marca - McAdam’s RISC Computer Architecture
Implementation Details

Wolfgang Puffitsch
February 2, 2007

1 General
e 16 16-bit registers

16KB instruction ROM (8192 instructions)

e 8KB data RAM

256 byte data ROM

75 instructions

16 interrupt vectors

2 Internals
The processor features a 4-stage pipeline:
e instruction fetch
e instruction decode
e execution/memory access
e write back

This scheme is similar to the one used in the MIPS architecture, only execution
and write back stage are drawn together. For our architecture does not support
indexed addressing, it does not need the ALU’s result and can work in parallel,
having the advantage of reducing the possible hazards.

Figure 1 shows a rough scheme of the internals of the processor.

2.1 Branches

Branches are not predicted and if executed they stall the the pipeline, leading
to a total execution time of 4 cycles. The fetch stage is not stalled, the decode
stage however is stalled for two cycles to compensate that.

execute

Figure 1: Internal scheme

2.2 Instruction fetch

This stage is not spectacular: it simply reads an instruction from the instruction
ROM, and extracts the bits for the source and destination registers.

2.3 Instruction decode

This stage translates the bit-patterns of the opcodes to the signals used inter-
nally for the operations. It also holds the register file and handles access to it.
Immediate values are also constructed here.

2.4 Execution / Memory access

The execution stage is the heart and soul of the processor: it holds the ALU,
the memory /IO unit and a unit for interrupt handling.

2.4.1 ALU

The ALU does all arithmetic and logic computations as well as taking care of
the processors flags (which are organized as seen in table 1).

Bit 15 Bit 0
L[[[[[[[[PIT[NJV][C][Z]

Table 1: The flag register

Operations which need more than one cycle to execute (multiplication, di-
vision and modulo) block the rest of the processor until they are finished.
2.4.2 Memory/IO unit

The memory/IO unit takes care of the ordinary data memory, the data ROM
(which is mapped to the addresses right above the RAM) and the communication

to peripheral modules. Peripheral modules are located within the memory/IO
unit and mapped to the highest addresses.

The memories (the instruction ROM too) are Altera specific; we decided
not to use generic memories, because Quartus can update the contents of its
proprietary ROMs without synthesizing the whole design. Because all memories
are single-ported (and thus fairly simple) it should be easy to replace them with
memories specific to other vendors.

We also decided against the use of external memories; larger FPGAs can
accommodate all addressable memory on-chip, so the implementation overhead
would not have paid off.

Accesses which take more than one cycle (stores to peripheral modules and
all load operations) block the rest of the processor until they are finished.

Peripheral modules The peripheral modules use a slightly modified version
of the SimpCon interface. The SimpCon specific signals are pulled together to
records, and the words which can be read/written are limited to 16 bits. For
accessing such a module, one may only use load and store instructions which
point to aligned addresses.

UART The built-in UART is derived from the sc_uart from Martin Schoberl.
Apart from adapting the SimpCon interface, an interrupt line and two bits for
enabling/masking receive (bit 3 in the status register) and transmit (bit 2) in-
terrupts. In the current version address OxFFF8 (-8) correspond to the UART’s
status register and address 0xFFFA (-6) to the wr_data/rd_data register.

2.4.3 Interrupt unit

The interrupt unit takes care of the interrupt vectors and, of course, the trig-
gering of interrupts. Interrupts are executed only if the global interrupt flag is
set, none of the other units is busy and the instruction in the execution stage is
valid (it takes 3 cycles after jumps, branches etc. until a new valid instruction
is in that stage).

Instructions which cannot be decoded as well as the “error” instruction trig-
ger interrupt 0; the ALU can trigger interrupt 1 (division by zero), the memory
unit can trigger interrupt 2 (invalid memory access). In contrast to all other in-
terrupts, these three interrupts do not repeat the instruction which is executed
when they occur.

2.5 Write back

The write back stage passes on the result of the execution stage to all other
stages.

3 Assembler

The assembler spar (SPear Assembler Recycled) uses a syntax quite like usual
Unix-style assemblers. It accepts the pseudo-ops .file, .text, .data, .bss,
.align, .comm, .lcomm, .org and .skip with the usual meanings. The mnemonic
data initializes a byte to some constant value. In difference to the instruction

© 0 N o U A W N e

[T S~ S S S S
o oA W N = O

set architecture specification, mod and umod accept three operands (if a move is
needed, it is silently inserted).

The assembler produces three files: one file for the instruction ROM, one
file for the even bytes of the data ROM and one file for the odd bytes of the
instruction ROM. The splitting of the data is necessary, because the data mem-
ories internally are split into two 8-bit memories in order to support unaligned
memory accesses without delays.

Three output formats are supported: .mif (Memory Initialization Format),
.hex (Intel Hex Format) and a binary format designed for download via UART.

4 Resource usage and speed

The processor was synthesized with Quartus II for the Cyclone EP1C12Q240C8
FPGA with 12060 logic cells and 29952 bytes of on-chip memory available.
The processor needs ~3550 logic cells or 29% when being compiled for max-
imum clock frequency, which is ~60 MHz. When optimizing for area, it needs
~2600 logic cells or 22% at ~25 MHz.
The processor uses 24832 bytes or 83% of on-chip memory.

5 Example

5.1 Reversing a line

In listing 1 one can see how to interface the uart via interrupts. The program
reads in a line from the UART and the writes it back reversed. The lines 1 to
4 show how to instantiate memory (the two bytes defined form the DOS-style
end-of-line). The lines 7 to 25 initialize the registers and register the interrupt
vectors, line 28 builds a barrier against the rest of the code.

The lines 32 to 76 form the interrupt service routine. It first checks if it is
operating in read or in write mode. When reading, it reads from the UART and
stores the result. A mode switch occurs when a newline character is encountered.
In write mode the contents of the buffer is written to the UART and switching
back to read mode is done when finished.

In figure 2 the results of the simulation are presented.

Listing 1: Example for the UART and interrupts

.data
data O0x0A
data 0x0D

buffer:

.text

;53 initialization
1dib r0, —8 ; config/status
1dib rl, —6 ; data
1dil r2, lo(buffer) ; buffer address
ldih r2, hi(buffer) ; buffer address
Idib r3, O0x0A ; newline character
Idib r4, 0x0D ; carriage return

17
18
19
20
21
22
23
24

25

32

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

73

Idib

1dib

stvec

1dib
store

sei

;33 loop forever
br loop

loop:

;55 ISR

isr:
cmpi
brnz

;55 reading
read_mode:
load

cmp
brnz

1dib
store
1dib
reti

read_CR:
cmp
brnz
reti

read_cont :
storel
addi
reti

;55 writing
write_mode:
addi

cmpi
brnz

1dil
Idih

1dib
store
1dib
reti

write_cont:
loadl
store
reti

r5, O
r7, isr
r7, 3

r7, (1 << 3)
r7, 10

r5, 0
write_mode

r7, rl
r7, r3
read_CR

7, (1 << 2)
r7, r0
r5, 1

r7, r4
read_cont

r7, r2
r2, 1
r2, —1
r2, —1

write_cont

r2, lo(buffer)
r2, hi(buffer)

7, (1 << 3)
r7, r0

r5, 0
r7, r2
r7, rl

mode

register isr

enable receive

enable interrupts

check mode

read data

interrupts

change mode upon newline

do the change

ignore carriage return

store date

change mode if there

is no more data

correct pointer to buffer

do the change

write data

Simulation mode: Timing E|

5.2

Figure 2: Simulation results

Computing factorials

[]
estor Time Bar | T3 o] e 737 ue Interva 0001 s St en|
Vagew |PPE_ f34%us TWgmus ABIPus 2r7feus WIJw dl6gdus 4B0Bus 6%52us 62498us 6sdus 7e3fdus EIZBus 0272w or2lbus|
Nome | Jobea | et

o)
[clock HO
[] ewese| BO
[et B0 |
[Betn | B0 o
=] |:2wa B0 |
=3 el B1]
(2| O evou | BOI Ll 154 o X ot b o SN Gy OGN OGN RGO GG S) S o
(] |:exL B0 i | | 1
=4 et 81 UL i FLnrt FLnn T
i decod HFFFE FFF5
2 decod. H FFF& Il FFF&
[@ decod.. | oo |} @] [N, GRS § 007
= H 000 i sy
= H 000D 0000
|| @ decod.. | Hooo o000 o007 [
=2 decod H 0000 I 0000
§ decod Hooos | jC[_o00& i 0031 0032 0033) 4 000A 0008

The example in 2 computes the factorials of 1 ...9 and writes the results to the
PC via UART. Note that the last result transmitted will be wrong, because it

© 0 N O U A W N e

s T
ST SR S}

is truncated to 16 bits.

Listing 2: Computing factorials

P R A R R R R RN B R R

factorial

P R R R A A A A A A AR A AR A A AR AR AR AR AR AR AR AR i i i i i i]
compute factorials of 1 to 9 and write results to
the PC via UART

29090909 9 9 9 9 9 9 9 9 9 9 9 5 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3333y)y

[

.data

;55 the numbers to be written are placed here
iobuf:

0x0A

0x0D

data
data
data
data
data
data
data
data

(el oMo o N

;55 stack for recursive calls

stack:

of factorial ()

LA AR R R A A A A A A A A A AR A A R AR AR AR AR AR AR AR AN A i]
main ()

(AR AR R L LR LR AL L A R A A A R A A R A AL A L S A A A A A A A A AR AR A A A A AR A A A A A A A A A A AR A A AR A A]
Idib rl5, 1 ; number to start
Idib r5, 10 ; number to stop

1dil

ldih
1dil
1dih

1dib
1dib

rl,
rl,
r2,
r2,

r6 ,
r7,

lo(
hi (
lo (
hi (

stack) ;
stack)

factorial)
factorial)

0x30 ;

10

setup for

setup for

factorial ()

convert ()

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

1dil
l1dih
1dil
Idih

1dib
1dib
store

1dil
Idih
stvec

1dib

loop:

wait

mov
call
call

: getfl
btest
brnz

addi
cmp
brnz

br

r8,
r8,

r9,

rl2
rll,
rll,

rl2,
rl2
rl2,

rl2

r0,
r2,
r9,

rl3
rl3,

wait

rls,
rls,

loop

exit

lo(iobuf)
hi(iobuf)
lo(convert)
hi(convert)
-8

(1 << 2)
rl2
lo(isr)
hi(isr)

3

—6
rld
r3
r3

4

1

r5

enable write interrupts

register isr() to be called upon
interrupt #3

address where to write data
to the UART

r0 is the argument
call factorial ()
call convert ()

interrupts still enabled?

loop

stop here after all

R2NE 2N I A R BN R B B B B B R B R RN B B B B R H HS B I B B B B B B
converting content of r4 to a

(AR AR A A A A]
string

LA AR N N A R L A R A B R B R A)
convert :

addi

convert_loop:

umod
add
storel
addi

udiv

cmpi
brnz

sei
jmp

r8,
rd ,
rlo,
rl0,
r8,
r4

rd ,

2

r7, rl0
r6, rl0
r8

1

r7, rd

0

convert_loop

the conversion

next digit

trigger write

7909009999999 333333333333

write out content of

iobuf

7999999999999 9999933333333 333

isr:

cmpi
brz

addi
loadb

store

reti

r8,

iobuf

written

r8,
rl0,
rl0,

—1
r8
rl2

)

)

I R R R R R R R R R R R

reached end?

write data to UART

written:
getshfl
bclr
setshfl
reti

3999999399333y

compute factorial

(AR EEERESERER AN AR AR)
;33 recursively
;33 argument:

rl0
rl0,
rl0

;55 return value:

IR R A R R R R R R R R R R R R R R

7999999999999 3)

factorial:
cmpi
brule

store
addi
store
addi

addi
call

addi
load
addi
load

mul
jmp
fact_leaf:
1dib
jmp

I R R R R R R R R

4

r0
r4
r0, 1
fact_leaf
r0, rl
rl, 2
r3, rl
rl, 2
r0, —1
r2, r3
rl, =2
r3, rl
rl, -2
r0, rl
10, rd, r4
r3
rd, 1
r3

clear interrupt flag

reached end?

push argument and return
address onto stack

call factorial(r0—1)

pop argument and return

address from stack

return rOxfactorial (r0—1)

factorial (1)

6 Versions Of This Document

2006-12-14: Draft version 0.1
2006-12-29: Draft version 0.2

o A few refinements.

2007-01-22: Draft version 0.3

e Added another example.

2007-02-02: Draft version 0.4

e Updated resource usage and speed section.

1

