

MESI_ISC
Specification

 Draft

Author: Yair Amitay

yair.amitay@yahoo.com

www.linkedin.com/in/yairamitay

Rev. 0.12

January 2013

mailto:yair.amitay@yahoo.com
http://www.linkedin.com/in/yairamitay

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.12 ii

This page has been intentionally left blank.

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.12 iii

Revision History

Rev. Date Author Description

0.10 1/3/2013 Yair

Amitay

Draft, Under Construction/

0.11 1/8/2013 Yair

Amitay
 Stabilized the Coherency Systems chapter.

 Stabilized the MESI_ISC Coherency Concept

chapter.

 Add and improve the Examples Diagrams.

 Start stabilized the Architecture chapter.

0.12 1/31/2013 Yair

Amitay
 Add MESI 'State Machine of MESI_ISC'

section.

 Add Appendix – Notations.

 Add initial description of the 'Masters

Definition and Requirements' section.

 New section added: 'Legacy and coherence

Busses Definition (Under Construction)'.

 Split the 'Architecture' chapter to 'Coherence

System Architecture' and 'MESI_ISC

Architecture'.

 Add description for the IO ports.

 Bug fixes.

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.12 iv

Contents
Introduction ... 1

Project Purpose ... 1

Coherence Systems ... 2

Definition of a Coherence System .. 2

Example of a Coherence System .. 3

MESI Coherency Protocol .. 6

MESI_ISC Coherency Concept .. 7

MESI State Machine of MESI_ISC .. 7

MESI_ISC Coherency Protocol .. 9

Coherency operation for a write miss ... 11

Coherency operation for a read miss .. 12

Coherency operation for a write to a Shared line ... 13

Example Diagrams for Coherency Scenarios ... 14

A write miss to a an Invalid location .. 14

A write miss to a Modified location in other master's cache .. 15

Two parallel write misses to the same location which is Invalid 16

A write miss and a parallel read miss to two different addresses 17

Coherence System Architecture .. 18

Coherence System Architecture .. 18

Coherency Operations ... 19

System Performance and Memory Mapping .. 19

Masters Definition and Requirements (Under Construction) 20

Legacy and coherence Busses Definition (Under Construction) 21

Integration MESI_ISC to Existing Systems (Under Construction) 21

MESI_ISC Architecture .. 22

Main bus (Under Construction) .. 22

Coherence Bus (Under Construction) ... 22

MESI_ISC Configuration (Under Construction) .. 22

Clock and Reset (Under Construction) ... 22

Micro Architecture .. 23

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.12 v

Micro-Architecture structure (Under Construction) ... 23

Verification .. 25

Verification Environment (Under Construction) .. 25

Validation of Data Consistency ... 26

Validation of MESI Protocol ... 26

Random Stimulus .. 26

Timing, Power and Area ... 27

Design Environment ... 28

(Under Construction) .. 28

Tools .. 28

Synthesis ... 28

Simulation ... 28

Lint .. 28

IO Ports ... 29

Waveforms .. 31

Open Issues ... 32

Appendix – Notations ... 33

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 1 of 10

1.

Introduction

The MESI InterSection Controller (ISC) is a coherence system controller. It supports the

MESI coherence protocol and it synchronizes the memory requests of the system masters.

It enables to keep the consistency of the data in the memory and in the local caches.

Project Purpose

A coherence system contains several components that, together, enable the data

consistency. The major elements of the coherency mechanism are the coherency

controller, the coherency masters, and the coherency buses.

The purpose of this project is to provide the following elements:

1. A synthesizable controller core with a complete environment of verification,

synthesis, and documentation.

2. Instructions for integrating MESI_ISC to a system.

3. A definition and requirements of the coherence system masters.

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 2 of 10

2.

Coherence Systems

Definition of a Coherence System

A coherency system is a system in which all the different copies of the same memory

address are consistency. It means that if a master writes a certain data to a memory

address then any other master that accesses this address reads the update data. One of the

cases that an inconsistency can occur is when the system masters have memory caches.

Without special care, it is possible that a cache or the memory contain not update data.

A system is coherent if it obeys all the following three rules:

Rule 1

Time Master Address Write Data Read Data

T1 M1 A1 D1

T2 M1 A1 D1

T2 > T1

Rule 2

Time Master Address Write Data Read Data

T1 M1 A1 D1

T2 M2 A1 D1

T2 > T1

Rule 3

Time Master Address Write Data Read Data Comment

T1 M1 A1 D1

T2 M2 A1 D2

T3 M3 A1 D2

T4 M3 A1 D2 It is not allowed to read D1 at

this point

T4 > T3 > T2 > T1

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 3 of 10

Example of a Coherence System

For simplification, in the MESI_ISC project the described systems contain only L1 (level

1 cache) and M2 (level 2 memory). Data consistency can be kept also in more

complicated systems, such as systems with L2 or M3, with the suitable changes.

Figure 1 describes an example of a basic system. It contains a main memory and three

masters. The masters are connected to the main memory and all of them can access the

memory through the arbiter (matrix). A write action of a master has three stages. First the

master performs a read access to the main memory and the requested memory data is

copied to the master`s cache. Then the local copy of the data in the cache is updated with

the write data. Later, the master may evict the cache line that contains the update data and

write it back to the memory. Data inconsistent can occur in several cases. The following

scenario describes an example of data inconsistent:

1. Master 1 write data D1 to address A1

a. Master 1 performs a read access to A1 in the main memory.

b. The data of A1 in the main memory, D0, is copied to the local cache of

master 1.

c. The data of A1 in the local cache is overwritten with the written data, D1.

2. Master 2 read from address A1

a. Master 2 performs a read access to A1 in the main memory.

b. The data of A1 in the main memory, D0, is copied to the local cache of

master 2.

The data of A1 in the memory in not update and Master 2 read the wrong data.

In a basic system data inconsistent can be prevented by software synchronization between

the masters.

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 4 of 10

Basic Cached Multi Master system Address, Write Data, Controls

Read Data

Main Memory

M3

Cache

M2

Cache

M1

Cache

Figure 1: Basic System

Figure 2 describes an example of a hardware coherency system. It is similar to the basic

system with some changes. Each master monitors (snoops) the actions of all other master.

A master can postpones main memory accesses of the other masters. A master postpones

a memory access of other master when it has a data copy of a certain memory address in

its cache and the other master tries to access this memory location. It evicts the cache line

that contains the certain data and writes it back to the memory. Then it enables the other

master to continue and access the memory. The following scenario describes an example

which preventing data inconsistent:

1. Master 1 write data D1 to address A1

a. Master 1 performs a read access to A1 in the main memory.

b. The data of A1 in the main memory, D0, is copied to the local cache of

master 1.

c. The data of A1 in the local cache is overwritten with the written data, D1.

2. Master 2 read from address A1

a. Master 2 starts to perform a read access to A1 in the main memory.

b. Master 1 detects this access and holds it.

c. Master 1 evicts the cache line that contains the data copy of A1. This line

contains data D1.

d. Data D1 is written to the main memory to address A1.

e. Master 1 releases the memory access of master 2 and lets it continue.

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 5 of 10

f. Master 2 finishes performing the read access from A1 in the main memory

and read the data D1.

In a coherency system data inconsistent is prevented by the hardware.

Coherency System Address, Write Data, Controls

Read Data

SnoopingMain Memory

M3

Cache

M2

Cache

M1

Cache

Figure 2: Schematic Coherence System

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 6 of 10

MESI Coherency Protocol

MESI_ISC supports the MESI protocol. The MESI protocol is used for system with multi

masters and local caches. The cache policy is write-back. In the MESI protocol any cache

line has one of four states: Modified, Exclusive, Shared, and Invalid. A Modified cache

line is owned only by the current cache and it is modified (dirty) by a write data of the

local master. An Exclusive cache line is owned only by the current cache and it is not

dirty. A Shared cache line is owned by the current cache and also can be owned by other

caches and it is not dirty. Invalid state means that the cache line is invalid and does not

contains a valid data. The next table describes, for any given pair of caches, the permitted

states of a two cache line that contains the same address location:

 Cache A

Cache B M E S I

M X X X V

E X X X V

S X X V V

I V V V V

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 7 of 10

3.

MESI_ISC Coherency
Concept

MESI State Machine of MESI_ISC

Figure 3 describes the MESI state machine of a masters in a system with MESI_ISC.

Each line state is changed according to this state machine. These are the possible

Invalid state changes to Exclusive when there is a line fill (copy a line from the memory

to the cache) as a result of a write miss. Then the data is written to the cache line and its

state changes to Modified. Invalid state change to Shared when there is a line fill as a

result of a read miss.

Shared and Exclusive state change to Invalid when the line invalidates as a result of a

write broadcast or of internal event. Exclusive change to Shared as a result of a read

broadcast request. The Modified state changes to Shared when there is a write back (write

the dirty data to the memory). This appends as a result of a read broadcast request or of

an internal event. The Modified state changes to Invalid when there is an eviction (write

the dirty data to the memory and invalidate the line). This appends as a result of a write

broadcast request or of an internal event. The Shared state changes to Exclusive when

there is an acknowledgement of a write broadcast.

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 8 of 10

I

S

E

MF
ill

 (
W

ri
te

 M
is

s
) E

vict

Invalid
ate

W
rit

e

Write Back

R
eceive R

ead

B
roadcast

Fill
(R

ead M
iss)

A
ck for W

rite

B
roadcast

In
v
a
lid

a
te

Figure 3: MESI State Machine (Wikipedia)

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 9 of 10

MESI_ISC Coherency Protocol

The MESI_ISC coherency protocol is based on the MESI protocol. This protocol is

defined by the order and types of event for each coherency action.

In a basic system any master has a port of a main bus for performing the memory read

accesses and writes accesses. In coherency system the masters have to accept information

and messages from the coherency controller. The masters of a system that adopts the

MESI_ISC contain additional port of coherency bus. The main bus is used as in a basic

system for performs memory accesses. In addition the main bus and the coherency bus

are used for the coherence protocol. The transactions of the main bus are initiated and

drive by the masters. They respond by the main memory, the system matrix or the

coherency controller. The transactions that are done in the main bus are:

1. Write access – A write access to the memory (legacy bus transaction).

2. Read access – A read access to the memory (legacy bus transaction).

3. Write broadcast – A write broadcast request. Asks for all other master to evict and

invalidate data of the requested address. This transaction type is unique for

coherency systems.

4. Read broadcast – A read broadcast request. Asks for all other master to evict

modified data of the requested address. This transaction type is unique for

coherency systems.

The coherency bus is unique for coherency systems. Its transactions are initiated and

drive by the coherency controller. They respond by the masters. The transactions that are

done in the coherency bus are:

1. Write snoop – Another master request to write to a requested memory location.

2. Read snoop – Another master request to read to a requested memory location.

3. Enable write – A respond to a write broadcast (which was performed in the main

bus). It means that the write to the requested memory location can be done.

4. Enable read – A respond to a read broadcast (which was performed in the main

bus). It means that the read to the requested memory location can be done.

In general, a coherency operation starts when a master (initiator) starts generating an

access the memory. Prior to any memory access the master sends a broadcast request in

the main memory. The coherency controller spreads the request to all the other masters

and collects the responds. Then it enables the initiator to perform the memory access. All

operations of the coherency controller are done in the coherency bus.

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 10 of 10

A coherency operation occurs when one of the caches in the system performs a read miss,

a write miss, or a write to a Shared cache line. Write hit, read hit, line eviction, and line

invalidate do not cause to a coherency operations.

The following tables define in details all the stages for the coherency operations. In the

tables the meanings of some expression are:

Source/destination: Initiator – A master which requests to perform one of the following

memory accesses: (1) A read access to a memory location that is not present in its cache

(read miss), or (2) a write access to a memory location that is not present in its cache

(write miss) or present and has a Shared state (write to a Shared cache line).

Source/destination: Coherency Controller – The element that responsible for the

broadcast management. In this project is the MESI_ISC.

Source/destination: Snooper – A master that receives a write or read snoop request.

Bus: Internal – An internal operation in a block.

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 11 of 10

Coherency operation for a write miss

The following table defines the stages that are done for a write miss.

Stage Source Destination Bus Operation Comments
1 Initiator Coherency

Controller

Main Send write broadcast

2 Coherency

Controller

Initiator Main Acknowledge write

broadcast request

When it receive the

request

3 Coherency

Controller

Snooper Coherency Write snoop Done to all masters

except the initiator

4 Snooper Internal Evicts a dirty line

In case the line is M state

Cache state: E/S->I In case the line is E or S

states

Do nothing In case there is no a valid

line

5 Snooper Memory Main Write back line to

memory

Cache state: M->I

In case of eviction

6 Snooper Coherency

Controller

Coherency Acknowledge write

snoop

7 Coherency

Controller

Initiator Coherency Enable write After all masters

acknowledged the write

snoop broadcast

8 Initiator Memory Main Read line Fill line

 Initiator Internal Cache state: I->E For the cache line that

contains the read data

9 Initiator Internal Write to the cache

Cache state: E->M

For the cache line that

contains the read data

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 12 of 10

Coherency operation for a read miss

The following table defines the stages that are done for a read miss.

Stage Source Destination Bus Operation Comments
1 Initiator Coherency

Controller

Main Send read broadcast

2 Coherency

Controller

Initiator Main Acknowledge read

broadcast request

When it receive the

request

3 Coherency

Controller

Snooper Coherency Read snoop Done to all masters

except the initiator

4 Snooper Internal Write back dirty line In case the line is M

Cache state: E->S In case the line is E

Do nothing In case the line is S or

there is no a valid line

5 Snooper Main Write back line to

memory

Cache state: M->S

In case of eviction

6 Snooper Coherency

Controller

Coherency Acknowledge read

snoop

7 Coherency

Controller

Initiator Coherency Enable read After all masters

acknowledged the read

snoop

8 Initiator Memory Main Read line

Fill line

9 Initiator Internal Cache state: I->S For the cache line that

contains the read data

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 13 of 10

Coherency operation for a write to a Shared line

The following table defines the stages that are done for a write hit to a line in Shared

state.

Stage Source Destination Bus Operation Comments
1 Initiator Coherency

Controller

Main Send write broadcast

2 Coherency

Controller

Initiator Main Acknowledge write

broadcast request

3 Coherency

Controller

Snooper Coherency Write snoop Done to all masters ex-

cept the initiator
5 Snooper Internal Invalidates the valid

line:

Cache state: S->I

6 Snooper Coherency

Controller

Coherency Acknowledge write

snoop

7 Coherency

Controller

Initiator Coherency Enable write After all masters

acknowledged the write

snoop

8 Snooper Internal Write to the cache

Cache state: S->M

For the cache line that

contains the read data

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 14 of 10

Example Diagrams for Coherency Scenarios

The diagrams in this section describe the development of events in different coherency

scenarios. They do not show the detailed timing behavior. The diagrams help to

understand the coherency operation and the MESI_ISC coherency protocol.

A write miss to a an Invalid location

The following diagram describes a write miss of M0 (master 0) to an address that is

invalid in all masters. M0 sends write-broadcast on the main bus. M1 and M2 receive

write-snoop on the coherency busses and return immediately acknowledge. M0 receives

write-enable on the coherency bus and performs a writes access (read A1 from memory

on the main bus and write to its cache).

M0 event

M0 main bus

M0

Coherency bus

M1 event

M1 main bus

M1

Coherency bus

M2 event

M2 main bus

M2

Coherency bus

wr ack A1wr snoop A1

wr en A1

 rd A1

wr ack A1wr snoop A1

wr miss A1
wr to cache

 E->M

Time

wr brod A1

wr brod A1

I->E

Figure 4: Write miss to an Invalid location

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 15 of 10

A write miss to a Modified location in other master's cache

The following diagram describes a write miss of M0 to an address that is modified in the

cache of M1. M0 sends write-broadcast in the main bus. M1 and M2 receive write-snoop

in coherency busses. M2 returns immediately acknowledge. As a result of the write

snoop, M1 evicts A1 and writes it back to the memory through the main bus. Then M1

returns acknowledge. M0 receives write-enable and performs a writes access (read A1

from memory and write to its cache).

wr brod A1

wr snoop A1

wr en A1

rd A1

wr ack A1wr snoop A1

evict A1

wr A1

wr ack A1

wr miss A1
wr to cache

 E->M
M0 event

M0 main bus

M0

Coherency bus

M1 event

M1 main bus

M1

Coherency bus

M2 event

M2 main bus

M2

Coherency bus

Time

I->E

M->I

Figure 5: Write miss to a Modified location in other master

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 16 of 10

Two parallel write misses to the same location which is Invalid

The following diagram describes a write miss of M0 to address A1 in parallel to a write

miss of M1 to address A1. A1 is invalid in all masters. M0 and M1 send, separately,

write-broadcasts. MESI_ISC responds first to M0 (according to a random priority). M1

and M2 receive write-snoop on the coherency busses and return immediately

acknowledge. M0 receives write-enable on the coherency bus and performs a writes

access (read A1 from memory and write to its cache). Then MESI_ISC responds the

broadcast of M1. M0 and M2 receive write-snoop on the coherency busses. M2 returns

immediately acknowledge. As a result of the write snoop, M0 evicts A1 and writes it back

to the memory through the main bus. Then M0 returns acknowledge. M1 receives write-

enable and performs a writes access (read A1 from memory and write to the cache).

wr brod A1

M0 event

M0 main bus

M0

Coherency bus

M1 event

M1 main bus

M1

Coherency bus

M2 event

M2 main bus

M2

Coherency bus

wr ack A1wr snoop A1

wr en A1

rd A1

wr ack A1wr snoop A1

wr miss A1
wr to cache

 E->M

wr miss A1

wr ack A1wr snoop A1

evict A1

wr A1

M0 event

M0 main bus

M0

Coherency bus

M1 event

M1 main bus

M1

Coherency bus

M2 event

M2 main bus

M2

Coherency bus

wr ack A1

wr en A1

rd A1

wr to cache

 E->M

Time (continue)

Time

wr snoop A1

wr brod A1

 I->E M->S

 I->E

Figure 6: Two parallel write misses to an Invalid location

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 17 of 10

A write miss and a parallel read miss to two different addresses

The following diagram describes a write miss of M0 to address A1. Address A1 is in an

Exclusive state at M1. In parallel to the write miss M1 performs a read miss to address

A2. Address A2 is in a Modified state at M1. M0 and M1 send, separately, write-

broadcasts and read broadcast, respectively. MESI_ISC responds first to M1 (according

to a random priority). M0 and M2 receive read-snoop for A2 on the coherency busses.

M2 returns immediately acknowledge. As a result of the read snoop M0 evicts A2 and

writes it back the memory through the main bus. Then M0 returns acknowledge. M1

receives read-enable and performs a read access (read A2 from memory and copy it to its

cache). Then MESI_ISC responds the broadcast of M0. M1 and M2 receive write-snoop

on the coherency busses. Both return immediately acknowledge. M1 also change the line

state from Exclusive to Invalid. M0 receives write-enable and performs a writes access

(read A1 from memory and write to its cache).

M0 event

M0 main bus

M0

Coherency bus

M1 event

M1 main bus

M1

Coherency bus

M2 event

M2 main bus

M2

Coherency bus

wr A2

rd ack A2rd snoop A2

wr miss A1

rd miss A2

wr ack A1wr snoop A1

M0 event

M0 main bus

M0

Coherency bus

M1 event

M1 main bus

M1

Coherency bus

M2 event

M2 main bus

M2

Coherency bus

Time (continue)

Time

rd brod A2

 wr brod A1

 rd snoop A2

evict A2 A2 M->I

rd ack A2

 rd en A2 wr snoop A1

 rd A2

A2 I->S

wr ack A1

 A1 E->I

wr en A1

rd A1

wr to cache

 A1 E->M
 A1 I->E

Figure 7: A write misses and a read miss to different addresses

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 18 of 10

4.

Coherence System
Architecture

Coherence System Architecture

A coherence system contains, in addition to the legacy components, the MESI_ISC,

coherency ports of the masters and the coherency bus. MESI_ISC has two connection

types. In one direction it connects to the main bus as a slave and receives the bus' controls

and address. In the other direction it connects to the coherency bus as a master.

MESI_ISC has two ports for each system master, a main bus port and a coherency bus

port. The legacy structure of the system that includes the memory matrix, the arbitration,

and the memory, remains unchanged.

Figure 8 describes a coherence system with MESI_ISC

Coherency System with MESI_ISC
Address, Write Data, Controls

Read Data

MESI ISC

Coherency bus (snooping)Main Memory

M3

Cache

M2

Cache

M1

Cache

Figure 8: MESI_ISC Architecture and the Masters system

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 19 of 10

Coherency Operations

The MESI_ISC receives the broadcast request from the system masters through the main

bus. It sends the write snoop, read snoop, write-enable, and read-enable to the system

masters through the coherency bus. MESI_ISC separates each broadcast request that a

master sends (initiator) to a separated snoop requests for each master, except for the

initiator.

System Performance and Memory Mapping

The memory mapping of a coherency system can contain two areas, a private area and a

shared area. The private area has several nonoverlapping spaces, each space directed to a

specific master. There is no consistency of the data in the private area between the

different masters of the system. Therefore a space memory in the private area which is

directed to a specific master can be accessed only by that master. The shared area can be

used by all masters and its data is consistency between the masters. The shared area is

used to synchronize the masters and to transfer data between them. Both the areas are

cacheable.

The way masters access the memory depends on the memory mapping. A memory access

to an address which is located in the private area is done without prior actions. The

master performs a read or a write access directly to the memory. The memory data is

copied to the local cache and is used by the regular cache operations.

A master that intends to access a location in the shared area is required to notify the other

master about the action. The notification enables the other master to invalidate that

location in their caches or to write back the dirty data. The notification is done by sending

to the MESI_ISC a broadcast request. Only after the MESI_ISC enables the access the

master can perform the intended memory access.

A synchronization system, by nature, requires additional resources such as timing and

area. In the current configuration of the MESI_ISC and of the test bench the latency of

the MESI protocol (sending a broadcast request and receive acknowledges), in the best

case, is seven cycles. This latency can cause to degradation of the system performance.

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 20 of 10

However it is possible to reduce the performance degradation. This list describes the

major field for doing it:

1. System configuration and S/W management

a. The usage of the shared memory is done only for synchronization and for data

transfer between the masters. All the other tasks use the private memory.

b. Evict or invalidate dirty cache lines when are unused.

2. MESI_ISC configuration

a. Defining and tuning the MESI_ISC FIFO sizes to achieve the best system

performance (see MESI_ISC Configuration (Under Construction))

3. Maters architecture

a. Improving the respond time of the masters for the snoop requests (see Masters

Definition and Requirements (Under Construction)).

b. Change the cache configurations. For example increase the line size to reduce

the synchronization events.

4. MESI_ISC architecture

a. Changes of the to reduce its latency (remove the snoop FIFOs see Open issues)

Masters Definition and Requirements (Under Construction)

A coherence master has two dedicated coherence functions in addition to its legacy

operations. A master should be able to send broadcast requests before it access to certain

memory address locations. It also should have a coherence port that supports the

snooping and the access-enable.

A coherence master is allowed to access an address in the shared area space only after it

receives an approval. Before it actually performs the memory access it must sends a

broadcast request which is transferred to all other master. When all other masters respond

then it can performs the memory access.

The broadcast request is an additional operation of the legacy main bus. The structure of

the main bus port can remain unchanged (unless additional bits are required to enable the

broadcast operation). The broadcast request operation is similar to a write operation. It

contains the address, the broadcast type, read or write, and all other control signals except

the write data.

The snoop operation is executed on the coherence bus. A master is informed that a certain

address is going to be accessed by another master. It should do some operations to enable

it. If the other master is going to perform a write access to an address that is exist in the

master's cache then the master should evict the line (if it dirty) or invalidate it. If the other

master is going to perform a read access to an address that is exist in the master's cache

then the master should write back the line (if it dirty). If the snoop operation relates to an

address that does not exist in the master's cache then the master do nothing. After the

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 21 of 10

master receives the broadcast request and acts accordingly it returns the broadcast

acknowledgment.

The respond time of a master to a broadcast request is critical since the operations of

other masters depend on it. There are several methods and cache architecture that enable

a fast respond to a snoop request. The user should take a special care for this issue.

Example (Under Construction)

Legacy and coherence Busses Definition (Under Construction)

Integration MESI_ISC to Existing Systems (Under Construction)

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 22 of 10

5.

MESI_ISC Architecture

Main bus (Under Construction)

Coherence Bus (Under Construction)

MESI_ISC Configuration (Under Construction)

FIFO sizes

Number of masters in the system

Clock and Reset (Under Construction)

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 23 of 10

6.

Micro Architecture

Micro-Architecture structure (Under Construction)

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 24 of 10

Figure 4 describes the micro-architecture of MESI_ISC

MP

Connector

Entry 0

m
e

s
i_

is
c
_
b

re
q

_
fi
fo

0

Entry 1

Entry

m-1

MP

Connector

MP

Connector

MP

Connector

Main Port 0

Entry n-1

Entry 1

Entry 0

m
e

s
i_

is
c
_
b

ro
a

d
_

fi
f

o

mesi_isc_breq_fifos_cntl

CP cntlCP cntlCP cntlCP cntl

Coherence

Port

Connector

mesi_isc_

breq_fifos

mesi_isc_broad

mesi_isc

Entry 0

m
e

s
i_

is
c
_
b

re
q

_
fi
fo

1

Entry 1

Entry

m-1

Entry 0

m
e

s
i_

is
c
_
b

re
q

_
fi
fo

2

Entry 1

Entry

m-1

Entry 0

m
e

s
i_

is
c
_
b

re
q

_
fi
fo

3

Entry 1

Entry

m-1

mesi_isc_broad_cntl

Coherence

Port

Connector

Coherence

Port

Connector

Coherence

Port

Connector

Coherence Port

0

Main Port 1 Main Port 2 Main Port 3

Coherence Port

1

Coherence Port

2

Coherence Port

3

Figure 9: MESI_ISC Micro-Architecture

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 25 of 10

7.

Verification

(Under Construction)

Verification Environment (Under Construction)

Figure 5 describes the MESI_ISC verification environment.

MESI_ISC Test Bench
Main bus: address and controls

Validation bus

Coherency bus

MESI ISC

Main Memory

Matrix

Validation

Master 0

Master 1

Master 2

Master 3

Main bus: read data and write Data

Stimulus

Clock

Reset

Dump

Seed

Test bus

Figure 10: MESU_ISC Verification Environment

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 26 of 10

Validation of Data Consistency

Validation of MESI Protocol

Random Stimulus

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 27 of 10

8.

Timing, Power and Area

(Under Construction)

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 28 of 10

9.

Design Environment

(Under Construction)

Tools

Synthesis

Simulation

Lint

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 29 of 10

10.

IO Ports

(Under Construction)

This section specifies the MESI_ISC IO ports.

Clock and reset

Port Direction Description

clk Input Input clock

rst Input Asynchronous active high reset

Main bus

Port Direction Description

mbus_cmd3_i Input Main bus 3 input command

mbus_cmd2_i Input Main bus 2 input command

mbus_cmd1_i Input Main bus 1 input command

mbus_cmd0_i Input Main bus 0 input command

mbus_addr3_i Input Main bus 3 input address

mbus_addr2_i Input Main bus 2 input address

mbus_addr1_i Input Main bus 1 input address

mbus_addr0_i Input Main bus 0 input address

mbus_ack3_o Output Main bus 3 output acknowledgment, active high

mbus_ack2_o Output Main bus 2 output acknowledgment, active high

mbus_ack1_o Output Main bus 1 output acknowledgment, active high

mbus_ack0_o Output Main bus 0 output acknowledgment, active high

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 30 of 10

Coherency Bus

Port Direction Description

cbus_ack3_i Input Coherence bus 3 input acknowledgment, active high

cbus_ack2_i Input Coherence bus 2 input acknowledgment, active high

cbus_ack1_i Input Coherence bus 1 input acknowledgment, active high

cbus_ack0_i Input Coherence bus 0 input acknowledgment, active high

cbus_addr_o Output Coherence buses 3, 2, 1, and 0 output address

cbus_cmd3_o Output Coherence bus 3 output command

cbus_cmd2_o Output Coherence bus 2 output command

cbus_cmd1_o Output Coherence bus 1 output command

cbus_cmd0_o Output Coherence bus 0 output command

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 31 of 10

11.

Waveforms

(Under Construction)

The next figure shows a read access to the memory which preceded by a read broadcast.

A similar operation is describe in figure A write miss and a parallel read miss to two

different addresses

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 32 of 10

12.

Open Issues

1. Add an option to remove the snoop request FIFOs in the RTL (by Verilog define or

by additional MESI_ISC version).

OpenCores MESI_ISC Specification 1/31/2013

www.opencores.org Rev 0.11 33 of 10

A.

Appendix – Notations

 Dirty Line – A cache line that contains a modified data that does not present the

main memory.

 Line fill – Copy data from the memory to the local cache line

 Write Back\copy back – Copy the modified data of a dirty cache line to the

memory.

 Line eviction – Write back a dirty line and invalidate it.

 Line invalidate – Remove a line from a cache without write back. If a dirty line is

invalidated then its modified data is lost.

 Ln – Leven N cache (for example L1 represents the level 1 cache).

 Mn – Leven N memory (for example L2 represents the level 2 memory).

