

SoC Debug
Interface

Author: Igor Mohor
IgorM@opencores.org

Rev. 3.0

April 14, 2004

Open Cores SoC Debug Interface 4/14/2004

Copyright (C) 2001 - 2004 OPENCORES.ORG and Authors.

This document is free; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

http://www.opencores.org/ Rev 3.0 Page 2 of 49

Open Cores SoC Debug Interface 4/14/2004

Revision History
Rev. Date Author Description
0.1 02/02/01 Igor Mohor First Draft
0.2 05/04/01 IM Trace port added
0.3 16/04/01 IM WP and BP number changed, trace modified
0.4 01/05/01 IM Title changed, DEBUG instruction added, scan

chains changed, IO ports changed
0.5 05/05/01 IM TSEL and QSEL register changed
0.6 06/05/01 IM Ports connected to the OpenRISC changed
0.7 14/05/01 IM MODER register changed, trace scan chain

changed; SSEL register added
0.8 18/05/01 IM RESET bit and signal added; STALLR changed to

RISCOP
0.9 23/05/01 IM RISC changed to OpenRISC; WISHBONE

interface added, SPR and memory access added
0.10 01/06/01 IM Meaning of Instruction status and Load/store

status changed in all registers; more details added
to Appendix A

0.11 10/09/01 IM Register and OpenRISC scan chain operation
changed

1.0 19/09/01 IM Some registers deleted
1.1 15/10/01 IM WISHBONE interface added; RISC Stall signal is

set by breakpoint and reset by writing 0 to
RISCOP register

1.2 03/12/01 IM Chain length changed so additional CRC checking
can be performed

1.3 21/01/02 Jeanne
Wiegelmann

Document revised.

1.4 07/05/02 IM Register MONCNTL added.
1.5 10/10/02 IM WISHBONE Scan Chain changed to show state of

the access.
1.6 06/11/02 IM TRST_PAD_I changed from active low signal to

active low signal.
1.7 23/09/03 Simon Srot Multiple CPU support added, WB 16-bit and 8-bit

access possible through WBCNTL register use.
2.0 01/02/04 IM New version of the debug interface. Document

http://www.opencores.org/ Rev 3.0 Page 3 of 49

Open Cores SoC Debug Interface 4/14/2004

Rev. Date Author Description
name changed, Document split into two
documents, one for TAP and one for debug.

2.1 14/03/04 IM Missing things added to the documents.
2.2 18/03/04 IM Table with supported scan chains (sub-modules)

added.
3.0 14/04/04 IM New version of the debug interface. Chain

selection is renamed to module selection.

http://www.opencores.org/ Rev 3.0 Page 4 of 49

Open Cores SoC Debug Interface 4/14/2004

Contents
1... 7

INTRODUCTION... 7

2... 8

IO PORTS.. 8
2.1 TAP PORTS... 8
2.2 CPU PORTS .. 9
2.3 WISHBONE PORTS ... 9

3... 11

REGISTERS.. 11
3.1 WISHBONE REGISTERS LIST .. 11
3.1.1 WB Command Register .. 12
3.2 CPU REGISTERS LIST ... 13
3.2.1 CPU Command Register .. 14
3.2.2 CPU Control Register ... 15

4... 16

OPERATION .. 16
4.1 MODULE SELECTION .. 16
4.2 WISHBONE SUB-MODULE .. 19
4.2.1 WISHBONE Read or Write operation.. 20
4.2.2 WRITE_COMMAND... 21
4.2.3 READ_COMMAND ... 22
4.2.4 GO_COMMAND .. 23

4.2.4.1 GO_COMMAND when read cycle is requested ... 23
4.2.4.2 GO_COMMAND when write cycle is requested .. 25

4.2.5 Data and select signals .. 27
4.2.6 Accessing slow devices .. 28

4.2.6.1 Reading from slow device... 28
4.2.6.2 Writing to slow device .. 29

4.2.7 Errors in the WISHBONE sub-module... 30
4.3 CPU SUB-MODULE ... 31

http://www.opencores.org/ Rev 3.0 Page 5 of 49

Open Cores SoC Debug Interface 4/14/2004

4.3.1 CPU Read or Write operation.. 33
4.3.2 CPU Control Register Read or Write.. 34
4.3.3 WRITE_COMMAND... 35
4.3.4 READ_COMMAND ... 36
4.3.5 GO_COMMAND .. 37

4.3.5.1 GO_COMMAND when read cycle is requested ... 37
4.3.5.2 GO_COMMAND when write cycle is requested .. 39

4.3.6 WRITE_CONTROL... 41
4.3.7 READ_CONTROL ... 42
4.3.8 Stalling CPU .. 43
4.3.9 Resetting CPU.. 43
4.3.10 Accessing slow devices .. 44

4.3.10.1 Reading from slow CPU.. 44
4.3.10.2 Writing to slow CPU... 45

5... 46

ARCHITECTURE.. 46
5.1 DEBUG INTERFACE ... 48
5.2 CRC SUB-MODULE ... 48
5.3 WISHBONE SUB-MODULE .. 49
5.4 CPU SUB-MODULE.. 49

http://www.opencores.org/ Rev 3.0 Page 6 of 49

Open Cores SoC Debug Interface 4/14/2004

1
Introduction

The Development Interface is used for debugging purposes and is as such an interface
between the processor(s), peripheral cores, and any commercial debugger/emulator or BS
testing device. The external debugger or BS tester connects to the core via a fully IEEE
1149.1 compatible JTAG TAP port that is not part of this core. TAP is available at the
opencores, too (look for project JTAG Test Access Port (TAP)).

http://www.opencores.org/ Rev 3.0 Page 7 of 49

Open Cores SoC Debug Interface 4/14/2004

2
IO Ports

2.1 TAP Ports
Debug interface connects to the TAP controller with the following signals:

Port

W
id

th

 D
ire

ct
io

n

Description

tck_i 1 input Test clock input
tdi_i 1 input Test data input
tdo_o 1 output Test data output
shift_dr_i 1 input TAP controller state “Shift DR”
pause_dr_i 1 input TAP controller state “Pause DR”
update_dr_i 1 input TAP controller state “Update DR”
rst_i 1 input Reset signal.
debug_select_i 1 input Instruction DEBUG is activated

Table 1: TAP Ports

http://www.opencores.org/ Rev 3.0 Page 8 of 49

Open Cores SoC Debug Interface 4/14/2004

2.2 CPU Ports

Port

 W
id

th

 D
ire

ct
io

n
Description

cpu_clk_i 1 input CPU clock signal.
cpu_addr_o 32 output CPU address
cpu_data_i 32 input CPU data input (data from CPU)
cpu_data_o 32 output CPU data output (data to CPU)
cpu_bp_i 1 input CPU breakpoint
cpu_stall_o 1 output CPU stall (selected CPU is stalled)
cpu_stb_o 1 output CPU strobe

cpu_we_o 1 output CPU write enable signal indicates a write cycle when
asserted high (read cycle when low).

cpu_ack_i 1 input CPU acknowledge (signals end of cycle)
cpu_rst_o 1 output CPU reset output (resets CPU)

Table 2: CPU Ports

2.3 WISHBONE Ports

Port

 W
id

th

 D
ire

ct
io

n

Description

wb_clk_i 1 input WISHBONE clock

wb_ack_i 1 input WISHBONE acknowledge indicates a normal cycle
termination

wb_adr_o 32 output WISHBONE address output
wb_cyc_o 1 output WISHBONE cycle encapsulates a valid transfer

http://www.opencores.org/ Rev 3.0 Page 9 of 49

Open Cores SoC Debug Interface 4/14/2004

Port

 W
id

th

 D
ire

ct
io

n

Description

cycle.
wb_dat_i 32 input WISHBONE data input (data from WISHBONE)
wb_dat_o 32 output WISHBONE data output (data to WISHBONE)

wb_err_i 1 input WISHBONE error acknowledge indicates an
abnormal cycle termination

wb_sel_o 4 output WISHBONE select indicates which bytes are valid
on the data bus.

wb_stb_o 1 output WISHBONE strobe indicates a valid transfer.

wb_we_o 1 output WISHBONE write enable indicates a write cycle
when asserted high (read cycle when low).

wb_cab_o 1 output WISHBONE consecutive address burst indicates a
burst cycle.

wb_cti_o 3 output WISHBONE cycle type identifier indicates type of
cycle (single, burst, end of burst)

wb_bte_o 2 output WISHBONE burst type extension

Table 3: WISHBONE Ports

http://www.opencores.org/ Rev 3.0 Page 10 of 49

Open Cores SoC Debug Interface 4/14/2004

3
Registers

This section specifies all registers in the Debug Interface. There are currently two sub-
modules in the debug interface, WISHBONE and CPU.

WISHBONE sub-module contains one command register.

CPU sub-module contains one command and one control register.

3.1 WISHBONE Registers List

Name

 W
id

th

 A
cc

es
s

Description

COMMAND 52 R/W WISHBONE Command Register

Table 4: WISHBONE Register List

http://www.opencores.org/ Rev 3.0 Page 11 of 49

Open Cores SoC Debug Interface 4/14/2004

3.1.1 WB Command Register

Bit #

A
cc

es
s Description

51:48 R/W Access Type
0x0 = 8-bit WISHBONE write
0x1 = 16-bit WISHBONE write
0x2 = 32-bit WISHBONE write
0x4 = 8-bit WISHBONE read
0x5 = 16-bit WISHBONE read
0x6 = 32-bit WISHBONE read

47:16 R/W Address
15:0 R/W Data Size (in bytes)

Actual size of the data to be written or read equals to (Data Size +
1)

Table 5: WB Command Register

Reset Value: 0x0

http://www.opencores.org/ Rev 3.0 Page 12 of 49

Open Cores SoC Debug Interface 4/14/2004

3.2 CPU Registers List

Name

 W
id

th

 A
cc

es
s

Description

COMMAND 52 R/W CPU Command Register
CONTROL 52 R/W CPU Control Register

Table 6: CPU Register List

http://www.opencores.org/ Rev 3.0 Page 13 of 49

Open Cores SoC Debug Interface 4/14/2004

3.2.1 CPU Command Register

Bit #

A
cc

es
s Description

51:48 R/W Access Type
0x2 = CPU write
0x6 = CPU read

47:16 R/W Address
15:0 R/W Data Size

Size of the data to be written or read equals to (Data Size + 1)

Table 7: CPU Command Register

Reset Value: 0x0

http://www.opencores.org/ Rev 3.0 Page 14 of 49

Open Cores SoC Debug Interface 4/14/2004

3.2.2 CPU Control Register

Bit #

A
cc

es
s Description

51 R/W Reset
0 = cpu_rst_o signal is set to 0
1 = cpu_rst_o signal is set to 1

50 R/W Stall
0 = cpu_stall_o signal is set to 0 (CPU not stalled)
1 = cpu_stall_o signal is set to 1 (CPU stalled)

49:0 R/W Reserved (write 0)

Table 8: CPU Control Register

Reset Value: 0x0

http://www.opencores.org/ Rev 3.0 Page 15 of 49

Open Cores SoC Debug Interface 4/14/2004

4
Operation

This section describes the operation of the Debug Interface and its sub-modules.

4.1 Module Selection
The debug interface is just an interface between the sub-module that is target specific and
the TAP controller. Currently three sub-modules are connected to the debug interface,
WISHBONE sub-module and two CPU sub-modules. Up to 16 sub-modules can be
connected to the debug interface.

Module name Module Code

WISHBONE Debug Module 0x0
CPU 0 Debug Module 0x1
CPU 1 Debug Module 0x2

Table 9: Supported sub-modules

http://www.opencores.org/ Rev 3.0 Page 16 of 49

Open Cores SoC Debug Interface 4/14/2004

First thing to do is to select the sub-module. This is done with the module select
instruction. Following needs to be done prior to the module select operation:

• instruction DEBUG needs to be activated in the TAP (refer to the IEEE 1149.1
Test Access Port documentation for more information)

Then the “module select” instruction needs to be shifted-in through the TAP data chain:

• 1-bit with value 1 (This bit is treated as a “module select”)

• 4-bit module ID (MSB shifted first)

• 32-bit CRC (MSB shifted first) that is protecting the incoming data (first four
bits).

• 36 bits with value 0 (these bits are ignored in the debug interface)

While the “module select” instruction is shifted-in, the following data is shifted out:

• 37 bits with value 0 (this value should be ignored)

• 4-bit status (MSB shifted first)

o 0 if incoming CRC is OK, 1 when CRC error occurs

o 0 when existing module was selected, 1 when non-existing module was
selected

o always 0

o always 0

• 32-bit CRC (MSB shifted first) that is protecting the outgoing data (four bits).
Only status bits are protected with this CRC (first 37 bits are ignored).

Note: MSB bit is always shifted first.

http://www.opencores.org/ Rev 3.0 Page 17 of 49

Open Cores SoC Debug Interface 4/14/2004

Incoming CRC Incoming data

TDI 36 zero bits 32-bit CRC 4-bit
Module

1 TDO

ID

Data shifted into the debug interface

Outgoing CRC Outgoing data

TDO TDI 32-bit CRC 4-bit
Status

37 zero bits

Data shifted out from the debug interface

Figure 1: Module Selection

See section on page 48 for more details about the CRC. 5.2 CRC sub-module

http://www.opencores.org/ Rev 3.0 Page 18 of 49

Open Cores SoC Debug Interface 4/14/2004

4.2 WISHBONE Sub-module
WISHBONE sub-module is used for the WISHBONE devices debugging. It connects to
the WISHBONE bus through the WB interface and can perform 8, 16 and 32-bit read and
write accesses (single accesses).

There are two steps needed to write/read the data to/from the WISHBONE device:

• Address of the device, data size and the type of operation need to be written to the
Command Register (see section on page 12 for
more details about the command register). This is done by using the WRITE
_COMMAND.

3.1.1 WB Command Register

• WISHBONE read or write operation (8, 16 or 32-bit) is executed with the GO_
COMMAND. Operation type is selected in the previous step (written in the WB
Command Register).

READ_COMMAND is used for reading the content of the WB Command Register.

Note: Address written in the Command Register is incremented automatically after each
successful access. At the end of the operation it points to the first data after the last
accessed. To improve the download or upload performance, many “GO_COMMAND”
instructions can be executed in a row. Command Register in that case needs to be set only
once at the startup. In case of an error on the WB bus, address is not incremented.

The following table shows all supported commands and their codes:

Command Code

GO_COMMAND 0x0
READ_COMMAND 0x1
WRITE_COMMAND 0x2

Table 10: WISHBONE sub-module: Supported commands

http://www.opencores.org/ Rev 3.0 Page 19 of 49

Open Cores SoC Debug Interface 4/14/2004

4.2.1 WISHBONE Read or Write operation

To perform the WISHBONE read or write operation, the debug must be enabled
(instruction DEBUG needs to be activated in the TAP (refer to the IEEE 1149.1 Test
Access Port documentation for more information)) and the WISHBONE sub-module
selected (see description on page 16 for more details).

WISHBONE read or write operation is performed in two steps:

• Writing the address, data size and type of operation to the WB Command
Register. This is done by issuing the WRITE_COMMAND (see section

 on page 21 for more details)
4.2.2

WRITE_COMMAND

• Issuing the GO_COMMAND (see section
 on page 23 for more details when performing a read operation

or on page 25 when
performing write operation)

4.2.4.1 GO_COMMAND when read
cycle is requested

4.2.4.2 GO_COMMAND when write cycle is requested

First instruction sets the address, type of operation and data size that needs to be
read/written.

Second instruction performs the read/write operation on the WISHBONE bus.

Both instructions (WRITE_COMMAND and GO_COMMAND) return 4-bit status. The
status should be checked on-the-fly to verify that the instruction was completed
successfully. Status bits are also protected with the 32-bit CRC. In case of errors different
steps need to be performed:

• CRC error: WB sub-module device didn’t accept the instruction from the
debugger through the JTAG. Instruction needs to be repeated.

• WISHBONE error: GO_COMMAND needs to be repeated. Address is already
set to the right value.

• Overrun/underrun:

o When performing write operation the WB device was to slow. Data was
not written on time and overrun occurred.

o When performing read operation the WB device was too slow. Data was
not read out on time and underrun occurred.

In both cases GO_COMMAND instruction needs to be repeated. See also
section on page 28. 4.2.6 Accessing slow devices

http://www.opencores.org/ Rev 3.0 Page 20 of 49

Open Cores SoC Debug Interface 4/14/2004

4.2.2 WRITE_COMMAND

WRITE_COMMAND writes the address, the type of operation and the size of the data
that will be read or written to the WB Command register. Command is performed by
shifting the following data through the data scan chain:

• 1-bit with value 0

• 4-bit instruction WRITE_COMMAND (0x2) (MSB shifted first)

• 4-bit access type (read or write, 8-bit, 16-bit or 32-bit) (MSB shifted first)

• 32-bit address (MSB shifted first)

• 16-bit size (MSB shifted first)

• 32-bit CRC (MSB shifted first) that is protecting the incoming data (first 57 bits).

• 36 bits with value 0 (this value is ignored in the debug interface)

While the WRITE_COMMAND instruction is shifted-in, the following data is shifted
out:

• 89 bits with value 0 (this value should be ignored)

• 4-bit status (MSB shifted first)

o 1 when CRC error occurs

o always 0

o always 0 (1 when WB error occurs. This can only occur with the
“GO_COMMAND”)

o always 0 (1 when overrun/underrun occurs. This can only occur with the
“GO_COMMAND”)

• 32-bit CRC (MSB shifted first) that is protecting the outgoing data (four bits).
Only status bits are protected with this CRC (first 89 bits are ignored).

http://www.opencores.org/ Rev 3.0 Page 21 of 49

Open Cores SoC Debug Interface 4/14/2004

1

4-bit
access
type

4-bit

WRITE
cmd

0 16-bit

length

32-bit

 CRC

Outgoing data Outgoing CRC

Incoming data Incoming CRC

Data shifted out from the debug interface

89 zero bits 4-bit
Status

32-bit CRC

Data shifted into the debug interface

36 zero bits 32-bit
address

TDI

TDO

TDO

TDI

Figure 2: WRITE_COMMAND

4.2.3 READ_COMMAND

READ_COMMAND reads the address, the type of operation and the size of the data
from the WB Command register. Command is identical to the WRITE_COMMAND with
one exception, READ_COMMAND (0x1) needs to be used instead of the
WRITE_COMMAND. See section for more details. 4.2.2 WRITE_COMMAND

http://www.opencores.org/ Rev 3.0 Page 22 of 49

Open Cores SoC Debug Interface 4/14/2004

4.2.4 GO_COMMAND

GO_COMMAND executes what is written in the Command register. The structure of the
GO_COMMAND differs depending on the access type written in the WB Command
register. There are two possibilities:

• WISHBONE read cycle is requested (8, 16 or 32-bit)

• WISHBONE write cycle is requested (8, 16 or 32-bit)

4.2.4.1 GO_COMMAND when read cycle is requested

GO_COMMAND when read cycle is requested performs the read operation on the
WISHBONE bus. Address, cycle type and data size are specified in the WB Command
register. The GO_COMMAND is performed by shifting the following data through the
data scan chain:

• 1-bit with value 0 (This bit is treated as a “module select” when set to 1)

• 4-bit instruction GO_COMMAND (0x0) (MSB shifted first)

• 32-bit CRC (MSB shifted first) that is protecting the incoming data (first 5 bits).

• ((data size + 1) x 8 + 36) bits with value 0 (this value is ignored in the debug
interface).

While the GO_COMMAND is shifted-in, the following data is shifted out:

• 37 bits with value 0 (this value should be ignored)

• ((data size + 1) x 8) bits of data

• 4-bit status (MSB shifted first)

o 1 when CRC error occurs

o always 0

o 1 when WB error occurs.

o 1 when overrun/underrun occurs.

http://www.opencores.org/ Rev 3.0 Page 23 of 49

Open Cores SoC Debug Interface 4/14/2004

• 32-bit CRC (MSB shifted first) that is protecting the outgoing data ((data size + 1)
x 8 + 5 bits). Only outgoing data bits are protected with this CRC (first 37 bits are
ignored).

(data_len + 1) x 8 data
bits

0 32-bit

 CRC

Outgoing data Outgoing CRC

Incoming data Incoming CRC

Data shifted out from the debug interface

37 zero bits 4-bit
Status

32-bit CRC

Data shifted into the debug interface

(data_len + 1) x 8 + 36 zero bits
4-bit

GO_
COMMAND

TDI

TDO

TDO

TDI

Figure 3: GO_COMMAND when read cycle is requested

http://www.opencores.org/ Rev 3.0 Page 24 of 49

Open Cores SoC Debug Interface 4/14/2004

4.2.4.2 GO_COMMAND when write cycle is requested

GO_COMMAND when write cycle is requested performs the write operation on the
WISHBONE bus. Address, cycle type and data size are specified in the WB Command
register. The GO_COMMAND is performed by shifting the following data through the
data scan chain:

• 1-bit with value 0

• 4-bit instruction GO_COMMAND (0x0) (MSB shifted first)

• ((data size + 1) x 8) bits of data (MSB shifted first)

• 32-bit CRC (MSB shifted first) that is protecting the incoming data ((first data +
1) size x 8 + 5 bits).

• 36 bits with value 0 (these bits are ignored in the debug interface)

While the GO_COMMAND is shifted-in, the following data is shifted out:

• ((data size +1) x 8 + 37) bits with value 0 (this value should be ignored)

• 4-bit status

o 1 when CRC error occurs

o always 0

o 1 when WB error occurs.

o 1 when overrun/underrun occurs.

• 32-bit CRC (MSB shifted first) that is protecting the outgoing data (4 status bits).
Only outgoing data bits are protected with this CRC (first (data size + 1) x 8 + 37
bits are ignored).

http://www.opencores.org/ Rev 3.0 Page 25 of 49

Open Cores SoC Debug Interface 4/14/2004

(data_len + 1) x 8 data
bi

(data_len + 1) x 8 + 37 zero bits

0 32-bit

 CRC

Outgoing data Outgoing CRC

Incoming data Incoming CRC

Data shifted out from the debug interface

4-bit
Status

32-bit CRC

Data shifted into the debug interface

36 zero bits
4-bit

GO_

COMMAND

TDI

TDO

TDO

TDI

Figure 4: GO_COMMAND when write cycle is requested

http://www.opencores.org/ Rev 3.0 Page 26 of 49

Open Cores SoC Debug Interface 4/14/2004

4.2.5 Data and select signals

Data in the WISHBONE sub-module is organized in the big endian byte ordering.
Following section describes the data and select signals depending on the address and
type of operation (32-bit, 16-bit and 8-bit).

32-bit access (wb_adr_o[1:0] = 00b):

 wb_sel_o[3:0] = 1111b

 wb_dat_x[31:0] are used

16-bit access (wb_adr_o[1:0] = 00b):

 wb_sel_o[3:0] = 1100b

 wb_dat_x[31:16] are used

16-bit access (wb_adr_o[1:0] = 10b):

 wb_sel_o[3:0] = 0011b

 wb_dat_x[15:0] are used

8-bit access (wb_adr_o[1:0] = 00b):

 wb_sel_o[3:0] = 1000b

 wb_dat_x[31:24] are used

8-bit access (wb_adr_o[1:0] = 01b):

 wb_sel_o[3:0] = 0100b

 wb_dat_x[23:16] are used

8-bit access (wb_adr_o[1:0] = 10b):

 wb_sel_o[3:0] = 0010b

 wb_dat_x[15:8] are used

8-bit access (wb_adr_o[1:0] = 11b):

 wb_sel_o[3:0] = 0001b

 wb_dat_x[7:0] are used

http://www.opencores.org/ Rev 3.0 Page 27 of 49

Open Cores SoC Debug Interface 4/14/2004

4.2.6 Accessing slow devices

Usually the WISHBONE clock (wb_clk_i) is much faster than the JTAG clock (tck_i). In
that case read or write accesses are finished on time. However it is possible to do a read
or write access to a WISHBONE device that is not fast enough to complete the desired
operation on time.

On time means:

• Read operation needs to be finished before the data is shifted out through the
JTAG

• Write operation must be finished before the next write is started.

4.2.6.1 Reading from slow device

Following needs to be done to read the data from a slow device:

• Perform the WRITE_COMMAND normally.

• Perform only first part of the GO_COMMAND. After the first 37 bits are shifted
out, force TAP state machine to go to the PAUSE_DR state. This means that the
tms_i signal needs to be driven high after the 36th bit.

• Once in the PAUSE_DR state, tdo_o signal reflects the state of the WISHBONE
bus. While bus is busy (read cycle not finished), tdo_o is set to 1. Once the read
cycle is finished, tdo_o goes to zero. Loop in the PAUSE_DR state until tdo_o
goes to zero. Then go to the SHIFT_DR state and continue like nothing happened.
When reading more data, go to the PAUSE_DR state after each word (half or
byte) is shifted out (depending on the type of access (8, 16 or 32 bit)).

CRC is not calculated when not in the SHIFT_DR state.

Note: TAP state machine is described in the documentation that is part of the project
“JTAG Test Access Port (TAP)” that is available on the opencores website.

http://www.opencores.org/ Rev 3.0 Page 28 of 49

Open Cores SoC Debug Interface 4/14/2004

4.2.6.2 Writing to slow device

Following needs to be done to write the data to a slow device:

• Perform the WRITE_COMMAND normally.

• Perform only part of the GO_COMMAND. After the first 5 bits are shifted in,
shift in the first data word (half or byte). Then force the TAP state machine to go
to the PAUSE_DR state. This means that the tms_i signal needs to be driven high
after the 36th bit for 32-bit access, 20th bit for 16-bit access or 12th bit for 8-bit
access.

• Once in the PAUSE_DR state, tdo_o signal reflects the state of the WISHBONE
bus. While bus is busy (write cycle not finished), tdo_o is set to 1. Once the write
cycle is finished, tdo_o goes to zero. Loop in the PAUSE_DR state until tdo_o
goes to zero. Then go to the SHIFT_DR state and continue like nothing happened.
When writing more data, go to the PAUSE_DR state after each data
word/half/byte is shifted in.

• Check the busy status also after the last data word (half or byte). Then shift out
the status and the CRC

CRC is not calculated when not in the SHIFT_DR state.

Note: TAP state machine is described in the documentation that is part of the project
“JTAG Test Access Port (TAP)” that is available on the opencores website.

http://www.opencores.org/ Rev 3.0 Page 29 of 49

Open Cores SoC Debug Interface 4/14/2004

4.2.7 Errors in the WISHBONE sub-module

Both, the data that is shifted-in and the data that is shifted-out are protected with the 32-
bit CRC. The incoming-CRC is checked by the WISHBONE sub-module. Whenever the
CRC error is detected, status bit status[3] is set to 1. CRC is checked for all commands.

Outgoing CRC should be checked by the debugger.

When the module select command is performed and a non-existing module is selected,
status bit status[2] is set to 1. For all other commands this bit is always set to 0.

When a WISHBONE cycle is terminated with an error (signal wb_err_i is set to 1), the
status bit [1] is set to 1. This can only happen when the GO_COMMAND is performed.
For all other commands this bit is set to 0. When WB error occurs, address is not
incremented but points to the address when the error occured.

When the addressed WISHBONE device replies to late to the request, overrun (for write
cycles) or underrun (for read cycles) occurs. The status bit [0] is set to 1. If this happens
too often, see the section 4.2.6 Accessing slow devices on page 28.

http://www.opencores.org/ Rev 3.0 Page 30 of 49

Open Cores SoC Debug Interface 4/14/2004

4.3 CPU Sub-module

CPU sub-module is an interface to the CPU debug facilities (that are part of the CPU). It
consists of the Command Register, Control Register and the CPU interface. The CPU
sub-module can access them all. CPU sub-module can only perform 32-bit read and write
accesses.

There are two steps needed to write/read the data to/from the CPU that is connected to the
CPU sub-module:

• Address, data size and the type of operation need to be written to the Command
Register (see section on page 14 for more details
about the CPU command register). This is done by using the
WRITE_COMMAND.

3.2.1 CPU Command Register

• CPU read or write operation (32-bit) is executed with the GO_COMMAND.
Operation type is selected in the previous step.

READ_COMMAND is used for reading the content of the CPU Command Register.

Note: Address written in the Command Register is incremented automatically after each
successful access. At the end of the operation it points to the first data after the last
accessed. To improve the download or upload performance, many GO_COMMAND
instructions can be executed in a row. Command Register in that case needs to be set only
once at the startup. In case of an error, address is not incremented.

Stalling and resetting of the CPU is done through the CPU Control register:

• WRITE_CONTROL command is used to change the value in the CPU Control
register.

• READ_CONTROL command is used to read the content of the CPU Control
Register.

The following table shows all supported commands and their codes.

http://www.opencores.org/ Rev 3.0 Page 31 of 49

Open Cores SoC Debug Interface 4/14/2004

Command Code

GO_COMMAND 0x0
READ_COMMAND 0x1
WRITE_COMMAND 0x2
READ_CONTROL 0x3
WRITE_CONTROL 0x4

Table 11: CPU sub-module: Supported commands

http://www.opencores.org/ Rev 3.0 Page 32 of 49

Open Cores SoC Debug Interface 4/14/2004

4.3.1 CPU Read or Write operation

To perform a read or write operation from/to a CPU, the debug must be enabled
(instruction DEBUG needs to be activated in the TAP (refer to the IEEE 1149.1 Test
Access Port documentation for more information)) and the CPU sub-module selected (see
description on page 16 for more details).

CPU read or write operation is performed in two steps:

• Writing the address, data size and type of operation to the CPU Command
Register. This is done by issuing the WRITE_COMMAND (see section

 on page 35 for more details)
4.3.3

WRITE_COMMAND

• Issuing the GO_COMMAND (see section
 on page 37 for more details when performing a read operation

or 4.3.5.2 GO_COMMAND when write cycle is requested on page 39 when
performing write operation)

4.3.5.1 GO_COMMAND when read
cycle is requested

First instruction sets the address, type of operation and data size that needs to be
read/written.

Second instruction performs the read/write operation from-to the CPU.

Both instructions (WRITE_COMMAND and GO_COMMAND) return 4-bit status. The
status should be checked on-the-fly to verify that the instruction was completed
successfully. Status bits are also protected with the 32-bit CRC. In case of errors different
steps need to be performed:

• CRC error: CPU sub-module didn’t accept the instruction from the debugger
through JTAG. Instruction needs to be repeated.

• Overrun/underrun:

o When performing write operation the CPU was to slow. Data was not
written on time and overrun occurred.

o When performing read operation the CPU was too slow. Data was not
read out on time and underrun occurred.

In both cases GO_COMMAND needs to be repeated. See also section
 on page 44.

4.3.10
Accessing slow devices

http://www.opencores.org/ Rev 3.0 Page 33 of 49

Open Cores SoC Debug Interface 4/14/2004

4.3.2 CPU Control Register Read or Write

To perform a read or write operation from/to the CPU CONTROL Register, the debug
must be enabled (instruction DEBUG needs to be activated in the TAP (refer to the IEEE
1149.1 Test Access Port documentation for more information)) and the CPU sub-module
selected (see description on page 16 for more details).

CPU Control Register read or write operation is performed by using the
WRITE_CONTROL instruction (see section on page 35 for
more details)

4.3.3 WRITE_COMMAND

Instruction WRITE_CONTROL returns a 4-bit status (3 bits are reserved). The status
should be checked on-the-fly to verify that the instruction was completed successfully.
Status bits are also protected with the 32-bit CRC. In case of errors different steps need to
be performed:

• CRC error: CPU sub-module didn’t accept the instruction from the debugger
through JTAG. Instruction needs to be repeated.

http://www.opencores.org/ Rev 3.0 Page 34 of 49

Open Cores SoC Debug Interface 4/14/2004

4.3.3 WRITE_COMMAND

WRITE_COMMAND writes the address, the type of operation and the size of the data
that will be read or written to the CPU Command register. Command is performed by
shifting the following data through the data scan chain:

• 1-bit with value 0

• 4-bit instruction WRITE_COMMAND (0x2) (MSB shifted first)

• 4-bit access type (read or write) (MSB shifted first)

• 32-bit address (MSB shifted first)

• 16-bit size (MSB shifted first)

• 32-bit CRC (MSB shifted first) that is protecting the incoming data (first 57 bits).

• 36 bits with value 0 (this value is ignored in the debug interface)

While the WRITE_COMMAND is shifted-in, the following data is shifted out:

• 89 bits with value 0 (this value should be ignored)

• 4-bit status (MSB shifted first)

o 1 when CRC error occurs

o always 0

o always 0

o always 0 (1 when overrun/underrun occurs. This can only occur with the
“GO_COMMAND”)

• 32-bit CRC (MSB shifted first) that is protecting the outgoing data (four bits).
Only status bits are protected with this CRC (first 89 bits are ignored).

http://www.opencores.org/ Rev 3.0 Page 35 of 49

Open Cores SoC Debug Interface 4/14/2004

1

4-bit
access
type

4-bit

WRITE
cmd

0 16-bit

length

32-bit

 CRC

Outgoing data Outgoing CRC

Incoming data Incoming CRC

Data shifted out from the debug interface

89 zero bits 4-bit
Status

32-bit CRC

Data shifted into the debug interface

36 zero bits 32-bit
address

TDI

TDO

TDO

TDI

Figure 5: WRITE_COMMAND

4.3.4 READ_COMMAND

READ COMMAND reads the address, the type of operation and the size of the data from
the CPU Command register. Command is identical to the WRITE_COMMAND with one
exception, READ_COMMAND (0x1) needs to be used instead of the
WRITE_COMMAND. See section for more details. 4.3.3 WRITE_COMMAND

http://www.opencores.org/ Rev 3.0 Page 36 of 49

Open Cores SoC Debug Interface 4/14/2004

4.3.5 GO_COMMAND

GO_COMMAND executes what is written in the Command register. The structure of the
GO_COMMAND differs depending on the access type written in the CPU Command
register. There are two possibilities:

• Read cycle is requested

• Write cycle is requested

4.3.5.1 GO_COMMAND when read cycle is requested

GO_COMMAND when read cycle is requested performs the read operation to the CPU.
Address, cycle type and data size are specified in the CPU Command register. The
GO_COMMAND is performed by shifting the following data through the data scan
chain:

• 1-bit with value 0 (This bit is treated as a “module select” when set to 1)

• 4-bit instruction GO_COMMAND (0x0) (MSB shifted first)

• 32-bit CRC (MSB shifted first) that is protecting the incoming data (first 5 bits).

• ((data size + 1) x 8 + 36) bits with value 0 (this value is ignored in the debug
interface).

While the GO_COMMAND is shifted-in, the following data is shifted out:

• 37 bits with value 0 (this value should be ignored)

• ((data size + 1) x 8) bits of data

• 4-bit status (MSB shifted first)

o 1 when CRC error occurs

o always 0

o always 0

o 1 when overrun/underrun occurs.

http://www.opencores.org/ Rev 3.0 Page 37 of 49

Open Cores SoC Debug Interface 4/14/2004

• 32-bit CRC (MSB shifted first) that is protecting the outgoing data ((data size + 1)
x 8 + 5 bits). Only outgoing data bits are protected with this CRC (first 37 bits are
ignored).

(data_len + 1) x 8 data
bits

0 32-bit

 CRC

Outgoing data Outgoing CRC

Incoming data Incoming CRC

Data shifted out from the debug interface

37 zero bits 4-bit
Status

32-bit CRC

Data shifted into the debug interface

(data_len + 1) x 8 + 36 zero bits
4-bit

GO_
COMMAND

TDI

TDO

TDO

TDI

Figure 6: GO_COMMAND when read cycle is requested

http://www.opencores.org/ Rev 3.0 Page 38 of 49

Open Cores SoC Debug Interface 4/14/2004

4.3.5.2 GO_COMMAND when write cycle is requested

GO_COMMAND when write cycle is requested performs the write operation to the CPU.
Address, cycle type and data size are specified in the CPU Command register. The
GO_COMMAND is performed by shifting the following data through the data scan
chain:

• 1-bit with value 0

• 4-bit instruction GO_COMMAND (0x0) (MSB shifted first)

• ((data size + 1) x 8) bits of data (MSB shifted first)

• 32-bit CRC (MSB shifted first) that is protecting the incoming data ((first data +
1) size x 8 + 5 bits).

• 36 bits with value 0 (these bits are ignored in the debug interface)

While the GO_COMMAND is shifted-in, the following data is shifted out:

• ((data size +1) x 8 + 37) bits with value 0 (this value should be ignored)

• 4-bit status

o 1 when CRC error occurs

o always 0

o always 0

o 1 when overrun/underrun occurs.

• 32-bit CRC (MSB shifted first) that is protecting the outgoing data (4 status bits).
Only outgoing data bits are protected with this CRC (first (data size + 1) x 8 + 37
bits are ignored).

http://www.opencores.org/ Rev 3.0 Page 39 of 49

Open Cores SoC Debug Interface 4/14/2004

http://www.opencores.org/

 TDI

(data_len + 1) x 8 data
bi

(data_len + 1) x 8 + 37 zero bits

0 32-bit

 CRC

Outgoing data Outgoing CRC

Incoming data Incoming CRC

Data shifted out from the debug interface

4-bit
Status

32-bit CRC

Data shifted into the debug interface

36 zero bits
4-bit

GO_

COMMAND

TDI

TDO

TDO

Figure 7: GO_COMMAND when write cycle is requested

 Rev 3.0 Page 40 of 49

Open Cores SoC Debug Interface 4/14/2004

4.3.6 WRITE_CONTROL

WRITE_CONTROL writes the data to the CPU Control register (see
 on page 15). Command is performed by shifting the following data through the

data scan chain:

3.2.2 CPU Control
Register

• 1-bit with value 0

• 4-bit instruction WRITE_CONTROL (0x4) (MSB shifted first)

• 52-bit data (MSB shifted first)

• 32-bit CRC (MSB shifted first) that is protecting the incoming data (first 57 bits).

• 36 bits with value 0 (this value is ignored in the debug interface)

While the WRITE_CONTROL is shifted-in, the following data is shifted out:

• 89 bits with value 0 (this value should be ignored)

• 4-bit status (MSB shifted first)

o 1 when CRC error occurs

o always 0

o always 0

o always 0

• 32-bit CRC (MSB shifted first) that is protecting the outgoing data (four bits).
Only status bits are protected with this CRC (first 89 bits are ignored).

http://www.opencores.org/ Rev 3.0 Page 41 of 49

Open Cores SoC Debug Interface 4/14/2004

http://www

52-bit data TDI 0 TDO

1

TDI

4.3.7 RE

READ_C

exception
WRITE_C

Register

36 zero bits
.opencores.org/

4-bit
Status

AD_CONTROL

ONTROL reads the d
on page 15). Comm
, READ_CONTRO
ONTROL. See secti
Data shifted into the debug interface

 TDO
32-bit CRC
Rev 3.0

Figure 8: WRITE_CO

ata from the CPU C
and is identical t
L (0x3) needs

on 4.3.6 WRITE_C
89 zero bits

Data shifted out from the debug interface
Incoming CRC
NTR

ont
o th
 to
ONT
Incoming data
Outgoing CRC
 Outgoing data
32-bit

 CRC
OL

rol register (see
e WRITE_CON
 be used i

 for more d

3

ROL
4-bit

WRITE
_CTRL
Page 42 of 49

TROL with one
nstead of the
etails.

.2.2 CPU Control

Open Cores SoC Debug Interface 4/14/2004

4.3.8 Stalling CPU

The CPU can be stalled in two ways:

• By deliberately setting bit STALL bit in the CPU Control Register to 1 (see
section on page 15 for more details). Clearing this bit
again unstalls the CPU.

3.2.2 CPU Control Register

• An input breakpoint signal (cpu_bp_i) automatically stops the CPU and sets bit
STALL of the CPU Control Register to 1. Clearing this bit again unstalls the
CPU.

For more information about changing the value of the CPU Control register go to the
section on page 41. 4.3.6 WRITE_CONTROL

4.3.6 WRITE_CONTROL

Reading the value of the CPU Control register is described in section
 on page 42.

4.3.7
READ_CONTROL

4.3.7
READ_CONTROL

For more information about the breakpoint generation refer to the CPU manual (i.e.
OpenRISC 1000 System Architecture Manual).

4.3.9 Resetting CPU

The Debug Interface puts the CPU to reset by setting the RESET bit in the CPU Control
Register to 1. Clearing this bit to 0 deactivates the reset signal.

For more information about changing the value of the CPU Control register go to the
section on page 41.

Reading the value of the CPU Control register is described in section
 on page 42.

http://www.opencores.org/ Rev 3.0 Page 43 of 49

Open Cores SoC Debug Interface 4/14/2004

4.3.10 Accessing slow devices

Usually the CPU clock (cpu_clk_i) is much faster than the JTAG clock (tck_i). In that
case read or write accesses are finished on time. However it is possible to do a read or
write access to a CPU that is not fast enough to complete the desired operation on time.

On time means:

• Read operation needs to be finished before the data is shifted out through the
JTAG

• Write operation must be finished before the next write is started.

4.3.10.1 Reading from slow CPU

Following needs to be done to read the data from a slow CPU:

• Perform the WRITE_COMMAND normally.

• Perform only first part of the GO_COMMAND. After the first 37 bits are shifted
out, force TAP state machine to go to the PAUSE_DR state. This means that the
tms_i signal needs to be driven high after the 36th bit.

• Once in the PAUSE_DR state, tdo_o signal reflects the state of the CPU bus.
While bus is busy (read cycle not finished), tdo_o is set to 1. Once the read cycle
is finished, tdo_o goes to zero. Loop in the PAUSE_DR state until tdo_o goes to
zero. Then go to the SHIFT_DR state and continue like nothing happened. When
reading more data, go to the PAUSE_DR state after each word is shifted out.

CRC is not calculated when not in the SHIFT_DR state.

Note: TAP state machine is described in the documentation that is part of the project
“JTAG Test Access Port (TAP)” that is available on the opencores website.

http://www.opencores.org/ Rev 3.0 Page 44 of 49

Open Cores SoC Debug Interface 4/14/2004

4.3.10.2 Writing to slow CPU

Following needs to be done to write the data to a slow CPU:

• Perform the WRITE_COMMAND normally.

• Perform only part of the GO_COMMAND. After the first 5 bits are shifted in,
shift in the first data word. Then force the TAP state machine to go to the
PAUSE_DR state. This means that the tms_i signal needs to be driven high after
the 36th bit.

• Once in the PAUSE_DR state, tdo_o signal reflects the state of the CPU bus.
While bus is busy (write cycle not finished), tdo_o is set to 1. Once the write
cycle is finished, tdo_o goes to zero. Loop in the PAUSE_DR state until tdo_o
goes to zero. Then go to the SHIFT_DR state and continue like nothing happened.
When writing more data, go to the PAUSE_DR state after each data word is
shifted in.

• Check the busy status also after the last data word (half or byte). Then shift out
the status and the CRC

CRC is not calculated when not in the SHIFT_DR state.

Note: TAP state machine is described in the documentation that is part of the project
“JTAG Test Access Port (TAP)” that is available on the opencores website.

http://www.opencores.org/ Rev 3.0 Page 45 of 49

Open Cores SoC Debug Interface 4/14/2004

5
Architecture

The SoC Debug Interface architecture is based on IEEE Std. 1149.1 Standard Test Access
Port and Boundary Scan Architecture. Other signals are added to provide additional
flexibility.

The interface consists of several parts (blocks):

• Logic that selects one of the connected sub modules. Currently three sub-modules
are available, CPU0, CPU1 and WISHBONE.

• CRC sub-module that checks incoming data.

• CRC sub-module that calculates the CRC for the outgoing data.

• WISHBONE sub-module

• 2 CPU sub-modules

As seen on the following figure, debug interface is just one part of the complete
debugging system. For more information about the TAP controller, go to the opencores
web site and look for the project “JTAG Test Access Port (TAP)”. There is a complete IP
core with test bench and documentation available.

http://www.opencores.org/ Rev 3.0 Page 46 of 49

Open Cores SoC Debug Interface 4/14/2004

WISHBONE bus

Logic

Reg.

MUX

FSM

CPU1 sub-module

Logic

Logic

MUX

FSM

C
R

C

Reg.

MUX

FSM

WISHB. sub-module

CPU0 sub-module

ID

FSM

TAP Controller

MUX

CPU0

CPU

+

CPU Development
Interface

CPU1

CPU

+

CPU Development
Interface

Debug Interface

TRSTn

TMS

TCK

TDO

TDI

Debug Scan Chain

B
ou

nd
ar

y
Sc

an
 C

ha
in

M
B

IS
T

Sc
an

 C
ha

in

Figure 9: Complete system

http://www.opencores.org/ Rev 3.0 Page 47 of 49

Open Cores SoC Debug Interface 4/14/2004

5.1 Debug Interface
Debug Interface is an interface between the TAP controller and the sub-modules that are
target specific (CPU, WISHBONE...). It receives data from the TAP whenever the
DEBUG instruction is active (see IEEE 1149.1 Test Access Port documentation).

Data can hold two kinds of instructions:

• Module select instruction

• Sub-module instruction (of the selected sub-module)

First bit of the instruction is used to distinguish between the module select
instruction (first bit is 1) and the sub-module instruction (first bit is 0).

Module select instruction is used for selecting/enabling the sub-module.

Sub-module instructions are sub-module specific. Each sub-module can use different
instructions. Because of this, it is very easy to add additional sub-modules.

All the data (in both directions) is protected with the 32-bit CRC (see section
 on page 48 for more information). Both CRC engines (one for incoming data

and one for outgoing data) are located in the debug interface. None of the sub-modules
have their own CRC engine.

5.2 CRC
sub-module

5.2 CRC sub-module
There are two CRC sub-modules in the debug interface. One is checking the incoming
data, while the other is calculating the CRC from the outgoing data.

The following polynomial is used for 32-bit CRC calculation:

1 + x1 + x2 + x4 + x5 + x7 + x8 + x10 + x11 + x12 + x16 + x22 + x23 + x26 + x32

1-bit data input is used for CRC calculation. CRC is initialized to the value 0xffffffff
before the actual CRC calculation starts. The CRC is received/send with the MSB shifted
first.

Incoming CRC is calculated from the incoming data.

http://www.opencores.org/ Rev 3.0 Page 48 of 49

Open Cores SoC Debug Interface 4/14/2004

http://www.opencores.org/ Rev 3.0 Page 49 of 49

Outgoing CRC is calculated from the outgoing data. CRC calculation does not include
zero bits that are shifted out while incoming data and incoming CRC are shifting in (See

 on page 18 for example). Figure 1

5.3 WISHBONE sub-module
Is capable of doing the 8-bit, 16-bit and 32-bit read and write accesses. All accesses are
single accesses since the data flow through the TAP (JTAG) is slow and there is no need
for bursts. Wishbone clock frequency must be higher than the TCK frequency. See
section on page 19 for more information about the
WISHBONE sub-module.

4.2 WISHBONE Sub-module

5.4 CPU sub-module
Is capable of doing the 32-bit read and write accesses. CPU clock frequency must be
higher than the TCK frequency. See section on page 31 for more
information about the CPU sub-module.

4.3 CPU Sub-module

	SoC Debug Interface
	Author: Igor Mohor
	IgorM@opencores.org
	1. Introduction
	2. IO Ports
	2.1 TAP Ports
	2.2 CPU Ports
	2.3 WISHBONE Ports

	3. Registers
	3.1 WISHBONE Registers List
	3.1.1 WB Command Register

	3.2 CPU Registers List
	3.2.1 CPU Command Register
	3.2.2 CPU Control Register

	4. Operation
	4.1 Module Selection
	4.2 WISHBONE Sub-module
	4.2.1 WISHBONE Read or Write operation
	4.2.2 WRITE_COMMAND
	4.2.3 READ_COMMAND
	4.2.4 GO_COMMAND
	4.2.4.1 GO_COMMAND when read cycle is requested
	4.2.4.2 GO_COMMAND when write cycle is requested

	4.2.5 Data and select signals
	4.2.6 Accessing slow devices
	4.2.6.1 Reading from slow device
	4.2.6.2 Writing to slow device

	4.2.7 Errors in the WISHBONE sub-module

	4.3 CPU Sub-module
	4.3.1 CPU Read or Write operation
	4.3.2 CPU Control Register Read or Write
	4.3.3 WRITE_COMMAND
	4.3.4 READ_COMMAND
	4.3.5 GO_COMMAND
	4.3.5.1 GO_COMMAND when read cycle is requested
	4.3.5.2 GO_COMMAND when write cycle is requested

	4.3.6 WRITE_CONTROL
	4.3.7 READ_CONTROL
	4.3.8 Stalling CPU
	4.3.9 Resetting CPU
	4.3.10 Accessing slow devices
	4.3.10.1 Reading from slow CPU
	4.3.10.2 Writing to slow CPU

	5. Architecture
	5.1 Debug Interface
	5.2 CRC sub-module
	5.3 WISHBONE sub-module
	5.4 CPU sub-module

