

1.2.7.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of output vector. Number of
Multiplexers.

LPM_Size Required LPM Value > 0 Number of inputs to each Multiplexer.
Number of input buses.

LPM_WidthS Required LPM Value >0 WidthS should be the next integer greater
than or equal to log2(LPM_Size) or there
will be unselectable input vectors.

LPM_Pipeline Optional LPM Value ≥ 0 Default is 0 - non-pipelined

1.2.7.3 Functions
Sel vector Sel Value Result

0000…000 0 Data0_[LPM_Width-1:0]

0000…001 1 Data1_[LPM_Width-1:0]

0000…010 2 Data2_[LPM_Width-1:0]

… … …
1111…110 LPM_Size-2 DataLPM_Size-2_[LPM_Width-1:0]

1111…111 LPM_Size-1 DataLPM_Size-1_[LPM_Width-1:0]

This table assumes that LPM_Size is a power of two, but that is not required. If there is
no Data vector that corresponds to the ‘Sel Value’; that is, if DataSel_Value is not
connected or is greater than LPM_Size, the selection of ‘Sel Value’ will produce an
undefined Result.

LPM 2 2 0 Description of LPM modules

1.2.7.4 Example
Suppose the designers have three 8-bit buses and they want to select one of the three
buses. This is done using an LPM_MUX with an LPM_Width of 8 and an LPM_Size of
three. The LPM_Width of eight indicates that there are eight multiplexers, and the
LPM_Size of three indicates that each multiplexer has three inputs.

A[7:0]

B[7:0]

C[7:0]

Data Result

Out[7:0]

LPM_TYPE = LPM_MUX
LPM_Width = 8
LPM_Size = 3

Sel

Bus_Sel[1:0]

This diagram is for illustrative purposes only and is not intended to specify any
implementation details.

Supposing that bus A becomes Data2Xi, bus B becomes Data1Xi, and bus C becomes
Data0Xi, the function performed by the LPM_MUX gate in this case is:

Out[0] = Result0 = DataSelX0 = (UNDEFINED if Sel = 3, A[0] if Sel = 2, B[0] if Sel = 1, C[0] if Sel = 0)

Out[1] = Result1 = DataSelX1 = (UNDEFINED if Sel = 3, A[1] if Sel = 2, B[1] if Sel = 1, C[1] if Sel = 0)

Out[2] = Result2 = DataSelX2 = (UNDEFINED if Sel = 3, A[2] if Sel = 2, B[2] if Sel = 1, C[2] if Sel = 0)

Out[3] = Result3 = DataSelX3 = (UNDEFINED if Sel = 3, A[3] if Sel = 2, B[3] if Sel = 1, C[3] if Sel = 0)

Out[4] = Result4 = DataSelX4 = (UNDEFINED if Sel = 3, A[4] if Sel = 2, B[4] if Sel = 1, C[4] if Sel = 0)

Out[5] = Result5 = DataSelX5 = (UNDEFINED if Sel = 3, A[5] if Sel = 2, B[5] if Sel = 1, C[5] if Sel = 0)

Out[6] = Result6 = DataSelX6 = (UNDEFINED if Sel = 3, A[6] if Sel = 2, B[6] if Sel = 1, C[6] if Sel = 0)

Out[7] = Result7 = DataSelX7 = (UNDEFINED if Sel = 3, A[7] if Sel = 2, B[7] if Sel = 1, C[7] if Sel = 0)

Description of LPM modules LPM 2 2 0

1.2.8 LPM_DECODE

DECODE

Data0

Data1

Data(LPM_Width-1)

EQ0

EQ1

EQ(LPM_Decodes-1)

… …

Enable

Clock

Aclr

ClkEn

1.2.8.1 Ports
Port Name Type Usage Description Comments

Data I Required Data input. Treated as
unsigned binary number.

Vector, LPM_Width wide

Enable I Optional Enable. All outputs low
when not active

Default value is Active (High) if
absent.

EQ O Required For i = 0 to
LPM_Decodes
 if (i = Data) Eqi = 1
 else Eqi = 0

Vector, LPM_Decodes wide.
If Data ≥ LPM_Decodes then all
Eqi are 0

Clock I Optional Clock for pipelined usage Note 1
ClkEn I Optional Clock enable for pipelinedNote 2
Aclr I Optional Asynchronous Clear Note 3

Note 1: The Clock port provides for pipelined operation of the LPM_DECODE. If a
lpm_pipeline other than 0 (default value) is specified, then the clock port must be
connected.

Note 2: The ClkEn port provides a clock enable for pipelined operation.

Note 3: The pipelined initializes to undefined. The Aclr port may be used at any time to
reset the pipeline to all 0’s asynchronously to the clock.

1.2.8.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input vector
LPM_Decodes Required0 < LPM Value ≤ 2LPM_Width Number of explicit decodes

LPM_Pipeline Optional LPM Value ≥ 0 Default is 0 - non-pipelined

LPM 2 2 0 Description of LPM modules

1.2.8.3 Functions
Enable Data vector Eqi that is 1 (high)

all other Eqi = 0 (low)

L X NONE
H 0000…000 Eq0

H 0000…001 Eq1

… … …
H 000…0101 Eq5

… … …
H Data = LPM_Decodes -1 Eq(LPM_Decodes-1)

H Data = LPM_Decodes NONE
H Data > LPM_Decodes NONE

Note 1: If Data = i and Eqi is not connected or does not appear in the symbol then all
outputs will be low.

Description of LPM modules LPM 2 2 0

1.2.9 LPM_CLSHIFT
Combinatorial Logic shifter. Barrel Shifter.

Data(LPM_Width-1)

CLSHIFT

Data0

Data1

Result0

Result1

Result(LPM_Width-1)

… …

Direction

Distance0

Distance1

Distance(LPM_WidthDist-1)

Underflow

Overflow

1.2.9.1 Ports
Port Name Type Usage Description Comments

Data I Required Data to be shifted. Vector, LPM_Width wide
Distance I Required Number of positions to shift

Data.
Vector, LPM_WidthDist
wide

Direction I Optional Direction of shift.
Low = Left (toward MSB)
High = Right (toward LSB)

Default value is 0 (Low) =
Left (toward the MSB)

Result O Required Shifted Data Vector, LPM_Width wide
Overflow O Optional Logical or Arithmetic Overflow Note 1
Underflow O Optional Logical or Arithmetic Underflow Note 1

Note 1: If the LPM_ShiftType is ROTATE and Overflow or Underflow are connected,
the output of those ports will be undefined.

LPM 2 2 0 Description of LPM modules

1.2.9.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input vector
LPM_WidthDist Optional LPM Value > 0 Width of the Distance Port

Note 1
LPM_ShiftType Optional LOGICAL | ROTATE |

ARITHMETIC
Default is LOGICAL
Note 2

Note 1: LPM_WidthDist specifies the width of the Distance port. The values on the
Distance port would normally range from 0 which would mean “no shift” to
(LPM_Width-1) which would be the maximum meaningful shift. The typical value
assigned to LPM_WidthDist would be “the smallest integer not less than
log2(LPM_Width)” or log2LPM_Width. Any value on the Distance port greater
than LPM_Width-1 results in an UNDEFINED output.

Note 2: The sign bit is extended for ARITHMETIC. For a LOGICAL right shift 0’s are
always shifted into the MSB.

1.2.9.3 Functions
The LPM_CLSHIFT module acts like a barrel-shifter. It is entirely combinational logic.

Overflow occurs when the shifted result exceeds the precision of the Result bus. For
LOGICAL values, overflow occurs when all ones have been shifted out. For
ARITHMETIC value, overflow occurs a significant digit is shifted into or past the sign
bit.

Underflow occurs when the shifted result contains no significant digits.

LPM_ShiftType Direction Function

LOGICAL 0 = Left Result = Data << Distance
LOGICAL 1 = Right Result = Data >> Distance
ROTATE 0 = Left Resulti = Datax where x is ((Distance + i) mod

LPM_Width)
ROTATE 1 = Right Resulti = Datax where x is ((Distance - i) mod

LPM_Width)
ARITHMETIC 0 = Left Result = DATA * 2LPM_WidthDist

ARITHMETIC 1 = Right Result = DATA ÷ 2LPM_WidthDist (integer divide)

Values larger than (LPM_Width - 1) result in an UNDEFINED output.

Description of LPM modules LPM 2 2 0

1.3 ARITHMETIC COMPONENTS
1.3.1 LPM_ADD_SUB

ADD_SUB

DataA_0

DataB_0

DataA_1

DataB_1

Result0

Result1

Result(LPM_Width-1)

DataA_(LPM_Width-1)

DataB_(LPM_Width-1)

Add_Sub

…
…

Cin

Cout

Overflow

Aclr

Clock

ClkEn

1.3.1.1 Ports
Port Name Type Usage Description Comments

DataA I Required Augend/Minuend Vector, LPM_Width wide
DataB I Required Addend/Subtrahend Vector, LPM_Width wide

Cin I Optional Carry in to the low order bit

OP=ADD Low= 0 High= +1
OP=SUB Low = -1 High= 0

If not connected, default value is
LOW.

Add_Sub I Optional The Operation to be
performed
=H: OP = ADD
=L: OP = SUB

Cannot be used it LPM_Direction
property is used. If not connected,
defaults value is ADD.

Result O Required DataA ± DataB ± Cin Vector, LPM_Width wide

Cout O Optional Carry-out (~Borrow-in) of
Most Significant Bit (MSB)

Note 1

LPM 2 2 0 Description of LPM modules

Overflow O Optional Result exceeds available
precision.

Note 2

Clock I Optional Clock for pipelined usage Note 3
Clken I Optional Clock enable for pipelined Note 4
Aclr I Optional Asynchronous Clear Note 5

Note 1: Cout has a physical interpretation as the carry-out (~borrow-in) of the most
significant bit. Cout is most meaningful for detecting overflow in unsigned numbers.
See Table 1 for the arithmetic interpretation of Cout = 1.

Note 2: Overflow has a physical interpretation as the XOR (exclusive or) of the carry
into the MSB with the carry out of the MSB. Overflow is only meaningful when the
LPM_Representation is signed. It indicates that the Result has exceeded the
available precision. See Table 2 for the arithmetic interpretation of Overflow = 1.

Note 3: The Clock port provides for pipelined operation of the LPM_ADD_SUB. If a
lpm_pipeline other than 0 (default value) is specified, then the clock port must be
connected.

Note 4: The ClkEn port provides a clock enable for pipelined operation.

Note 5: The pipelined initializes to undefined. The Aclr port may be used at any time to
reset the pipeline to all 0’s asynchronously to the clock

Table 1: Arithmetic interpretation of Cout = 1
OP = ADD OP = SUB

Unsigned (DataA + DataB + Cin) > 2LPM_Width-1 Normal Subtract. However, if Cout = 0,
then (DataA - DataB - Cin) < 0

Signed Normal result of adding two negative
numbers, or possible overflow.

Normal result when subtracting a
positive number from a negative
number, or possible overflow.

Table 2: Arithmetic interpretation of Overflow = 1
OP=ADD OP=SUB

Unsigned Not meaningful Not meaningful
Signed (DataA + DataB + Cin) > 2LPM_Width-1-1

or
(DataA + DataB + Cin) < -2LPM_Width-1

(DataA - DataB - Cin) > 2LPM_Width-1-1
or
(DataA - DataB - Cin) < -2LPM_Width-1

Description of LPM modules LPM 2 2 0

1.3.1.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of DataA, DataB and Result
LPM_Direction Optional ADD | SUB Default is ADD. Add_Sub port may

not be used if this property is used.
LPM_Representation Optional UNSIGNED or

SIGNED
Default is SIGNED

LPM_Pipeline Optional LPM Value ≥ 0 Default is 0 - non-pipelined

1.3.1.3 Functions
Resulti = DataAi ^ DataBi ^ Cini ^ (~ Add_Sub)

Cout = carry out of the MSB

Overflow = the XOR of the carry into the MSB and Cout
When Cout is prepended to the Result, the result is a vector that always has sufficient
precision to represent the result of the operation.

{Cout,Result} = DataA + Cin ± DataB

LPM 2 2 0 Description of LPM modules

1.3.2 LPM_COMPARE

DataA_1

DataB_(LPM_Width-1)
ALB

ALEB

ANEB

AEB

AGB

AGEB

COMPARE

DataA_0

DataB_0

DataB_1

DataA_(LPM_Width-1)

…

Aclr

Clock

ClkEn

1.3.2.1 Ports
Port Name Type Usage Description Comments

DataA I Required DataB is compared to this. Vector, LPM_Width wide
DataB I Required This is compared to DataA Vector, LPM_Width wide
AGB O Note 1 High (1) if DataA > DataB

AGEB O Note 1 High (1) if DataA ≥ DataB
AEB O Note 1 High (1) if DataA = DataB

ANEB O Note 1 High (1) if DataA ≠ DataB
ALB O Note 1 High (1) if DataA < DataB

ALEB O Note 1 High (1) if DataA ≤ DataB
Clock I Optional Clock for pipelined usage Note 2
ClkEn I Optional Clock enable for pipelined Note 3
Aclr I Optional Asynchronous Clear Note 4

Note 1: At least one of the 6 output ports must be connected.

Note 2: The Clock port provides for pipelined operation of the LPM_COMPARE. If a
lpm_pipeline other than 0 (default value) is specified, then the Clock port must be
connected.

Note 3: The ClkEn port provides a clock enable for pipelined operation.

Note 4: The pipelined initializes to undefined. The Aclr port may be used at any time
to reset the pipeline to all 0’s asynchronously to the clock.

Description of LPM modules LPM 2 2 0

1.3.2.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value >
0

Width of DataA and DataB

LPM_Representatio
n

Optional UNSIGNED or
SIGNED

Default is UNSIGNED.

LPM_Pipeline Optional LPM Value ≥0 Default is 0 - non-pipelined

1.3.2.3 Functions
Signed or unsigned comparison of the value represented by DataA versus the value
represented by DataB. Note that:

AEB = ~ANEB ALB = ~AGEB AGB = ~ALEB

LPM 2 2 0 Description of LPM modules

1.3.3 LPM_MULT

Sum(LPM_WidthS-1)

Sum1

…

Sum0

DataB_(LPM_WidthB-1)

DataB_1

DataA_(LPM_WidthA-1)

DataA_1

DataA_0

Clock

ClkEn

MULTIPLIER

DataB 0

Result0

Result1

Result(LPM_WidthP-1)

…

…

…

Aclr

1.3.3.1 Ports
Port Name Type Usage Description Comments

DataA I Required Multiplicand Vector, LPM_WidthA wide

DataB I Required Multiplier Vector, LPM_WidthB wide

Sum I Optional Partial Sum Vector, LPM_WidthS wide. Note 1

Result O Required Product Vector, LPM_WidthP wide. Note 2

Clock I Optional Clock for pipelined usage Note 3

ClkEn I Optional Clock enable for pipelined Note 4

Aclr I Optional Asynchronous Clear Note 5

Note 1: An extra bit should be reserved in the LPM_WidthS if a carry out is expected from
addition of the Product and the Partial Sum. LPM_WidthS should be larger than
LPM_WidthA plus LPM_WidthB to guarantee that the carry out will be represented in
Result.

Note 2: The product is a vector, LPM_WidthP bits wide. If LPM_WidthP is less than the
maximum of either LPM_WidthA plus LPM_WidthB or LPM_WidthS, then only the
LPM_WidthP most significant bits are present. See 1.3.3.3.

Note 3: The Clock port provides for pipelined operation of the LPM_MULT. If a
lpm_pipeline other then 0 (default value) is specified, then the clock port must be
connected.

Note 4: The ClkEn port provides a clock enable for pipelined operation.

Note 5: The pipelined initializes to undefined. The Aclr port may be used at any time to
reset the pipeline to all 0’s asynchronously to the clock.

Description of LPM modules LPM 2 2 0

1.3.3.2 Properties
Property Usage Value Comments

LPM_WidthA Required LPM Value > 0 Width of DataA
LPM_WidthB Required LPM Value > 0 Width of DataB
LPM_WidthS Optional LPM Value > 0 Width of Sum. Required if the Sum

port is used.
LPM_WidthP Required LPM Value > 0 Width of Result. This represents

the LPM_WidthP most significant
bits.

LPM_Representatio
n

Optional UNSIGNED or
SIGNED

Default is UNSIGNED.

LPM_Pipeline Optional LPM Value ≥ 0 Default is 0 - non-pipelined

1.3.3.3 Function
Result = (DataA * DataB) + Sum

The LSB of the product of DataA and DataB is aligned with the LSB of Sum.

LPM 2 2 0 Description of LPM modules

1.3.3.4 Example

MULTIPLIER

A[3:0]

B[1:0]

S[7:0]

R[5:0]DataA

DataB

Sum

Result

LPM_WidthA = 4
LPM_WidthB = 2
LPM_WidthS = 8
LPM_WidthP = 6
LPM_TYPE = MULTIPLIER

This diagram is for illustrative purposes only and is not intended to specify any
implementation details.

A3 A2 A1 A0
× B1 B0

= P5 P4 P3 P2 P1 P0
+ S7 S6 S5 S4 S3 S2 S1 S0
= X7 X6 X5 X4 X3 X2 X1 X0
= R5 R4 R3 R2 R1 R0

The partial product is represented by P, and the full product by X. Both are internal only.

Description of LPM modules LPM 2 2 0

1.3.4 LPM_DIVDE

Denom(LPM_WidthD-1)

Denom1

Numer(LPM_WidthN-1)

Numer1

Numer0

Clock

ClkEn

DIVIDE

Denom0

Quotient0

Quotient1

Quotient (LPM_WidthN-1)

…

…

…

Aclr

Remain0

Remain1

…
Remain (LPM_WidthN-1)

1.3.4.1 Ports
Port Name Type Usage Description Comments

Numer I Required Numerator Vector, LPM_WidthN wide
Denom I Required Denominator Vector, LPM_WidthD wide.

Note 1
Clock I Optional Clock for pipelined usage Note 2
ClkEn I Optional Clock enable for pipelined Note 3
Aclr I Optional Asynchronous Clear Note 4

Quotient O Note 5 Quotient Vector, LPM_WidthN wide

Remain O Note 5 Remainder Vector, LPM_WidthD wide

Note 1: The Quotient and Remain will be UNDEFINED if Denom value is 0.

Note 2: The Clock port provides for pipelined operation of the LPM_DIVIDE. If a
lpm_pipeline other than 0 (default value) is specified, then the clock port must be
connected.

Note 3: The ClkEn port provides a clock enable for pipelined operation.

Note 4: The pipeline initializes to undefined. The Aclr port may be used at any time to
reset the pipeline to all 0’s asynchronously to the clock.

Note 5: At lease one of Quotient and Remain ports must be used.

LPM 2 2 0 Description of LPM modules

1.3.4.2 Properties
Property Usage Value Comments

LPM_WidthN Required LPM Value > 0 Width of Numer
LPM_WidthD Required LPM Value > 0 Width of Denom

LPM_NRepresentation Optional UNSIGNED or
SIGNED

Default is UNSIGNED.

LPM_DRepresentation Optional UNSIGNED or
SIGNED

Default is UNSIGNED.

LPM_Pipeline Optional LPM Value ≥ 0 Default is 0 - non-pipelined

1.3.4.3 Function
Quotient = Numerator / Denominator

Numerator = Quotient * Denominator + Remainder

1.3.4.4 Examples:

Numerator Denominator Quotient Remainder
+7 +3 +2 +1
-1 +3 -1 +2
-4 +3 -2 +2
-7 +3 -3 +2
+7 -3 -2 +1
+4 -3 -1 +1
-4 -3 +2 +2
-7 -3 +3 +2

In all cases, Remainder is always positive, while Quotient can be negative.

Description of LPM modules LPM 2 2 0

1.3.4.5 Example

DIVIDE

A[3:0]

B[1:0]

Q[3:0]Numer

Denom

Quotient

LPM_WidthN = 4
LPM_WidthD= 2
LPM_TYPE = LPM_DIVIDE

Remain
R[1:0]

This diagram is for illustrative purposes only and is not intended to specify any
implementation details.

A3 A2 A1 A0
/ B1 B0

= Q3 Q2 Q1 Q0
R1 R0

The quotient is represented by Q, and the remainder is represented by R.

LPM 2 2 0 Description of LPM modules

1.3.5 LPM_ABS

Data(LPM_Width-1)

Data 1

Data 0 Result 0
Result 1

Result(LPM_Width-1)

Overflow

ABS… …

1.3.5.1 Ports
Port Name Type Usage Description Comments

Data I Required Vector represents SIGNED numberVector, LPM_Width wide
Result O Required Absolute Value of Data Vector, LPM_Width wide.

Overflow O Optional High (1) if Data = -2LPM_Width-1 Note 1

Note 1: Two’s complement allows one more negative number than positive. The
overflow port detects that singular instance and goes high to indicate that no positive
equivalent exists.

1.3.5.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 1 Width of input and output vectors

1.3.5.3 Function
if Data = -2LPM_Width-1, then Overflow = 1, Result = UNDEFINED

else if Data < 0, then Result = (0 – Data)

else Result = Data

Data must always represent a SIGNED number and may be positive or negative. Result
will always be positive.

Description of LPM modules LPM 2 2 0

1.3.6 LPM_COUNTER

Data(LPM_Width-1)

Data1

Data0

Clk_En

Cnt_En

Clock

UpDown

Cin COUNTER

Q0

Q1

Q(LPM_Width-1)

Cout

Aclr

Aset

Aload

Sclr

Sset

Sload

… …

1.3.6.1 Ports
Port Name Type Usage Description Comments

Data I Optional Parallel Data load for the counter Vector, LPM_Width wide
Uses Aload and/or Sload

Clock I Required Positive Edge Triggered
Clk_En I Optional Enable all synchronous activities Default is enabled (1)
Cnt_En I Optional Disables count when low (0)

(without affecting Sload, Sset,
Sclr)

Default is enabled (1)

Cin I Optional Carry in
UpDown I Note 1 Controls direction of count

High = 1 = count up
Low = 0 = count down

Default is Up (1)

Cout O Optional Carry out port Note 3
Q O Note 2 Count output. Vector, LPM_Width wide

Sload I Optional Load the counter with Data on the
next clock.

Note 4

Sset I Optional Set counter value to all 1’s or to
the value of LPM_Svalue, if
present

Note 5, Note 6

Sclr I Optional Clear the counter (set to all 0’s) Note 6
Aload I Optional Load the counter with Data. Note 4

LPM 2 2 0 Description of LPM modules

Port Name Type Usage Description Comments

Aset I OptionalSet counter value to all 1’s or to
the value of LPM_Avalue, if
present.

Note 5, Note 6

Aclr I Optional Clear the counter (set to all 0’s) Note 6

Note 1: If the LPM_Direction property is used, then the UpDown port cannot be
connected. If the LPM_Direction property is not used, then the UpDown port is
optional.

Note 2: Either Q or Cout ports must be connected.

Note 3: Since the counter goes through C counts where 0 ≤ C < Modulus. Modulus is
either the value specified by LPM_Modulus if present, or 2LPM_Width. The Cout ports
are optional and generally will be LPM_Modulus-1 which is the terminal count.

Note 4: If Aload and/or Sload are used, then the Data port must be connected.

Note 5: Sset and Aset will set the count to the value of LPM_Svalue or LPM_Avalue
respectively, if those values are present. If no LPM_Svalue is specified, then Sset
will set the count to all ones, likewise Aset.

Note 6: For outputs such as Q and Cout on the LPM_COUNTER, Aset, Aclr, Sset and
Sclr affect the output before polarity is applied.

Description of LPM modules LPM 2 2 0

1.3.6.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input and output vectors. If
no output vectors are specified, then
this is the number of bits in the count.

LPM_Modulus Optional LPM Value > 0 The maximum count. plus one
LPM_Direction Optional UP | DOWN Note 1
LPM_Avalue Optional LPM Value Loaded when Aset is active (1) Note 2
LPM_Svalue Optional LPM Value Loaded when Sset is active (1) Note 2
LPM_Pvalue Optional LPM Value Loaded at power on. Note 2

Note 1: If the LPM_Direction property is used, then the UpDown port cannot be
connected. This property allows implementation of a Down counter as the default
when the UpDown port is not connected.

Note 2: If the value specified is larger than the Modulus, then the behavior of the counter
is UNDEFINED. The Modulus is the LPM_Modulus, if present, or else 2LPM_Width .

The LPM_Counter defaults to an unsigned binary counter. The LPM_Hint property can
be used to suggest an implementation style other than unsigned binary.

It is suggested, but not required, that all of the following styles be supported in the fitting
tool and in simulation.

Unsigned binary Signed Binary BCD

standard Gray Code Johnson LFSR

LPM 2 2 0 Description of LPM modules

1.3.6.3 Functions
Aclr
Aset

Aload

Sclr
Sset

Sload

Clock Cnt_En Clk_En Up-
Down

Output

H L X X X X Asynchronous value.
Note 1

L H ↑ X H X Synchronous value
Note 2

L H ↑ X L X No change

H H X X X X UNDEFINED
L L ↑ H L X No change

L L ↑ H H H Previous output + 1

L L ↑ H H L Previous output – 1

L L ↑ H H U Note 3

Note 1: The asynchronous value is determined by which asynchronous port is high:
Aclr, Aset or Aload. If Aclr and Aset are both high, then the output is UNDEFINED.
Aclr or Aset takes priority over Aload. Asynchronous controls have priority over
synchronous controls. If the LPM_Avalue property is defined, then the Aset port,
when active, will set the count to the value of the LPM_Avalue..

Note 2: The synchronous value is determined by which synchronous port is high: Sclr,
Sset or Sload. If more then one synchronous port is high, then Sclr takes priority
over Sset which takes priority over Sload. Asynchronous controls have priority over
synchronous controls. If the LPM_Svalue property is defined, then the Sset port,
when active, will set the count to the value of the LPM_Svalue..

Note 3: If the UpDown port is not connected, then the LPM_Direction property, if
present, will determine the direction of the count. The LPM_Direction property
defaults to UP. The UpDown and the LPM_Direction property are mutually
exclusive; if one is used, then using the other is an ERROR.

Description of LPM modules LPM 2 2 0

1.4 STORAGE COMPONENTS
1.4.1 LPM_LATCH
D-Type Latch.

Data(LPM_Width-1)

Data1

Data0

Gate
LATCH

Q0

Q1

Q(LPM_Width-1)

Aclr

Aset

… …

1.4.1.1 Ports
Port Name Type Usage Description Comments

Data I Optional Data Input to D-Type Latches Vector, LPM_Width wide
Note 1

Gate I Required Latch enable input
 High (1) = flow through
 Low (0) = latch

Q O Required Data output from D-type latches Vector, LPM_Width wide
Aset I OptionalSet latch value to all 1’s or to the

value of LPM_Avalue, if present.
Note 2, Note 3

Aclr I Optional Clear the latch (set to all 0’s) Note 3

Note 1: If the Data input is not used, then either Aset or Aclr must be used.

Note 2: Aset will set the count to the value of LPM_Avalue, if that value is present. If
no LPM_Avalue is specified, then Aset will set the count to all ones.

Note 3: Aset and Aclr affect the output (Qi) values before the application of polarity to
the ports.

LPM 2 2 0 Description of LPM modules

1.4.1.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input and output vectors
LPM_Avalu

e
Optional LPM Value Value loaded by Aset

LPM_Pvalue Optional LPM Value Value loaded at power-on

1.4.1.3 Functions
Aclr
Aset

Gate Output

H X Asynchronous value.
Note 1

L L Latch holds current value (latched)
L H Latch is transparent (flow-through)

Note 1: The asynchronous value is determined by which asynchronous port is high: Aclr
or Aset. If both asynchronous ports are high, then the output is UNDEFINED. If the
LPM_Avalue property is defined, then the Aset port, when active, will set the count
to the value of the LPM_Avalue.

Description of LPM modules LPM 2 2 0

1.4.2 LPM_FF
Flip-flop: D type or Toggle

Data (LPM_Width-1)

Data1

Data0

Clock
Enable

 FF

Q0

Q1

Q(LPM_Width-1)

Aclr

Aset

Aload

Sclr
Sset

… …

Sload

1.4.2.1 Ports
Port Name Type Usage Description Comments

Data I Required TFF: Toggle enable
DFF: Data input
Data input during Aload or Sload

Vector, LPM_Width wide

Clock I Required Positive Edge Triggered
Enable I Optional Enable all synchronous activities Default is enabled (1)

Q O Required Output of Flip-flops Vector, LPM_Width wide
Sload I Note 1 TFF only: Load the Flip-flops with

Data on the next clock.
Note 2, Note 4

Sset I Optional Set Flip-flops to all 1’s or to the
value of LPM_Svalue, if present

Note 3, Note 4

Sclr I Optional Clear the Flip-flops (set to all 0’s) Note 4
Aload I Note 1 TFF only: Load the Flip-flops with

Data.
Note 4

Aset I OptionalSet Flip-flops to all 1’s or to the
value of LPM_Avalue, if present.

Note 3, Note 4

Aclr I Optional Clear the Flip-flops (set to all 0’s) Note 4

Note 1: Aload and Sload are only applicable when LPM _FFType is TFF. If the
LPM_FFType is DFF and these ports are connected, it is an ERROR.

Note 2: Synchronous load of LPM_TFF. For load operation Sload must be high (1) and
Enable (the clock enable) must be High or unconnected.

LPM 2 2 0 Description of LPM modules

Note 3: Sset and Aset will set the Flip-flops to the value of LPM_Svalue or
LPM_Avalue repectively, if those values are present. If no LPM_Svalue is specified,
then Sset will set the Flip-flops to all ones, likewise Aset.

Note 4: For outputs such as Qi on the LPM_FF, Aload, Aset, Aclr, Sload, Sset and Sclr
affect the output before polarity is applied.

1.4.2.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input and output vectors
LPM_Avalue Optional LPM Value Value loaded by Aset
LPM_Svalue Optional LPM Value Value loaded by Sset
LPM_Pvalue Optional LPM Value Value loaded at power-on
LPM_FFType Optional DFF | TFF Default is DFF

1.4.2.3 Functions
Aclr
Aset

Aload

Sclr
Sset

Sload

Clock Enable Output

H X X X Asynchronous value.
Note 1

L H ↑ H Synchronous value
Note 2

L H ↑ L No change

L L ↑ L No change (clock not enabled)

L L ↑ H TFF: FFi is toggled if Datai is high (1).
DFF: Data is loaded into the register

Note 1: The asynchronous value is determined by which asynchronous port is high:
Aclr, Aset or Aload. If Aclr and Aset are both high, then the output is UNDEFINED.
Aclr or Aset takes priority over Aload. Asynchronous controls have priority over
synchronous controls. If the LPM_Avalue property is defined, then the Aset port,
when active, will set the FFs to the value of the LPM_Avalue. Aload is not permitted
when the LPM_FFType is DFF.

Note 2: The synchronous value is determined by which synchronous port is high: Sclr,
Sset or Sload. If more then one synchronous port is high, then Sclr takes priority over
Sset which takes priority over Sload. Asynchronous controls have priority over
synchronous controls. If the LPM_Svalue property is defined, then the Sset port,
when active, will set the FFs to the value of the LPM_Svalue. Sload is not permitted
when the LPM_FFType is DFF.

Description of LPM modules LPM 2 2 0

1.4.3 LPM_SHIFTREG
Universal Shift Register

Data (LPM_Width-1)

Data1

Data0

ShiftIn

Clock
Enable

 SHIFTREG

Q0

Q1

Q(LPM_Width-1)

ShiftOut

Aclr

Aset

Load

Sclr

Sset

… …

1.4.3.1 Ports
Port Name Type Usage Description Comments

Data I Note 1 Data for parallel load of shift
register

Vector, LPM_Width wide

Clock I Required Clock, positive edge triggered
Enable I Optional Clock enable input Default is enabled (High)
ShiftIn I Note 1 Input for serial data during shift
Load I Optional High (1): Load operation

 Low (0): Shift operation
Default is low (0) - shift
operation. Note 2.

Q O Note 3 Output for parallel data Vector, LPM_Width wide
ShiftOut O Note 3 Output for serial data during shift

Aset I Note 1 Set register value to all 1’s or to
the value of LPM_Avalue, if
present.

Note 4, Note 5

Aclr I Note 1 Clear the register (set to all 0’s) Note 5
Sset I Note 1 Set register value to all 1’s or to

the value of LPM_Svalue, if
present

Note 4, Note 5

Sclr I Note 1 Clear the register (set to all 0’s) Note 5

LPM 2 2 0 Description of LPM modules

Note 1: At least one of Data, Aset, Aclr, Sset, Sclr and/or ShiftIn must be used.

Note 2: Synchronous parallel load. For parallel load operation Load must be high (1)
and Enable (the clock enable) must be High or unconnected.

Note 3: Either ShiftOut or Q or both must be used.

Note 4: Sset and Aset will set the count to the value of LPM_Svalue or LPM_Avalue
respectively, if those values are present. If no LPM_Svalue is specified, then Sset
will set the count to all ones, likewise Aset.

Note 5: Sset, Sclr, Aset and Aclr affect the output (Qi) values before the application of
polarity to the ports.

1.4.3.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input and output
vectors

LPM_Avalue Optional LPM Value Value loaded by Aset
LPM_Svalue Optional LPM Value Value loaded by Sset
LPM_Pvalue Optional LPM Value Value loaded at power-on

LPM_Direction Optional LEFT|RIGHT Default is LEFT. Note 1.

Note 1: A left shift implies that the data is being shifted into the LSB and out the MSB.
The LSB gets the value on the ShiftIn port. The ShiftOut port is always equal to
QLPM_Width-1.

1.4.3.3 Functions
Aclr
Aset

Sclr
Sset

Clock Enable Load Output

H X X X X Asynchronous value.
Note 1

L H ↑ H X Synchronous value
Note 2

L H ↑ L X No change (clock not enabled)

L L ↑ L X No change (clock not enabled)

L L ↑ H L Parallel load Register from Data

L L ↑ H H Qi is shifted into Qi+1

ShiftIn is loaded into Q0

Description of LPM modules LPM 2 2 0

Note 1: The asynchronous value is determined by which asynchronous port is high: Aclr
or Aset. If Aclr and Aset are both high, then the output is UNDEFINED.
Asynchronous controls have priority over synchronous controls. If the
LPM_Avalue property is defined, then the Aset port, when active, will set the
FFs to the value of the LPM_Avalue.

Note 2: The synchronous value is determined by which synchronous port is high: Sclr or
Sset. If more then one synchronous port is high, then Sclr takes priority over
Sset. Asynchronous controls have priority over synchronous controls. If the
LPM_Svalue property is defined, then the Sset port, when active, will set the Q
to the value of the LPM_Svalue.

LPM 2 2 0 Description of LPM modules

1.4.4 LPM_RAM_DQ
Memory with separate input and output ports.

Address(LPM_WidthAd-1)

RAM_DQ

Data0

Data1

Data(LPM_Width-1)

Address0

Address1

Q0

Q1

Q(LPM_Width-1)

WE

OutClock

InClock

… …

…

1.4.4.1 Ports
Port Name Type Usage Description Comments

Data I Required Data input to memory Vector, LPM_Width wide
Address I Required Address of memory location Vector, LPM_WidthAd

wide
Q O Required Output of memory Vector, LPM_Width wide

InClock I Optional Clock for read operation Note 1
OutClock I Optional Clock for write operation Note 2

WE I Required Write enable control. Enables
write to the memory when high
(1).

 Note 3

Note 1: If the InClock port is used, then the WE port acts as an enable for write
operations synchronized to the positive going edge of the signal on the InClock port.
If the InClock ports is not used, then the WE port acts as an enable for write
operations asynchronously.

Note 2: The addressed memory content → Q response is synchronous when the
OutClock port is connected. and asynchronous when it is not connected.

Note 3: If only WE is used, the data on the Address port should not change while WE is
active (high, 1). If the data on the Address port changes while WE is high (1), then
all memory locations that are addressed are over-written with Data.

Description of LPM modules LPM 2 2 0

1.4.4.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input and output vectors.
LPM_WidthAd Required LPM Value > 0 Width of Address Port. Note 1.

LPM_NumWords Optional LPM Value > 0 Number of words stored in Memory.
Note 2.

LPM_InData Optional REGISTERED |
UNREGISTERED

Indicates if Data port is registered.
Default is REGISTERED

LPM_Address_Control Optional REGISTERED |
UNREGISTERED

Indicates if Address and WE ports are
registered. Default is REGISTERED

LPM_OutData Optional REGISTERED |
UNREGISTERED

Indicates if Q port is registered.
Default is REGISTERED

LPM_File Optional File Name File for RAM initialization.

Note 1: The LPM_WidthAd should be (but is not required to be) equal to:
log2(LPM_NumWords). If LPM_WidthAd is too small, some memory locations will not
be addressable. If it is too big, then the addresses that are too high will return UNDEFINED.

Note 2: If LPM_NumWords is not used, then it defaults to 2LPM_WidthAd. In general, this value
should be (but is not required to be): 2LPM_WidthAd-1 < LPM_NumWords ≤ 2LPM_WidthAd.

1.4.4.3 Functions
Random Access Memory. This module can represent asynchronous memory or memory
with synchronous inputs and/or outputs.

1.4.4.3.1 Synchronous Memory Operations

Synchro
nous

Write to
memoryI
nClock

WE Memory Contents

X L No change

not ↑ H No change (requires positive going clock edge)

↑ H The memory location pointed to by Address is loaded with Data.
Controlled by WE.

Synchronous Read from memory

OutClock Output

not ↑ No Change

↑ The output register is loaded with the contents of the memory location pointed
to by Address. Q outputs the contents of the output register. Note 1

Note 1: WE does not act as a clock enable for the output clock.

LPM 2 2 0 Description of LPM modules

1.4.4.3.2 Asynchronous Memory Operations
Totally asynchronous memory operations occur when neither InClock nor OutClock is
connected.

WE
Memory Contents

L No change
H The memory location pointed to by Address is loaded with Data.

Controlled by WE.

The output Q is asynchronous and reflects the data in the memory to which Address
points.

Description of LPM modules LPM 2 2 0

1.4.5 LPM_RAM_DP
Dual-Port Random Access Memory

RdAddress(LPM_WidthAd-1)

WrAddress(LPM_WidthAd-1)

WrAddress0

WrAddress1
…

RAM_DP

Data1

Data(LPM_Width-1)

RdAddress0
RdAddress1

Q0

Q1

Q(LPM_Width-1)

RdEn

…

…

…

WrEn

RdClock
WrClock
RdClken
WrClken

Data0

1.4.5.1 Ports
Port Name Typ

e
Usage Description Comments

Data I Required Data input to memory Vector, LPM_Width wide
RdAddress I Required Read address of memory location Vector, LPM_WidthAd wide
WrAddress I Required Write address of memory location Vector, LPM_WidthAd wide
RdClock I Optional Clock for read operation Note 1
WrClock I Optional Clock for write operation Note 2
RdClken I Optional Read Clock enable control Used with all registers

clocked by RdClock.
WrClken I Optional Write Clock enable control Used with all registers

clocked by WrClock. Note 3
RdEn I Optional Read enable control Note 4
WrEn I Required Write enable control Note 5

Q O Required Output of memory Vector, LPM_Width wide

Note 1: If the RdClock port is used, it acts as the clock for read operation and functions
as the clock signal to any registers present on the RdAddress, RdEn and Q ports.

LPM 2 2 0 Description of LPM modules

Note 2: If the WrClock port is used, it acts as the clock for write operation and
functions as the clock signal to any registers present on the WrAddress, WrEn and
Data ports. For single-clock synchronous design, user can tie RdClock and
WrClock together.

Note 3: For single-clock synchronous design, user can tie RdClken and WrClken
together

Note 4: If the RdClock port is used, then the RdEn port acts as an enable for read
operations synchronized to the positive going edge of the signal on the RdClock port.
If the RdClock port is not used, then the RdEn port acts as an enable for read
operations asynchronously.

Note 5: If the WrEn port is registered, then writing of the data to the addressed is
synchronous to the positive going edge of the signal on WrClock when WrEn is
active. If the WrEn port is not registered, then the WrEn port acts as an enable for
write operations asynchronously.

1.4.5.2 Functional diagram

RdAddress

RdEn

WrAddress

WrEn

Data

Dual-port
memory

array

Q

RdAddress

RdEn

RdClock

RdClken

WrAddress

WrEn

WrClock

WrClken

Data

RdAddressRdAddress

Q

The functional diagram helps to picture the relational between ports and functions.

Description of LPM modules LPM 2 2 0

1.4.5.3 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input and output vectors.
LPM_WidthAd Required LPM Value > 0 Width of Address Port. Note 1.
LPM_NumWords Optional LPM Value > 0 Number of words stored in Memory.

Note 2.
LPM_InData Optional REGISTERED |

UNREGISTERED
Indicates if Data port is registered.
Default is REGISTERED

LPM_OutData Optional REGISTERED |
UNREGISTERED

Indicates if Q port is registered.
Default is REGISTERED

LPM_RdAddress_Contr
ol

Optional REGISTERED |
UNREGISTERED

Indicates if RdAddress and RdEn
ports are registered. Default is
REGISTERED

LPM_WrAddress_Contr
ol

Optional REGISTERED |
UNREGISTERED

Indicates if WrAddress and WrEn
ports are registered. Default is
REGISTERED

LPM_File Optional File Name File for RAM initialization.

Note 1: The LPM_WidthAd should be (but is not required to be) equal to:
log2(LPM_NumWords). If LPM_WidthAd is too small, some memory locations
will not be addressable. If it is too big, then the addresses that are too high will
return UNDEFINED.

Note 2: If LPM_NumWords is not used, then it defaults to 2LPM_WidthAd. In general, this
value should be (but is not required to be): 2LPM_WidthAd-1 < LPM_NumWords ≤
2LPM_WidthAd.

1.4.5.4 Functions
Random Access Memory. This module can represent asynchronous memory or memory
with synchronous inputs and/or outputs.

1.4.5.4.1 Synchronous Memory Operations
Synchronous Write to memory (all inputs registered)

WrClock WrClken WrEn Memory Contents

X L L No change

not ↑ H H No change

↑ L X No change

↑ H H The memory location pointed to by WrAddress is loaded with
Data.

LPM 2 2 0 Description of LPM modules

1.4.5.4.2 Synchronous Read from memory

RdClock RdClken RdEn Output

X L L No Change

not ↑ H H No Change

↑ L X No Change

↑ H H Q outputs the contents of the memory location.

1.4.5.4.3 Asynchronous Memory Operations
Totally asynchronous memory operations occur when neither RdClock nor WrClock is
connected.

WrEn Memory Contents

L No change
H The memory location pointed to by WrAddress is loaded with

Data. Controlled by WrEn.

The output Q is asynchronous and reflects the data in the memory to which RdAddress
points.

Description of LPM modules LPM 2 2 0

1.4.6 LPM_RAM_IO
Memory with a single I/O port.

Address(LPM_WidthAd-1)

RAM_IO

DIO0

DIO1

DIO(LPM_Width-1)

Address0

Address1

WE

OutClock

InClock

…

…

MemEnab

OutEnab

1.4.6.1 Ports
Port Name Type Usage Description Comments

Address I Required Address of memory location Vector, LPM_WidthAd
wide

InClock I Note 1 Synchronous load of memory
OutClock I Note 2 Synchronous Q outputs from

memory.
MemEnab I Optional Memory Output Tristate Enable Note 3
OutEnab I Optional High (1): DIO ← Memory[Address]

Low (0): Memory[Address] ← DIO
Note 4

WE I Required Write enable control. Enables
write to the memory when high
(1).

Note 5

DIO I/O Required bi-directional Data port Vector, LPM_Width wide

Note 1: If the InClock port is used, then the WE port acts as an enable for write
operations synchronized to the positive going edge of the signal on the InClock port.
If the InClock ports is not used, then the WE port acts as an enable for write
operations asynchronously.

Note 2: The addressed memory content → Q response is synchronous when the
OutClock port is connected. and asynchronous when it is not connected.

LPM 2 2 0 Description of LPM modules

Note 3: When low, the memory is inactive and the outputs are Hi-Z. This also disables
the ability to write to memory.

Note 4: Same as ~WE. Only one of OutEnab or WE should be used.

Note 5: Same as ~OutEnab. Only one of WE or OutEnab should be used. If no clock
ports are used, when WE is active (high, 1) the data on the Address port should not
change. If the data on the Address port changes while WE is high (1), then all
memory locations that are addressed are over-written with Data.

1.4.6.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input and output
vectors.

LPM_WidthAd Required LPM Value > 0 Width of Address Port. Note 1.
LPM_NumWords Optional LPM Value > 0 Number of words stored in

Memory. Note 2.
LPM_InData Optional REGISTERED |

UNREGISTERED
Indicates if Data port is
registered. Default is
REGISTERED

LPM_Address_Control Optional REGISTERED |
UNREGISTERED

Indicates if Address, MemEnab
and WE ports are registered.
Default is REGISTERED

LPM_OutData Optional REGISTERED |
UNREGISTERED

Indicates if Q port is registered.
Default is REGISTERED

LPM_File Optional File Name File for RAM initialization.

Note 1: The LPM_WidthAd should be (but is not required to be) equal to:
log2(LPM_NumWords). If LPM_WidthAd is too small, some memory locations
will not be addressable. If is too big, then the addresses that are too high will return
UNDEFINED.

Note 2: If LPM_NumWords is not used, then it defaults to 2LPM_WidthAd. In general, this
value should be (but is not required to be): 2LPM_WidthAd-1 < LPM_NumWords ≤
2LPM_WidthAd.

Description of LPM modules LPM 2 2 0

1.4.6.3 Functions
Random Access Memory. This module can represent asynchronous memory or memory
with synchronous inputs and/or outputs.

1.4.6.3.1 Synchronous Memory Operations
Synchronous Write to memory

InClock Mem-
Enab

WE or
~OutEnab

Memory contents

X L X Hi-Z (memory not enabled)

↑ H L No change (no write enable)

not ↑ H H No change (requires positive going clock edge)

↑ H H Memory[Address] ← DIO controlled by WE
Synchronous Read from memory

OutClock Mem-
Enab

Out-Enab
or ~WE

Output (Note 1)

X L X Hi-Z (memory not enabled)

↑ H L DIO acts as an input to the LPM_RAM_IO.

↑ H H The output register is loaded with the contents of
the memory location pointed to by Address. DIO
outputs the contents of the output register. Note 1

not ↑ H H No change. DIO is held constant until next clock.
Data will change on next OutClock.

Note 1: WE does not act as a clock enable for the output clock.

LPM 2 2 0 Description of LPM modules

1.4.6.3.2 Asynchronous Memory Operations
Totally asynchronous memory operations occur when neither InClock nor OutClock is
connected.

Mem-
Enab

WE or
~OutEnab

Memory Contents (Note 1)

L X Hi-Z (memory not enabled)

H L No change (No Write Enable)
H H The memory location pointed to by Address is loaded

with Data on DIO. Note 2

Note 1: When neither InClock nor OutClock is connected, the output DIO is
asynchronous and reflects the data in the memory to which Address points when
DIO is acting as an output.

Note 2: The data on the Address port should not change while WE is high (OutEnab is
low). If the data on the Address port changes while WE is high (OutEnab is low),
then all memory locations that are addressed are over-written with DIO.

Description of LPM modules LPM 2 2 0

1.4.7 LPM_ROM
Read only memory

Address(LPM_WidthAd-1)

ROM
Address0

Address1

Q0

Q1

Q(LPM_Width-1)

OutClock

InClock

MemEnab

1.4.7.1 Ports
Port Name Type Usage Description Comments

Address I Required Address of memory location Vector, LPM_WidthAd wide
InClock I Note 1 Synchronous Address

OutClock I Note 2 Synchronous Q outputs from
memory.

MemEnab I Optional Memory enable control. Low: Q output is Hi-Z
High: Q is Memory[Address]

Q O Required Output of memory Vector, LPM_Width wide

Note 1: The Address is synchronous(registered) when the InClock port is connected.
and asynchronous(registered) when it is not connected

Note 2: The addressed memory content → Q response is synchronous when the
OutClock port is connected. and asynchronous when it is not connected.

1.4.7.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input and output vectors.
LPM_WidthAd Required LPM Value > 0 Width of Address Port. Note 1.

LPM_NumWords Optional LPM Value > 0 Number of words stored in Memory.
Note 2.

LPM_Address_Contr
ol

Optional REGISTERED |
UNREGISTERED

Indicates if Addres port is
registered. Default is REGISTERED

LPM_OutData Optional REGISTERED |
UNREGISTERED

Indicates if Q is registered. Default
is REGISTERED

LPM_File Required File Name File for ROM initialization.

LPM 2 2 0 Description of LPM modules

Note 1: The LPM_WidthAd should be (but is not required to be) equal to:
log2(LPM_NumWords). If LPM_WidthAd is too small, some memory locations
will not be addressable. If is too big, then the addresses that are too high will return

UNDEFINED.

Note 2: If LPM_NumWords is not used, then it defaults to 2LPM_WidthAd. In general, this
value should be (but is not required to be): 2LPM_WidthAd-1 < LPM_NumWords ≤
2LPM_WidthAd.

1.4.7.3 Functions
Read Only Memory. This module can represent asynchronous memory or memory with
synchronous outputs.

1.4.7.3.1 Synchronous Memory Operations
Synchronous memory

OutClock MemEnab Output

X L Q output is Hi-Z

not ↑ H No Change in output

↑ H The output register is loaded with the contents of the memory
location pointed to by Address. Q outputs the contents of the
output register.

1.4.7.3.2 Asynchronous Memory Operations

Totally asynchronous memory operations occur when none of InClock nor OutClock is
connected.

MemEnab Memory Contents

L Q output is Hi-Z
H The memory location pointed to by Address is read.

The output Q is asynchronous and reflects the data in the memory to which Address
points.

Description of LPM modules LPM 2 2 0

1.4.7.4 ROM Contents
The format for the file containing the ROM contents is contained in section 11.4, HEX
OBJECT FILE SPECIFICATION. A summary and examples is included here for
reference only.

1.4.7.4.1 Glossary
Hex-byte: an 8-bit byte represented by a pair of hex-digits.

Hex-digit: a symbol representing values from 0 to 15 (4-bits) using the digits 0-9 and
the letters A-F (or a-f).

Byte Count: A pair of hex-digits indicating the number of data or address hex-bytes in
the current record. The following fields are not included in the Byte-count:
address record, data indicator record or checksum.

Address Bytes: A pair of hex-bytes representing the address offset (with respect to the
current Extended Address) of the first word in the data portion of the record. The
value of the address bytes is added to the current Extended Address to form the
real address of the first data word. An Extended Address is defined as zero until
it is redefined by an Extended Address record.

Extended Address: The concatenation of the Data in an Extended Address Record
with a hex ’0’. See the example below.

Sum_Check: A hex-byte representing the sum of the bytes in the record, exclusive of
the Sum_Check. The bytes are taken one hex-byte (two hex-digits) at a time and
summed as unsigned integers. White space characters are ignored for the
Sum_Check calculation. The two’s complement of the sum is computed and the
low-order hex-byte is retained. The hex-bytes that are included in the sum are:
Byte_Count, Address, Record_Type (’00’ or ’02’), and the Data. The Sum_Check
is not included in the calculation. (The term Sum_Check is used to avoid conflict
with the EDIF definition Check_Sum.)

 For example, if the record is : 07 0000 02 00 01 02 03 03 03 01 EA the bytes
sum as 07+00+00+02+00+01+02+03+03+03+01=16. The 32-bit two’s
complement of 00000016 is FFFFFFEA. The least-significant byte has the
hex value EA.

Interpretation of the data values in the Hex Object File depends on the value of the Width
property. The data values correspond to the words in the LPM_ROM, with the word at
address zero appearing first in the data list. The word at address one follows the word at
address zero, etc. Each word in the Hex Object File is padded on the left by zero bits so
that the word consumes an even multiple of 8 bits (a hex-byte). If the ’Width’ is an even
multiple of 8 bits, then no padding is needed. For example, suppose an LPM_ROM is 3-
bits wide. To represent the data values 0 through 7 in such an LPM_ROM you would use
the hex-bytes: 00 01 02 03 04 05 06 07.

The goal is readability: the number "1" would be represented as a hex-byte "01" and
padding bits will be ignored so that subsequent words will also be readable. In a 10-bit
wide LPM_ROM, two hex-byte pairs are used to represent each word. The first hex-byte

LPM 2 2 0 Description of LPM modules

value contains the two most-significant bits (bits 10 and 9). The second hex-byte value
contains the eight least-significant bits (bits 7, 6, 5, 4, 3, 2, 1, and 0).

Example 1:

Width Value hex-byte
6 0 00
6 7 07
6 50 32

10 7 00 07
10 27 00 1B
10 273 01 11
10 725 02 D5
10 1023 03 FF

Example 2:
Hex file for an LPM_ROM (Width = 10, Numwords = 32)

line # Contents
1 :02 0000 02 00 01 FB
2 :08 0000 00 00 07 00 1B 01 11 02

D5 ED
3 :04 0008 00 03 FF 00 01 F1
4 :00000001FF

Interpretation:

Line 4 contains ":00000001FF" which is the "End of File" indicator.

The first field of each of lines 1, 2, and 3 is the byte count (this excludes the first three
fields and the last field, that is: byte count = # fields - 4).

The second field is an address offset from the current Extended Address. If none is
specified, then the current Extended Address is used.

The third field indicates whether the following hex-bytes are a new Extended Address
(02) or data (00).

The fields between the third and last fields contain either an address or data.

If the fields contain an address, then it is multiplied by 16 to form a new Extended
Address. Note that the second field is required to be ’0000’ when an address is specified.

If the fields contain data, then hex-bytes are taken in groups to form the data words. If
the ’Width’ is between 1 and 8 then one hex-byte is read. If the ’Width is between 9 and
16, then two hex-bytes are taken. Between 17 and 24, three hex-bytes are taken, etc.

The last field is a checksum computed by summing all of the bytes (including the first
three fields), truncating the result to the least significant hex-byte and taking the two’s
complement.

Description of LPM modules LPM 2 2 0

Corresponding contents of LPM_ROM:

Addres
s (Hex)

+0 +1 +2 +3 +4 +5 +6 +7

0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

16 (10) 7 1B 111 2D5 0 0 0 0
24 (18) 3FF 1 0 0 0 0 0 0

Example 3:
An LPM_ROM with Width=2 and Numwords=7 (7 words of 2-bits each)

:07 0000 00 00 01 02 03 03 03 01 EA
:00 0000 01 FF

Corresponding contents of LPM_ROM:

Address
(Hex)

+0 +1 +2 +3 +4 +5 +6+7

0 0 1 2 3 3 3 1

1.4.7.4.2 additional comments on Hex File Format
There is optional white space between the all of the fields. The white space does not
affect the checksum.

LPM 2 2 0 Description of LPM modules

1.4.8 LPM_FIFO
Single-Clock First-In-First-Out Memory.

FIFO

Data0

Data1

Data(LPM_Width-1)

Clock

Q0

Q1

Sclr
Aclr
RdReq

…
…

Empty

WrReq

UsedW0

UsedW(LPM_WidthU-1)

…

Q(LPM_Width-1)

Full

1.4.8.1 Ports
Port Name Type Usage Description Comments

Data I Required Data input to memory stack Vector, LPM_Width wide

Clock I Required Clock to memory

Aclr I Optional Asynchronous Clear of memory pointer Empties the FIFO asynchronously

Sclr I Optional Synchronous Clear of memory pointer Empties the FIFO synchronously

RdReq I Required Read request control Disabled if Empty = 1

WrReq I Required Write request control Disabled if Full = 1

 Full O Optional Full flag when memory is full

Empty O Optional Empty flag when memory is empty

UsedW O Optional Number of words used in the memory Vector, Note 1

Q O Required Output of memory Vector, LPM_Width wide

Note 1: The width of UsedW should be equal to a round up integer value of
log2(LPM_NumWords).

1.4.8.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input and output data vectors.
LPM_WidthU Note 1 LPM Value > 0 Width of UsedW

LPM_NumWords Required LPM Value > 0 Number of words of the memory.
Note 2.

LPM_ShowAhead Optional ON | OFF Date will be available immediately for
read. Note 3. Default is OFF

Description of LPM modules LPM 2 2 0

Note 1: Required if UsedW is used.

Note 2: LPM_NumWords is the size of the memory.

Note 3: LPM_ShowAhead allows user to read the data immediately after data is the
memory without asserting RdReq explicitly. RdReq effectively acts as a read
acknowledge. LPM_ShowAhead does not affect the read pointer.

1.4.8.3 Functions
First-In-First-Out Memory. This module can represent memory with synchronous inputs
and outputs.

1.4.8.3.1 Synchronous Memory Operations

Clock RdReq WrReq Memory Contents

X L L No change

not ↑ X X No change (requires positive going clock edge)

↑ L H Write Data to memory.

↑ H L Read memory and update Q

↑ H H Write Data to memory and read memory to Q.
Note 1.

Note 1: When FIFO is full then WrReq will be ignored and RdReq is executed. When
FIFO is empty then RdReq will be ignored and WrReq will be executed.

1.4.8.4 Example

Clock

WrReq

Q 22

Empty

Data 4422 44

RdReq

Usedw 0 1 1

Q 22

LPM_ShowAhead=OFF

LPM_ShowAhead=ON

33 55

33

33 44

2

LPM 2 2 0 Description of LPM modules

1.4.9 LPM_FIFO_DC
Dual-Clock First-In-First-Out Memory.

FIFO_DC

Data0

Data1

Data(LPM_Width-1)

RdClock

Q0

Q1

RdReq

…
…

WrEmpty

WrReq

WrUsedW0

WrUsedW(LPM_WidthU-1)

…

Q(LPM_Width-1)

RdUsedW0

RdUsedW(LPM_WidthU-1)

…

RdEmpty

WrClock

WrFull

RdFull

Aclr

1.4.9.1 Ports
Port Name Type Usage Description Comments

Data I Required Data input to memory stack Vector, LPM_Width wide
RdClock I Required Clock for memory read
WrClock I Required Clock for memtory write

Aclr I Optional Asynchronous Clear of memory
pointer

Empties the FIFO

RdReq I Required Read request control Disalbed if RdEmpty = 1
WrReq I Required Write request control Disabled if WrFull = 1
 RdFull O Optional Full flag when memory is full Synchronous with RdClock
 WrFull O Optional Full flag when memory is full Synchronous with

WrClock
RdEmpty O Optional Empty flag when memory is empty Synchronous with RdClock
WrEmpty O Optional Empty flag when memory is empty Synchronous with

WrClock
RdUsedW O Optional Number of words in the FIFO Vector, Note 1
WrUsedW O Optional Number of words in the FIFO Vector, Note 1

Q O Required Output of memory stack Vector, LPM_Width wide

Note 1. The width of RdUsedW and WrUsedW should be equal to a round up integer
value of log2(LPM_NumWords).

Description of LPM modules LPM 2 2 0

1.4.9.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input and output data vectors.
LPM_WidthU Note 1 LPM Value > 0 Width of WrUsedW and RdUsedW

LPM_NumWords Required LPM Value > 0 Number of words of the memory.
Note 2.

LPM_ShowAhead Optional ON | OFF Data will be available immediately for
read. Note 3. Default is OFF

Note 1: Required if WrUsedW or RdUsedW port is used.

Note 2: LPM_NumWords is the size of the memory.

Note 3: LPM_ShowAhead allows user to read the data immediately after data is the
written to memory without asserting RdReq explicitly. RdReq effectively acts as a
read acknowledge. LPM_ShowAhead does not affect the read pointer.

1.4.9.3 Functions
First-In-First-Out Memory. This module can represent memory with synchronous inputs
and outputs.

1.4.9.3.1 Synchronous Memory Operations

RdClock WrClock RdReq WrReq Memory Contents

X X L L No change

not ↑ not ↑ X X No change (requires positive going clock edge)

↑ ↑ L H Write Data to memory.

↑ ↑ H L Read memory and update Q.

↑ ↑ H H Write Data to memory and read memory to Q.
Note 1.

Note 4: When FIFO is full then WrReq will be ignored and RdReq is executed. When
FIFO is empty then RdReq will be ignored and WrReq will be executed.

LPM 2 2 0 Description of LPM modules

1.5 TABLE PRIMITIVES

1.5.1 TABLE FORMATS
The full syntax of Truth Table files is defined in section 11.5. A summary is included
here for reference only.

Logical Functions can be described by how they behave rather than how they are
implemented. In LPM this manner of description is restricted to the two table-based
modules LPM_TTABLE and LPM_FSM. The former describes a stateless behavior
while the latter describes the behavior of systems with a memory of their behavior (i.e.,
with a state). The table-based digital functions LPM_TTABLE and LPM_FSM define
their function by describing their outputs as a function of their inputs in the form of a
table. A table in this format describes a function as a sum of products. The inputs to the
product terms are the true and inverted inputs to the module. A typical product term of a
table driven module with four inputs (Data3:0) is:

Result = ~Data0 & Data1 & Data3

Tables in LPM are represented in the Berkeley PLA format with an input plane and an
output plane. The table entry corresponding to the above equation is:

1-10 1

The first four characters represent the input terms. Notice that the notation depends upon
positional information so that an entry is needed even if the input is not used in the
product term. Each position in the input plane corresponds to an input variable: a 1
implies the corresponding input literal is used in the product term, a 0 implies the
complemented input literal appears in the product term, and ‘-’ implies the input literal
does not appear in the product term. A sum of products term is expressed as two of more
lines in the table. Each line in the table thus expresses a function for one or more of the
outputs but the total function is expressed as the sum of all the lines in the table.

Boolean sums of terms can be described in various ways. One method is to describe the
input conditions under which the outputs are 1 and imply that the outputs are 0 for all
other sets of inputs (i.e., the ON-set can be provided). This may represent a more
complex function than is needed because some of the outputs are not used under certain
input conditions (i.e., they are “don’t cares”). A more precise way of defining the
Boolean function then, is to provide both the ON-set and the DC-set (Don’t Care set).
Then the OFF-set (the conditions under which the outputs must be low) is the
complement of the union of the On- and DC-sets. LPM follows the Berkeley format in
allowing the following different representations for truth tables:

1. By providing the ON-set, the OFF-set is implied as the complement of the ON-set
and the DC-set is empty. (LPM_TruthType property = F)

2. By providing the ON-set and DC-set, the OFF-set is implied as the complement of
the union of the ON-set and the DC-set. If any product term belongs to both the
ON-set and the DC-set, then it is considered a Don’t Care and may be removed
from the ON-set during the fitting process. (LPM_TruthType = FD)

Description of LPM modules LPM 2 2 0

3. By providing the ON-set and OFF-set the DC-set is implied as the complement of
the union of the ON-set and OFF-set. It is an error for any product term to belong
to both the ON-set and OFF-set. (LPM_TruthType = FR)

4. By providing the ON-set, the DC-set and the OFF-set the truth table is fully
specified. (LPM_TruthType = FDR)

The definition of the output section of a Boolean function expressed as a table depends
upon which of the four descriptions is used. The output formats are:

F = LPM_TruthType. For each output, a 1 means that this product term belongs to
the ON-set, a 0 means that this product term has no meaning for the value of this
function (i.e., the output value may be set by some other function). This type
corresponds to an actual PLA where only the ON-set is actually implemented.

FD = LPM_TruthType. For each output, a 1 means that this product term belongs to
the ON-set, a 0 means that this product term has no meaning for the value of this
function, and a ‘-’ implies that this product term belongs in the DC-set.

FR = LPM_TruthType. For each output, a 1 means that this product term belongs to
the ON-set, a 0 means that this product term belongs to the OFF-set, and a ‘-’
means that this product term has no meaning for the value of this function.

FDR = LPM_TruthType. For each output, a 1 means that this product term belongs
to the ON-set, a 0 means that this product term belongs to the OFF-set, a ‘-’
implies means that this product term belongs to the DC-set, and a ‘~’ implies that
this product term has no meaning for the value of this function.

Note 1: regardless of the type, a ‘~’ implies the product term has no meaning for the
value of the function.

Note 2: If at all possible, the fitter should be given the DC-set (either implicitly or
explicitly) in order to improve the results of the fitting.

LPM 2 2 0 Description of LPM modules

1.5.2 LPM_TTABLE
Truth Table

Data0

Data1

Data(LPM_WidthIn-1)

Result0

Result1

Result(LPM_WidthOut-1)

TTABLE

1.5.2.1 Ports
Port Name Type Usage Description Comments

Data I Required Data input Vector, LPM_WidthIn wide
Result O Required Result of Logic Function Vector, LPM_WidthOut wide

1.5.2.2 Properties
Property Usage Value Comments

LPM_WidthIn Required LPM Value > 0 Width of input vector
LPM_WidthOut Required LPM Value > 0 Width of output vector

LPM_File Required String File Name Name of file containing Truth
Table file.

LPM_TruthType Optional F | FD | FR | FDR Default is FD

1.5.2.3 Function
Result = ƒ(Data)

Where ƒ is the function defined in the Truth Table file.

Description of LPM modules LPM 2 2 0

1.5.2.4 Example

IN[5:0]

Data[5:0] Result[1:0]

OUT[1:0]

TTABLE

LPM_WidthIn = 6
LPM_WidthOut = 2
LPM_File = TT1.txt
LPM_TruthType = FD
LPM_TYPE = TTABLE

This diagram is for illustrative purposes only and is not intended to specify any
implementation details.

The file TT1.txt contains:

.i 6 # No. of inputs

.o 2 # No. of outputs
0 0 - - 1 0 0 1
0 0 - 1 0 0 1 0
0 1 1 - - 0 1 1

This corresponds to:

Result0 = ~Data0 & Data1 & ~Data4 & ~Data5 | ~Data0 & Data3 & Data4 & ~Data5

Result1 = ~Data0 & ~Data1 & Data2 & ~Data4 & ~Data5 | ~Data0 & Data3 & Data4 & ~Data5

or

OUT0 = ~IN0 & IN1 & ~IN4 & ~IN5 | ~IN0 & IN3 & IN4 & ~IN5

OUT1 = ~IN0 & ~IN1 & IN2 & ~IN4 & ~IN5 | ~IN0 & IN3 & IN4 & ~IN5

LPM 2 2 0 Description of LPM modules

1.5.3 LPM_FSM
Finite State Machine

Data(LPM_WidthIn-1)

Data1

Data0

TestIn

TestEnab

Clock

FSM

Aset

TestOut

State(LPM_WidthS-1)

State1

State0

Result(LPM_WidthOut-1)

Result0

Result1

1.5.3.1 Ports
Port Name Type Usage Description Comments

Data I Required Data input Vector, LPM_WidthIn wide
Clock I Required Clock for State transitions Positive edge triggered
State O Optional Current State Vector Vector, LPM_WidthS wide. Note 1

Result O Required Result of Logic Function Vector, LPM_WidthOut wide.
Note 2

Aset I Optional Asynchronous set control Note 3
TestEnab I Note 4 Test clock enable input

TestIn I Note 4 Serial test data input
TestOut O Note 4 Serial test data output TestOut = StateLPM_WidthS-1

Note 1: The state vector is always present inside the FSM. It may be brought out if
needed elsewhere in the design by using the State port.

Note 2: The Result vectors are asynchronous. The outputs may be purely a function of
the internal state vector (a Moore machine) or may be a function of both the internal
state vector and the Data inputs (a Mealy machine).

Note 3: Aset will set the count to the value of LPM_Avalue, if that value is present. If
no LPM_Avalue is specified, then Aset will set the count to all ones. Aset affects the
outputs (Result and State) values before the application of polarity to the ports.

Note 4: Either all of the Test ports must be connected or none of them.

Description of LPM modules LPM 2 2 0

1.5.3.2 Properties
Property Usage Value Comments

LPM_WidthIn Required LPM Value > 0 Width of input vector
LPM_WidthOut Required LPM Value > 0 Width of output vector
LPM_WidthS Optional LPM Value > 0 Width of the State vector

LPM_File Required String File Name Name of file containing Truth Table
file.

LPM_Pvalue Optional LPM Value Power-up value of State Vector
LPM_Avalue Optional LPM Value Value of State Vector when Aset is

asserted.
LPM_TruthType Optional F | FD | FR | FDR Default is FD

1.5.3.3 Functions
Result = ƒ(State) Moore

machine

Result = ƒ(State, Data) Mealy machine

StateT+1 = ƒ(StateT, Data)

LPM 2 2 0 Description of LPM modules

1.5.3.4 Example

IN[3:0]

Data[3:0] Result[2:0]

OUT[2:0]

FSM

LPM_WidthIn = 4
LPM_WidthOut = 3
LPM_WidthS = 2
LPM_File = FSM1.txt
LPM_TruthType = FD
LPM_Pvalue = 0
LPM_Avalue = 0
LPM_TYPE = FSM

CLK

Clock State[1:0]

ST[1:0]

This diagram is for illustrative purposes only and is not intended to specify any
implementation details.

The file FSM1.txt contains:

.start Kiss

.I 4

.o 3

.p 5

1 - - - dc idle 1 1 -

0 1 - - idle reading 1 0 -

0 0 1 - idle writing 0 1 -

0 - - 1 reading idle 1 1 -

0 - - 1 writing idle 1 1 -

.code dc - -

.code idle 0 0

.code reading 0 1

.code writing 1 0

Description of LPM modules LPM 2 2 0

error
1 1 -

1 - - -

idle
1 1 -

reading writing

1 0 - 0 1 -

0 - - 1

0 1 - -

1 - - -

0 - - 1

0 1 - -

1 - - -

Normally, the FSM
should never enter the
error state. The init
input resets the state to
idle if it does happen.

Inputs:
 init, read, write, reset
Outputs:
 ~write, ~read, nc
States:
 11: error
 00: idle
 01: read
 10: write

This can be better understood by considering the ninth line form the FSM1.txt file:

0 - - 1 reading idle 1 1 -

Data (input) From state To state Result (Output)

Although all LPM_FSMs have a valid state encoding, the fitter is free to re-encode the
states. Care must be taken in re-encoding if the state is brought outside the LPM_FSM.

LPM 2 2 0 Description of LPM modules

1.6 PAD PRIMITIVES
1.6.1 LPM_INPAD
Input Pad

INPAD

Result0

Result1

Result(LPM_Width-1)Pad(LPM_Width-1)

Pad1

Pad0

1.6.1.1 Ports
Port Name Type Usage Description Comments

Pad I Optional External Data input Vector, LPM_Width wide
Result O Required Data from Pads Vector, LPM_Width wide

1.6.1.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of input vector

1.6.1.3 Function
Result = Pad

Description of LPM modules LPM 2 2 0

1.6.2 LPM_OUTPAD
Output Pad

Pad(LPM_Width-1)

OUTPAD

Pad0

Pad1

Data(LPM_Width-1)

Data1

Data0

1.6.2.1 Ports
Port Name Type Usage Description Comments

Data I Required Data for output from pads Vector, LPM_Width wide
Pad O Optional Pads to output data Vector, LPM_Width wide

1.6.2.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of output vector

1.6.2.3 Function
Pad = Data

LPM 2 2 0 Description of LPM modules

1.6.3 LPM_BIPAD
Bi-directional input/output Pad

BIPAD

Pad0

Pad1

Pad(LPM_Width-1)Data(LPM_Width-1)

Data1

Data0

Enable

Result0

Result1

Result(LPM_Width-1)

1.6.3.1 Ports
Port Name Type Usage Description Comments

Data I Required Data for output from pads Vector, LPM_Width wide
Enable I Required Tristate Enable to the pad
Result O Optional Data input from the pad Vector, LPM_Width wide

Pad I/O Optional Pad for input/output Vector, LPM_Width wide

1.6.3.2 Properties
Property Usage Value Comments

LPM_Width Required LPM Value > 0 Width of output vector

1.6.3.3 Function
If Enable = 1, then Pad = Data

else if Enable = 0, then Result = Pad

If the Result port is not connected, then this module acts as a Tristate output port .

	1. DESCRIPTION OF LPM MODULES
	1.1 MODULE CATEGORIES
	1.1.1 Logic Conventions
	1.1.2 Drawing Conventions
	1.1.3 Scan Test Conventions

	1.2 GATES
	1.2.1 LPM_CONSTANT
	1.2.1.1 Ports
	1.2.1.2 Properties
	1.2.1.3 Function

	1.2.2 LPM_INV
	1.2.2.1 Ports
	1.2.2.2 Properties
	1.2.2.3 Function

	1.2.3 LPM_AND
	1.2.3.1 Ports
	1.2.3.2 Properties
	1.2.3.3 Function
	1.2.3.4 Example

	1.2.4 LPM_OR
	1.2.4.1 Ports
	1.2.4.2 Properties
	1.2.4.3 Function
	1.2.4.4 Example

	1.2.5 LPM_XOR
	1.2.5.1 Ports
	1.2.5.2 Properties
	1.2.5.3 Function
	1.2.5.4 Example

	1.2.6 LPM_BUSTRI
	1.2.6.1 Ports
	1.2.6.2 Properties
	1.2.6.3 Functions

	1.2.7 LPM_MUX
	1.2.7.1 Ports
	1.2.7.2 Properties
	1.2.7.3 Functions
	1.2.7.4 Example

	1.2.8 LPM_DECODE
	1.2.8.1 Ports
	1.2.8.2 Properties
	1.2.8.3 Functions

	1.2.9 LPM_CLSHIFT
	1.2.9.1 Ports
	1.2.9.2 Properties
	1.2.9.3 Functions

	1.3 ARITHMETIC COMPONENTS
	1.3.1 LPM_ADD_SUB
	1.3.1.1 Ports
	1.3.1.2 Properties
	1.3.1.3 Functions

	1.3.2 LPM_COMPARE
	1.3.2.1 Ports
	1.3.2.2 Properties
	1.3.2.3 Functions

	1.3.3 LPM_MULT
	1.3.3.1 Ports
	1.3.3.2 Properties
	1.3.3.3 Function
	1.3.3.4 Example

	1.3.4 LPM_DIVDE
	1.3.4.1 Ports
	1.3.4.2 Properties
	1.3.4.3 Function
	1.3.4.4 Examples:
	1.3.4.5 Example

	1.3.5 LPM_ABS
	1.3.5.1 Ports
	1.3.5.2 Properties
	1.3.5.3 Function

	1.3.6 LPM_COUNTER
	1.3.6.1 Ports
	1.3.6.2 Properties
	1.3.6.3 Functions

	1.4 STORAGE COMPONENTS
	1.4.1 LPM_LATCH
	1.4.1.1 Ports
	1.4.1.2 Properties
	1.4.1.3 Functions

	1.4.2 LPM_FF
	1.4.2.1 Ports
	1.4.2.2 Properties
	1.4.2.3 Functions

	1.4.3 LPM_SHIFTREG
	1.4.3.1 Ports
	1.4.3.2 Properties
	1.4.3.3 Functions

	1.4.4 LPM_RAM_DQ
	1.4.4.1 Ports
	1.4.4.2 Properties
	1.4.4.3 Functions
	1.4.4.3.1 Synchronous Memory Operations
	1.4.4.3.2 Asynchronous Memory Operations

	1.4.5 LPM_RAM_DP
	1.4.5.1 Ports
	1.4.5.2 Functional diagram
	1.4.5.3 Properties
	1.4.5.4 Functions
	1.4.5.4.1 Synchronous Memory Operations
	1.4.5.4.2 Synchronous Read from memory
	1.4.5.4.3 Asynchronous Memory Operations

	1.4.6 LPM_RAM_IO
	1.4.6.1 Ports
	1.4.6.2 Properties
	1.4.6.3 Functions
	1.4.6.3.1 Synchronous Memory Operations
	1.4.6.3.2 Asynchronous Memory Operations

	1.4.7 LPM_ROM
	1.4.7.1 Ports
	1.4.7.2 Properties
	1.4.7.3 Functions
	1.4.7.3.1 Synchronous Memory Operations
	1.4.7.3.2 Asynchronous Memory Operations

	1.4.7.4 ROM Contents
	1.4.7.4.1 Glossary
	1.4.7.4.2 additional comments on Hex File Format

	1.4.8 LPM_FIFO
	1.4.8.1 Ports
	1.4.8.2 Properties
	1.4.8.3 Functions
	1.4.8.3.1 Synchronous Memory Operations

	1.4.8.4 Example

	1.4.9 LPM_FIFO_DC
	1.4.9.1 Ports
	1.4.9.2 Properties
	1.4.9.3 Functions
	1.4.9.3.1 Synchronous Memory Operations

	1.5 TABLE PRIMITIVES
	1.5.1 TABLE FORMATS
	1.5.2 LPM_TTABLE
	1.5.2.1 Ports
	1.5.2.2 Properties
	1.5.2.3 Function
	1.5.2.4 Example

	1.5.3 LPM_FSM
	1.5.3.1 Ports
	1.5.3.2 Properties
	1.5.3.3 Functions
	1.5.3.4 Example

	1.6 PAD PRIMITIVES
	1.6.1 LPM_INPAD
	1.6.1.1 Ports
	1.6.1.2 Properties
	1.6.1.3 Function

	1.6.2 LPM_OUTPAD
	1.6.2.1 Ports
	1.6.2.2 Properties
	1.6.2.3 Function

	1.6.3 LPM_BIPAD
	1.6.3.1 Ports
	1.6.3.2 Properties
	1.6.3.3 Function

