
Technical Brief

Implementing IEEE 1588v2 for use
in the mobile backhaul

For most, the migration to an all-Ethernet or all-IP
network will be a gradual process as network operators
endeavour to maximise the lifespan of their existing
TDM assets. However, the pace is quickening with
the development of the IEEE 1588v2 standard. This
standard enables the backhaul network to migrate to
all-Ethernet, which provides much-required bandwitdth
at a far lower cost-per-bit. It is of significant interest
to network operators seeking to grow their revenue
by capitalising on bandwidth-hungry applications like
mobile broadband, music and video downloads. This
document provides a brief overview of IEEE 1588v2
and looks at how you can characterise devices that will
implement the standard.

Contents

Maintaining Sync using IEEE1588v2	 3

Propagation Delay Measurement Mechanisms 	 4
Synchronisation	 4
Establishing the Master-Slave Hierarchy	 4
Synchronising Ordinary and Boundary Clocks	 5

Topologies	 9
Hierarchical Topology	 9
Linear Topology	 9
Multiply Connected Topology	 10

Transport of PTP Messages	 10
PTP over UDP over IPv4 over Ethernet	 11
PTP over UDP over IPv6 over Ethernet	 11
PTP over IEEE 802.3/Ethernet	 12

PTP Message Formats	 12

Testing and Introducing Impairments	 19

Two-way Timing Protocol, PDVs and Wander	 20

Introduction

Although Ethernet has been the technology of choice for a range on LAN and WAN applications for decades,
using it in the mobile backhaul network presents a major challenge. Here, accurate synchronisation of base
stations to nanoseconds accuracy is critical to minimise service disruptions and eliminate dropped connections
as calls move between adjacent cells. Highly accurate synchronisation also ensures that the radio spectrum is
not spread into the adjacent channels. Plus, without stringent phase synchronisation, the multiple signals in
LTE’s multiple-input/multiple-output (MIMO) architecture can simply cancel one another out. And this is where
IEEE1588v2 comes in.

IEEE1588v2 (also known as Precision Time Protocol, PTP) is an industry-standard protocol that enables
the precise transfer of frequency and time to synchronise clocks over packet-based Ethernet networks. It
synchronises the local slave clock on each network device with a system Grandmaster clock and uses traffic
time-stamping, with sub-nanoseconds granularity, to deliver the very high accuracies of synchronisation
needed to ensure the stability of base station frequency and handovers. Timestamps between master and slave
devices are sent within specific PTP packets and in its basic form the protocol is administration-free.

Of course, the precision and performance of the IEEE 1588v2 protocol is based on the precision of the
timestamp. The timestamps of incoming and outgoing packets clearly need to be recorded and assessed to
ensure synchronisation of master and slave devices. Differences in time and frequency between clocks and
subsequent equipment corrections need to be evaluated, while clocks must be measured to ensure they are
within their specified limits. Further, delays and drifts in sync and their effect on the transfer of timing through
the network need to be considered too.

Here, we examine the various methods you can use to characterise and measure the precision of timestamp
synchronisation, as well as the accuracy of clocks, network devices and topology, before deploying equipment

in an operational network.

2

Maintaining Sync using IEEE1588v2

In a packet transport system, clocks communicate with each other over the communication network using PTP.
All clocks, whether master or slave, lead back to – and ultimately derive their time from – the ‘Grandmaster’
clock. There are 5 types of PTP clock devices:

Table 1 – PTP Device Types

Master and slave network devices are kept synchronized by the transmission of timestamps sent within the PTP
messages. There are two types of message in the PTP protocol: Event Messages and General Messages. Event
messages are timed messages whereby an accurate timestamp is generated both at transmission and receipt
of the message. General messages do not require timestamps but may contain timestamps for their associated
event message.

	

Table 2 – PTP Messages

A single port device that can be a Master or Slave clock.

A multi port device that can be a Master or Slave clock.

A multi port device that is not a Master or Slave clock but a
bridge between the two. Forwards and corrects all PTP Messages.
Correction achieved by addition of the bridge residence time into
a correction field within the header of the message.

A multi port device that is not a Master or Slave clock but a
bridge between the two. Forwards and corrects Sync and
Follow_Up messages only. Correction achieved by addition of
the bridge residence time + the peer-to-peer link delay, into a
correction field within the header of the message.

A device that configures and monitors clocks.

Ordinary Clock

Boundary Clock

End-to-end Transparent Clock

Peer-to-peer Transparent Clock

Management Node

General Messages

Announce

Follow_Up

Delay_Resp

Pdelay_Resp_Follow_Up

Management

Signaling

Event Messages	

Sync

Delay_Req

Pdelay_Req

Pdelay_Resp

3

Propagation Delay Measurement Mechanisms

There are two mechanisms used in PTP to measure the propagation delay between PTP ports:

The Delay Request-Response Mechanism •	

This mechanism uses the messages Sync, Delay_Req, Delay_Resp and, if required, Follow_Up.

The Peer Delay Mechanism•		
This mechanism uses the messages Pdelay_Req, Pdelay_Resp and, if required, Pdelay_Resp_Follow_Up.
It is restricted to topologies where each peer-to-peer port communicates PTP messages with, at most, one
other such port.

Ports on Ordinary or Boundary clocks can use either mechanism; ports on end-to-end transparent clocks are
independent of these mechanisms, and ports on peer-to-peer transparent clocks use only the peer delay
mechanism. It should also be noted that the two mechanisms do not inter-work on the same communication
path.

Synchronisation

There are two phases in the normal execution of the protocol:

Phase 1 establishes the Master-Slave hierarchy.•	

Phase 2 synchronises the clocks using either of the two mechanisms described above.•	

Establishing the Master-Slave Hierarchy

In each port of any Ordinary or Boundary clock there is a PTP state machine. These state machines use the
‘Best Master Clock Algorithm’ (or BMCA) to establish the Master for the path between two ports. The
statistics of the remote end of a path are provided to each state machine by the Announce message. Since the
local clocks statistics are already known by the state machine, a comparison can be made as to which is the
best Master.

A simple Master-Slave hierarchy is shown in the following diagram. Paths 1, 2, 3, 4, and 5 may contain

transparent clocks, but these clocks do not participate in the Master-Slave hierarchy.

Figure 1 – Simple Master-Slave Hierarchy

(M= Master, S = Slave)

4

Synchronising Ordinary and Boundary Clocks (using the delay request-response mechanism)

Method 1.

After the Master-Slave hierarchy has been established the clock synchronisation phase can start. This consists
of the exchange of PTP timing messages on the communications path between the two clocks.

There are two parts to this synchronisation method:

Measuring the propagation delay between Master and Slave. Performed using the delay request-response 1.	
mechanism.

Performing the clock offset correction. Once the propagation delay is known the Master can send Sync 2.	
and optional Follow_Up messages containing its master timestamp. These are actually sent in part 1 also,
but the ratio of propagation delay measurement to Sync message would usually be quite low, that is, the
propagation delay will be measured less than the clock offset correction.

(1) Measuring Propagation Delay in Clocks supporting the Delay Request-Response Mechanism

t1 = Master Time at point of sending Sync Message.

t2 = Slave Time at point of receiving Sync Message.

t3 = Slave Time at point of sending Delay_Req Message.

t4 = Master Time at point of receiving Delay_Req Message.

Figure 2 – Propagation Delay Message Exchange

Master
time

Slave
time

t1

t2

Sync

Follow_Up

t3

t4

t-ms

t-sm

Delay_Resp

Delay_Req

Timestamps
known by Slave

t2

t1, t2

t1, t2, t3

t1, t2, t3, t4

5

Once the Slave knows the timing of t1, t2, t3, and t4, it can calculate the mean propagation delay (tmpd) of
the messages path. This is calculated from:

The Sync and optional Follow_Up1 messages give the master to slave message propagation time (t-ms).
The Delay_Req and Delay_Resp messages give the slave to master message propagation time (t-sm).

Any asymmetry between t-ms and t-sm introduces an error into the clock offset correction.

(2) Performing the Clock Offset Correction

Once the Master to Slave propagation delay is known by the Slave, the clock correction can occur in the Slave
device.

The Slave uses the Sync message and the optional Follow_Up message to calculate the clock offset from
Master to Slave. This is calculated from

The above is a simple model that does not show any end-to-end transparent clocks. End-to-end transparent
clocks do not serve as Master or Slave clocks but they do insert/update a correction field into event messages
that allows adjustment of timestamps at the Slave device to remove residence times through any transparent
clock devices/bridges. The above model would not include any peer-to-peer transparent clocks as these cannot
coexist on the same communications path as the delay request-response mechanism.

Figure 3 – Basic Synchronisation Message Exchange

1 The Follow_Up message is optional as the t1 timestamp may be sent in the Sync message meaning that the

Follow_Up message is not required.

(t2 – t1) + (t4 – t3)

2

Master
time

Slave
time

t1

t2

Sync

Follow_Up

t2 – t1 – tmpd

6

Method 2.

After the Master-Slave hierarchy has been established the clock synchronisation phase can start.

There are two parts to this synchronisation method:

Peer-to-peer ports maintain a measurement of the link propagation to each peer. They do this using the 1.	
peer delay mechanism.

Performing the clock offset correction. Once the link propagation is known the master can send Sync and 2.	
optional Follow_Up messages containing its master timestamp.

(1) Measuring Link Propagation Delay in Clocks Supporting Peer-to-Peer Path Correction

The link delay between two ports that implement the peer delay mechanism can be measured using the

following exchange of messages.

Figure 4 – Link Delay Measurement

Port 1
time

Port 2
time

t1

t2

Pdelay_Req

t3

t4

t-ms

t-sm

Pdelay_Resp_Follow_Up

Pdelay_Resp

Delay ResponderDelay Requester

t1 = Port 1 Time at point of sending Pdelay_Req Message.

t2 = Port 2 Time at point of receiving Pdelay_Req Message.

t3 = Port 2 Time at point of sending Pdelay_Resp Message.

t4 = Port 1 Time at point of receiving Pdelay_Resp Message.

7

Once Port 1 knows the timing of t1, t2, t3, and t4, it can calculate the mean link delay (tmld). This is calculated
from:

It then uses this value when calculating the correction field for each Sync or Follow_Up message that passes
through the bridge. The outgoing correction field will be the sum of the residence time, the mean link delay
and any correction field from upstream ports.

The Pdelay_Req, Pdelay_resp and optional Pdelay_Resp_Follow_Up2 messages allow the round trip link delay to
be calculated (t-ms + t-sm).

Any asymmetry between t-ms and t-sm introduces an error into the clock offset correction.

(2) Performing the Clock Offset Correction

(t2 – t1) + (t4 – t3)

2

Figure 5 – Basic Synchronisation Message Exchange

Master
time

Slave
time

t1

t2

Sync

Follow_Up

The Slave uses the Sync message and the optional Follow_Up message to calculate the clock offset from
Master to Slave. This is calculated from

A benefit of peer-to-peer path correction is that the path delay of each individual Sync or Follow_Up message
is calculated as it travels along the communication path. It is therefore not affected by a change to the path.
When using this mechanism the clock synchronisation does not require the return path to be calculated as it
does in the basic exchange, i.e. the Delay_Req, Delay_Resp messages shown in Figure 1 do not occur. The path
delay between the Master and Slave in this mechanism is simply contained within the correction field of each
Sync or Follow_Up message.

An added benefit is that the Master has less processing to do as it will not receive any Delay_Req messages.
This can be a major benefit in linear topologies, when many slave clocks are connected to a single master.

2 The Pdelay_Resp_Follow_Up message is optional as the difference between the t2 and t3 timestamps can be returned

solely in the Pdelay_Resp message meaning that the Pdelay_Resp_Follow_Up message would not be required.

t2 – t1 – correctionField

8

Topologies

Different applications favour different topologies. The three main topologies – Hierarchal, Linear and Multiply
Connected – are shown in the following diagrams (with cyclic paths that should be avoided):

Figure 6 – Hierarchical Topology

Figure 7 – Linear Topology

9

Figure 8 – Multiply Connected Topology

Transport of PTP Messages

PTP messages can be transported over several types of protocol. These are listed below.

Table 3 – PTP Transport Protocols

Transport Type

PTP over UDP over IPv4

PTP over UDP over IPv6

PTP over IEEE 802.3/ Ethernet

PTP over DeviceNET

PTP over ControlNET

PTP over IEC 61158 Type 10 (Fieldbus)

The mapping of each PTP message into the lower layer protocols is shown in the following sections.

10

Ethernet Frame Ethernet Header Client Data Field

PTP Message

UDP Data

IP Data

Ethernet FCS

UDP Datagram

IPv4 Datagram IP Header

UDP Header

PTP over UDP over IPv4 over Ethernet

When carried over UDP the first byte of the PTP message immediately follows the final byte of the UDP header.

The UDP port number field identifies the UDP datagram as a PTP message.

Figure 9 – PTP Message within UDP over IPv4 over Ethernet

PTP over UDP over IPv6 over Ethernet

When carried over UDP the first byte of the PTP message immediately follows the final byte of the UDP header.
The UDP port number field identifies the UDP datagram as a PTP message.

Ethernet Frame Ethernet Header Client Data Field

PTP Message

UDP Data

IP Data

Ethernet FCS

UDP Datagram

IPv6 Datagram IP Header

UDP Header

Figure 10 – PTP Message within UDP over IPv6 over Ethernet

11

Ethernet Frame Ethernet Header Client Data Field

PTP Message

Ethernet FCS

PTP over IEEE 802.3/Ethernet

When carried over Ethernet the first byte of the PTP message occupies the first byte of the client data field
of the Ethernet frame. The Ethernet type field is set to 0x88F7 and identifies the client data field as a PTP

message.

Figure 11 – PTP Message within an Ethernet Frame

PTP Message Formats

All PTP Messages consist of a header, body and optional suffix.

PTP Message

OptionalVariable length34 Bytes

Body SuffixHeader

Figure 12 – Basic PTP Message Format

12

Header

The header is common to all PTP messages. It is 34 bytes long and its format is shown below.

PTP Message Header Format

Bits

messageType

Octets Offset

messageLength

1 0

7 0123456

versionPTPReserved 1 1

2 2

1 4

1 5

2 6

8 8

4 16

10 20

2 30

1 32

1 33

domainNumber

sequenceID

sourcePortIdentity

Reserved

correctionField

Flags

Reserved

logMessageInterval

controlField

The messageType field defines which type of message is contained in the body of the message, for example
Sync, Delay_Req, Delay_Resp etc.

The messageLength field defines the full length of the PTP message, i.e. including the header, body and any
suffix (but excluding any padding).

The domainNumber field identifies the domain the PTP message belongs to. A domain is a logical grouping
of clocks that synchronise to each other using the protocol, but that are not necessarily synchronised to clocks
in another domain.

The flags field contains various flags to indicate status.

The correctionField contains a correction value in nanoseconds for residence time within a transparent clock
and will also include the path delay for peer-to-peer transparent clocks.

The sourcePortIdentity field identifies the originating port for this message.

The sequenceID field contains (with some exceptions) a sequence number for individual message types.

The controlField is a historical field whose value depends on the message type; it conforms to version 1 of
the standard. The field is similar to the messageType field but with less options.

The logMessageInterval field is determined by the type of the message.

Further information on the specific details of each field can be found in standard IEEE P1588.

Table 4 – PTP Header Format

13

Body

As previously discussed there are several different types of PTP message. Each is discussed below.

Announce Message

The announce message is used to indicate the capabilities of a clock to the other clocks on the same domain.
This allows the Master-Slave hierarchy to be established. (See the IEEE 1588 standard for the specific field

details.)

Announce Message Format

Bits
Octets Offset

34 0

7 0123456

10 34

2 44

1 46

1 47

4 48

1 52

8 53

2 61

1 63

header (13.3)

originTimestamp

grandmasterIdentity

grandmasterPriority2

grandmasterClockQuality

grandmasterPriority1

Reserved

currentUtcOffset

timeSource

stepsRemoved

Table 5 – Announce Message Format

Sync Message

The sync request message is sent by a Master clock and contains the Master time when the Sync message was
sent. If the Master clock is a two-step clock, the timestamp in the Sync message will be set to zero and the
actual sending timestamp will be sent afterwards in the associated Follow_Up message. Sync messages are

sent in both types of PTP delay measurement mechanism.

Sync Message Format

Bits
Octets Offset

34 0

7 0123456

10 34

header (13.3)

originTimestamp

Table 6 – Sync Message Format

14

Delay_Req Message

The format of the Delay_Req message is identical to the Sync message. The Delay_Req message is sent by a
Slave clock and contains the Slave time when the Delay_Req message was sent. Delay_Req messages are sent

only in the delay request-response mechanism.

Follow_Up Message

The Follow_Up message is optionally sent by a Master clock and contains the Master time when the Sync
message was sent. It is used when the Master clock is a two-step clock, i.e. two steps – Sync message and

Follow-Up message. Follow_Up messages are sent in both types of PTP delay measurement mechanism.

Delay_Resp Message

The Delay_Resp message is sent by the Master clock and contains the Master time when the Delay_Req

message was received. Delay_Resp messages are sent only in the delay request-response mechanism.

The requestingPortIdentity field contains the sourcePortIdentity field (from the header of the associated
Delay_Req message) of the Slave that requested this Delay_Resp message.

Delay_Req Message Format

Bits
Octets Offset

34 0

7 0123456

10 34

header (13.3)

originTimestamp

Table 9 – Delay_Resp Message Format

Table 8 – Follow_Up Message Format

Table 7 – Delay_Req Message Format

Follow_Up Message Format

Bits
Octets Offset

34 0

7 0123456

10 34

header (13.3)

preciseOriginTimestamp

Delay_Resp Message Format

Bits
Octets Offset

34 0

7 0123456

10 34

10 44

header (13.3)

receiveTimestamp

requestingPortIdentity

15

Pdelay_Req Message

The Pdelay_Req message is sent by a ‘delay requester’ peer-to-peer clock and contains the ‘delay requester’
peer-to-peer clock time when the Pdelay_Req message was sent. Pdelay_Req messages are sent only in the

peer delay mechanism.

Pdelay_Resp Message

The Pdelay_Resp message is sent by a ‘delay responder’ peer-to-peer clock and contains the ‘delay responder’
peer-to-peer clock time when the Pdelay_Req message was received. Pdelay_Resp messages are sent only in

the peer delay mechanism.

The requestingPortIdentity field contains the sourcePortIdentity field (from the header of the associated
Pdelay_Req message) of the ‘delay requester’ peer-to-peer clock that requested this Pdelay_Resp message.

If the ‘delay requester’ peer-to-peer clock is a two-step clock, the timestamp in the Pdelay_Resp message will
be set to zero and the actual sending timestamp will be sent afterwards in the associated
Pdelay_Resp_Follow_Up message3.

Table 11 – Pdelay_Resp Message Format

Table 10 – Pdelay_Req Message Format

Pdelay_Req Message Format

Bits
Octets Offset

34 0

7 0123456

10 34

10 44

header (13.3)

originTimestamp

reserved

The reserved field is used to make the message length the same as the Pdelay_resp message as some
networks have different transmit times for different bridge message lengths which would introduce asymmetry
errors.

Pdelay_Resp Message Format

Bits
Octets Offset

34 0

7 0123456

10 34

10 44

header (13.3)

receiveReceiptTimestamp

requestingPortIdentity

3 There is also the option of sending a turnaround time instead of the sending timestamp.

16

Pdelay_Resp_Follow_Up Message

The Pdelay_Resp_Follow_Up message is optionally sent by a ‘delay responder’ peer-to-peer clock and contains
the ‘delay responder’ peer-to-peer clock time when the Pdelay_Resp message was sent. It is used when the
‘delay responder’ is a two-step clock, i.e. two steps – Pdelay_Resp message and Pdelay_Resp_Follow_Up
message. This message also has the option of sending a turnaround time instead of the sending timestamp.
The turnaround time of receiving the Pdelay_Req to sending back the Pdelay_Resp. Pdelay_Resp_Follow_Up
messages are sent only in the peer delay mechanism.

Signalling Message

The targetPortIdentity field contains the address of the target port/ports of this message.

TLV = Type, Length, Value Identifier

Table 13 – Signalling Message Format

Table 12 – Pdelay_Resp_Follow_Up Message Format

The requestingPortIdentity field contains the sourcePortIdentity field (from the header of the associated
Pdelay_Req message) of the ‘delay requester’ peer-to-peer clock that requested this Pdelay_Resp message.

Pdelay_Resp_Follow_Up Message Format

Bits
Octets Offset

34 0

7 0123456

10 34

10 44

header (13.3)

responseOriginTimestamp

requestingPortIdentity

Signalling Message Format

Bits
Octets Offset

34 0

7 0123456

10 34

N 44

header (13.3)

targetPortIdentity

One or more TLVs

17

 Management Message

PTP management messages are used to transmit information from a clock to a node manager and from a
node manager to one or more clocks.

The tlvType field shall be set to MANAGEMENT (0x0001).

The lengthField is the length of the TLV. The format is 2+N where N is an even number.

The managementID field defines the type of management message. Examples of which are Initialize, Enable_
Port, Disable_Port. See the IEEE 1588 standard for the full list of management IDs.

The dataField is managementID dependant. See the IEEE 1588 standard for details.

Table 15 – ManagementTLV field Format

Table 14 – Management Message Format

The targetPortIdentity field contains the address of the target port/ports of this message.

The startingBoundaryHops field contains the number of boundary clocks that this message is allowed to be
retransmitted by.

The boundaryHops field contains the number of remaining boundary clock retransmissions left for this
particular management message request or reply. This field is an identical value to the startingBoundaryHops
field for the initial transmission from the issuing clock/node.

The actionField contains the type of action that this management message is required to perform. The types
are Get, Set, Response, Command and Acknowledge.

The managementTLV fields are shown below.

Management Message Format

Bits
Octets Offset

34 0

7 0123456

10 34

1 44

1 45

1 46

1 47

M 48

header (13.3)

targetPortIdentity

managementTLV

Reserved

actionFieldReserved

boundaryHops

startingBoundaryHops

2 0

2 2

2 4

N 6

tlvType

lengthField

dataField

managementID

2

2

2

N

0

2

4

6

Bits
Octets TVL

Offset7 0123456

18

Testing and Introducing Impairments

While IEEE 1588v2 PTP uses an exchange of specially designed packets to calculate the difference in time
and frequency between two clocks, the overall precision of an Ethernet-based mobile backhaul is dependant
on many factors. Different topologies, equipment and traffic management introduce different amounts of
latency and synchronisation jitter. Servicing delays impact the accuracy of the timestamp which, in turn,
reduces the precision of the clock adjustment calculations. Synchronisation between clocks can drift when
the frequency offset between the master and the slave is being corrected. Additionally network equipment
such as switches, routers, and gateways can all introduce latency and wander errors.

Clearly, there is a need to test network synchronisation before and after the deployment of a network and/or
equipment. One way is to use Calnex Solution’s Paragon Sync test solution, configured as shown below:

Figure 13 – IEEE 1588v2 Example Test Setup

Configured in this way, the Calnex Paragon can:

Perform analysis of 1588v2 messages and timestamps as shown in the graphs below.•	

Run all the ITU-T G.8261 test cases.•	

Capture a PDV profile from a real network or trial network over long periods (many days) and replay the •	
same profiles back in the lab during testing.

Add impairments to PTP messages:•	

Lost PTP message – ability to delete a specific PTP message type.•	
Duplicated PTP message – ability to duplicate a specific PTP message type.•	
Mis-ordered PTP message – ability to mis-order specific PTP message types or mis-order between types, •	
e.g. swap order of a Sync and Follow_Up message.

Insert PDVs onto a specific PTP message type on forward and reverse path. This allows path asymmetry to •	
be tested.

Ability to insert an equivalent delay value into the correction field of the PTP message header. This •	

allows the emulation of a transparent clock.

19

Two-way Timing Protocol, PDVs and Wander

The Sync PDV (Packet Delay Variation) graph plots the
PDV based on the Sync message arrival time and its
embedded timestamp. (When using a 2-step clock, the
timestamp in the Follow_Up message is used instead
of the timestamp in the Sync.) This determines the PDV
from the Master to the Slave. If captured next to the
Slave device, this shows the actual PDV experienced by
the Sync message as it travels from Master to Slave.

The Delay_Req PDV is calculated using the arrival
time of the Delay_Req messages and the embedded
timestamp in the corresponding Delay_Resp messages
(t4). This graph shows the PDV from the Slave to
the Master, as experienced by Delay_Req messages
travelling to the Master clock.

Sync PDV (1-step and 2-step)

895.477518885894.977768110894.478017335
Offset=0.002 ppm

- 0.000296349

0.000645879

Time Interval
Error (TIE)
vs Nominal
(seconds)

MKR-1:x=894.874691063, y=0.000360070
MKR-2:x=894.874691063, y=0.000360070

Delta: x=0.000000000, y=0.000000000 x=895.477518835
y=0.000444870

T (a)

01

Delay_Request PDV

895.477518885894.977768110894.478017335
Offset=0.002 ppm

- 0.000296349

0.000645879

Time Interval
Error (TIE)
vs Nominal
(seconds)

MKR-1:x=894.874691063, y=0.000360070
MKR-2:x=894.874691063, y=0.000360070

Delta: x=0.000000000, y=0.000000000 x=895.477518835
y=0.000444870

T (a)

02

20

The Follow_Up PDV graph plots the variation in arrival
time between Sync and Follow_Up messages. This can
indicate whether or not there is a regular gap between
these messages and whether the gap can affect the
operation of the Slave clock recovery. An excessive gap
may lead to the Slave discarding the corresponding
Sync message as it time-outs waiting for its arrival,
hence leading to a reduction in the number of timing
events received by the Slave clock recovery circuit.

The Slave Clock Wander is a measurement of the
stability of the recovered Slave clock. The embedded
timestamp in the Delay_Req message (T3) is plotted
while synchronised to the Master. This gives the ability
to monitor the Slave clock wander on the Ethernet
interface without needing access to the actual
recovered clock signal.

The Round Trip Delay (RTD) variation graph plots
the variation in {(t2-t1)+(t4-t3)}/2, which is the RTD
calculation performed by the Slave. This indicates the
stability of this RTD, and allows the user to assess
whether changes in RTD are impacting the Slave clock
recovery and stability. Significant variation will stress
the Slave’s clock recovery circuit to determine the true
path delay. Floor delay is an important parameter in
some Slave clock implementations. If the floor delay
moves up for long periods, this may cause wander in
the recovery clock. Other designs are reported to use
certain bands of delay e.g. only the message pairs that
exhibit a RTD between x% and y% of the total range
measured. If the density therefore changes, this may
cause wander in the recovered clock.

The Asymmetry graph plots the difference between
Master > Slave delay and Slave > Master delay. This
variation is effectively a variation in symmetry, which
is a basic assumption of IEEE-1588. If a variation is
detected, the user can assess its impact on Master and
Slave clock operation. As the slave assumes symmetry,
changes in symmetry will cause errors in the calculation
of time. Significant, sustained changes in path
symmetry may lead to wander in the recovered clock.

895.477518885894.977768110894.478017335
Offset=0.002 ppm

- 0.000296349

0.000645879

Time Interval
Error (TIE)
vs Nominal
(seconds)

MKR-1:x=894.874691063, y=0.000360070
MKR-2:x=894.874691063, y=0.000360070

Delta: x=0.000000000, y=0.000000000 x=895.477518835
y=0.000444870

T (a)

Follow_Up PDV

03

Slave Clock Wander

895.477518885894.977768110894.478017335
Offset=0.002 ppm

- 0.000296349

0.000645879

Time Interval
Error (TIE)
vs Nominal
(seconds)

MKR-1:x=894.874691063, y=0.000360070
MKR-2:x=894.874691063, y=0.000360070

Delta: x=0.000000000, y=0.000000000 x=895.477518835
y=0.000444870

T (a)

04

895.477518885894.977768110894.478017335
Offset=0.002 ppm

- 0.000296349

0.000645879

Time Interval
Error (TIE)
vs Nominal
(seconds)

MKR-1:x=894.874691063, y=0.000360070
MKR-2:x=894.874691063, y=0.000360070

Delta: x=0.000000000, y=0.000000000 x=895.477518835
y=0.000444870

T (a)

Round Trip Delay Variation

05

Asymmetry in Path Delay

895.477518885894.977768110894.478017335
Offset=0.002 ppm

- 0.000296349

0.000645879

Time Interval
Error (TIE)
vs Nominal
(seconds)

MKR-1:x=894.874691063, y=0.000360070
MKR-2:x=894.874691063, y=0.000360070

Delta: x=0.000000000, y=0.000000000 x=895.477518835
y=0.000444870

T (a)

06

21

The Sync Inter-Packet Gap (IPG) graph shows the
variation in arrival time of the Sync messages.
There is no requirement for the messages to arrive
in a regular spacing as each carries a timestamp.
However, excessive variation will lead to periods
where the number of Sync messages being received
is significantly reduced. If this occurs at the same time
as excessive PDV in the network, the pre-selection
algorithms in some Slave devices may lead to very
few Sync messages being selected to be passed to
the clock recovery circuit. This can lead to increased
wander on the output.

The Delay-Resp Round Trip Delay (RTD) graph shows
the in time taken by the Master to respond to the
Delay_Req message with a Delay_Resp message.
There is no specification for this parameter. The Slave
must wait for the Delay_Resp message to arrive in
order to be informed of the t4 time. Without this
information, it can not determine the Round Trip Delay.
The Slave will not wait forever for the response to
arrive and will have a time-out implemented. Should
the Master’s response time significantly increase (e.g.
when multiple Slaves all send Delay_Req messages
concurrently), a time-out may be invoked. This will
lead to a significant reduction in the number of RTD
calculation events available to the Slave and hence lead
to increased wander on the recovered clock.

Sync IPG

895.477518885894.977768110894.478017335
Offset=0.002 ppm

- 0.000296349

0.000645879

Time Interval
Error (TIE)
vs Nominal
(seconds)

MKR-1:x=894.874691063, y=0.000360070
MKR-2:x=894.874691063, y=0.000360070

Delta: x=0.000000000, y=0.000000000 x=895.477518835
y=0.000444870

T (a)

07

Delay_Resp Round Trip Delay

895.477518885894.977768110894.478017335
Offset=0.002 ppm

- 0.000296349

0.000645879

Time Interval
Error (TIE)
vs Nominal
(seconds)

MKR-1:x=894.874691063, y=0.000360070
MKR-2:x=894.874691063, y=0.000360070

Delta: x=0.000000000, y=0.000000000 x=895.477518835
y=0.000444870

T (a)

08

The 1588v2 Header capture on the Calnex Paragon can also help troubleshoot issues with Master and Slave
clocks. The screen above shows a deviation to the normal Sync-Delay_Req-Delay_Resp sequence of messages.
In this case, a Delay_Req message (Seq ID 44687) has not had a Delay_Resp response. A batch of Sync
messages is also sent by the Master with no response; this can give insight into the operation and interaction
between Master and Slave devices.

22

For more information on the Calnex Paragon Sync, and to
take advantage of Calnex’s extensive experience in sync and
packet testing technologies, please contact Calnex Solutions
on +44 (0) 1506 671 416 or email: info@calnexsol.com

References

IEEE Instrumentation and Measurement Society,
IEEE Std 1588™-2008 - Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and
Control Systems

Tan, Alexander E. (2007), IEEE 1588 Precision Time Protocol
Time Synchronization Performance

Diamond, Pat. (2008), Synchronization for Future Mobile
Networks

23

Calnex Solutions Ltd
Springfield, Linlithgow
West Lothian EH49 7NX
United Kingdom
tel: +44 (0) 1506 671 416
email: info@calnexsol.com

This information is subject to change without notice

© Calnex Solutions Ltd, 2009

www.calnexsol.com

