
Documentation
Version 1.0

Table of Contents

1 Overview 3

1.1 About Steel Core . 3
1.2 Licensing . 3
1.3 Specifications . 3
1.4 Online repository . 3
1.5 Getting started . 4
1.6 Configuration . 4
1.7 Microarchitecture . 5

2 Input and output signals 7

2.1 Instruction fetch interface . 7
2.2 Data read/write interface . 7
2.3 Interrupt controller interface . 7
2.4 Real time counter interface . 8
2.5 CLK and RESET signals . 8

3 Timing diagrams 9

3.1 Instruction fetch . 9
3.2 Data fetch . 9
3.3 Data writing . 9
3.4 Interrupt request . 10
3.5 Time CSR update . 10

4 Exceptions and Interrupts 11

4.1 Supported exceptions and interrupts . 11
4.2 Trap handling in Steel . 11
4.3 Nested interrupts capability . 11

5 Example system built with Steel 12

6 Implementation details 13

6.1 Implemented control and status registers . 13
6.2 Modules . 14

6.2.1 Decoder . 14
6.2.2 ALU . 15

1

6.2.3 Integer Register File . 16
6.2.4 Branch Unit . 17
6.2.5 Load Unit . 18
6.2.6 Store Unit . 19
6.2.7 Immediate Generator . 20
6.2.8 CSR Register File . 21
6.2.9 Machine Control . 23

2

1 Overview

1.1 About Steel Core

Steel is a microprocessor core that implements the RV32I and Zicsr instruction sets of the RISC-V specifications.
It is designed to be easy to use and targeted for embedded systems projects.

1.2 Licensing

Steel is distributed under the MIT License. The license text is reproduced below. Read it carefully and make
sure you understand its terms before using Steel in your projects.

MIT License

Copyright (c) 2020 Rafael de Oliveira Calçada

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the ”Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, IN-
CLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

1.3 Specifications

Steel implements the base instruction set RV32I, the Zicsr extension and the M-mode privileged architecture of
the RISC-V specifications.

Steel aims to be compliant with the following versions of the RISC-V specifications:

• Base ISA RV32I version 2.1

• Zicsr extension version 2.0

• Machine ISA version 1.11

1.4 Online repository

Steel files and documentation are available at GitHub (github.com/rafaelcalcada/steel-core).

3

https://github.com/rafaelcalcada/steel-core

1.5 Getting started

To start using Steel, follow these steps:

1. Import all files inside the rtl directory into your project;

2. Instantiate the core into a Verilog/SystemVerilog module (an instantiation template is provided below);

3. Connect Steel to a clock source, a reset signal and memory. There is an interface to fetch instructions and
another to read/write data, so we recommend a dual-port memory.

There is also interfaces to request for interrupts and to update the time register. The signals of these interfaces
must be hardwired to zero if unused.

steel_top #(

// You must provide a 32-bit value. If omitted the boot address is set to 0x00000000

// ---

.BOOT_ADDRESS()

) core (

// Clock source and reset

// ---

.CLK(), // System clock (input, required, 1-bit)

.RESET(), // System reset (input, required, 1-bit, synchronous, active high)

// Instruction fetch interface

// ---

.I_ADDR(), // Instruction address (output, 32-bit)

.INSTR(), // Instruction data (input, required, 32-bit)

// Data read/write interface

// ---

.D_ADDR(), // Data address (output, 32-bit)

.DATA_IN(), // Data read from memory (input, required, 32-bit)

.DATA_OUT(), // Data to write into memory (output, 32-bit)

.WR_REQ(), // Write enable (output, 1-bit)

.WR_MASK(), // Write byte mask (output, 4-bit)

// Interrupt request interface (hardwire to zero if unused)

// ---

.E_IRQ(), // External interrupt request (optional, active high, 1-bit)

.T_IRQ(), // Timer interrupt request (optional, active high, 1-bit)

.S_IRQ() // Software interrupt request (optional, active high, 1-bit)

// Time register update interface (hardwire to zero if unused)

// ---

.REAL_TIME(), // Value read from a real-time counter (optional, 64-bit)

);

1.6 Configuration

Steel has only one configuration parameter, the boot address, which is the address of the first instruction the
core will fetch after reset. It is defined when instantiating Steel. If you omit this parameter at instantiation, the
boot address will be set to 0x00000000.

4

1.7 Microarchitecture

Steel has 3 pipeline stages, a single execution thread and issues one instruction per clock cycle. Therefore,
all instructions are executed in program order. Its pipeline is plain simple, divided into fetch, decode, and
execution stages. The reduced number of pipeline stages eliminates the need for branch predictors and other
advanced microarchitectural units, like data hazard detectors and forwarding units. Fig. 1 shows the Steel
microarchitecture in register-transfer level (RTL). More implementation details can be found in section 6.

Fig. 2 (next page) shows the tasks performed by each pipeline stage. In the first stage, the core generates the
program counter and fetches the instruction from memory. In the second, the instruction is decoded and the
control signals for all units are generated. Branches, jumps and stores are executed in advance in this stage,
which also generates the immediates and fetches the data from memory for load instructions. The last stage
executes all other instructions and writes back the results in the register file.

Figure 1 – Steel Core microarchitecture in detail

5

Figure 2 – Steel Core pipeline overview

6

2 Input and output signals

Steel has 4 communication interfaces, shown in the figure below.

The core was designed to be connected to a memory with one clock cycle read/write latency, which means that
the memory should take one clock cycle to complete both read and write operations.

The interrupt request interface has signals to request for external, timer and software interrupts, respectively.
They can be connected to a single device or to an interrupt controller managing interrupt requests from several
devices. If your system does not need interrupts you should hardwire these signals to zero.

The real-time counter interface provides a 64-bit bus to read the value from a real-time counter and update the
time register. If your system does not need hardware timers, you should hardwire this signal to zero.

Figure 3 – Steel Core input and output signals

2.1 Instruction fetch interface

The instruction fetch interface has two signals used in the instruction fetch process, shown in Table 1. The
process of fetching instructions is explained in section 3.1.

Table 1 – Instruction fetch interface signals

Signal Width Direction Description

INSTR 32 bits Input Contains the instruction fetched from memory.

I ADDR 32 bits Output Contains the address of the instruction the core wants to fetch from memory.

2.2 Data read/write interface

The data read/write interface has five signals used in the process of reading/writing data from/to memory. The
signals are shown in Table 2. The process of fetching data from memory is explained in section 3.2. The process
of writing data is explained in section 3.3.

2.3 Interrupt controller interface

The interrupt controller interface has three signals used to request external, timer and software interrupts,
shown in Table 3. The interrupt request process is explained in sections 3.4 and 4.

7

Table 2 – Data read/write interface signals

Signal Width Direction Description

DATA IN 32 bits Input Contains the data fetched from memory.

D ADDR 32 bits Output In a write operation, contains the address of the memory position where
the data will be stored. In a read operation, contains the address of the
memory position where the data to be fetched is. The address is always
aligned on a four byte boundary (the last two bits are always zero).

DATA OUT 32 bits Output Contains the data to be stored in memory. Used only with write opera-
tions.

WR REQ 1 bit Output When high, indicates a request to write data. Used only with write oper-
ations.

WR MASK 4 bits Output Contains a mask of four byte-write enable bits. A bit high indicates that
the corresponding byte must be written. See section 3.3 for details. Used
only with write operations.

Table 3 – Interrupt controller interface signals

Signal Width Direction Description

E IRQ 1 bit Input When high indicates an external interrupt request.

T IRQ 1 bit Input When high indicates a timer interrupt request.

S IRQ 1 bit Input When high indicates a software interrupt request.

2.4 Real time counter interface

The real time counter interface has just one signal used to update the time CSR, shown in Table 4. The process
of updating the time register is explained in section 3.5.

Table 4 – Real time counter interface

Signal Width Direction Description

REAL TIME 64 bits Input Contains the current value read from a real time counter.

2.5 CLK and RESET signals

The core has CLK and RESET input signals, which were not shown in figure 3 (above). The CLK signal must be
connected to a clock source. The RESET signal is active high and resets the core synchronously.

8

3 Timing diagrams

3.1 Instruction fetch

To fetch an instruction, the core places the instruction address on the I ADDR bus. The memory must place the
instruction on the INSTR bus at the next clock rising edge. Fig. 4 shows the timing diagram of this process. In
the figure, mem[addrX] denotes the instruction stored at the memory position addrX.

Figure 4 – Instruction fetch timing diagram

3.2 Data fetch

To fetch data from memory, the core puts the data address on the D ADDR bus. The memory must place the
data on the DATA IN bus at the next clock rising edge. Fig. 5 shows the timing diagram of this process. In the
figure, mem[addrX] denotes the data stored at the memory position addrX.

Figure 5 – Data fetch timing diagram

3.3 Data writing

To write data to memory, the core drives D ADDR, DATA OUT, WR REQ and WR MASK signals as follows:

• D ADDR receives the address of the memory position where the data must be written;

• DATA OUT receives the data to be written;

• WR REQ is set high;

• WR MASK receives a byte-write enable mask that indicates which bytes of DATA OUT must be written.

The memory must perform the write operation at the next clock rising edge. The core can request to write bytes,
halfwords and words.

Fig. 6 (next page) shows the process of writing data to memory. DATA IN is not used in the process and appears
only to show the memory contents after writing. The figure shows five clock cycles, in which the core requests
to write in the second, third and fourth cycles. In the second clock cycle, the core requests to write the word
0x12345678 at the address addr2. In the third, requests to write the halfword 0xABCD at the upper half of addr2,
and in the fourth requests to write the byte 0xEF at the second least significant byte of addr2. The content of
addr2 after each of these operations appears on the DATA IN bus and are highlighted in blue.

9

Figure 6 – Data writing timing diagram

3.4 Interrupt request

An external device (or an interrupt controller managing several devices) can request interrupts by setting high
the appropriate IRQ signal, which is E IRQ for external interrupts, T IRQ for timer interrupts and S IRQ for
software interrupts. The IRQ signal of the requested interrupt must be set high for one clock cycle and set low
for the next.

Fig. 7 shows the timing diagram of the interrupt request process. Since the process is the same for all types of
interrupt, X IRQ is used to denote E IRQ, T IRQ or S IRQ. TRAP ADDR denotes the address of the trap handler
first instruction.

Figure 7 – Interrupt request timing diagram

3.5 Time CSR update

When connected to a real-time counter, the core updates the time CSR with the value placed on REAL TIME at
each clock rising edge, as shown in Fig. 8 . In the figure, timeX denotes arbitrary time values.

Figure 8 – time CSR update timing diagram

10

4 Exceptions and Interrupts

4.1 Supported exceptions and interrupts

Steel supports the exceptions and interrupts shown in Table 5. They are listed in descending priority order (the
highest priority is at the top of the table). If two or more exceptions/interrupts occur at the same time, the one
with the highest priority is taken.

Exceptions always cause a trap to be taken. An interrupt will cause a trap only if enabled. Each type of interrupt
has an interrupt-enable bit in the mie register. Interrupts are globally enable/disabled by setting the MIE bit of
mstatus register.

Table 5 – Steel supported exceptions and interrupts

mcause value

Exception / Interrupt Interrupt Exception code

Machine external interrupt 1 11

Machine software interrupt 1 3

Machine timer interrupt 1 7

Illegal instruction exception 0 2

Instruction address-misaligned exception 0 0

Environment call from M-mode exception 0 11

Environment break exception 0 3

Store address-misaligned exception 0 6

Load address-misaligned exception 0 4

4.2 Trap handling in Steel

Exceptions and interrupts are handled by a trap handler routine stored in memory. The address of the trap han-
dler first instruction is configured using the mtvec register. Steel supports both direct and vectorized interrupt
modes.

When a trap is taken, the core proceeds as follows:

• the address of the interrupted instruction (or the instruction that encountered the exception) is saved in
the mepc register;

• the value of the mtval register is set to zero;

• the value of the mstatus MIE bit is saved in the MPIE field and then set to zero;

• the program counter is set to the trap handler first instruction.

The mret instruction is used to return from traps. When executed, the core proceeds as follows:

• the value of the mstatus MPIE bit is saved in the MIE field and then set to one;

• the program counter is set to the value of mepc register.

4.3 Nested interrupts capability

The core globally disables interrupts when takes into a trap. The trap handler can re-enable interrupts by setting
the mstatus MIE bit to one, enabling nested interrupts. To return from nested traps, the trap handler must stack
and manage the values of the mepc register in memory.

11

5 Example system built with Steel

The figure below shows an example system built with Steel, composed of an RAM memory array, a memory
mapped UART transmitter, a bus arbiter and, of course, the Steel Core. The timer and interrupt request signals
are hardwired to zero because neither timers nor interrupts are needed in this system. The implementation files
of this system are inside the soc directory in the project repository. The util directory has an example program
(hello.c) for this system. The program sends the string ”Hello World, Steel!” through the UART transmitter.

Note that the RAM memory and the UART transmitter share the interface to read/write data. The bus arbiter is
used to multiplex this interface signals according to the address the core wants to access. In this example, the
address 0x00010000 is used to access the UART transmitter. RAM addresses start at 0x00000000 and end at
0x00001fff. All other addresses are invalid.

The RISC-V GNU Toolchain provides the Newlib cross-compiler, which can be used to compile software for
Steel. Instructions to install it can be found in the toolchain repository (available at https://github.com/
riscv/riscv-gnu-toolchain).

Figure 9 – Steel-based system example

12

https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain

6 Implementation details

This section contains information on implementation details. It is intended for those who want to know more
about how Steel works.

6.1 Implemented control and status registers

The control and status registers implemented in Steel are shown in Table 6. Other M-mode registers not shown
in the table return the hardwired value defined by the RISC-V specifications when read.

Table 6 – Steel Core implemented CSRs

CSR Name Address

cycle Cycle Counter 0xC00

time System Timer 0xC01

instret Instructions Retired 0xC02

mstatus Machine Status 0x300

misa Machine ISA 0x301

mie Machine Interrupt Enable 0x304

mtvec Machine Trap Vector 0x305

mscratch Machine Scratch 0x340

mepc Machine Exception Program Counter 0x341

mcause Machine Cause 0x342

mtval Machine Trap Value 0x343

mip Machine Interrupt Pending 0x344

mcycle Machine Cycle Counter 0xB00

minstret Machine Instructions Retired 0xB01

mcountinhibit Machine Counter Inhibit 0x320

13

6.2 Modules

6.2.1 Decoder

The Decoder (decoder.v) decodes the instruction and generates the signals that control the memory, the Load
Unit, the Store Unit, the ALU, the two register files (Integer and CSR), the Immediate Generator and the
Writeback Multiplexer. The description of its input and output signals are shown in Table 7.

Table 7 – Decoder input/output signals

Signal name Width Direction Description

OPCODE 6 TO 2 5 bits Input Connected to the instruction opcode field.

FUNCT7 5 1 bit Input Connected to the instruction funct7 field.

FUNCT3 3 bits Input Connected to the instruction funct3 field.

IADDER OUT 1 TO 0 2 bits Input Used to verify the alignment of loads and stores.

TRAP TAKEN 1 bit Input When high indicates that a trap will be taken in the next clock
cycle. Connected to the Machine Control module.

ALU OPCODE 4 bits Output Selects the operation to be performed by the ALU. See Table 9
for possible values.

MEM WR REQ 1 bit Output When high indicates a request to write to memory.

LOAD SIZE 2 bits Output Indicates the word size of load instruction. See Table 14.

LOAD UNSIGNED 1 bit Output Indicates the type of load instruction (signed or unsigned).
See Table 14.

ALU SRC 1 bit Output Selects the ALU 2nd operand.

IADDER SRC 1 bit Output Selects the Immediate Adder 2nd operand.

CSR WR EN 1 bit Output Controls the WR EN input of CSR Register File.

RF WR EN 1 Output Controls the WR EN input of Integer Register File. See Table
11.

WB MUX SEL 3 Output Selects the data to be written in the Integer Register File.

IMM TYPE 3 Output Selects the immediate based on the type of the instruction.

CSR OP 3 Output Selects the operation to be performed by the CSR Register File
(read/write, set or clear).

ILLEGAL INSTR 1 bit Output When high indicates that an invalid or not implemented in-
struction was fetched from memory.

MISALIGNED LOAD 1 bit Output When high indicates an attempt to read data in disagreement
with the memory alignment rules.

MISALIGNED STORE 1 bit Output When high indicates an attempt to write data to memory in
disagreement with the memory alignment rules.

14

6.2.2 ALU

The ALU (alu.v) applies ten distinct logical and arithmetic operations in parallel to two 32-bit operands, out-
putting the result selected by OPCODE. ALU input and output signals are shown in Table 8, and opcodes are
shown in Table 9.

The opcode values were assigned to facilitate instruction translation. The most significant bit of OPCODE matches
with the second most significant bit in the instruction funct7 field. The remaining three bits match with the
instruction funct3 field.

Table 8 – ALU signals

Signal name Width Direction Description

OP 1 32 bits Input Operation first operand.

OP 2 32 bits Input Operation second operand.

OPCODE 4 bits Input Operation code. This signal is driven by funct7 and funct3 instruction
fields.

RESULT 32 bits Output Result of the requested operation.

Table 9 – ALU opcodes

Opcode Operation Binary value

ALU ADD Addition 4’b0000

ALU SUB Subtraction 4’b1000

ALU SLT Set on less than 4’b0010

ALU SLTU Set on less than unsigned 4’b0011

ALU AND Bitwise logical AND 4’b0111

ALU OR Bitwise logical OR 4’b0110

ALU XOR Bitwise logical XOR 4’b0100

ALU SLL Logical left shift 4’b0001

ALU SRL Logical right shift 4’b0101

ALU SRA Arithmetic right shift 4’b1101

15

6.2.3 Integer Register File

The Integer Register File (integer file.v) has 32 general-purpose registers and supports read and write op-
erations. Reads are requested in the pipeline stage 2 and provide data from one or two registers. Writes are
requested in the pipeline stage 3 and put the data coming from the Writeback Multiplexer into the selected
register. If stage 3 requests to write to a register being read by stage 2, the data to be written is immediately
forwarded to stage 2. Each operation is driven by a distinct set of signals, shown in tables 10 and 11.

Table 10 – Integer Register File signals for read operation

Signal name Width Direction Description

RS 1 ADDR 5 bits Input Register source 1 address. The data is placed at RS 1 immediately after
an address change.

RS 2 ADDR 5 bits Input Register source 2 address. The data is placed at RS 2 immediately after
an address change.

RS 1 32 bits Output Data read (source 1).

RS 2 32 bits Output Data read (source 2).

Table 11 – Integer Register File signals for write operation

Signal name Width Direction Description

RD ADDR 5 bits Input Destination register address.

RD 32 bits Input Data to be written in the destination register.

WR EN 1 bit Input Write enable. When high, the data placed on RD is written in the des-
tination register at the next clock rising edge.

16

6.2.4 Branch Unit

The Branch Unit (branch unit.v) decides if a branch instruction must be taken or not. It receives two operands
from the Integer Register File and, based on the value of opcode and funct3 instruction fields, decides the branch.
Jump instructions are interpreted as branches that must always be taken. Internally, the unit realizes just two
comparisions, deriving other four from them. Table 12 shows the module input and output signals.

Table 12 – Branch Unit signals

Signal name Width Direction Description

OPCODE 6 TO 2 5 bits Input Connected to the opcode instruction field.

FUNCT3 3 bits Input Connected to the funct3 instruction field.

RS1 32 bits Input Connected to the register file 1st operand source.

RS2 32 bits Input Connected to the register file 2nd operand source.

BRANCH TAKEN 1 bit Output High if the branch must be taken, low otherwise.

17

6.2.5 Load Unit

The Load Unit (load unit.v) reads DATA IN input signal and forms a 32-bit value based on the load instruction
type (encoded in the funct3 field). The formed value (placed on OUTPUT) can then be written in the Integer
Register File. The module input and output signals are shown in Table 13. The value of OUTPUT is formed as
shown in Table 14.

Table 13 – Load Unit signals

Signal name Width Direction Description

LOAD SIZE 2 bits Input Connected to the two least significant bits of the funct3 in-
struction field.

LOAD UNSIGNED 1 bit Input Connected to the most significant bit of the funct3 instruction
field.

DATA IN 32 bits Input 32-bit word read from memory.

IADDER OUT 1 TO 0 2 bits Input Indicates the byte/halfword position in DATA IN. Used only
with load byte/halfword instructions.

OUTPUT 32 bits Output 32-bit value to be written in the Integer Register File.

Table 14 – Load Unit output generation

LOAD SIZE Effect on OUTPUT

2’b00 The byte in the position indicated by IADDER OUT 1 TO 0 is placed on the least signif-
icant byte of OUTPUT. The upper 24 bits are filled according to the LOAD UNSIGNED
signal.

2’b01 The halfword in the position indicated by IADDER OUT 1 TO 0 is placed on the
least significant halfword of OUTPUT. The upper 16 bits are filled according to the
LOAD UNSIGNED signal.

2’b10 All bits of DATA IN are placed on OUTPUT.

2’b11 All bits of DATA IN are placed on OUTPUT.

LOAD UNSIGNED Effect on OUTPUT

1’b0 The remaining bits of OUTPUT are filled with the sign bit.

1’b1 The remaining bits of OUTPUT are filled with zeros.

18

6.2.6 Store Unit

The Store Unit (store unit.v) drives the signals that interface with memory. It places the data to be written
(which can be a byte, halfword or word) in the right position in DATA OUT and sets the value of WR MASK in
an appropriate way. Table 15 shows the unit input and output signals.

Table 15 – Store Unit signals

Signal name Width Direction Description

FUNCT3 3 bits Input Connected to the funct3 instruction field. Indicates the data size
(byte, halfword or word).

IADDER OUT 32 bits Input Contains the address (possibly unaligned) where the data must be
written.

RS2 32 bits Input Connected to Integer Register File source 2. Contains the data to be
written (possibly in the wrong position).

MEM WR REQ 1 bit Input Control signal generated by the Control Unit. When high indicates a
request to write to memory.

DATA OUT 32 bits Output Contains the data to be written in the right position.

D ADDR 32 bits Output Contains the address (aligned) where the data must be written.

WR MASK 4 bits Output A bitmask that indicates which bytes of DATA OUT must be written.
For more information, see section 3.3.

WR REQ 1 bit Output When high indicates a request to write to memory.

19

6.2.7 Immediate Generator

The Immediate Generator (imm generator.v) rearranges the immediate bits contained in the instruction and,
if necessary, sign-extends it to form a 32-bit value. The unit is controlled by the IMM TYPE signal, generated by
the Control Unit. Table 16 shows the unit input and output signals.

Table 16 – Immediate Generator signals

Signal name Width Direction Description

INSTR 25 bits Input Connected to the instruction bits (32 to 7).

IMM TYPE 2 bits Input Control signal generated by the Control Unit that indicated the type of
immediate that must be generated.

IMM 32 bits Output 32-bit generated immediate.

20

6.2.8 CSR Register File

The CSR Register File (csr file.v) has the control and status registers required for the implementation of
M-mode. Read/write, set and clear operations can be applied to the registers. Table 17 shows the unit input
and output signals, except those used for communication with the Machine Control, which are shown in Table
18.

Table 17 – CSR Register File signals

Signal name Width Direction Description

WR EN 1 bit Input Write enable. When high, updates the CSR addressed by
CSR ADDR at the next clock rising edge according to the opera-
tion selected by CSR OP.

CSR ADDR 12 bits Input Address of the CSR to read/write/modify.

CSR OP 3 bits Input Control signal generated by the Control Unit. Selects the operation
to be performed (read/write, set, clear or no operation).

CSR UIMM 5 bits Input Unsigned immediate. Connected to the five least significant bits
from the Immediate Generator output.

CSR DATA IN 32 bits Input In write operations, contains the data to be written. In set or clear
operations, contains a bit mask.

PC 32 bits Input Program counter value. Used to update the mepc CSR.

E IRQ 1 bit Input External interrupt request. Used to update the MEIP bit of mip CSR.

T IRQ 1 bit Input Timer interrupt request. Used to update the MTIP bit of mip CSR.

S IRQ 1 bit Input Software interrupt request. Used to update the MSIP bit of mip CSR.

REAL TIME 64 bits Input Current value of the real time counter. Used to update the time

and timeh CSRs.

CSR DATA OUT 32 bits Output Contains the data read from the CSR addressed by CSR ADDR.

EPC OUT 32 bits Output Current value of the mepc CSR.

TRAP ADDRESS 32 bits Output Address of the trap handler first instruction.

21

Table 18 – CSR Register File and Machine Control interface signals

Signal name Width Direction1 Description

I OR E 1 bit Input Interrupt or exception. When high indicates an interrupt, otherwise
indicates an exception. Used to update the most significant bit of
mcause register.

CAUSE IN 4 bits Input Contains the exception code. Used to update the mcause register. See
Table 5.

SET CAUSE 1 bit Input When high updates the mcause register with the values of I OR E and
CAUSE IN.

SET EPC 1 bit Input When high, updates the mepc register with the value of PC.

INSTRET INC 1 bit Input When high enables the instructions retired counting.

MIE CLEAR 1 bit Input When high sets the MIE bit of mstatus to zero (which globally dis-
ables interrupts). The old value of MIE is saved in the mstatus MPIE
field.

MIE SET 1 bit Input When high sets the MPIE bit of mstatus to one. The old value of
MPIE is saved in the mstatus MIE field.

MIE 1 bit Output Current value of MIE bit of mstatus CSR.

MEIE OUT 1 bit Output Current value of MEIE bit of mie CSR.

MTIE OUT 1 bit Output Current value of MTIE bit of mie CSR.

MSIE OUT 1 bit Output Current value of MSIE bit of mie CSR.

MEIP OUT 1 bit Output Current value of MEIP bit of mip CSR.

MTIP OUT 1 bit Output Current value of MTIP bit of mip CSR.

MSIP OUT 1 bit Output Current value of MSIP bit of mip CSR.
1 Direction regarding to the CSR Register File. An input of CSR Register File is an output of Machine Control

and vice-versa.

22

6.2.9 Machine Control

The Machine Control module (machine control.v) implements the M-mode, controlling the the program
counter generation and updating several CSRs. It has a special communication interface with the CSR Reg-
ister File, already shown in Table 18 (above). Its input and output signals are shown in Table 19.

Internally, the module implements the finite state machine shown in figure 10 (next page).

Table 19 – Machine Control module signals

Signal name Width Direction Description

ILLEGAL INSTR 1 bit Input Illegal instruction. When high indicates that an invalid or not
implemented instruction was fetched from memory.

MISALIGNED INSTR 1 bit Input Misaligned instruction. When high indicates an attempt to
fetch an instruction which address is in disagreement with the
memory alignment rules.

MISALIGNED LOAD 1 bit Input Misaligned load. When high indicates an attempt to read data
in disagreement with the memory alignment rules.

MISALIGNED STORE 1 bit Input Misaligned store. When high indicates an attempt to write data
to memory in disagreement with the memory alignment rules.

OPCODE 6 TO 2 5 bits Input Value of the opcode instruction field.

FUNCT3 3 bits Input Value of the funct3 instruction field.

FUNCT7 7 bits Input Value of the funct7 instruction field.

RS1 ADDR 5 bits Input Value of the rs1 instruction field.

RS2 ADDR 5 bits Input Value of the rs2 instruction field.

RD ADDR 5 bits Input Value of the rd instruction field.

E IRQ 1 bit Input External interrupt request.

T IRQ 1 bit Input Timer interrupt request.

S IRQ 1 bit Input Software interrupt request.

PC SRC 2 bit Output Selects the program counter source.

FLUSH 1 bit Output Flushes the pipeline when set.

TRAP TAKEN 1 bit Output When high indicates that a trap will be taken in the next clock
cycle.

23

Figure 10 – M-mode finite state machine

24

	Table of contents
	Overview
	About Steel Core
	Licensing
	Specifications
	Online repository
	Getting started
	Configuration
	Microarchitecture

	Input and output signals
	Instruction fetch interface
	Data read/write interface
	Interrupt controller interface
	Real time counter interface
	CLK and RESET signals

	Timing diagrams
	Instruction fetch
	Data fetch
	Data writing
	Interrupt request
	Time CSR update

	Exceptions and Interrupts
	Supported exceptions and interrupts
	Trap handling in Steel
	Nested interrupts capability

	Example system built with Steel
	Implementation details
	Implemented control and status registers
	Modules
	Decoder
	ALU
	Integer Register File
	Branch Unit
	Load Unit
	Store Unit
	Immediate Generator
	CSR Register File
	Machine Control

