

OpenCores
Coding Guidelines

Rev. 1.2
July 14, 2003

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.1 ii

This page has been intentionally left blank.

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.1 iii

Revision History
Rev. Date Author Description
0.1 15/05/01 Yair Amitay First Draft
0.2 29/05/01 Jamil Khatib VHDL and Verilog notes are split.

Major sections reorganization.
Comments from discussions on emails are
added.

0.3 07/06/01 Jamil Khatib Revision history added.
Dedicated clock and reset pins added.
OpenCores logo added.

0.4 28/7/01 Damjan Lampret Switched to latest OC document template.
Added new introduction chapter.
Reorganized and updated old content.
Added feedback from Rudi Usselmann, Don
Reid, Illan Glasner, David Kessner.

0.5 22/10/01 Damjan Lampret Incorporated feedback from Illan Glasner,
David Kessner, Yair Amitay and Lior Shtram.
Added I/O ports table.

1.0 24/10/01 Damjan Lampret Fixed some typing errors. Added Blue Beaver’s
comment about tri-state. First official version.

1.1 13/08/02 Damjan Lampret Added feedback from Richard Herveille.
1.2 14/07/02 Marko Mlinar More on directory and file organization

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.1 iv

Contents
INTRODUCTION... 1

BEFORE YOU START .. 2
2.1. SPECIFICATION DOCUMENT ... 2
2.2. DESIGN DOCUMENT... 2
2.3. CVS AND TEAM WORK ... 3
2.4. VERIFICATION.. 3
2.5. DIRECTORY STRUCTURE .. 3

GENERAL DESIGN GUIDELINES... 6
3.1. GENERAL ... 6
3.2. RESET .. 6
3.3. CLOCKS ... 7
3.4. BUSES .. 8
3.5. TRI-STATE ... 8
3.6. MEMORIES ... 9
3.7. CODING FOR SYNTHESIS .. 9
3.8. CORE I/O PORTS... 10

VERILOG GUIDELINES.. 11
4.1. GENERAL ... 11
4.2. CODING FOR SYNTHESIS .. 12
4.3. CODING FOR SIMULATION AND DEBUGGING.. 12
4.4. FILE HEADER ... 13

VHDL GUIDELINES ... 15
5.1. GENERAL ... 15
5.2. CODING FOR SYNTHESIS .. 18
5.3. CODING FOR SIMULATION AND DEBUGGING.. 19
5.4. FILE HEADER ... 19

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 1 of 21

1
Introduction

This document contains guidelines and recommendations for HDL coding. Adopting
these guidelines will reduce the amount of time required to get high quality IP cores and
will reduce possibilities for functional problems. Following these guidelines will improve
reusability and readability of the code.

The guidelines are sorted according to main subjects, but most of them are related to
other subjects as well. Each guideline is placed in the section where its influence is major,
but it can have a marked impact on other sections as well.

The guidelines are of different importance and are classified in the following way:
Good practice - signifies a guideline that is common good practice and should be used in
most cases. This means that in some cases there are specific problems that violate this
guideline.
Recommendation - signifies a guideline that is recommended. It is uncommon that a
problem cannot be solved without violating this guideline. You should read it as a
SHOULD rule.
Strong recommendation - signifies a hard guideline, this should be used in all situations
unless a very good reason exists to violate it. You should read it as a MUST rule.

This document will change in the future. Anyone is encouraged to make changes or
contribute additional content. Latest document is available from OpenCores CVS using
module name common.

TO DO list:

• Sections on Code Style, Comment Style, and Module Naming (there are certain
guidelines)

http://www.opencores.org/cgi-bin/cvsget.cgi?module=common

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 2 of 21

2
Before You Start

2.1. Specification Document

Before you jump into HDL coding, try to check existing cores and write a specification
document. This will have several advantages:

• clear definition what the core should do and which standards will be supported

• defines profiles of developers for formation of a team
Essentially the core is a black box, and the specification documentation should only be
concerned with the interface to this black box. Anyone wishing to use the core should
only have to read the specification document while those wishing to modify or add to the
core should read design document as well.

For specification document you should use Specification Template available from
OpenCores CVS. At the time of this writing only MS Word Template is available.

2.2. Design Document

While you are coding HDL, try to write design document. If team is working on a core,
design document might have to be written before HDL coding begins so that developed
blocks will be able to work together without spending too much time on integration.
Design document is important because:

• better understanding how the core’s internal blocks should work and communicate to
each other

• allows work of a team on different parts of the core

• allows future development and contribution by others

• simplifies verification and bug fixing

http://www.opencores.org/cgi-bin/cvsget.cgi/common/specification_template.dot

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 3 of 21

2.3. CVS and Team Work

Try to share development efforts with others. This way you do not have to do anything
yourself and results will come sooner. Also we are doing this for fun and part of fun is
also communication with others and team solving problems.

CVS is central OpenCores resource for development and final source storage. Even if you
work alone, try to use CVS as much as possible. Do not wait until your design is stable –
CVS is meant for development. If you check-in changes on your source file regularly,
you can most effectively use advantages of CVS such as comparing two different version
of the same file. However for efficient CVS use we recommend that you first spend some
time and familiar yourself with it by reading http://www.opencores.org/cvs.shtml and
CVS manual that is available there.

Once your design is stable CVS will allow others to most effectively download the latest
stable version (while you are working on checked-in development version) and send you
testing feedback.

Additionally we are integrating Verilog and VHDL Linter tool that will check designs
commited to the CVS and in a matter of minutes send a lint report to the developer. Lint
rules will be based on guidelines found in this document.

2.4. Verification

As part of an early design stage you will also have to think thoroughly about verification
strategy. If you are unfamiliar with verification, try to read Verification Strategies
document.

If your design uses recommended WISHBONE SOC interconnect bus, your next step is
to download WISHBONE models. At the time of writing there are several WISHBONE
models in OpenCores CVS written both in Verilog as well as in VHDL.

2.5. Directory structure

To simplify integration of various cores into SOC, try to use recommended directory
structure.

block_name/ Top level directory of a core

 backend/ Top level backend directory

 <vendor>/ Vendor specific floorplan, place and route directory structure

 sim/ Top level simulations directory

 rtl_sim/ RTL simulations

 bin/ RTL simulation scripts

 run/ For running RTL simulations

 src/ Special sources for RTL simulations

http://www.opencores.org/cvs.shtml
http://www.opencores.org/cgi-bin/cvsget.cgi/common/ver_plan.pdf

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 4 of 21

 out/ Dump and other useful output from RTL simulation

 log/ Log files

 gate_sim/ Gate-level simulations

 bin/ Gate-level simulation scripts

 run/ For running gate-level simulations

 src/ Special sources for gate-level simulations

 out/ Dump and other useful output from gate-level simulation

 log/ Log files

 syn/ Synthesis

 <vendor>/ Each synthesis tool has separate directory

 bin/ For synthesis scripts

 run/ For running synthesis scripts

 src/ Special sources for synthesis

 out/ For generated netlists (Synopsys db, verilog)

 log/ Log files (including reports)

 lint/ Lint

 bin/ Lint scripts

 run/ For running linter

 out/ Lint report

 log/ Log files

 fv/ Formal verification

 lib/ Vendor target libraries

 rtl/ RTL sources

 verilog/ For verilog sources

 vhdl/ For VHDL sources

 bench/ Bench sources

 verilog/ For verilog sources

 vhdl/ For VHDL sources

 doc/ Put specification, design and other PDF documents here

 src/ Source version of all documents (Word, StarOffice, Frame Maker)

 sw/ Put sources for utilities or software test cases here

If your core requires additional directories, try to add them by following conventions in
the suggested directory structure. For example it is very common that sw will require
several subdirectories.

Subdirectory lib should contain vendor target libraries. For example for a standard cell
ASIC with a hard block SRAM, this directory should contain two subdirectories. Each
subdirectory should contain complete set of library files for front- and backend design
process (behavioral models, timing models, LVS netlists, layout abstracts, GDSII
layouts). For FPGA at least behavioral models of FPGA primitives should be included
here.

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 5 of 21

In order to provide VATS (Automated Verification System) all the needed data, script
file run_sim must be provided in sim/rtl_sim/bin/. VATS will call this script with “-r”
parameter to check if design is working against regression test when CPUs are idling,
usually overnight. The test will pass only if the last line is “OK”. The rest of the output is
ignored by VATS, but it should be as informative as possible, in order to track possible
errors.

Directory structure for backend is not precisely defined because it is out of scope of this
document. Usually for FPGA backend you will have FPGA vendor specific subdirectory
structure with several revisions of mapping, floorplan, place and route. For ASIC
subdirectory structure will usually consists of subdirectories pre_p&r, post_p&r,
post_scan etc.

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 6 of 21

3
General Design

Guidelines

3.1. General

3.1.1. Strong Recommendation: Write descriptive comments. Try to make a habit
to comment every assignment or block.

You will make life much easier for someone who would like to add additional
functionality or fix a bug. Not to mention it is good for you as well if you try to
change the code after a few weeks.

3.1.2. Recommendation: If your core is complex and has several submodules in
hierarchy, it is recommended that top level module is for connectivity only
without any logic.

Makes design cleaner and gives an instant insight what are major blocks. Also try
to bring all memories and other hard blocks on top level.

If you need some glue logic, create separate module for glue logic.

3.1.3. Good Practice: Keep the same signal name through different hierarchies.

Tracing a signal will be easier. Enables easy netlist debugging

3.1.4. Good Practice: Try not to mix active low and active high logic in your core.
Stick just to one. Preferred is active high.

Reduces confusion.

3.2. Reset

Reset makes a design more deterministic and easier to verify. It prevents
reaching prohibited states in state-machine at power-up.

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 7 of 21

3.2.1. Recommendation: Use asynchronous active high reset.

Using asynchronous reset could result in a smaller core. Using an active high
reset makes the core compatible with wishbone spec.

3.2.2. Recommendation: At reset time, all bi-directional ports should be in input
state.

Scan expects this and it prevents X values.

3.3. Clocks

3.3.1. Strong Recommendation: Signals that cross different clock domains
should be double sampled after crossing domains (double sampling is a
MUST). See synchronizer_flop in OpenCores CVS in module common.

Prevents meta-stability state.

To make netlist verification easier, you should use one module (i.e. sync.v,
sync.vhd) that will have in, out and clock interface and the first flip-flop should
have a unique name as this flip-flop will have timing violation. If it has unique
name, it is easier to trace it and "change" it to not pass X's.

Also it should be clear that you pass ONLY the control signal and not the data
bus etc.

3.3.2. Recommendation: Do not use gated clocks unless you have thorough
knowledge about the proper way to implement clock gating and the
consequences for testing and verification.

Usually the system integrator and the backend are responsible for clock gating. If
target application is required to operate in low power, clock gating can be a
powerful feature to achieve that. If low power is not required, explicit clock gating
in RTL can cause much longer development because backend must eliminate
possibilities for glitches in the clock.

More proper way instead of explicit clock gating in RTL is to use clock enables. If
you use clock enables, certain EDA tools such as Synopsys Power Compiler
(ASIC) can be used to transform a design with clock enables into a design with
gated clocks. This way target application that does not require low power
operation and can still use your core without dealing with clock gating problems
in explicit RTL clock gating.

3.3.3. Recommendation: Do not use clocks or reset as data or as enables. Do not
use data as clocks or as resets.

Synthesis results may differ from RTL. Higher chances for timing verification
problems.

In certain cases you might need to use clocks/resets as data or data as
clocks/resets. In such a case provide two signals. For example clk and clk_data,
where clk drives flops’ clock inputs and clk_data drives combinatorial logic.

http://www.opencores.org/cgi-bin/cvsget.cgi?module=common

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 8 of 21

3.3.4. Good practice: Use minimum number of clock domains per core.

For example, a UART only needs one clock domain - not two or three - to
function properly.

3.4. Buses

3.4.1. Strong Recommendation: Compare buses with the same width.

Buses must be of equal width so that comparison works properly.

3.4.2. Recommendation: Start buses with bit index 0.

Some tools don't support buses that don't start with bit index 0.

3.4.3. Recommendation: Use MSB to LSB convention. Bit 0 is LSB.

This is to avoid misinterpretation through the design hierarchy.

3.4.4. Recommendation: Try to design with a minimum number of
interconnecting wires on core interfaces. Do not make buses wider than
necessary. If possible make data bus narrower and increase address bus
width instead.

Lack of routing resources can cause serious problems in the backend and it can
affect both timing and area.

3.4.5. Recommendation: Use WISHBONE SoC Interconnect.

OpenCores selected WISHBONE SoC interconnect as our SoC interconnect.
Most our new cores support WISHBONE. To get more information about
WISHBONE and to find out why WISHBONE is the only truly free SoC bus, see
http://www.opencores.org/wishbone/.

3.5. Tri-State

3.5.1. Recommendation: Generally avoid using internal tri-state signals. However
for internal monitors tri-state is recommended.

Generally tri-state increases power consumption. It also makes the backend
tuning more difficult.

However in certain cases such as in case of internal bus monitors, tri-state
implementation might result in much smaller monitor than multiplexer
implementation. But using tri-state monitors with scan can create complications
since only one tri-state driver can be enabled and this must be considered when
testing the design with scan.

http://www.opencores.org/wishbone/

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 9 of 21

3.6. Memories

3.6.1. Recommendation: Use synchronous single-port or dual-port generic
memory blocks such as generic_spram and generic_dpram. These blocks
already support several ASIC memory vendors as well as several different
FPGA vendors. They are in OpenCores CVS under module common.

This will automatically mean that your design supports several ASIC and FPGA
memories and that you do not have to deal with various kinds of memories to
support various target technologies. Simply enable the target vendor and link with
his target library.

Also using synchronous memories instead of asynchronous memories might
allow you to meet timing constraints easier.

3.7. Coding for Synthesis

3.7.1. Strong Recommendation: Use synchronous design practice.

It avoids problems with synthesis, timing verification and in simulation.

3.7.2. Strong Recommendation: Do not use delay elements.

It causes synthesis and timing verification problems.

If you use delay elements, you MUST consider worst and best case timing and
not be happy with the delay in nominal case. This will make your core reuse
unfriendly since it will have to be characterized for every target
technology/process.

3.7.3. Recommendation: All core’s external IOs should be registered.

It prevents long timing paths and allows you to meet timing constraints easier. It
also allows easier verification of the entire SoC

However in certain case you cannot register outputs such as in case of certain
PCI output signals.

3.7.4. Recommendation: Avoid using latches.

It causes synthesis problems and timing verification problems.

3.7.5. Good Practice: Avoid using flip-flops with negative edge clock.

Might cause ASIC synthesis problems and timing verification problems.

3.7.6. Good Practice: Core’s internal interfaces should be sampled.

This is a design issue however it is recommended in most cases.

http://www.opencores.org/cgi-bin/cvsget.cgi?module=common

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 10 of 21

3.8. Core I/O ports

3.8.1. Recommendation: Name core’s ports by following conventions from Table
1. This simplifies the SoC integration process and backend process and
allows automation.

Port Description

*_i Core’s input port

*_o Core’s output port

*_io Core’s bi-directional port

*_clk_i Core’s clock input port

*_clk_o Core’s clock output port

*_rst_i Core’s reset input port

*_rst_o Core’s reset output port

wb?_*_i Core’s WISHBONE input port, ? is optional single letter

wb?_*_o Core’s WISHBONE output port, ? is optional single letter

*_pad_i Core’s input port connected to input pad’s output

*_pad_o Core’s output port connected to output pad’s input

*_padoe_o Core’s output port connected to tri-state pad’s output enable

*_clk_pad_i Core’s clock input port connected to clock input pad’s output

*_clk_pad_o Core’s clock output port connected to clock output pad’s input

*_rst_pad_i Core’s reset input port connected to clock input pad’s output

*_rst_pad_o Core’s reset output port connected to clock output pad’s input

Table 1. Core I/O ports

Do not use any other abbreviation except *_clk_* and *_rst_* to mark clock and
reset signals. For example do not *reset* or *clock* etc.

3.8.2. Recommendation: Use *n to mark active low signals. Do not use *_.

Using *_ to mark active low signals is possible in Verilog but not in VHDL.
Designs that use *_ in Verilog cannot be directly translated into VHDL without
changing the port names.

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 11 of 21

4
Verilog Guidelines

4.1. General

4.1.1. Recommendation: Try not to use `include command. Instead load all files
as modules or load them as libraries (-y –v).

`include might have problems with certain tools. If you use them, they should be
environment independent.

4.1.2. Recommendation: Use non-blocking assignment (<=#1) in synchronous
process, and blocking assignment (=) in asynchronous process.

Synopsys expects this format. Makes the simulation respond more
deterministically.

4.1.3. Recommendation: If possible, use parameters instead of definitions
(`define).

Global definitions cause a lot of trouble when cores from different sources are
combined (unless very strict naming conventions are followed).

Also some tools have problems with `define, `ifdef or `undef.

4.1.4. Recommendation: Put all definitions (‘define) that cannot be changed into
parameters, into one global file.

Definitions should start with the name of the core to distinguish them from other
global definitions pertaining to other cores used in SOC.

4.1.5. Good Practice: Try to write one module in one file. The filename should be
the same as the module name. Module name should be composed out of
the block name and local module name.

To prevent confusion when debugging an SOC, filename and module name
should start with block name and followed by actual local module name.

For example UART design is be composed out of TX unit and RX unit. Module
names should be uart_tx, uart_rx and uart_top. Filenames should be uart_tx.v,
uart_rx.v and uart_top.v.

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 12 of 21

4.1.6. Good Practice: Try to use instantiation by name (explicit instantiation) and
not by place.

It requires more typing, but makes easier debugging and understanding the code.

4.1.7. Recommendation: Use lower case letters for all identifiers. Use upper case
letters for definitions (‘define).

Mixing EDA tools that are case sensitive and those that are case insensitive
causes problems. Following recommendation not to use upper case letters for
identifiers (signal names, port names, module names etc) will avoid EDA tools’
problems.

Definitions should use upper case letters only to distinguish them from identifiers.

4.2. Coding for Synthesis

4.2.1. Strong Recommendation: Do not use statements such as ‘assign #X a =
b;’ or ‘#X;’ where X is a number of time units of delay.

These statements are meant primarily for simulation only. For flip-flop models it is
recommended that it is modeled with delay unit of 1. Example always q <= #1 d;

4.2.2. Good practice: Do not use statements that assign initial values to signals
and variables (wire b=1’b0;).

4.3. Coding for Simulation and Debugging

4.3.1. Strong Recommendation: All system tasks for simulation should be
contained in a separate file from the core source code.

I.e. monitors etc.

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 13 of 21

4.3.2. Good Practice: Create a separate timescale.v file, put `timescale command
in it and include this file in all RTL source code files. Include command
should be wrapped with // synopsys translate_off and // synopsys translate_on
directives.

4.3.3. Good Practice: Try to write '%m' in 'display' command (shows the instance
name).

4.4. File Header

4.4.1. Recommendation: Use our standard header at the beginning of each file.
The header is available from the OpenCores CVS under module name
common.

The header contains basic information about the project, file in question,
author(s), license agreement, OpenCores and CVS log.

Default license agreement is GNU LGPL, which allows unrestricted use and at
the same time protects author’s rights. Complete GNU LGPL license agreement
text is available at http://www.opencores.org/lgpl.shtml.

CVS log tag is updated automatically whenever file is checked-in to the CVS.

//

//// ////

//// WISHBONE XXX IP Core ////

//// ////

//// This file is part of the XXX project ////

//// http://www.opencores.org/cores/xxx/ ////

//// ////

//// Description ////

//// Implementation of XXX IP core according to ////

//// XXX IP core specification document. ////

//// ////

//// To Do: ////

//// - ////

//// ////

//// Author(s): ////

//// - First & Last Name, email@opencores.org ////

//// ////

//

//// ////

//// Copyright (C) 2001 Authors and OPENCORES.ORG ////

//// ////

//// This source file may be used and distributed without ////

http://www.opencores.org/cgi-bin/cvsget.cgi?module=common
http://www.opencores.org/lgpl.shtml

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 14 of 21

//// restriction provided that this copyright statement is not ////

//// removed from the file and that any derivative work contains ////

//// the original copyright notice and the associated disclaimer. ////

//// ////

//// This source file is free software; you can redistribute it ////

//// and/or modify it under the terms of the GNU Lesser General ////

//// Public License as published by the Free Software Foundation; ////

//// either version 2.1 of the License, or (at your option) any ////

//// later version. ////

//// ////

//// This source is distributed in the hope that it will be ////

//// useful, but WITHOUT ANY WARRANTY; without even the implied ////

//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////

//// PURPOSE. See the GNU Lesser General Public License for more ////

//// details. ////

//// ////

//// You should have received a copy of the GNU Lesser General ////

//// Public License along with this source; if not, download it ////

//// from http://www.opencores.org/lgpl.shtml ////

//// ////

//

//

// CVS Revision History

//

// Log

//

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 15 of 21

5
VHDL Guidelines

5.1. General

5.1.1. Strong recommendation: Use std_logic type for external ports.

5.1.2. Strong recommendation: Do not assign value of unknown 'x' or check for
do not care '-'.

Such values can produce unexpected behavior in both simulation and synthesis.

5.1.3. Strong recommendation: Do not use default values (or initialization) for
signals and variables. Use reset to initialize all signals and variables.

Such assignment can cause mismatch between synthesis and simulation.

5.1.4. Strong recommendation: Do not use buffer type ports to read output values
within the code. Instead use type out and add another variable or signal
and assign to it the same output value.

This is because buffer type ports can not be connected to other types of ports,
causing the buffer type to propagate throughout the entire design.

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 16 of 21

PROCESS (CLK, RST_n)
variable out_var : std_logic;
BEGIN -- PROCESS
 IF RST_n = '0' THEN
 Outsignal <= '0';
 out_var <'0';
 outsign2 <= '0';
 ELSIF CLK'event AND CLK = '1' THEN
 Outsign2 <= out_var; -- the same as Outsignal
 out_var := input1 and input2;
 Outsignal <= input1 and input2;
 END IF;
END PROCESS;

5.1.5. Recommendation: Define components and constants for each core in a
single package.

5.1.6. Good Practice: Do not mix between VHDL coding standards for the whole
project (i.e. do not mix between VHDL 87 and VHDL 93 constructs).

5.1.7. Good Practice: Try to write one VHDL design unit in one file. The filename
should be the same as the unit name. For example entities and
architectures are placed in separate files, the same applies for package and
package bodies.

5.1.8. Good Practice: Try to use instantiation by name (explicit instantiation) and
not by place.

For easier debugging and understanding the code.

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 17 of 21

wb_if: wb
 PORT MAP (
CLK => CLK_I,
RST_I => RST_I_I,
ACK_O => ACK_O_I,
ADR_I => ADR_I_I,
CYC_I => CYC_I_I,
DAT_I => DAT_I_I,
DAT_O => DAT_O_I,
RTY_O => RTY_O_I,
STB_I => STB_I_I,
WE_I => WE_I_I);
Inside the core is sometimes permissible to use instantiation by place
since it decrease amount of typing by a significant margin.

5.1.9. Good Practice: Try to use configuration to map entities, architectures and
components (i.e. to define such mapping explicitly).

So tracing changing between different architectures can be simple in a single file.
This can be useful to change simulation from high level to low level architectures

5.1.10. Good Practice: Try to compile each block in a separate library.

5.1.11. Good Practice: Make use of constants and generics for buffer sizes, bus
width and all other unit parameters.

This provides more readability and reusability of the code.

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 18 of 21

5.2. Coding for Synthesis

PROCESS (CLK, RST_n)
Variable out_var : std_logic;
BEGIN -- PROCESS
 IF RST_n = '0' THEN
 out_var <'0';
 outsign2 <= '0';
 ELSIF CLK'event AND CLK = '1' THEN
 Outsign2 <= out_var; -- read
 out_var := input1 and input2; -- write
 END IF;
END PROCESS;

5.2.1. Strong recommendation: Include all signals that are read inside the
combination process to its sensitivity list. (i.e. Signals on Right Hand Side
of signal assignments or conditions).

This is to prevent inferring of unwanted latches.

5.2.2. Recommendation: Avoid using long if-then-else statements and use case
statement instead.

This is to prevent inferring of large priority decoders and makes the code easier
to be read.

5.2.3. Strong Recommendation: Do not use statements such as ‘(b <= a after X
ns)’ or ‘wait for X ns;’ where X is a number of time units of delay.

These statements are meant for simulation only.

5.2.4. Strong Recommendation: Do not use statements that assign initial values
to signals and variables (variable B:INTEGER:=0;).

These statements are meant for simulation only.

5.2.5. Recommended: Try to write clock enable as in the below figure within a
single clocked process and do not use two different processes one clocked
(registers) and one for combinational logic.

This is because some synthesis tools detects CE operation and map it to CE of
FF if it already has. Otherwise CE pin will not be used and external logic will be
inferred. This is a common practice for FPGA code.

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 19 of 21

PROCESS (CLK, RST_n)
BEGIN -- PROCESS
 IF RST_n = '0' THEN
 Outsignal <= '0';
 ELSIF CLK'event AND CLK = '1' THEN
 IF (CE = '1') THEN
 Outsignal <= '1';
 END IF;
 END IF;
END PROCESS;

5.2.6. Good Practice: Try to write fsm in two processes one for sequential
assignments (registers) and the other for combinational logic

This provides more readability and prediction of combinational logic size.

5.3. Coding for Simulation and Debugging

5.3.1. Good Practice: Try to write test bench in two parts, one for data generation
and checking and one for timing bus interface protocol generation and
checking.

This is to isolate data (results checking) from bus handshake checking and to
make it simpler to change the handshake protocol while keeping the same
internal logic.

5.4. File Header

5.4.1. Recommedation: Use our standard header at the beginning of each file.

The header contains basic information about the project, file in question,
author(s), license agreement, OpenCores and CVS log.

Default license agreement is GNU LGPL which allows unrestricted use and at the
same time protects author’s rights. Complete GNU LGPL license agreement text
is available at http://www.opencores.org/lgpl.shtml.

CVS log tag is updated automatically whenever file is checked-in to the CVS.

--

---- ----

---- WISHBONE XXX IP Core ----

http://www.opencores.org/lgpl.shtml

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 20 of 21

---- ----

---- This file is part of the XXX project ----

---- http://www.opencores.org/cores/xxx/ ----

---- ----

---- Description ----

---- Implementation of XXX IP core according to ----

---- XXX IP core specification document. ----

---- ----

---- To Do: ----

---- - ----

---- ----

---- Author(s): ----

---- - First & Last Name, email@opencores.org ----

---- ----

--

---- ----

---- Copyright (C) 2001 Authors and OPENCORES.ORG ----

---- ----

---- This source file may be used and distributed without ----

---- restriction provided that this copyright statement is not ----

---- removed from the file and that any derivative work contains ----

---- the original copyright notice and the associated disclaimer. ----

---- ----

---- This source file is free software; you can redistribute it ----

---- and/or modify it under the terms of the GNU Lesser General ----

---- Public License as published by the Free Software Foundation; ----

---- either version 2.1 of the License, or (at your option) any ----

---- later version. ----

---- ----

---- This source is distributed in the hope that it will be ----

---- useful, but WITHOUT ANY WARRANTY; without even the implied ----

---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ----

---- PURPOSE. See the GNU Lesser General Public License for more ----

---- details. ----

---- ----

---- You should have received a copy of the GNU Lesser General ----

---- Public License along with this source; if not, download it ----

---- from http://www.opencores.org/lgpl.shtml ----

---- ----

--

--

-- CVS Revision History

--

 OpenCores OpenCores Coding Guidelines 7/14/03

www.opencores.org Rev 1.2 21 of 21

-- Log

--

	Introduction
	Before You Start
	Specification Document
	Design Document
	CVS and Team Work
	Verification
	Directory structure

	General Design Guidelines
	General
	Reset
	Clocks
	Buses
	Tri-State
	Memories
	Coding for Synthesis
	Core I/O ports

	Verilog Guidelines
	General
	Coding for Synthesis
	Coding for Simulation and Debugging
	File Header

	VHDL Guidelines
	General
	Coding for Synthesis

