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Abstract

This document is a diploma work which describes the important parts of port-
ing the Unix v7 kernel to the Eco32 RISC processor. The first steps therefore are
to introduce the two different processor architectures and describe the ansifca-
tion of the code . Short notice is given to some device drivers and the magic of
process switching is disclosed, followed by an abstract section about the new
memory management.
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Chapter 1

Introduction :

The target of the project was to port an operating system, to an virtual RISC
processor. The doors should be opened to an operating system which could
relative easily ported to similar processor architectures1. Why Unix v7 ?

Most parts are written in C and are free (nowadays),

Excellent documentation of the very similar Unix v6 code[Lions]

Multiuser and multiprocessing capabilities,

Operating System which is concise enough to port it within a small time-
frame.

Unix v7 was written in the 70s by Dennis Ritchie and Ken Thompson at the
Bell laboratories. It was designed for the PDP-11, a nice room filling computer,
build and often used in the 70s. Its home were big dark cellars of universi-
ties. Nowadays the Unix version 1,2,3,4,5,6,7 versions distributed under the
Caldera license, and are readily available. Before the Caldera license, Unix was
only available for some universities. Since the 70s Unix has further developed
and is widely distributed. The principles setup in the earlier versions have
survived the long period and are still effective. In 1977 John Lions finished
his work on the book “Lions’ Commentary on UNIX 6th Edition”. This book
explains nearly every line code in the operating system. With the help of this
book it was possible to understand the more and less difficult parts of Unix.

The target system Eco32 is a virtual processor[Geisse]. Dr. Geisse wrote all
necessary programs to port Unix to his processor, these being the

Extractor to extract the original sources from tape copies,

Eco32-SIM The processor itself,

LCC-back-end ANSI C-compiler,

1The vision is an operating system for the mmix processor of Donald E. Knuth
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ASLD Assembler and linker,

disk-driver The block device driver to talk with the virtual disk,

disk/FS A virtual disc containing the original Unix FS with / and /usr ,and
a swap partition,
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1.1 How to read this document

The last chapter of the document is a .glossary explaining some of the words
used in this document.

Such SYMBOLS reference real existing function-names, programs or similar
matters.

Aliases serve to shorten any long name like P1 instead of processes 1. Ref-
erence to all discussed files, functions and programs can be found in the index,
as well as many important words. For technical reasons, all underscores ’ ’ are
replaced by a hyphen ’-’ within the index !
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1.2 The development environment

The development platform is a x86 Linus system, simulating the target system
Eco32. To compile, assemble and link, the Unix sources, the LCC in combination
with the ASLD were used.

I used Anjuta to work with the sources. Anjuta is a free, convenient and
fast integrated-development-environment. The primary features I used are the
symbol-tables of all function, structs, macros, etc. A lot of time saved the auto-
completion while writing source. Especially convenient is the cooperation with
the grep and lcc output. This means if the lcc gave out error lines contain-
ing a line number, it is possible to jump directly to the certain line of code.
When searching patterns in the source trees using “GREP -N

� PATTERN � */*.C
*/*.H”2, it is possible to jump to the found lines.

This document is written using LYX[LyX], which enables one to write a
LATEX document without any knowledge about TEX and LATEX. The graphics
are clicked with XFig[XFig], which of course is free software, too.

From the commercial point of view, Dr. Geisse was the custodian, and cus-
tomer of this diploma work.

1.3 Steps of porting

The porting of Unix v7 is divided into several technical parts, , the first work-
piece being getting the code compiled at the target platform. This step is called
ansification, as the aim is to convert the K&R C code into ANSI conform code.
When the code is able to compile and link, the machine depended files have to
be re-implemented.

The new memory management had to be redesigned completely, because
the dimensions and way of memory management differed too much to port it.
I decided to implement a pseudo “Two-levels page-tables” memory manage-
ment.

After that the sys-calls, as system entries, are described and ported. Thus
it is possible to write some small user3 level test applications. The user level
program is put on the disk at /ETC/INIT, so it plays the role of the init pro-
cess. This document closes up with the detailed explanation of the sample
init-process. The very last but not least section describes in short how to let the
PDP-11 simulator run.

2this command line searches in all folders below in all source and header files for the specified
pattern. The lines are given out with filename and line-number (caused by the parameter -N)

3User level means kernel mode, and has nothing to do with user and root ! The user level
programs run as root.
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Chapter 2

The Hardware

The first big differences between the two machines are the time periods in
which the two processors existed and maybe would exist. The PDP-11 is a
big power consuming computer from the 70s versus the Eco32, a simulated
RISC processor at the beginning of the 21th millennium. Both processors have
two different run modes. On the one hand, one with full access to hardware
and memory, called kernel mode and on the other hand, one restricted to only
access to a virtual address space for the user. Some special assembler instruc-
tions are only executable from kernel mode, i.E. instructions to manipulate the
processor status word or to modify the virtual address mapping.
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2.1 PDP-11

The PDP-11 is a 16 bit processor with little endianes. It comes up with 8 gen-
eral purpose registers and 400 hardwired CISC instructions. Only R0 up to
R5 are really general purpose registers. R6 is used for stack addressing, this
register is existing in two varieties, one being accessible in user mode and the
other in kernel mode; the switching is automatically made by the processor on
exception entrance. R7 is used as program counter, which points to the next
instruction to be executed.
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2.1.1 Virtual memory mapping

The PDP-11 has a separate virtual mapping for user- and kernel-mode. Every
virtual address space is divided into 8 segments on the PDP-11/40 and 16 at
the PDP-11/70. The PDP-11/70 has separate mapping for data and instruction
space. We shall now just look at the PDP-11/40 architecture to keep it simple.
Every of the 8 segments could have up to 127 blocks, one block has the size
of 64 bytes. These 64 bytes are the core clicks, the smallest allocalable size of
memory. Every segment is described through two registers, an address regis-
ter, which contains the physical address, and a description register which con-
tains information about the access permitions and the growing direction. Thus
we came up with 32 registers on the PDP-11/40 and 64 on the PDP-11/70.

Phys. Address      Description

KDSA0

KDSA1

KDSA2

KDSA3

KDSA4

KDSA5

KDSA6

KDSA7

KDSD0

KDSD1

KDSD2

KDSD3

KDSD5

KDSD7

KDSD6

KDSD4

The table shows the 16 registers for Kernel Data Space mapping. The same
register block exists for the user space mapping, simply called UDS[AD]1. And
finally user and kernel registers appears in an additional set for instruction
space mapping called [UK]IS[AD] on the PDP-11/70.

1UDS[AD] stands for the combinations UDSA and UDSD.
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2.1.2 Exceptions

Whenever a trap or device interrupt occurs, R6 is switched to kernel R6. The
contents of the current PSW and R72, are pushed on kernel stack. The previous
mode bits are copied from the actual mode bits, and the actual mode bits are set
to kernel mode. The new priority is set with a value from the interrupt vector
table. On an exception return the R7- and the PSW-register are restored from
stack. When returning in user mode, the hardware switches R63 to user R6.

2.1.3 Priorities and the processor status word

The priorities are increasing, which means if currently running on priority level
5, only interrupts with a priority level below can interrupt. The PDP-11 fea-
tures 8 priority levels, but just priorities starting at 4 till 7 are implemented.
Running at priority level 7 prohibits any interruption by a device interrupt.
The trap bit indicates if a processor trap occurred.

Both mode bits set to 0 reflects kernel mode, and both set to 1 means user
mode.

Priority
Cur. Mode Prv. Mode

/ Trap Arith. Flags

04571214

2R7 is the program-counter register on the PDP-11.
3R6 is the stack-pointer register.
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2.2 Eco 32

The Eco32 is a virtual 32 bits processor with big endianes. It was developed
since November 2002 by Mr. Hellwig Geisse. He created a RISC processor
with 61 efficient instructions, holding 32+4 register. The register $2 to $29 are
for general purpose. $0 always contains 0. $31 is the function return register
which is filled by the JAL and JALR instruction. On an exception $30 is filled
with the program counter. $1 is used by the assembler to hide the maximum
of 16 bit constants from the programmer. Additionally there are four special
registers, the first being the processor status word and the other three are used
to communicate with TLB.
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2.2.1 Virtual addressing hardware : TLB

The Eco32 also comes up with 64 addressing registers, but in a completely dif-
ferent way. It works with a TLB (Translation Lookaside Buffer) to map virtual
into physical addresses. The TLB consists of 32 32-Bit register pairs, where
the first register contains the virtual page start address and the corresponding
register the physical frame address4.

Thus, the programmer has full freedom in implementing a memory man-
agement. The programmer just has to feed the TLB with address pairs. If a
virtual address isn’t found in the TLB, a TLB-miss-exception is thrown by the
processor. This exception has to be caught and solved by the operating sys-
tem, which fills the TLB with the necessary mapping or removes the causing
instruction.

Usually when adding a new entry into the TLB, a random old entry is over-
written. This could be fatal for mappings which have to be permanent, i.e
the kernel stack mapping. So the TLB comes up with four fixed register pairs,
which could only set explicitly and are not overwritten by randomised entries.

It is very important that one virtual address never occurs two times in the
TLB, in that case the “TLB double hit exception” is thrown. When using real
hardware, this could cause a TLB defect.

For TLB communication 3 special registers exist.

Special1 TLB Index register, used to write or query at a specific TLB index,

Special2 Virtual Page Address, contains the virtual frame start address,

Special3 Physical Frame Address, contains the physical start address of the
mapped frame.

The registers could be written with :
MVTS

� REGISTER CONTAINING THE VALUE � , � SPECIALREGISTERNUMBER � ,
and read out with :
MVFS

� REGISTER CONTAINING THE VALUE � , � SPECIALREGISTERNUMBER � .
To transfer values from the special registers into the TLB there are two in-

structions, TBWR and TBWI. The most common write instruction is TBWR, it
writes the contents of the special register 2 and 3 into a random index. To fill
the 4 fixed entries at the beginning of the TLB, the TBWI instruction has to be
used. It writes the contents of the special registers 2 and 3 into the TLB index
specified with special register 1. To read from the TLB, the wanted index has
to be moved into special register 1 followed by a TBRI instruction. Now the
wanted mapping appears in special register 2 and 3.

4Physical frame address = frame number ��� 12. 12 bits are used for offsets within a page, so a
page has the size of 4 kByte.
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2.2.2 Virtual addresses

A 32-Bit virtual address is divided into four parts. The least significant bits
contain the offset within a virtual page. The following 10 bits contain the page
number, in the page table specified by the 8 page directory bits. The 2 topmost
bits divide the address space into kernel- and user-space. Furthermore the
kernel space is divided into virtual- and physical-space.

The Spc bits have following meaning :

00 Virtual User space

10 Virtual kernel space

11 Physical address space

02931 21 11

Page TablePage Directory Offset in PageSpc

As the least 12 bits are used for the offset within a page, they are left 0 in
the virtual address register. In the physical register the least three significant
bits are used for permissions.

110 Read write permissions on frame,

100 Read only permission on frame,
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2.2.3 Address spaces

The Eco32 address space is divided into four parts :

Virtual
Kernel
Space

Physical
Space

Virtual
User
Space

IO−Devices

0x0000’0000

0x8000’0000

0xC000’0000

0xFE00’0000

The physical space “maps” the physical available main memory, only the
kernel can access the memory directly. The two virtual spaces are mapped
by the TLB. Only the physical space is accessed directly. The most significant
bit determines the accessibility in the two run modes. This means that a user
program never could access a page in the kernel space. The top part of the
address space is used to communicate with the connected hardware.
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2.2.4 User / kernel mode

In order to work with the two modes, some bits in the processor status word
are reserved. This bits can only be modified in kernel mode. On an interrupt
the run mode is automatically set to kernel mode. To find out the run mode be-
fore the interrupt, two bits exists, the previous user mode bit, which contains
the mode before the actual interrupt, and the old bit, which contains the mode
before the last interrupt. The second stage is very important for the TLB refill-
ing method, which should be implemented quicker, rather than only efficient.
Corresponding to the user mode bits, there are 3 interrupt enable bits, which
indicate the actual, previous and old interrupt enable state.
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2.2.5 Exceptions

Exceptions are divided into two parts : device interrupts and traps. Interrupts
are caused by the attached hardware like clock, disk and terminal. The proces-
sor causes traps on every wrong behaviour of the running code. The priority
is increasing, this means that i.e. the disk has the interrupt request number
(IRQ#) 8, while the clock has the IRQ# 13. When both interrupts occur simulta-
neously, the clock comes first. Above all interrupts, the traps are located. The
most caused trap is the TLB miss. Interrupts can be enabled and disabled by
the interrupt enable bit in the PSW. Traps can never be disabled, what should
happen on a disabled TLB miss ? Following interrupts and traps exists :

4 Term transmitter Interrupt

5 Term receiver Interrupt

8 Disc Interrupt

13 Timer Interrupt

—- Trap Border

16 Bus address Exception

17 Bus Timeout Exception

18 Illegal instruction Exception

19 Privileged Exception

20 Trap Exception

21 Divide Exception

22 TLB miss Exception

23 TLB double hit Exception

24 Privileged address Exception

25 Write protection Exception

On exception entry the current PC is stored in $30, the user mode and interrupt
enable bits are shifted down. The current mode and current interrupt enable
bit are set to 0. The PC is set to the second word in physical memory. When
returning from exception the PC is restored with the value in $30, the user
mode and interrupt enable bits are shifted upwards.
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2.2.6 Priorities and the processor status word

The current priority is set by disabling and enabling bits in the INTERRUPT
MASK. To disable all interrupts, a 0 has to be put into the CURRENT INTERRUPT
ENABLE BIT. I.e. if setting bit 13 to one, clock interrupts can occur if the CUR-
RENT INTERRUPT ENABLE BIT is set to 1. The current IRQ# is reflected in the
priority field.

The PSW is the first of the four special registers, so far it can only accessed
via the kernel mode instructions MVFS and MVTS. The priority field is the only
read only section, all other bits can be modified free by the kernel.

Priority Interrupt Mask

020 1521222324252631

/ Cur Prev Old Cur Prev Old
Interrupt enableUser Mode
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2.3 Common and differences

The only common points are kernel/user mode and the virtual mapping itself.
Because of the big freedom on the Eco32 I decided to implement a memory
mapping with two levels of page-tables.
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Chapter 3

Ansification

The ansification runs through several stages. The biggest technical difference,
is the different function declaration, followed by the fact, that most functions
were not declared anywhere. Another aspect is, that in K&R C, a variable could
be defined at many positions, the linker simply put all same symbols together.
In ANSI C this is strictly forbidden, a variable is only allowed to be defined one
time, and has to be declared using the EXTERN keyword on every other location
of usage. The function declaration transformation and the header file creation
is completely automated. First I will guide you through the differences and the
algorithms on how to solve the partial problems. Thereafter I shall explain the
global ansification algorithm,where all parts play together.
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3.1 Function argument declarations

In Kerney and Ritchie C (K&R C), only the variable identifier were written into
the function header. The types of the parameter are found between, the closing
), of the argument list, and the opening � , of the function body. The variable
type only has to occur if it isn’t an integer variable, the same applies for return
parameter. To make it clear, a sample :

K&R C:
MAIN( ARGC, ARGV )
CHAR * ARGV[];
� IF( ARGC == 0 ) RETURN (-1);
RETURN; �

ANSI C:
INT MAIN( INT ARGC, CHAR * ARGV[] )
� IF( ARGC == 0 ) RETURN (-1);
RETURN 0; �

The return argument is slightly more complex, in K&R C it is possible to
return something or not, in one function. This results in putting RETURN 0 to
the locations where nothing returned within a function which sometimes has
a return value. The second problem with the return arguments is, that if the
return type is specified, it is put in the line above.

To convert K&R source files into ANSI conform source and header files I
implemented ANSI F. It converts K&R function definitions in ANSI definitions.
ANSI F is also capable of creating header files , by simply replacing the function
body through a ’;’.

ANSI F always works on a single source file, whether it creates an ANSI
conform source file or a header file. Preprocessor directives are put through
directly, if not creating a header file. The file is read in line by line, remembering
the last line. Two kinds of blocks are from interest, comments and functions.
Comments have to be realized, because they could contain everything. Their
content is simply put though.

Functions are detected by the two function parentheses ’(’ and ’)’. These
parentheses also appear on function calls and functions as arguments. When
detecting a function, the last line is saved as possible return argument. The
current line, containing the function header, is divided into function identifier
and argument identifiers. The next step is to get all argument declarations be-
tween the closing ’)’, of the argument list, and the opening ’ � ’ of the function
body. Now we “simply” have to match all argument identifiers with the argu-
ment declarations.Slight fiddling is necessary in the matching, because fields
and function pointers are somewhat unusual.

At this point just the return type is missing, The function body is read in
char by char, counting the block depth, to find the end. Finally we take a look
on the previous saved possible return value. If it contains something valid1, it
is taken as return type. Elsewhere the body is checked for RETURN statements,
if it only contains a “RETURN;”, VOID is taken as return type, elsewhere INT.
Now all informations about the function are collected. The header is printed
out, followed by the body or a semicolon, when generating a header file.

All other lines which are not identified as function, i.E. structs and similar
1Not a comment, whitespace or semicolon
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things, are suppressed when writing a header file, or put through for source
files.

Because application ANSI F doesn’t know much about C, it is not usable for
all ansification processes. It strongly depends on the style found in the kernel
sources.
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3.2 Function declarations

Most functions in K&R C are used undeclared, so the most source file doesn’t
have a corresponding header file. To simplify this, I automatically created a
header file for every source file containing all its declarations. The second step
is to find out which source file has to include which header file. It is easy to see
that this is a complex problem. Because if we have 2 source files, A.C and B.C.
We create 2 header files, A.H and B.H.We then have to search for each of these
two files in two header files for wanted declarations. This means we came up
with ���
	�� searches. If we have 4 source files, we create 4 header files, and
have to look for every source file in 4 header files. Therefor we have ���	����
searches. Our source tree contains more than 60 files, this results in more than
������	�������� searches. But no worry, the computer has to search.

A source file is compiled with the GCC to find out the missing declarations.
The resulting output is filtered for “IMPLICIT DECLARATION OF FUNCTION”,
the 7th word in the filtered lines contain the missing function identifier. All
missing declarations are sorted and redundant entries removed. For tidying
up, all blanks are removed. The described word is done by the script GET-
MISSINGDECLARATIONS. The heart of the script is the following command
line :

GCC -WALL -C $F 2 � &1 ��
GREP “IMPLICIT DECLARATION OF FUNCTION” ��
AWK ’ � PRINT $7; � ’ ��
SORT

�
UNIQ

�
FILTER.E � ’ � ’ � $F.MISS

$F is filled with the name of the actual processed file. Every ansified source
file is processed in that way. After that, the complex part of finding the missing
function identifier in a header file follows.

The resolving part is made by the script RESOLVDEPENDENCIES. It goes
through every line of a .MISS file, and searches the missing function identifier
in all passed header files. If one or more header files contain the function iden-
tifier, the first header file name is enveloped in a #INCLUDE “” and attached to
the corresponding .H.DEP file. If no header file contains the missing function
identifier, the identifier is attached to the corresponding .H.DEP.MISS file. The
main part of the RESOLVDEPENDENCIES resembles the following. $2 contains
all header filenames to search in, $f is set to the actual .MISS file name, $h is the
generated .H.DEP filename :

1: CAT $F
�

WHILE READ FUNC DO
2: HF= $( GREP “ $FUNC(“ $2

�
GREP -V “.H: � *”

�
HEAD -N 1 );

3: HF= $(HF/:* � ;
4: IF [ -Z “$HF” ] ; THEN
5: ECHO “$FUNC” ��� $F.H.DEP.MISS
6: ELSE
7: ECHO -E “#INCLUDE � ”$HF � ””;
8: FI;
9: DONE

�
sort

�
UNIQ ��� $H;

In line 2 HF is something like “dev/et.h:void putc( char c )”, so line 2 has
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the job to remove the ’:’ and the function identifier, quasi everything behind
the ’:’. Line 7 writes the enveloped header file name to standard out, which is
caught in line 9 an put through SORT and UNIQ, to include every file only once.
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3.3 Complete ansification process

The ansification is controlled by the script ANSICOMPL or ANSICOMPLALL, the
first script ansifices all files in the current directory, while the second converts
all files in both source directories SYS and DEV. One additional script comes
into the game, MAKEINCLUDES. It extracts all includes from the .C.PRE file into
the .C file and attaches the includes from the .H.DEP file. Finally the content of
the .C.PRE file, without any include directives, is attached to the .C file.

K&R files

.c.pre files

resolvDependecies.c.miss files

getMissingDeclarations

.h files

.h.dep files

makeIncludes

ansi_f.e

.c files

The script has two loops. The first puts all K&R files (.C.OLD) through the
ANSI F filter. The filter generates the .C.PRE files, which has ANSI conform
function definitions on the one hand, and on the other the .H files containing
all declarations. In the second loop, the missing declarations are solved, and a
.C file generated which contains all necessary include directives.

At this point, the handmade part follows. The ansified code still contains
unresolved calls to assembler functions, and moreover there are the multiple
defined variables. First I created the header file CONF/MCH.H, which contains
the declarations of the functions implemented in CONF/MCH.S. Somewhat
more time-consuming is the collection of all global used variables into the file
H/GLOBALS.C. The multiple definitions are converted into declarations by
adding the EXTERN keyword. For the first complete linkings, I implemented
empty body for the functions declared in CONF/MCH.H.
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Chapter 4

System calls

The system-calls, further called syscalls, are the entry for user programs into
the kernel. The technical depth is explained in the next subsections. Syscalls
are used whenever an operating system service is needed by a user-program.
There are 55 syscalls on operating system side, which are mapped into 51 syscalls
on user side, as not all are implemented. Some syscalls like EXECE have several
implementations on user-side.

In the original implementation, every syscall was put into a separate file.
As most of the syscalls act in the same way, I put all implementations in the file
SYS/SYSCALL.S. The system calls could be divided into three classes :

1. returning return-value from syscall or error-code on error,

2. returning 0 or error-code on error,

3. individuals like fork, which have their very own implementation with
different return locations or similar stuff.

All syscalls matching in the first two groups are automated. Every syscall has
its own entry-point where it sets the syscall-number. From there it jumps to the
common code. All arguments are passed via the register to the kernel causing
a trap. If the syscall fails, register $4 is set to nonzero1. If $4 is not 0, the com-
mon error-exit-code CERROR is called, it sets the global variable ERRNO to the
returned error code and sets $22 to (-1). For those syscalls which return 0 upon
success the register $2 is set to zero, if the syscall indicates no failure.

The many individual syscalls are implemented, so far it was possible, in the
same manner like the other syscalls.

1in the PDP-11 implementation, the error-flag in the PSW was set.
2$2 is the first return-value register used by the LCC.
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4.1 System calls argument passing

Passing arguments from user-mode to kernel-mode is the main aspect of the
syscall implementation. For a start, we observe the syscall-number as a usual
argument. Unix features two different kinds of arguments passing, directly
and indirect. Directly means, the arguments are put behind the TRAP instruc-
tion within the code. Indirectly means, that an argument-pointer is put behind
the syscall. Lets look at the two examples (TRAP INSTR is a constant contain-
ing the binary trap instruction, � Syscall-Number � has to be replaced with the
wanted number) :

Indirect syscall :
.CODE
LDHI $8,TRAP INSTR
OR $8,$8, � SYSCALL-NUMBER �
STW $8,$0,SYSCALLARGS
TRAP
.WORD SYSCALLARGS
.DATA
SYSCALLARGS: .WORD 0X0

Direct syscall :
.code
trap � Syscall-Number �

The trap handler sets the pointer A to the program-counter of the inter-
rupted user program3. The word at A is fetched and compared with the trap-
instruction. If they are equal, A is set with the word following the trap in-
struction. The word referenced through A is fetched and split into syscall-
number and syscall-instruction. The syscall-instruction is compared with the
trap-instruction, and if they are not equal an error is caused. Faced to this fact,
it is required that the trap-instruction occurs in the data-segment, on indirect
syscalls. A is moved one word forward.

The two different forms of passing the syscall-number is very important for
assembler which does not support arguments within the TRAP-instruction.

To pass the remaining arguments two means are featured : via registers
and via the argument pointer. In the file SYS/SYSENT.C the count of arguments
and the count of arguments passed in registers is configured, for every syscall-
handler. The arguments which are not passed in the registers are fetched start-
ing at A. In case of mixed transfers, first the register arguments are fetched
followed by the arguments referenced through A.

Finally the user program-counter is moved to the next valid instruction be-
hind the TRAP instruction.

3The PC points to the instruction actual executed. In case of a trap, the trap occurs within the
TRAP instruction.
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4.2 The SYSCALL.S implementation

Because the LCC takes 4 registers-arguments and no syscall requires more, all
arguments are passed via the register. Therefore no particular attention needs
to be given to the count of passed arguments. The only remaining difference is
the return value which is solved through two different common code-sections.
The following example shows the two different standard-syscalls. READ returns
the count of read bytes or (-1) on error, while WRITE returns 0 on success and
(-1) on error. Both error returning is done through CERROR.

The first two code-pieces show the unique entry which sets the syscall-
number.

read:
add $8,$0,(TRAP INSTR

�
SN read)

stw $8,$0, SysCallArgs
j SysCallRetA

write:
add $8,$0,(TRAP INSTR

�
SN write)

stw $8,$0, SysCallArgs
j SysCallRet0

The next two pieces are the common code, for returning “syscall-return-
value” or “0” on the success. On entry the function-return address $31 is
pushed on stack followed by the TRAP instruction. When the trap returns, the
function-return address is popped from stack. If an error occurred, the return
is made by cerror, Elsewhere returning to the function-caller.

SysCallRetA:
sub $29,$29,4
stw $31,$29,0
trap
.word SysCallArgs
ldw $31,$29,0
add $29,$29,4
beq $4,$0, SysCallRetA1
j cerror
SysCallRetA1:
jr $31

SysCallRet0:
sub $29,$29,4
stw $31,$29,0
trap
.word SysCallArgs
ldw $31,$29,0
add $29,$29,4
beq $4,$0, SysCallRet01
j cerror
SysCallRet01:
add $2,$0,0
jr $31

On error the following common code is executed. It stores the syscall error-
code in the global variable ERRNO and returns (-1).

cerror:
stw $2,$0,errno
sub $2,$0,1
jr $31
Within the data-segment only one word is needed for all syscall-numbers.

Because this syscall-library is only a dummy, the errno variable is located here,
too.

.data

.align 4
SysCallArgs:
.word TRAP INSTR
errno:
.word 0x0
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Chapter 5

Device drivers

Nearly half of the sources are device drivers. I only ported the memory device
driver, because our simulated hardware only have a disk and a terminal. I only
ported the important function VOID PUTCHAR( CHAR C ) in the terminal driver
DEV/ET.C (Eco32 Terminal). PUTCHAR is used to debug the kernel and called
on kernel panic attacks.

The memory device driver is used to write directly into the memory. For
physical address no mapping is needed, so the requested address is converted
into an absolute address. This address is accessed by SUBYTE or FUBYTE. In
the original PDP-11 implementation, the physical address had to be mapped.
Therefore, it had to be split into page- and offset-part. The page-part were put
into an address register, which contents were saved before. After that the offset
could be accessed at the mapped address.

In the case of the disk driver, I was fortunate and obtained the device driver
from the manufacturer ;-) The remaining work is to make the correct entries
into the block-device-switch in CONF/C.C, and setup the correct settings for
swap start (SWPLO) and root device.
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Chapter 6

Process switching

This chapter is necessary in understanding the issues in the memory manage-
ment. Let us assume that process 0 is always existing, and in our environment
there are additionally the processes 1 and 2.First we need to find out how a
process is represented, and then observe how SWTCH switches through the
three processes. Finally the magic is disclosed with a look at SAVE and RESUME
which does the switch.
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6.1 Process representation

A process is divided into several logical parts :

proc-struct contains informations about a process are not allowed to be swapped
out, most important is the field P ADDR, which points to the process
in core or swap.

user-struct contains informations which are only from interested when process
is in core.

U-Area contains mapping informations, user struct and kernel stack.

user-frames all frames mapped between virtual 0 and the kernel address space.
They contains user- code-, data- and stack-segment.

All proc-structs are located in the array PROC in the kernel data segment. The
UArea appears somewhere in the virtual kernel space. At one time, only one U-
Area is mapped. So far the U-Area is the most important aspect when switch-
ing a process. It should be clear, that the kernel does not have one stack, but
indeed the kernel has one stack per process. Thus the kernel always runs in a
certain user-context.
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6.2 Process switcher SWTCH

The process switching is done by the function SWTCH implemented in SYS/SLP.C.
A very important issue is, that process switching is always done to process 0
or from process 0 to another process. Because of that, process 0 is called the
scheduler. In this respect a switch from process 1 (further called init) to process
2 means, switching from init to the scheduler and finally to process 2.

We assume a running init, which has a higher priority then process 2. At
the timer interrupt, execution is set to the entrance of CALL. It switches the
stack to kernel stack. From this moment on, init runs in kernel mode. Now the
prime task of CALL begins, it stores all registers on the kernel stack and calls
the corresponding interrupt service routine, CLOCK. We assume that CLOCK
decides that is time to jab the scheduler, so it rises the RUNRUN flag. When
returning to CALL, the RUNRUN flag is detected and causes a “Giveup CPU-
Trap” by calling TRAP instead of returning to init. From TRAP the call goes
through QSWTCH to SWTCH.

First workpiece of SWTCH, is to switch into the schedulers environment. This
is done by calling SAVE, to save the state of init. After that, the RESUME call
brings back the scheduler. He wakes up at the last SAVE call position, which
was within the SWTCH function. The process with the lowest priority1is fetched
from the run queue, and is resumed. Process 2 wakes up at the previous SAVE
call in SWTCH and leaves SWTCH immediately. CALL restores the register con-
tents from kernel stack2 and jumps back into user mode.

1This is the process priority and has nothing to do with the priority levels of exceptions.
2including the user mode stack pointer.
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6.3 SAVE

A SAVE call looks like that : “IF( SAVE( U.U RSAV )) RETURN;”. This indicates,
that SAVE has two ways to return. It is not an error code, which causes the
caller of SAVE to return ! It is a RESUME which returns there. If calling SAVE it
saves the state of the process, which means all processor registers. At this point
the kernel-stack contains the call-stack of getting into SAVE. When the process
is later resumed , it will go the same way back. Once back to the call of SAVE,
the save returns with a 0, so it reflects that the state of the process is locked and
we can safely switch to another process.

The argument passed to SAVE is the location where the register should be
saved. Three areas exists there :

u qsav is taken for quits and interrupts (don’t think about it),

u rsav is used for process Switching (stack exchanging),

u ssav contain the register content while swapping the process,

6.4 RESUME

RESUME is called with the process-pointer P ADDR and the location of the saved
registers within the U-Area. First step is to map the new U-Area with help of
the P ADDR. After that the saved registers are restored from the new mapped
U-Area. The last two steps are the process switch ! In this respect, P ADDR key
to a process. It is the only pointer referencing a process, while it is not running.
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Chapter 7

New memory management

This chapter explains the new memory-management I have implemented. This
does not describe any non-existing algorithms of demand swapping or similar
things. This describes the technical matter, how to handle the virtual map-
pings. Firstly, the original memory management is briefly described. The un-
derlying concept is discussed in three stages : in general, specialised to our
needs and finally an example. The interface to the new memory-management
is described in the sections behind the concept. This chapter closes with a fur-
ther detailed look at the process of swapping.
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7.1 The original memory management

The prime assumption is : “A process image, is a continuous block of physi-
cal memory frames”. This fact makes it very easy to copy the image on the one
hand, and on the other it makes some effort to change data- or stack-segment
size. E.g. if the data-segment is increased by n frames, the operating system
checks if enough core is available to copy the image to a bigger core frames
block. In the case of increasing data segment, the stack frames have to be
moved to the end of the new image.

According to the virtual addressing registers, software prototypes exists
for every process. These prototypes contain the offsets within the image of
the segments. The content of the prototypes is, increased by the load address,
put into the segmentation registers. This means, that a physical address never
occurs in the software prototypes. The physical load address is stored in a
variable called P ADDR in the corresponding process struct.

Three functions are used to modify the process image, ESTABUR, EXPAND
and SUREG. The image size is modified1 by EXPAND, the caller has to move
the user stack to the correct new location. If EXPAND can’t get enough core,
it arranges the process to become swapped out. If it allocates enough core
memory, the process image is copied to the new location. ESTABURs task is
to setup the offsets in the software prototypes, in that way the three pseudo
segments are realized. Finally the real mapping settings are done by SUREG,
which copies the contents of the software prototypes into the hardware register,
increased by the process load address.

1allocating or freeing of core memory
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7.2 The concept : pseudo “Two-levels page-tables”

7.2.1 General assumption and concept

The new prime assumption is : “core memory is allocated only frame by
frame, the mapping does the continuous”. This results in easily finding out
the count of free memory. If you want to allocate 2 continuous memory frames,
and only the half core memory is used, it should be allocalable. It is, however,
possible, that only every second frame is allocated. What now ?

� Moving two frames together - Hard to find who maps them.

� Questions for available memory are only answered with a given frame
count - strange way.

To this first complete different assumption, a complete new memory manage-
ment is added. In general it is the concept of “Two-levels page-tables”. The
meaning is that a page-table contains ���! physical frame addresses, and a page-
directory references �#"$ page-tables. The third player in the game is the offset
within a page frame.

Let us work through an example. The page-size is 4096 Bytes, which results
in 12 bits offset. In one frame, 1024 32-bit-words can be placed, so let’s take 10
bits for page table entry. In a 32-Bit address, 10 more bits a left, these are the
page directory entry bits. Our 32 bit virtual address has then the form :

021 11

Offset in Page

31

Page Dir. Entry Page Table Entry

The virtual address space starts at 0. Let’s find the physical address for
0x80001’00a. First extracting the page-directory entry by shifting out the 22
least significant bits = 0x200. The 513rd2 entry in the page-directory brings us
to the page-table. Extracting the page-table-entry by removing page-directory
entry and shifting out offset, getting entry number 1. In this respect, the sec-
ond entry in the page-table contains the physical location of the virtual page
address 0x8000’1000, in which we want the 10th byte.

2First entry is entry number 0.
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7.2.2 The specialised concept

The concrete implementation varies according to the “general concept”. The
first difference is the divided virtual address-space. The lower half is mapped
for the user, and the lower upper half is mapped for kernel. Because the user
mapping is changed to the current running process, it is inconvient to change
the lower half of the page-directory to get the user mapping. Moreover it is
a good idea to place the user page-tables in the virtual kernel space. When
we continuously arrange all user page tables, there’s no need for a user page
directory. No memory for unused page-tables is wasted, because it is mapped,
so only used page-tables are mapped to a physical frame. More specifically,
the user page-tables are located in the U-Area, which is described through the
U-Area page-table. Remember that kernel stack and user struct are located in
the U-Area. The U-Area has the following composition :

% % % % % % % %% % % % % % % %% % % % % % % %
& & & & & & & && & & & & & & && & & & & & & &

0x8020’1000

0x8000’2000

0x8000’0000

0x803F’F000

0x8000’1000

User PT # 0x000
User struct
U−Area PageTable

User PT # 0x1FF

Kernel Stack

The zig-zag lined region, could be filled with page-tables whenever needed.
From bottom to top for data page-tables and reverse for user-stack page-tables.
The black hole region is wasted. The count of kernel-stack frames is config-
urable with the K STK SIZE macro. Actually it is set to 4. But one to illustrate
should be sufficient.

Owing to he fact, that the whole U-Area is mapped by the U-Area-page-
table. Processing switching becomes easier. Only the first entry in the kernel
page-directory has to be adjusted to get a new mapping, which is activated
by a TLB flush. The U-Area page-tables plays three roles: the first having the
prime role as page-table; the second as page-directory for the user page-tables,
which is only used indirect through the virtual mapping; the third role that it
maps swapped out page-tables, when a process becomes swapped out. We can
now, that the U-Area page-table is the new key for a process. According to this,
the U-Area page-table is all the time referenced via the P ADDR field.

Because the kernel page-directory only consists of the pointer to the UArea-
page-table, it is only one pointer. If a mapping for the kernel should later be
implemented, the pointer has to be replaced with a page-directory.

Pointing out that the page-directories are gone for the usual kernel and user
mapping, they still exist in text-segment mapping. In general the text-segments
are allocated separate from the process, to share them amongst the processes.
When a process is load into memory, the mapping at the beginning is replaced
by the mapping of the text segment. This means the whole mapping of the
text-segment is copied and the user data-mapping is attached to it.
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The whole in four statements :

User page-directory does not exist, because the page-tables are continuous.
The page-directory is replaced by the formula :

'�(�)+*�,-(.$/0*21-343�56*6727�8 �:9;	<�>= '�(�)*6?A@CB�*EDGFH@I567KJL'�(�)*K,M(+.N/!*21-343�56*6727 .

Kernel page-directory is not used, so it is replaced by a pointer to the U-Area-
Page-table.

Process switching is primarily changing the U-Area-Page-table-pointer.

Text Page-directory still exists, but never used directly for mapping.
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7.2.3 The big Example

First an explanation on the elements which can be seen on the diagram. The
two divided boxes on the left represent two virtual address spaces. Every vir-
tual address-space is divided into kernel-space (upper part) and user-space
(lower part). The big box on the right reflects a continuous part within the
physical core memory. The upper virtual address space, shows the mapping
while process 2 (P2) is running,. Corresponding to that the lower box shows
the virtual address-space while P1 is running. Every virtual-address-space is
labelled with page start addresses. The last free digits ,which contain the offset,
are left empty.

Text page 0
Text Page−table 0
Text Page−Directory

P2 Data 1

P2 Kernel Stack 0x3FE
P2 Kernel Stack 0x3FF
P2 User struct
P2 UArea−Page−table

P2 User Stack 0xFE
P2 User Stack 0xFF
P2 Page−table 0x1FF

P2 Page−table 0x000

P1 User struct
P1 Kernel Stack 0x3FF
P1 Kernel Stack 0x3FE

P1 Data 1

P1 UArea−Page−table

P1 User Stack 0xFE
P1 User Stack 0xFF
P1 Page−table 0x1FF

P1 Page−table 0x000

O O O O O O O O OO O O O O O O O O
P P P P P P P P PP P P P P P P P P

Q Q Q Q Q Q Q Q QQ Q Q Q Q Q Q Q Q
R R R R R R R R RR R R R R R R R R

S S S S S S S S SS S S S S S S S S
T T T T T T T T TT T T T T T T T T

U U U U U U U U UU U U U U U U U U
V V V V V V V V VV V V V V V V V V

0x803F’F...
0x803F’E...

0x8020’1...

0x8000’2...
0x8000’1...
0x8000’0...
0x7FFF’F...
0x7FFF’E...

0x0000’1...
0x0000’0...

Kernel Stack 0x3FF
Kernel Stack 0x3FE

User Page−table 0x1FF

User Page−table 0x000
User struct
U−Area−Page−table
User Stack 0xFF
User Stack 0xFE

User Data 1
User Text 0

0x803F’F...
0x803F’E...

0x8020’1...

0x8000’2...
0x8000’1...
0x8000’0...
0x7FFF’F...
0x7FFF’E...

0x0000’1...
0x0000’0...

Kernel Stack 0x3FF
Kernel Stack 0x3FE

User Page−table 0x1FF

User Page−table 0x000
User struct
U−Area−Page−table
User Stack 0xFF
User Stack 0xFE

User Data 1
User Text 0

First we imagine a running P1, P2 isn’t alive yet. P1 does an EXEC call
to a program with shared text. First the operating system, allocates the text-
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segment. thus the first frame is filled with the “Text Page Directory” followed
by the “Text page-table 0”, and finally the text itself. It seems a little bit lavish,
to allocate 2 frames, to manage one text frame. On the one hand, in reality, text
is most time bigger than one frame, and on the other, the memory-management
functions are implemented, in the way, that one frame could be page-directory
and -table in one. But don’t care about, it’s an optimisation. Back to the ex-
ample, the first three frames of our core are used by the text. Next part is to
allocate frames for the UArea, therefore the U-Area-page-table is allocated and
filled with the allocated frames for user-struct and kernel-stack. “Page-table
0” is allocated and filled with the entrie’s’ from the text-page-table. One data
frame is allocated and mapped as second page. At this point, P1 is ready to
run with the new text-segment. The first time P1 tries to push something on
the stack, the operating system allocates stack. First allocating the page-table to
map the stack, after that one frame, to include the pushed element, is allocated
and one additional. Now everything is allocated and mapped for P1.

It could be interesting to see how the stack-page pointer (dashed arrows)
are crossing, this results from the fact, that the stack is growing backwards,
therefor the top-page is allocated first. Important is, that the U-Area page-table
has to be allocated first, to map the user page-tables. After allocating user
page-tables, user frames can be allocated. Therefore, when a process starts,
many nearly empty tables are allocated, which are filled while the process is
running. Another important issue is, that the Text-page page-directory and
-table only used to copy the right values into the first user page-tables.

It’s time for P2, P1 does a FORK call, and everything, except the text-segment,
is copied from P1 to the new process P2. To share the text-segment, the text-
mapping is copied again.
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7.3 New Memory-management interface

The memory management is implemented in the file SYS/MEMORYMANAGMENT.C.
Most of the functions work on a passed page-directory, in which they allocate
or free frames. The conceptual swapping is the task of the memory-management,
too. The physical swapping is done by SWAP implemented in DEV/BIO.C.

A physical address has the type PHYS T. This is simply an INT, variables
of this type are mostly written into the TLB. Therefore a page-table is an array
of PHYS T, and a page-directory is an array of pointers to PHYS T (the strict
double pointering is not used !). There are two functions to convert parts of the
UArea-Page-table, into a page-directory and back. SEG T is used whenever a
frame number, or a count of frame is needed. This is actually an INT, too.

This chapter first describes the functions to get an overview. After that
they are explained in more detail, with some important side-effects. Finally
the swapping process is explained in further detail.
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7.3.1 All functions in short

MALLOC allocates one frame from the specified map, which could be either
COREMAP or SWAPMAP.

MFREE release one specified frame from the passed map, which could be
either COREMAP or SWAPMAP, too.

MAVAIL returns the count of free frames on the specified map.

FREETABLES frees a specific count of page tables attached to the passed page-
directory.

FREEFRAMES frees a specific count of frames mapped through the passed page-
table.

COPYMAPPING copies the mapping from a source page-directory to a destination-
directory. This is used to copy the text-segment mapping or when
forking a process.

SWAPTABLES swaps a specific count of tables to or from disk. This function is
called after swapping out the frames, or before swapping in frames.
The entries in the passed page-directory are replaced by the the new
frame on disk or in core memory.

SWAPFRAMES swaps a specific count of frames in or out. The entries in the
page-tables are replaced by the new frame-number on swap or in
core.

LOADPROC loads a process from swap, using the functions above.

STOREPROC stores a process on swap using the functions above.

ESTABUR modifies the segment size of the current running process. It is the
only function which allocates memory to a process, only estabur
has the control over the segment size variables.
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7.3.2 MALLOC

INT MALLOC(STRUCT MAP *MP );
MALLOC is called either with COREMAP or SWAPMAP as argument. Both

are global pointers, pointing to a data-structure which is used to manage the
available memory. The primary assumption is, that the frame 0 could never be
allocated. Returning 0 should indicate that no more memory is available. It is
not possible to allocate more than one frame at a time.

7.3.3 MFREE

VOID MFREE(STRUCT MAP *MP,INT A);
MFREE is used to release an allocated frame. On startup it is used to free

all core- and swap-memory. The frame 0 must not be freed. This would cause
malloc to return 0 on the next call, and no more memory allocated.

7.3.4 MAVAIL

int MAVAIL( struct map *mp );
MAVAIL is used to determine early if enough memory is available on the

passed map.

7.3.5 FREETABLES

VOID FREETABLES( PHYS T * PAGEDIR[], INT FIRSTTABLE, INT COUNT, BOOL
UPWARDS );

FREETABLES is called to release the page-tables attached to a page-directory.
The COUNT parameter specifies how many tables should be freed. E.g. if text-
and data-segment are using 1028 memory-frames, 2 tables have to freed start-
ing at zero. 2 pages results from the fact, that one page-table contains 1024
entries. With help of the UPWARDS flag, freeing in both directions is possi-
ble. Upwards to free text- and data-page-tables, downwards to free stack-page-
tables.

A very important fact is, that frames are only freed by a call to MFREE, all
data within the page-tables and the directory are still valid.

7.3.6 FREEFRAMES

VOID FREEFRAMES( PHYS T * PAGEDIR[], INT FIRSTFRAME, INT COUNT, BOOL
UPWARDS, BOOL COREMAP );

FREEFRAMES is very similar to FREETABLES, and is called before freeing the
page-tables, e.g. when a process is exiting. This function has one additional
argument to specify the map, where the frames should be freed from. This
parameter is missing in the FREETABLES function, because a page-table has to
be in core to free the frames mapped through it.
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7.3.7 COPYMAPPING

VOID COPYMAPPING( PHYS T * SPAGEDIR[], PHYS T * DPAGEDIR[], INT FIRST-
FRAME, INT COUNT, BOOL UPWARDS, BOOL ALLOCTABLES );

COPYMAPPING has quite a lot of arguments, which has to be set carefully !
This function is used to copy an existing mapping to an new already allocated
page-directory. According to the other functions the start and count of frames,
and the direction could be specified. ALLOCTABLES is used to specify, if the
page-tables were allocated previously. E.g. is this the case when swapping in a
process and ESTABUR already has setup the mapping skeleton.

7.3.8 SWAPTABLES

VOID SWAPTABLES( PHYS T * PAGEDIR[], INT FIRSTTABLE, INT COUNT, BOOL
UPWARDS, BOOL SWAPIN, BOOL FREE );

SWAPTABLE swaps the specified count of page-tables in or out. The SWAPIN
flag determines the swap direction. Swapping in means to load frames from
disk into core. If the FREE argument is TRUE, the source of the frames are freed.
This is not wanted when coping a process over the swap. When swapping in,
the entries in the page-directory contain swap-page numbers. According to
these numbers, the page-tables are load from the swap-pages into a new core
frames. The entries in the page-directory are replaced by the new address. The
same just reverted is done when swapping out.

7.3.9 SWAPFRAMES

VOID SWAPFRAMES( PHYS T * PAGEDIR[], INT FIRSTFRAME, INT COUNT, BOOL
UPWARDS, BOOL SWAPIN, BOOL FREE );

SWAPFRAMES is very similar to SWAPTABLES. The main difference is the
swapping of frames instead of page-tables. This makes a big difference how the
new addresses are stored, because the permission flags shouldn’t get lost while
swapping. Therefore the following macros are used to handle core-frame- or
swap-disc-frame-numbers within page-table-entries :

DBLK TO PTE(D,TE) puts the specified swap-disk-frame-number D into the
page-table-entry TE,

FRAM TO PTE(F,TE) puts the specified core-frame-number F into the page-
table-entry TE,

DBLK FR PTE(TE) extracts swap-disk-frame-number from the page-table-entry
TE,

FRAM FR PTE(TE) extracts core-frame-number from the page-table-entry TE.

46



7.3.10 LOADPROC

VOID LOADPROC( STRUCT PROC * P);
LOADPROC swaps in the specified process, expect the text-segment. If the

shared text pointer P- � P TEXTP is valid, the text-mapping is copied. At the
time of the call, P- � P ADDR points to swap-page which stores the U-Area-
Page-table. The U-Area-Page-table is swapped into a new core-frame and the
frame-number is stored in P ADDR. Now the rest is swapped in using the
SWAPTABLES and SWAPFRAMES functions.

7.3.11 STOREPROC

VOID STOREPROC( STRUCT PROC * P, BOOL FREE );
STOREPROC swaps out the specified process in the inverse way of LOAD-

PROC. After swapping out, P- � P ADDR is replaced with the swap-disk-frame-
number of the stored U-Area-Page-table.

7.3.12 ESTABUR

INT ESTABUR(SEG T NT,SEG T ND,SEG T NS,INT SEP,INT XRW);
ESTABUR manages the process memory allocating and releasing. To end

its works it flushes the TLB. The last argument determines whether the text-
segment is read-write or read-only. The arguments NT, ND and NS specify
the size in core frames of the text-, data- and text-segment. After allocating
or freeing core-frames, the new sizes are stored in U TSIZE, U DSIZE, U TSIZE,
which are located in the user-struct. Finally the process size in P SIZE is newly
calculated. Whenever a page-table is allocated or freed, U USIZE is adjusted.
U USIZE reflects the size of the U-Area in clicks. The flag called SEP, is always
cleared in our environment, because we have no separate instruction and data
address space.

The beautiful name ESTABUR has the origin “ESTABLISH USER REGISTERS”.
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7.4 Swapping

This section describes the process in detail. First the swap in process done by
LOADPROC is described. In general the swap out process acts in the same way,
only reversing. When swapping out, particular care should be taken, therefore
the specialities of swapping out are described in the STOREPROC subsection.
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7.4.1 Swapping in with LOADPROC

This subsection describes the action of LOADPROC in further detail. To keep it
simple, it is assumed, that the core is not fragmented, and every new allocated
frame is located on top of the previous allocated. In reality many frames could
appear between two allocated frames. First an explanation of the symbols,
which are used in the diagrams :

Boxes, every box reflects one physical core-frame. There are two differ-
ent kinds. The small rectangle-boxes are used, when maximally
the name of the frame is from interest. In most rectangle boxes the
name does not appear and should be clear through the referencing
arrow. The bigger boxes with round edges are used when many
entries within this one frame are of interest.

Disk, symbolises the swap disk.

arrows, the different kinds of arrows are only taken to keep the overview.
Arrows point from a page-table-entry to disk or to an allocated
core-frame.

Black-Whole shows wasted space, it does NOT indicate one physical frame !

Zig-Zag-Lines indicates space where entries or frames could appear.

While a process is swapped out, P ADDR contains the swap-page-number of
the stored U-Area-Page-table, which is swapped in first of all. All entries in the
swapped in U-Area-Page-table reference swap-page-number :

W W W W W WW W W W W WW W W W W W
X X X X X XX X X X X XX X X X X X

K−Stack 0x3FF

Pagetable 0x1FF

Pagetable 0x000
User struct
UArea Pagetable

K−Stack 0x3FE
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First the user struct is swapped in separately. Next step is to allocate and
swap in frame wise using SWAPFRAMES. Because SWAPFRAMES expects a
page-directory as argument, the first entry in the U-Area-Page-table3, is con-
verted into a physical pointer. Therefore the U-Area-Page-table is now a page-
directory, which first, and only, entry references itself in function of a page-
table. Now all referenced entries got swapped in :

Y Y Y Y Y Y YY Y Y Y Y Y Y
Z Z Z Z Z Z ZZ Z Z Z Z Z Z

U−Data 0x001
U−Text 0x000

U−Stack 0xFFE
U−Stack 0xFFF

K−Stack 0x3FF

Pagetable 0x1FF

Pagetable 0x000
User struct
UArea Pagetable

K−Stack 0x3FE

At this point, the swapped in page-tables-entries point to the swap. Only
the text entries are invalid and are replaced later by the text-mapping. To swap
in the referenced pages, the pointer within the U-Area-Page-table, which refer-
ence page-tables, has to be converted into absolute-pointers. The middle of the
U-Area-Page-table now looks like a page-directory for the user-mapping.

3it references always itself, because it is the page-table of beginning of the virtual-kernel-
address-space, where it is located.

50



Therefore all user frames could be swapped in calling SWAPFRAMES two
times4 :

[ [ [ [ [ [ [[ [ [ [ [ [ [
\ \ \ \ \ \ \\ \ \ \ \ \ \

] ] ] ] ] ] ]] ] ] ] ] ] ]
^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^

U−Data 0x001
U−Text 0x000

U−Stack 0xFFE
U−Stack 0xFFF

K−Stack 0x3FF

Pagetable 0x1FF

Pagetable 0x000
User struct
UArea Pagetable

K−Stack 0x3FE

To finish the work, the converted entries within the U-Area-Page-table are
converted back and the mapping of the text-segment is copied. Facing this, the
text-entry points to core-memory, which was allocated before this process was
swapped in.

4Two times, because it is only swapped into one direction at one call.

51



7.4.2 Swapping out with STOREPROC

We will now look at the specialities of swapping out. In general swapping out
is the same like swapping in inverted. First of all the referenced core-frames
are swapped to disk, and the new location is stored in the page-tables. After
that the page-tables are swapped out and referenced by the U-Area-Page-table.
Last but not least, the U-Area-Page-table is swapped out.

Swapping out is not only done to get a process out of core. Imagine we have
one existing process, which allocated more than the half of the available core-
memory. This fat process now FORKs. It is impossible do FORK within the core.
Therefore the swapping out is simulated, by swapping out and copying the
mapping beforehand. This results in two identically images, one time in core
and one time on swap. The image on swap is referenced by the new process
and the old image in core is still referenced by the origin process.

While swapping out, the entries within the page-table and -directory are
modified. Therefor the core-mapping becomes invalid. With the result that, the
mapping has to be copied, before the swapping out process can begin. Because
the mapping has to be copied, temporary memory has to be allocated. In case
of less memory, this could cause a dead-lock, because the kernel wants to free
memory by swapping out, but can not swap out, because no frames are left. To
solve this, one frame always has to exist, to copy the U-Area-Page-table. While
swapping out a process, it is not possible to run in user mode for this process.
Therefore the page-tables mapping virtual user space, are not used and can be
swapped easily. The frames still used are the original U-Area-Page-table and
kernel-stack. While swapping out the frames, they are only released and can
still be used. In short :

U-Area-Page-table is copied, the original references possible released pages
while swapping out.

Swapped-out pages are referenced through their corresponding page-table,
which is not used through user.

Copied-UArea-Page-table is swapped out last, with swap-references to user-
page-tables and kernel-stack.

Because only one static frame is available for copying the mapping, a fork
could only be done if at less enough core for a complete second U-Area is avail-
able.
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Chapter 8

The running system

This chapter explains some code details and how to let the kernel run on the
Eco32 simulator. The sample init-process is explained in detail, so the dynamic
of the system can be seen when allocating, forking, swapping, killing and dy-
ing is done. The sample does not include user-access to the disk, which could
be enabled within the sample program. A short section, about how to write an
own init-processes closes my part of porting. The very lasts but not least sec-
tion of this document describes how to setup a PDP-11 simulator, with putting
the original binaries on it’s disk and let the Unix v7 run. When the simulator
runs on a Pentium around 100 MHz the real speed is simulated. The installa-
tion of Unix on the simulator is done using the original installation instructions
!
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8.1 Getting, extracting and compiling the sources

The ported Unix v7 sources are found under the simulator sources. Therefore,
only the simulator sources have to be downloaded from [Geisse]. The sources
have to be extracted with “TAR XVZF ECO32-x.y.TAR.GZ”, x.y reflects the actual
release. After extracting and changing into the new directory “ECO32-X.Y”, the
simulator has to be compiled by a “MAKE”. The compiler is compiled using
“MAKE COMPILER”, and finally the operating system with “MAKE UNIX”. The
following directories and files are most relevant :

BUILD/BIN contains LCC, ASLD, various disk- and FS-tools. More important
the Eco32-Simulator itself, called SIM.

BUILD/RUN contains all additional stuff needed to run the simulator, these are
the disk and the operating system.

DOC/ holds some documents to the simulator.

V7/DOCUMENTS the original v7 postscript documentations V7VOL1.PS, V7VOL2A.PS
and V7VOL2B.PS. The volume 2b includes the original man-pages
and the introductions to setup up Unix v7 on a PDP-11.

V7/EXTRACTED contains the extracted original sources. These are the kernel
source and the standard user programs including the libraries.

V7/ANSIFICED holds the ansificed and linkable sources. No more porting is
done with these files.

V7/PORTED source tree of ported pieces,

V7/PORTED/USR/SYS the ported kernel-sources, also referred as kernel-dir.

Depending on the distribution, the directories V7/EXTRACTED and V7/ANSIFICED,
like the postscript are packed into TAR.BZ2 files.
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8.1.1 The kernel directory

The original kernel contains of the following three directories1:

DEV/ containing many device-drivers,

H/ system-wide important include files. The file GLOBALS.C now lo-
cates all global used variables.

CONF/ machine depend implementations, primary low level copy and sys-
tem entrance.

SYS/ the kernel itself.

Additionally the MAKEFILE came up with the TOOLS directory. The TOOLS
directory contains the “binary to include file”-converter CONV which converts
executables into an includable format. This is used to replace the hexadecimal
init code. To work with Unix map the tool MKMAP exists. It sorts the symbols
and adds the segment-address to the symbols offset.

1all relative to the kernel-dir
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8.1.2 Some porting code guidelines

Because on of the primary target is to get an portable operating system, I added
“ ECO32” to every filename which is machine dependent. These are the fol-
lowing files :

DEV/BIO ECO32.C only the function PHYSIO is machine dependent, and is left
empty. It is used for low level device test.

DEV/MEM ECO32.C is the device driver to access the physical memory,

H/MCH ECO32.H contains machine depended function definitions, which only
appear on the Eco32 platform,

H/REG ECO32.H contains the location of the stored register on stack while ex-
ception,

H/SEG ECO32.H the home of all converting memory management definition
and converting macros,

SYS/MAIN ECO32.C little machine depend startup code, primary the initiali-
sation of process 0,

SYS/MACHDEP ECO32.C machine depended startup and memory allocation.
It is the home of the signal handler caller too.

SYS/UREG ECO32.C just contains the main function ESTABUR to modify the
process segment sizes.

8.1.2.1 Debug output

For every code-file with debug-output, three debug-level are supported, which
are set in the CDEFS in the MAKEFILE :

0 quiet,

1 some important functions print out there arguments when called,

2 verbose debugging is enabled.

Not really a tidbit, but exists. For some code files similar definitions appear on
the beginning :

VOID PRINTNULLTRAP( CHAR * HANS, ... ) � ; �
#IFDEF DEBUG TRAP

#DEFINE DBG PRINT1 PRINTF
#IF DEBUG TRAP � 1
#DEFINE DBG PRINT2 PRINTF

#ELSE
#DEFINE DBG PRINT2 PRINTNULLTRAP

#ENDIF
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#ELSE
#DEFINE DBG PRINT1 PRINTNULLTRAP
#DEFINE DBG PRINT2 PRINTNULLTRAP

#ENDIF
This block cause DBG PRINT1 and DBG PRINT2 to be defined to PRINTF

or the empty function. The definition depends on the definition of DEBUG TRAP
which is set within MAKEFILE. DBG PRINT[12] are used within the code-files
to produce debug-output. The following definitions are evaluated for the cor-
responding file :

DEBUG BIO dev/bio eco32.c, the low-level SWAP-function produces some debug-
output.

DEBUG CLOCK sys/clock.c, level 1 gives out the calculated CPU-usage of
every process. Level 2 prints out a lot.

DEBUG ET dev/et.c, gives out nearly nothing.

DEBUG IDLE defined to 1 every 64th idle is given out. When defined to 2,
every idle call is given out.

DEBUG MEMMAN sys/MemoryManagment.c, level 1 gives out the impor-
tant calls with arguments. Verbose debugging is possible with level
2.

DEBUG NAMEI sys/namei.c, level 1 only gives out only one error-message.
While level 2 debugs the whole process of finding an inode to a
corresponding filename.

DEBUG SIG sys/sig.c,the important system-call-handler grow produces 2 lev-
els of debug output.

DEBUG SLP sys/slp.c SWAPIN, SWTCH and NEWPROC produces two levels of
debugging output.

DEBUG SYS1 sys/sys1.c, EXECE, GETXFILE, WAIT and FORK gives out debug-
ging information in two levels.

DEBUG SYS2 sys/sys2.cOPEN produces some debugging output.

DEBUG TEXT sys/text.cXSWAP, XFREE, XALLOC and XEXPAND support de-
bugging in two levels.

DEBUG TRAP sys/trap.c the TRAP-handler gives out only trap-number, PC at
trap, and syscall-function-name on debug level 1. Verbose output
is created on debug-level 2.

DEBUG TTY dev/tty.c
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8.2 Tidbits

In such a delicious operating system, some new tidbits have to be done. The
first is to get rid of permanent inconsistency, when redefining constants and
macros in the C or assembler part, by letting the C preprocessor, process the
assembler file. The second tidbit includes the linker generated map-file into
the file SYS/TRAP.C. Therefore the trap handler is capable of getting the kernel-
function name on traps and system calls.

8.2.1 MCH ECO32.PRES

The machine depending assembler implementation varies a bit from the com-
mon way, because it includes C-header-files. To translate the file MCH ECO32.PRES
into the common file MCH ECO32.S, two steps are done by the MAKEFILE. In
common the C preprocessor is used to resolve any macro definitions. The first
step is to find out all macros included by MCH ECO.PRES. This step is needed,
because all the declarations in the header files are worthless for the assembler.
The macros are extracted by :

CAT CONF/MCH ECO32.PRES
�
CPP -I CONF/ -DM -P � CONF/MCH ECO32.DEFS

Now the extracted macros are used on the content of MCH ECO32.PRES
without the include-directives. The resulting output is stored in the assembler
file MCH ECO32.S :

CAT CONF/MCH ECO32.PRES
�

GREP -V “#INCLUDE”
�

CPP -P -IMACROS
CONF/MCH ECO32.DEFS � CONF/MCH ECO32.S

With this little workaround in the MAKEFILE it is possible, to use any con-
stants and macros which are defined in any included header file. The advan-
tage is the single point of definitions.
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8.2.2 The included Unix-map

To become debugging a little more comfortable, the file UNIX.MAP is very im-
portant. It is created by the linker and contains a relation between all exported
symbols and their offset within a segment. The segment could be either BSS,
CODE or DATA. The segment-offset is listed at the end of the map.

To convert the UNIX.MAP into an includable file, I’ve written the tool MKU-
NIXMAPH. The prime task of MKUNIXMAPH is to sort the symbols by the
offset. Finally the segment-offset is added to every symbol offset.

Because linking is done after compiling, the MAKEFILE checks if the new
map-file differs from the previous map file and recompiles eventually.

Whenever a critical trap occurs, or the debug-level is high enough, the name
of the causing kernel function is written. When debugging system-calls, the
name of the called system-call-handler is printed out by TRAP.

8.2.3 Mosix featuring

The MAKEFILE is designed to use a Mosix-cluster when running the simulator.
Every mosix system contains the program /BIN/CPUJOB, which executes the
passed program with all passed parameters. Therefore if this program doesn’t
exist, a mini shell-script is generated which calls the first argument with all
other passed arguments. The use of CPUJOB causes Mosix to start the passed
program on the node with the most powerful CPU.
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8.3 Running the example

At this point, the simulator, compiler and operating should be compiled. Two
steps have to be done before running the system. First the INIT program has
to be copied to the hard-disk together with a valid file-system. Next step is to
copy the unix-binary, which acts the function of the ROM-program. Therefore
type the following two commands :

MAKE UNIX-DISK
MAKE UNIX-RUN
The UNIX-DISK target creates the file-system containing the init-process.

The UNIX-RUN target copies the binary and starts the simulator. Within the
simulator, the command “C” has to be given, to continue the execution.

The next subsection explains the code of the running init-process, followed
by a subsection explaining the resulting output.
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8.3.1 The sample overview

Within the sample program some tests are implemented. These are tests for
handling files and some different exec calls. Within this example the tests
SWAPTEST and MEMTEST are used.

It is forked three times within this sample :

1. At the beginning of the SWAPTEST, the forked child gets killed, and

2. a new child is forked and both leave swapTest,

3. after the child terminated its parent,

the new parent causes a segmentation fault, while the child exits with exit-code
0XDEAD0000.

#INCLUDE ”../H/SYSCALL.H”
INT PID = 0;
INT MAIN( INT ARGC,

CHAR *ARGV[],
CHAR * ENVP[])

�
SIGNAL( SIGTRM, SIGTERM );
SWAPTEST();
IF( PID )

WHILE( 1 );
ELSE �

KILL( 1, SIGTRM );
PID = FORK();
IF( PID )

MEMTEST();
�
EXIT( 0XDEAD0000

�
PID );

WHILE( 2 );
RETURN 0;
�

PID is 0 for children and..
..“PID of child” for parents.

Set the signal handler SIGTERM..
..for signal SIGTRM.
forks via swap.
Parent has to loop until child..
..sends SIGTRM.

Child kills parent with SIGTRM
Lonely child forks
The new parent allocates and
touches memory until segm.-fault

The new child exits 0xDead0000
This code is never reached !

The SWAPTEST makes a fork via swap, because the forking process is larger
than the half core.
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VOID SWAPTEST(VOID) �
INT MAXMEM = 0X70000;
INT I, * PI;
BRK( 0X70000 );
PID = FORK();
FOR( PI = 0;

PI
� (INT *)MAXMEM;

PI = (INT *)((INT)PI + 0X1000))
�

I = *PI;
�
IF( PID ) �

KILL( PID, SIGKIL );
WAIT(0);
PID = FORK();
� ELSE

WHILE( 1 );
�

Maximal core is something
below 0x90 core-frames.

Allocate 0x70 core-frames
fork via swap
This loop reads one word
from all allocated frames

The parent kills the child with
SIGKIL which is uncatchable.
Wait until child is dead,
and get a new child

Here the first child is catched,
to get killed.

The memTest allocates memory and touches the last CHAR in the pre-last
frame in an infinite loop. The loop is interrupted when the fetching causes a
segmentation fault.

VOID MEMTEST(VOID) �
INT MAXMEM = 0X70000;
CHAR C, * PCHAR;
WHILE( 1 ) �

BRK( MAXMEM );
PCHAR = (CHAR *)MAXMEM - 1;
C = *PCHAR;
MAXMEM += 0X8000;
�
�

Start with nearly the..
..whole core-memory

Allocate memory,
set pointer to last character..
..within page, and fetch it
Increment by 8 core-frames.

void sigTerm() �
exit( 0xDeadBeef );

�
Signal-catcher for SIGTERM,
exit with exit-code = 0xDeadBeef
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8.3.2 The sample output

All processes are called by their aliases like init instead of process 1, or scheduler
instead of process 0 and P2 as alias for process 2.

The first three lines2 contain information about the available memory. There-
fore nearly the half of the 1 MB main memory is used by the operating system.
The swap-partition is completely unused.

ECO32 � C
MEMFRAMES = 138 (0X8A)
MEM = 552 KB
SWAP = 2000 KB (0XFA0 DBLCKS, 0X1F4 SWAPFRAMES)
Now only debug output follows. In this sample, debug-level 1 is enabled

for SYS/TRAP.C, SYS/MEMORYMANAGMENT.C and SYS/CLOCK.C.

8.3.2.1 Startup-init-process

The first ESTABUR call, establishes the data-segment for the startup-init-process.
This process is a smart hexadecimal-code assembler-program, which causes an
EXEC(“/ETC/INIT”)-syscall. The syscall is initiated through the trap-instruction,
which causes a trap 0x14. The arguments to the exec-call, are the pointer the
file-name and the pointer to the argument-vector. The equal sign reflects that
the return value will come. It is possible that any other output will come before
the return value !

- � ESTABUR( NT = 0(0), ND = 1(0), NS = 0(0), SEP = 0(0), XRW = 4)�
- � USER-TRAP=0X14 PID=0X1 PS=0X274FFFF @=0X0

SYSCALL @0XC0008508 EXEC( 0X18, 0X10, ) =
The next three estabur-calls are caused through the exec-call. The first es-

tabur call, checks if it is possible to create the process. Now only the data-
segment is allocated, to put the code into it. After that the stack is allocated.
This shows the simplest variant of the binaries, no text-sharing is possible. The
last lines are the return-arguments of the syscall. Within the EXEC-syscall it is
only important that fail is zero. If the syscall would fail, the startup-init-process
would run into an infinite loop. Elsewhere, the control is at init.

- � ESTABUR( NT = 0(0), ND = 2(1), NS = 2(0), SEP = 0(0), XRW = 4)
- � ESTABUR( NT = 0(0), ND = 2(2), NS = 0(2), SEP = 0(0), XRW = 4)
- � ESTABUR( NT = 0(0), ND = 2(2), NS = 2(0), SEP = 0(0), XRW = 4)
RET0= 0X0, RET1= 0XC0100000, FAIL= 0

2behind the continue command
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8.3.2.2 Init becomes alive

First the the user-program sets the signal-handler for signal 0xF3. The passed
address 0x1058 points into the “syscall-library”. The library catches all regis-
tered signals, stores the environment, calls the user signal handler, restores the
environment. And finally causes an exception-return to the location passed by
the operating system.

The second syscall allocates 0x70 frames for the users data-segment and
returns successful.�

- � USER-TRAP=0X14 PID=0X1 PS=0X374FFFF @=0XFFC
SYSCALL @0XC000B6B8 SSIG( 0XF, 0X1058, ) =
RET0= 0X0, RET1= 0XC0100000, FAIL= 0
0 cpu= C - � 9

�
1 cpu= 9D - � 7D

�
ignore this line !�

- � User-Trap=0xC PID=0x1 PS=0x36DF.. @=0x1004 ignore this line !�
- � USER-TRAP=0X14 PID=0X1 PS=0X374FFFF @=0XA54

SYSCALL @0XC0009C7C SBREAK( 0X70000, ) =
- � ESTABUR( NT = 0(0), ND = 70(2), NS = 2(2), SEP = 0(0), XRW = 4)
RET0= 0X0, RET1= 0XC0100000, FAIL= 0

8.3.2.3 The scheduler and cpu-usage

The following lines shows the frequently cpu-usage-calculation which is caused
through HZ4 clock interrupts. First recognise, that the calculation output comes
before the trap, because the clock-interrupt-handler does the calculation and
then causes a “Giveup CPU-Trap5”. The first line shows that the scheduler cpu-
usage is set from 0x9 down-to 0x7, inits cpu-usage is decreased from 0x9C to
0x7C.

The cpu-usage of the running process is increased every clock-interrupt.
The decreasing is done by multiplying the factor

?E_H`bac1ed 	gf+h+��� . The
magic scheduling factor causes the cpu-usage of not running processes to drop
down, while the usage of the running process still increments (or only decre-
ments very less.). The cpu-usage of the scheduler is initial at 9 and drops to
7 till next scheduling. In this time the initial cpu-usage of init was at 0x9C
and moved to 0x9A. Now it seems as if they both decrement by 2, but the 2
decrements have nearly no influence at a usage of 0x9A (154 decimal). When
looking on the first ignored-code-line above, we see that the scheduler started at
0xC which equals 12, and the 7 below is nearly the half.

0 CPU= 9 - � 7
�
1 CPU= 9C - � 7C

�
�
- � USER-TRAP=0XC PID=0X1 PS=0X36DFFFF @=0XA5C

0 CPU= 7 - � 5
�
1 CPU= 9A - � 7B

�
�
- � USER-TRAP=0XC PID=0X1 PS=0X36DFFFF @=0XA5C

3SIGTRM = SIGnal-TeRMinate, causes a process to finish and maybe tidy up before.
4HZ is set to 60, which causes every second a new cpu-usage calculation.
5is used to schedule, 0xC is the trap number.
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8.3.2.4 swapTest

Init forks the first time within the SWAPTEST. The syscall has to STOREPROC the
new process without freeing the core-frames. To fork on less core, the P ADDR
is copied from the parent and then the new process is swapped out.

The next two syscalls are the KILL and the WAIT until the child is dead. The
wait syscall causes init to become swapped out and P2 swapped in.�

- � USER-TRAP=0X14 PID=0X1 PS=0X374FFFF @=0X758
SYSCALL @0XC0009968 FORK( ) =
STOREPROC 0X2( P=0XC006C6C8, FREE=0 )
RET0= 0X2, RET1= 0XC0100000, FAIL= 0
0 CPU= FF - � CC

�
1 CPU= AD - � 8A

�
2 CPU= 53 - � 42

�
�
- � USER-TRAP=0XC PID=0X1 PS=0X36DFFFF @=0X328�
- � USER-TRAP=0X14 PID=0X1 PS=0X374FFFF @=0X1274

SYSCALL @0XC000B780 KILL( 0X2, 0X9, ) =
RET0= 0X2, RET1= 0XC0100000, FAIL= 0
0 CPU= CD - � A4

�
1 CPU= B2 - � 8E

�
2 CPU= 42 - � 34

�
�
- � USER-TRAP=0XC PID=0X1 PS=0X36DFFFF @=0X127C�
- � USER-TRAP=0X14 PID=0X1 PS=0X374FFFF @=0X83C

SYSCALL @0XC0009750 WAIT( ) =
STOREPROC 0X1( P=0XC006C6A0, FREE=1 )
LOADPROC 0X2 FROM 0X7A - � 0X76, 1
RET0= 0X1, RET1= 0XC0100000, FAIL= 0

8.3.2.5 looping P2 dies

all allocated frames are freed. The first two call shows the use of the U-Area-
Page-table as page-directory starting at the second word. Within the last
three calls, the UArea-Page-table first entry references itself as page-table.

FREEFRAMES(PD= 0X80..8, 1.FRAME= 0X0, N= 0X70, UP= 1, COREMAP
FREEFRAMES(PD= 0X80..8, 1.FRAME= 0X7FFFF, N= 0X2, UP= 0, COREMAP
FREEFRAMES(PD= 0X80..0, 1.FRAME= 0X3FF, N= 0X4, UP= 0, COREMAP
FREEFRAMES(PD= 0X80..0, 1.FRAME= 0X1, N= 0X2, UP= 1, COREMAP
FREEFRAMES(PD= 0X80..0, 1.FRAME= 0X201, N= 0X1, UP= 0, COREMAP

8.3.2.6 Init swaps in and forks again

LOADPROC 0X1 FROM 0XF4 - � 0X76, 1
RET0= 0X2, RET1= 0X9, FAIL= 0
0 CPU= FF - � CC

�
1 CPU= B7 - � 92

�
�
- � USER-TRAP=0XC PID=0X1 PS=0X36DFFFF @=0X844�
- � USER-TRAP=0X14 PID=0X1 PS=0X374FFFF @=0X758

SYSCALL @0XC0009968 FORK( ) = STOREPROC 0X3( P=0XC006C6C8,
FREE=0 )
RET0= 0X3, RET1= 0X9, FAIL= 0
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8.3.2.7 Scheduling to P3

Inits cpu-usage increases from 0xC0 up to 0xC2, while P3s cpu-usage is falling
from 0x50 to 0x33. Every 0x10 cpu-usage, the priority of a process is increased.
Therefore the priority of P3 fall by 2. Init becomes swapped out and P3 swapped
in, because P3 was out for three HZ.

0 CPU= FF - � CC
�
1 CPU= C0 - � 99

�
3 CPU= 50 - � 40

�
�
- � USER-TRAP=0XC PID=0X1 PS=0X36DFFFF @=0X150

0 CPU= CD - � A4
�
1 CPU= C1 - � 9A

�
3 CPU= 40 - � 33

�
�
- � USER-TRAP=0XC PID=0X1 PS=0X36DFFFF @=0X150

0 CPU= A5 - � 84
�
1 CPU= C2 - � 9B

�
3 CPU= 33 - � 28

�
�
- � USER-TRAP=0XC PID=0X1 PS=0X36DFFFF @=0X150

STOREPROC 0X1( P=0XC006C6A0, FREE=1 )
LOADPROC 0X3 FROM 0X7A - � 0X76, 1
RET0= 0X1, RET1= 0X9, FAIL= 0

8.3.2.8 P3 kills init with SIGTRM

and forks a new child P4.
�
- � USER-TRAP=0X14 PID=0X3 PS=0X374FFFF @=0X1274

SYSCALL @0XC000B780 KILL( 0X1, 0XF, ) =
RET0= 0X0, RET1= 0X9, FAIL= 0
0 CPU= FF - � CC

�
1 CPU= BA - � 94

�
3 CPU= 48 - � 39

�
�
- � USER-TRAP=0XC PID=0X3 PS=0X36DFFFF @=0X127C�
- � USER-TRAP=0X14 PID=0X3 PS=0X374FFFF @=0X758

SYSCALL @0XC0009968 FORK( ) =STOREPROC 0X4( P=0XC006C6F0, FREE=0
)
RET0= 0X4, RET1= 0X9, FAIL= 0
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8.3.2.9 P3 starts memory allocation.

and becomes swapped out. The last break-syscall allocates the last available
core, the fetching of char succeeds, because only one frame could not be allo-
cated.�

- � USER-TRAP=0X14 PID=0X3 PS=0X374FFFF @=0XA54
SYSCALL @0XC0009C7C SBREAK( 0X70000, ) =
- � ESTABUR( NT = 0(0), ND = 70(70), NS = 2(2), SEP = 0(0), XRW = 4)
RET0= 0X4, RET1= 0X9, FAIL= 0
0 CPU= FF - � CC

�
1 CPU= 94 - � 76

�
3 CPU= 71 - � 5A

�
4 CPU= 54 - � 43

�
�
- � USER-TRAP=0XC PID=0X3 PS=0X36DFFFF @=0XA5C�
- � USER-TRAP=0X14 PID=0X3 PS=0X374FFFF @=0XA54

SYSCALL @0XC0009C7C SBREAK( 0X78000, ) =
- � ESTABUR( NT = 0(0), ND = 78(70), NS = 2(2), SEP = 0(0), XRW = 4)� - ESTABUR E NO MEM !!
RET0= 0XC, RET1= 0X9, FAIL= 57344
0 CPU= CD - � A4

�
1 CPU= 76 - � 5E

�
3 CPU= 8B - � 6F

�
4 CPU= 43 - � 35�+�

- � USER-TRAP=0XC PID=0X3 PS=0X36DFFFF @=0XA5C
STOREPROC 0X3( P=0XC006C6C8, FREE=1 )

8.3.2.10 Init dies at SIGTRM

it receives the signal while looping in main. It is put into the signal-handler
where it exits with 0XDEADBeef.

LOADPROC 0X1 FROM 0XF4 - � 0X76, 1
0 CPU= FF - � CC

�
1 CPU= 67 - � 52

�
3 CPU= 8E - � 71

�
4 CPU= 35 - � 2A

�
�
- � USER-TRAP=0XC PID=0X1 PS=0X36DFFFF @=0X150�
- � USER-TRAP=0X14 PID=0X1 PS=0X374FFFF @=0X1274

SYSCALL @0XC000931C REXIT( 0XDEADBEEF, ) =
FREEFRAMES(PD= 0X80..8, 1.FRAME= 0X0, N= 0X70, UP= 1, COREMAP
FREEFRAMES(PD= 0X80..8, 1.FRAME= 0X7FFFF, N= 0X2, UP= 0, COREMAP
FREEFRAMES(PD= 0X80..0, 1.FRAME= 0X3FF, N= 0X4, UP= 0, COREMAP
FREEFRAMES(PD= 0X80..0, 1.FRAME= 0X1, N= 0X2, UP= 1, COREMAP
FREEFRAMES(PD= 0X80..0, 1.FRAME= 0X201, N= 0X1, UP= 0, COREMAP

8.3.2.11 P4 leaves main with 0xDEAD0000.
LOADPROC 0X4 FROM 0X7A - � 0X76, 1
RET0= 0X3, RET1= 0X9, FAIL= 0�
- � USER-TRAP=0X14 PID=0X4 PS=0X374FFFF @=0X1274

SYSCALL @0XC000931C REXIT( 0XDEAD0000, ) =
FREEFRAMES(PD= 0X80..8, 1.FRAME= 0X0, N= 0X70, UP= 1, COREMAP
FREEFRAMES(PD= 0X80..8, 1.FRAME= 0X7FFFF, N= 0X2, UP= 0, COREMAP
FREEFRAMES(PD= 0X80..0, 1.FRAME= 0X3FF, N= 0X4, UP= 0, COREMAP
FREEFRAMES(PD= 0X80..0, 1.FRAME= 0X1, N= 0X2, UP= 1, COREMAP
FREEFRAMES(PD= 0X80..0, 1.FRAME= 0X201, N= 0X1, UP= 0, COREMAP
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8.3.2.12 P3s segmentation-fault

comes back, and allocates memory again. Now no frame is left and a segmentation-
fault is caused while fetching the char.

loadProc 0x3 from 0x175 - � 0x76, 1�
- � User-Trap=0x14 PID=0x3 PS=0x374FFFF @=0xA54

SysCall @0xC0009C7C sbreak( 0x80000, ) =
- � Estabur( nt = 0(0), nd = 80(77), ns = 2(2), sep = 0(0), xrw = 4)
size= 0x81 0x81� - Estabur E NO MEM !!
ret0= 0xC, ret1= 0x9, Fail= 57344
0 cpu= FF - � CC

�
3 cpu= 7A - � 61

�
�
- � User-Trap=0xC PID=0x3 PS=0x36DFFFF @=0xA5C�
- � User-Trap=0x16 PID=0x3 PS=0x376FFFF @=0x2B8

USER SEG FAULT !!
Sending sig = 0xB - � 0x3
freeFrames(PD= 0x80..8, 1.Frame= 0x0, n= 0x77, Up= 1, CoreMap
freeFrames(PD= 0x80..8, 1.Frame= 0x7FFFF, n= 0x2, Up= 0, CoreMap
freeFrames(PD= 0x80..0, 1.Frame= 0x3FF, n= 0x4, Up= 0, CoreMap
freeFrames(PD= 0x80..0, 1.Frame= 0x1, n= 0x2, Up= 1, CoreMap
freeFrames(PD= 0x80..0, 1.Frame= 0x201, n= 0x1, Up= 0, CoreMap

8.3.2.13 Idle forever

is done by the operating system without processes.
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8.4 Writing own programs

The test-programs are written using the “syscall-library”. At the moment the
program is always a replacement for the init process. Whenever a valid init-
program exist, the location and filename should be modified. Within the SYS/INIT.C
sources, some examples are shown to OPEN/CREATE files and write into them.

8.4.1 Compiling and linking

Look at the sample SYS/INIT.C. This file is compiled and linked separate from
the operating system. Within the Makefile in the kernel-dir the target init.e
exist, which does the following :

INIT.E: SYS/INIT.C SYS/SYSCALL.S
$(CC) -O $@ SYS/INIT.C SYS/SYSCALL.S

Therefore it is compiled in the usual way. Now the executable has to be put
on the disk.

8.4.2 The file-system

The target $(DISK), which is defined to $(BUILD)/RUN/SYSTEM.DISK, uses
the MKFS tool to generate the file-system :

$(DISK): init.e proto.root
$(BUILD)/bin/mkfs $(BUILD)/run/system.disk proto.root

The file PROTO.ROOT contains the description of the file-system and the
files on it. In our case PROTO.ROOT would have the left content and produce
the right file-system :

../../../../BUILD/RUN/MBR.OUT
2000 640
D–777 0 0
DEV D–777 0 0

CONSOLE C–644 0 1 0 0
$

ETC D–755 0 0
INIT —755 0 0 ./INIT.E
$

$

/
/DEV/
/DEV/CONSOLE
/ETC/
/ETC/INIT

The first line specifies the master-boot-record to use, it is generate with one
of the simulator tools. The third line creates the root-directory with read/write/execute
permissions enabled for anyone. The owner and group is reflected by the two
last 0s. In the DEV-directory a character device console is created with major-
number 0 and minor-number 1. Within the ETC-directory the file INIT is created
using INIT.E.
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8.5 Unix v7 on a PDP-11 Simulator

This section describes6 how to get the PDP-11 simulator run with Unix v7. It
is much better described in the distribution at Dr. Geisses Unix v7 distribution
http://TeleXX.mni.FH-Giessen.de/PDP11-UNIX. The original 7 tape
binaries are converted into a tape with a tool from Dr. Geisse into a tape which
is understand by the simulator. Then starting the simulator and setting up
Unix v7 in the same way it ever was ;-)

First download the distribution, extract it, and change into them with :
TAR XVZF UNIX-V7-1.TAR.GZ
CD UNIX-V7/
Compile the simulator :
CD SIM/
MAKE PDP11
Compile the tape tool and make the tape :
CD ../MKTAPE
MAKE
CD ../V7
CP F0 F1 F2 F3 F4 F5 F6 ../MKTAPE
CD ../MKTAPE
./MKTAPE
CD ../RUN/
CP ../SIM/PDP11 ../MKTAPE/UNIX V7.TM .
./PDP11 SETUP.CONF
RUN 100000
ˆE
RUN 0
create file-system ( ’:’ indicates the shell prompt and ’?’ indicates a ques-

tion you should answer, don’t type them !)
: TM(0,3)
? 5000
restore data
: TM(0,4)
? TM(0,5)
? HP(0,0)�

RETURN �
Boot Unix to make first setup
: HP(0,0)HPTMUNIX
MV HPTMUNIX UNIX
make device entries
CD DEV
MAKE RP04
MAKE TM
/ETC/MKFS /DEV/RP3 153406

6“tells which keys has to be pressed”
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DD IF=/DEV/NRMT0 OF=/DEV/NULL BS=20B FILES=6
RESTOR RF /DEV/RMT0 /DEV/RP3�

RETURN �
Now wait until the file-system is extracted, and create boot-block
/ETC/MOUNT /DEV/RP3 /USR
DD IF=/USR/MDEC/HPUBOOT OF=/DEV/RP0 COUNT=1
umount and stop the machine
/ETC/UMOUNT /DEV/RP3
SYNC
SYNC
ˆE
QUIT
Now standard procedure to start the simulator is :
./PDP11 RUN.CONF
BOOT
exit single-user-mode and login as ROOT with password ROOT
ˆD
ROOT
ROOT

71



Chapter 9

Glossary

$2,$3 are the both return value registers, used by the LCC on the Eco32
processor.

array is equivalent, to a field in C. The word field is used in this document
as struct field !

clicks is the smallest potion in which memory could be allocated, one
whole frame, 4096 bytes.

core Is the equivalent to “core memory”, it reflects the physical main
memory. Core is always allocated in whole frames.

field is always one field within a struct, no an array !!

FORK is a system-call to duplicate the calling process.

P ADDR Is located in the proc struct. Within the original memory manage-
ment, it pointed to the physical location of the process image. In
the new memory management it points to the U-Area-Page-Table.
Pointing in this context is reflected through a physical frame num-
ber !

PROC-struct Contains all information about a process which are need while it’s
swapped out. These are information like, swap/core load address
or process size.

swap-page-number 	 ?Ai-(�jlkm@L7�npoq/!r6sKntvulwx.$*�5 = 8y_Hr256*�FH56(4wx*2?�@IB4* h km@L72noz/!r6s{np?�@IB4* 9 ,
in this case

_Hr256*2FH56(�wx*6?A@CB�* 	<�4��|�� ,
km@L7�npoq/!r6sKnp?A@CB�* 	~}�2�

text is equivalent to code or instructions within this document. It refer-
ences the code-segment.

U-Area is allocated once per process. It contains all necessary informations
needed while a process is in core. The U-Area contains : U-Area-
Page-table, user-struct, user page-tables and kernel-stack.
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device interrupt, 13
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errno, 28
error-flag, 28
estabur, 44, 47, 56, 63
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etc-directory, 69
exception, 15
exception entry, 19
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Exceptions Eco32, 19

exec, 41, 63
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exece, 28, 57
expand, original, 37
extern, 22, 27
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field, 72
file-system, 69
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fork, 52, 57, 65, 72
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freeTables, 44, 45
FS, 7
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getxfile, 57
Giveup CPU-Trap, 34, 64
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h/, 55
h/globals.c, 27
h/mch-eco32.h, 56
h/reg-eco32.h, 56
h/seg-eco32.h, 56
HZ, 64, 66

Illegal instruction Exception, 19
image, 52
image size, 37
implicit declaration, 25
infinite loop, 63
init, 34, 60, 63, 64, 69
init process, 9
init.e, 69
instruction space, 12
int, 43
interrupt enable bit Eco32, 20
interrupt enable bits, 18
interrupt mask, 20
interrupts Eco32, 19
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Ken Thompson, 6
Kerne page-directory, 40
kernel data segment, 33
kernel mode, 18
kernel panic, 31
kernel stack, 13, 39
kernel stack mapping, 15
kernel-dir, 54
kernel-function name, 58
kernel-sources, 54
kernel-stack, 42

lcc, 9, 28, 30
lcc-backend, 6
load address, 37
loadProc, 44, 47, 49

make, 54
make compiler, 54
make unix, 54
make unix-disk, 60
make unix-run, 60
Makefile, 55–59
makeIncludes, 27
malloc, 44, 45
map, 45
master-boot-record, 69
mavail, 44, 45
mch-eco32.pres, 58
mch-eco32.s, 58
memory allocating, 47
memTest, 61
mfree, 44, 45
mkMap, 55
mkUnixMapH, 59
mmix, 6
mosix, 59
mvfs, 15, 20
mvts, 15, 20

nd, 47
newproc, 57
ns, 47
nt, 47

offset, 38

old bit, 18
old interrupt enable, 18
open, 57, 69
optimisation, 42

p-addr, 33, 39, 47, 49, 65, 72
p-size, 47
p-textp, 47
page directory, 39
page directory entry, 38
page table entry, 38
page-directory, 43, 45, 50
page-directoy, 65
page-size, 38
page-table, 43
page-tables, 45, 52
PageTableAddress, 40
PC, 19
PDP-11, 6, 12
PDP-11 implementation, 28, 31
phys-t, 43
physical core memory, 41
Physical Frame Address Register, 15
physical memory, 56
physical-space, 16
physio, 56
pointer UArea-page-table, 39
porting, 9
Preprocessor directives, 23
previous mode bits, 13
previous user mode bit, 18
printNull, 56
priorities, 13
priority, 66
priority level, 13
Privileged address Exception, 19
Privileged Exception, 19
proc, 33
proc-struct, 33, 72
process image, 72
process image, old, 37
process struct, 37
process-pointer, 35
proto.root, 69
PSW, 13, 19, 28
PSW Eco32, 20
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PSW PDP-11, 13
putchar, 31

qswtch, 34

r0, 11
r5, 11
r6, 11, 13
r7, 11, 13
read, 30
read-only, 47
read-write, 47
resolvDependencies, 25
resume, 34, 35
resumed, 35
return argument, 23
return type, 23
RISC, 6, 14
ROM-program, 60
root device, 31
run mode, 18
runrun, 34

save, 35
scheduler, 64
Scheduling, 66
scheduling factor, 64
SCHMAQ, 64
seg-t, 43
shared text, 41
signal-handler, 64
SIGTRM, 64
size, 47
software prototypes, 37
sort, 26
special registers, 14
stack exchanging, 35
startup, 56
startup-init-process, 63
stored register, 56
storeProc, 47
storeproc, 44
subyte, 31
sureg, original, 37
swap, 43, 57
swap disk, 49

swap start, 31
swap-disc-frame-numbers, 46
swap-page-number, 72
swapFrames, 44, 46, 47, 50
swapin, 57
swapmap, 44, 45
swapping, 43
swaps in, 47
swaps out, 47
swapTables, 44, 46, 47
swapTest, 61, 65
swplo, 31
swtch, 32, 34, 57
sys, 27
sys/, 55
sys/clock.c, 57
sys/init.c, 69
sys/machdep-eco32.c, 56
sys/main-eco32.c, 56
sys/MemoryManagment.c, 43, 57
sys/namei.c, 57
sys/sig.c, 57
sys/slp.c, 34, 57
sys/sys1.c, 57
sys/sys2.c, 57
sys/syscall.s, 28
sys/sysent.c, 29
sys/text.c, 57
sys/trap.c, 57, 58
sys/ureg-eco32.c, 56
syscall-library, 64
syscalls, 28
system calls, 58
system-calls, 28
system.disk, 69

tar.bz2, 54
tbri, 15
tbwi, 15
tbwr, 15
Term receiver Interrupt, 19
Term transmitter Interrupt, 19
text, 72
Text Page-directory, 40
text-page-table, 42
text-segment, 39, 42, 47
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Tidbits, 58
Timer Interrupt, 19
TLB, 15, 43, 47
TLB double hit Exception, 19
TLB double hit exception, 15
TLB flush, 39
TLB Index register, 15
TLB miss Exception, 19
TLB-miss-exception, 15
tools, 55
tools directory, 55
trap, 13, 34, 57
Trap Exception, 19
trap handler, 58
traps Eco32, 19

U-Area, 33, 35, 39, 52, 72
U-Area page-table, 39
U-Area-Page-table, 49, 52, 65
U-Area-Page-table-pointer, 40
u-dsize, 47
u-tsize, 47
u-usize, 47
UArea, 42
UArea-Page-table, 43
undeclared, 25
uniq, 26
Unix v7, 6
unix-binary, 60
unix-v7, 70
unix-v7-1.tar.gz, 70
user level program, 9
user mapping, 39
user mode, 34
user page tables, 39
user struct, 39
user-context, 33
user-frames, 33
user-program, 64
user-struct, 33, 42

v7/ansificed, 54
v7/documents, 54
v7/extracted, 54
v7/ported, 54
v7/ported/usr/sys, 54

v7vol1.ps, 54
v7vol2a.ps, 54
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