MIPS

by Imagination

MIPS® Architecture for Programmers
Volume lI-A: The MIPS32® Instruction
Set Manual

Document Number: MD00086
Revision 6.05
May 20, 2016

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Com-
panies. All rights reserved.

MIPS;Y

Public. This publication contains proprietary information which is subject to change without notice and is supplied ‘asis’, without any warranty of any kind.

Template: nB1.03, Built with tags: 2B ARCH FPU_PS FPU_PSandARCH MIPS32

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Table of Contents

(O T=T o3 (=T gl T Y o Yo T U1 I 1= o T 2
1.1: TypographiCal CONVENTIONScciuiiiiiee ettt e ettt et e st e e ss bt e e sabeeeaabe e e sabeeeanbeeassabeeennneesanreeanns 3
P O R £ = VT = S PRSP OUPPPPT 3

L B2 = o) (o I = P PP PP PP PPPP P 3

LI I TR o T T 1= g 1= SRR 3

1.2: UNPREDICTABLE and UNDEFINEDccoouiiiiiiiiiii ettt sttt te e st eesnaea e s anneeeans 3
1.2.1: UNPREDICTABLE ...ttt ettt b ettt e e ettt e e at e e e bt e e e anbe e e sas e e e embeeeeanneesanneeeannas 3
1.2.2: UNDEFRINED ...ttt ettt ettt ae e a e e e e st e e e st e e e e bt e e ambe e e smbe e e smbee e s nbeeeanneesanneeeenns 4
T.2.80 UNSTABLE ...ttt ettt ettt ettt e e a b e e s bt e e e m bt e e e bt e e embe e e eabeeeeabee e e nbeeaanneesanneeennnas 4
1.3: Special Symbols in Pseudocode NOTAtIONc.oiiiiiiiie e es 4
1.4: Notation for Register Field ACCESSIDIlIYeviiiiiiiii e 7
1.5: FOr MOre INFOMMELION ...t e st e e s e e e s s b e e e e s annneeeean 9
Chapter 2: Guide to the InStruction Set..........ccocirmiiii e ————————— 10
2.1: Understanding the INStruCtioN FIelASeiii it 10
P2 I O 1 W (o7 1] I =Y o RO 12
2.1.2: Instruction Descriptive Name and MNemONIC..........uuiiiiiiiiiiieiiiiiee et 12

P2 IR i o ¢ o= L T o RO 12

P2 B S T g oo 1= 1= [RSP RPPT 13

P2 IR B LY Yo g o] 1] o I =Y o PO RPP 13
2.7.6: RESICHONS FIEIA. ...ttt e st e e s e nbb e e e e s annnre s 13
2.1.7: Availability and Compatibility FIEIAScoiuiiiiiiiii e 14

P IR S @ o T=T = o o I 1= [RO RPP 15
2.1.9: EXCEPLONS FIIA. ...ttt e bbbt e e s bt e e s e nbb e e e e s annnneeas 15
2.1.10: Programming Notes and Implementation Notes Fields..............cooiiiiiiiii e, 15
2.2: Operation Section Notation and FUNCHONSuiiii i 16
2.2.1: InStruction EXECULION OFGEIINGeiiiiiuiiiiii ittt et e e e e e e s b e e e e s annneeas 16
2.2.2: PSEUAOCOAE FUNCLIONS.eeiiiiiiiiiii ettt ettt e e sttt e e et b e e e e s bb e e e e s annnneeas 16
2.3: Op and Function Subfield NOTAtION..........ouuiiii e e e 27
2.4 FPU INSTIUCHIONS ...ttt ettt e oo bttt e e e e eab et e e e e bt et e e e e aabbe e e e s eanbeeeeesaabbneeeeaas 27
Chapter 3: The MIPS32® INStruction Set.........cccciiiiimiinnmr s s 29
3.1: Compliance and SUDSEIING......couuiiiiieie e 29
3.1.1: Subsetting of Non-Privileged ArchiteCtUIec.ooiiiiiiii e 29
3.2: Alphabetical List Of INSIIUCTIONSeeiiiieiiii e e e e e e e eee s 31
F NS 0) TSP T PP PTUUPPPT PRSPPI 32
N | SO PPPTUUPPPUPPRURIN 33

F N 1B o | ST ST PP UUPPPTUPPRRIN 34

F N | T OO PR TUPPPUPPRURIN 35
AADDIU .t h R hE R R et oR R e e e eR b e e e oA R e e e e R e e e e b e et e R e e e e he e e e nne e e nr e e e anbeeennneeea 36
ADDIUPQC ...ttt ettt e e b et e ket ek e e R b e R b e e eR R e e e eA R et e e AR et e o b et e e R et e e ane e e nteeeanbeeennneeeas 37
AADDWU ..ttt b bR e a R e R R et oh R e e e eR R e e e oA R e e e e R e e e e Re et e R e e e e he e e e nbe e e nr e e e anbeeennneeeas 38

F [PP PP R UPPP PSRRI 39

F N L ST PSP PP OPPPPUPPRUPIN 41
ALUIPC .ttt b ekt e o bt 4o s b et ek et e £ aR b et e R R e e e oA R e e e oA R e e e e R et e e R et e e Re e e e ane e e nreeeanbe e e nnneeeas 43
AN bbb et e R e e E et e e R R e e R b et e eR R et e oA R et e eREe e e o b e e e e bRt e e nbe e e nr e e e anbeeeanneeeas 44

F AN OO PR TP UPPPUPPPURIN 45

3 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Y R 48
B et et eeeeeeetteeeeeseettaaieeeeeetttaaeeeeeettataeeeeeettaaaeeettttaaeaeteettaaeaeerraaaaaeerrranns 49
B A L ... e e et eeeeeeeettaeeeeeeettaeeeeeeettataeeeetetttaaeaeteetanaaeaeteettaaaarerraaaaeerrranns 50
BALC ..ottt ettt — e eeieeeeeeeeeeeeeeetettttet—————————————————__aaeaeeeseeeeeeetererererrrrrrrrarara—————— 52
B ittt ettt ettt et t————————————eaeeeteeeteteeeeeeeeettettteetera——————————————___aaieeeteeeeteeeetererrerrrererrrarana, 53
BCAEQZ BOANEZ.... oottt et et e eee e ae s s e s st e e e e seaesesaaaaeeaseeeeseeesesssnranes 54
B T ettt ettt ettt eeaeeeeeeeeeeeeeaeeeeettetete————————————————————aaaseeeeeeeteteterrrrrrrrrrrrara—————— 56
1O L PRt 58
=T T UUUSPUSPRRP 60
T T P UPRURRRRRE 62
BC2EQZ BC2NEZ.... .o oottt et e eeeeae e s e s ae s bbb e e e saaesaeaaaaeaeseesereessesesnranes 64
B O 2 ...ttt ettt aeaeaeeeeeeeeeeeaeeeeettetete——————————————————_—aaeseeeeeeetetetererrrrrrrrrrrra—————— 66
T @72 U PPRURRRRRE 67
1722 I UUUOPUSP PP 69
T2 1 PPt 70
7= U RPRURPPRRE 72
BE QL ...eeeiteiet ettt ettt eeeeeeeeeeeeeeeeeeeettet et —————————————————__aaeieeeseeeeeeetetererrrrrrrrrrara———————— 73
BGIEZ.....eeeeeeeeee et e e e e e e e e e e e e e e e e ee e ettt et ———————————————————aeaeeeeeeeaeeetetetertrrrrrr———————————— 75
BGIEZAL ...t e e e e e e e e e e e e e e e e e e ee ettt ettt ——————————————————————aiaieteeeaeaeeetererrerererrrrrar——. 76
B{LE,GE,GT,LT,EQ,NEJZALC ...ttt ettt e e e e e e e e e e e e e e e e e aeeeeessaasanrsrenaeeeaaens 77
BGIEZALL ...t e e e e e e e e e e e e e e e e e e ettt et e ———————————————————————iaieteeeaeaeeeteterrerrrerrrrrara—. 80
[ReTe] T D PPt 82
BGIEZL. ...ttt et e ettt e ———————————————————————aiaieteeeaeaeeetererrerrrererrrar——. 86
B G T Z ..ttt eeeeeeeeeeeeeeeeeeeeeett et —————————————————————aaeeeeeeaeeeteterererrrrrrrr——————————— 88
T C N 174 I PPRURRRRE 89
B T S N AP ettt eeaeeeeeeeeeeeeeeeeeeeetee——————————————————————_aiaaeeeaeateeteterrererererrrrra—., 91
B Z ..o e e eee ettt taeeeeeeetetaeeeeeeettaaaeeeettttaeeeeeetataaeaertetaaeaaeeerataaaaaerrrnns 93
BLEZL ..ot e e e et et eeeeeeeatta—aeeeeettataeeeeeettaaeeeetttaa—aeetttaaaaarerraaaaerrrranns 94
= OO UPPPPPRR 96
BT ZAL ..ottt e e e ettt aeeeeeet—taeeeeeettataeeeeeettaaeeeeetataeaeeeetaaaaatreraaaaaerrrranns 97
BT ZALL ..ottt e et e e e e ettt eeeeeea——eeeeeeetataeeeeeettaaeeeeetaaaeaeeeetaaaaertraaaaaeerrranns 98
= I 14 PO PTPPPRRRRPPRINt 100
BN <. oo et eee ettt e eeeeeeeetaaaeeeeeettttaaeeeetettataeeaettttaaeeeeetataaeeetteraaeeeerrrraaaaaarees 102
BIN L ..ottt e et e e e e et eeteeeeeeettaeeeeeetttaneeeteetataaaeaeetttanaeaaertataaaaereetaaaeaerrren 103
BOVEC BNV C ..ottt ettt et e e eeeseaese s s bt s b seaeeaeaaeaeaaaaseseessrerssnrernres 105
BRI A .ot et e e e ettt eeeeeeeetaaeeeeeetttaaeeeeeettataaeeeettataaeeeteetataaaaestetanaaeeeerrraaaaaarees 107
O eToT oo 1N {121 SR 108
(07X 0 = 1 =R 112
(07X 0 1 =1 R 119
L0 = I o o | R 125
L0 = 1AV o | R 126
L 1O L 127
L0 1072 129
(O N TS TR {1 1 SR 130
L0 1 LR 132
L R 133
(0311 = oTeY g Te [TR0) SRR 134
(010] 139
L 1O 140
L 1072 143
LY I % {4 o1 SR 144
LY I I {2 o R 145
The MIPS32® Instruction Set Manual, Revision 6.05 4

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

(AT I T OO P RO PP RO R RPRORRPR 146

(O IS T o ISP ST OO PR OSSP ORRPR 148
BV T S PU ettt ettt et h et et e e e et e e ee e et e e e s e e e n e s ae e e ne e s e e e r e 149
(AT IS (10| TSSO PO RRPRTORRPR 150
(AT I T {1 SO P TP PO R OPRTORRPR 151
DT PP 152
DIDIVU L. bbb s s b e e e e e b s a e b 153
DE R E T e e a e e b 154
3PP 155
DIV e e 156
DIV MOD DIVU MODU ..ottt st sttt et a e b e s ae e s e s e e reesaneeenee s 158
DAY 1 SO U RO PR ORI PR ORTOPRPPI 160
DIV U bbb a e s 161
D PP 162
EH B e e e 165
PP 166
PO 167
ERETINC ettt h et h e ettt e e e e h e e e e b e b e et e a e e reenaneenree s 169
BV P e e s 171
) OO 173
FLOOR . LML e sttt et a e b e b e e s me e e b e e s e e e s beesaneenneeas 175
FLOOR.W.IMIL. ..t st e sttt e h e e s e e s a e e s en e e b e e san e e sbeesaneenneeas 176
1 OO ST P R ORI PR OUOPRPPI 177
O PP 179
O PP 180
JAL R e e e 181
JALRLHB . e 183
PP 187
AL et h et e R e e R oo e R e e b e sae e et e e e e e e r e e e neenraeere e e a 189
OO OO UR PR UROPRRURR RSP 191
O PP 192
JR I H B e e 194
LB b e e e e s b e e b e e b e e e 197
LB E e e e e b e e b e s 198
LB U e e s b e b e b 199
0 T 200
[T OO OO U PO OPRR PR PR 201
LD 2 oo h e e e h e e h e e e E e e e R e e e e e e n e e s r e e nre e e ne e naeeeneas 202
[) O ST PP RO PR ORI PR ORROPRPPI 204
I PP 205
LHE e a s 206
I L PP 207
0 o PO 208
L e e E e e e e e b e s b e e b ae e ae e 209
L e e e e e e e b e e e b 211
T PO 213
AT e PO 215
LS A ettt E et b e e e e e e e e R e e e eReeeh e e e eh e e en e e reenn e e e e sneeareeas 217
0 PP 218
[0 DO ST PP PRT ORI PR OUROPRTPI 219
L T bbb e b e b e b 220
[OO P ST PR ORI OPRORROPRPPI 221
LV 2 et h et a e e e a e e a et h e n e e h e e nn e reenaneenreeas 222

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MUL MUH MULU MUHU L. e
Y10) OO U PO TSP PSTPPR

I 1= TR TR
NIV AD D M ettt ettt e e e e e e e e e e e ettt eeeeeeeeeee e e et e eeeeeeeeeeeea e e eeeeeeeeeeereean e nrereaeaees

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

P L P S et E et e e e e e e ae e h et e b e et e n e e e e e e e nneenree s 300
P LU P S e e et R e e a e e e R e a e e a e e et e h e nn e reenaneeeree s 301
e T P 302
P RE R E e e e 306
P R X e e 310
P U L P S ettt bt R e e e e R e e e h e et e h e s e e reenaneenreeas 311
PUU P S ettt a et b et e e R e e e h e R et e bt e nne e eenneenree 312
RDHWR . .. e e e e s e s s b e b e b 313
RDPGPR ... ettt h oo a e h et a e E e e e e et e e e r e e s et e a e e nn e e e e saneenreeas 316
RECIP M <ttt st e st e et e e e e b e e e a e e e b e s an e e bt sn e e reenaneennee s 317
RINT M ettt sttt e st e e e e s s e e a e e s be e e b e e s e e e bt e s e e e sbeesaneenneeas 318
LT I OO T TR PR UR PR URTOPRTPI 320
ROTRV ettt h e h e st e bt st e bt e s et e e e e e e e e R e e a et e h e e et e a e e nn e reenaneenree s 321
ROUND LML <ttt ettt e e s b e e e e e e e b e e e b e e sae e e b e e s e e e sbeesaneeeneeas 322
ROUND . W.IML ...ttt st e et e a e e s b e e b e e s ae e e s e e san e e s beesannenneeas 323
RS QIR T M e ettt e e e a ettt n et saneenne e 324
] = T OO TP PP RO PRTPPR 325
S]] OO T T PRSP PR PSPPI 326
S e E et E e et oo e et e e e E e e R et e b e e sae e et e e e e e r e e e er e nanas 327
SO et e e E e e e e e e e r e e R e e r e e sae e e r e e s e e r e e r e nanas 330
SOV P ettt E et E e e e e R oo et e h e e sae e et e e ee e et e e n e nanas 333
SOV PE .ottt e E e e et e E e e e e e h e e sae et e e e e r e eae e r e nanas 335
SDBBP ..o r e e e E e e h e e e r e e sae e e n e e e e e r e e e r e 338
S L LSOO PR PP PR URTOTR PR 339
SDIC 2. h et e e h e e e E et e R e h et e b et e b e st e et e e e neenr e enes 340
S D) OO U RO RPP PSPPI 341
S B et h et h e e e e eh e e s et e e ae e e e e e er e nanas 342
] =1 OO TP U RO PRTPPR 343
] =1 I 21| OO PO T RO RPRTPPR 344
SELEQZ SELNEZo ettt ettt h e e e et e s e et e e e e e e e e ne e 346
SELEQZ.fmt SELNEQZ.TML ... e 348
] OO U TP PRRO PSPPI 350
SHEE e e e et e h e e b e e eae e n e e e e n e e re e 351
SIGRIE ...ttt e e E e h e b e s r e e e e e e r e 353
S OO U RO T R RPP SR PRT PP 354
S LV e et e et E e e e e Rt e R e e b e e eae e r e e e e e e saee e r e aanas 355
S OO USSP PSTPPR 356
S N 1 OO OO OO T RO RPRT PP 357
S I I L OO TSP OSSPSR P TP 358
S I 1L OO OO P PR RSP UTR PR 359
ST I {00 SO U ST PO RR PR OPSTPP 360
SR A e e e e e E e h e e r e e s e n e e e e se e er e 361
SR AV e et E e E et e e et e ne e e e 362
] o IO TP T ST PRTPPR 363
SRV e et e e E e e R e R e e b e s e e et e e ne e r e enes 364
SOINOIP ..o E e E et h e e e r e e e e r e saee e r e nanas 365
S U = OO TP PO T RO PRTPPR 366
SU B L ML ettt e e e e e e e e e 367
SUBWU et E e r oot h e e e e ee e r e e r e nanas 368
S0) TP PPRR PSP 369
S e h et E et e R e E e e e e e E e e e R e e e b e e eae e e e e e s e e e n e e saaeeer e nanes 370
S T et et E e e e e R e et e b e e sae e et e e s e e r e saee e r e aanas 371

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1 AT TP PPPP PPN 373
1A PP T PP PPPPR PPN 374
1 AT TSRO PPPR PPN 377
1 AT TP ST PPPP PR 379
1 AT | =TSPTSRO TPPR PP 382
14T D O TP ST UPPP PPN 384
SY N C ettt R et oA e et o R e e e E e e oo R e e e e b e e e o R e e e e Re e e e b ee e e anbe e e nre e e anneeenes 385
) 1L T TP T PP PPPPPPRTON 390
) 5] Y OO PPPP PPN 393
I = T OO P PP 394
I = TP OP PP TP PP PPI 395
I = O ROP PP PP 396
LI =1 OO PP P PP 397
LI 1 =1 1O TP TPPTPPPI 398
LI =1 O TP OP PP 399
TLBINV ettt ettt b ettt oo b et 4o s et e o R et e £ R E e e e R b et e oA R e e e oAb e e e AR e e e e Re e e e be e e e R e e e e nn e e e an e e e nreas 400
LI T L OO P PP 403
LI T TP U PP OPRPPPP 405
LI =T USSP TP OPRPPPP 406
LI = O POP PP 408
LI L O POP PP TP PP 410
I TP POP PP TP PP 412
I I O ROP PP PP PP 413
I 1 O OO P PRSP 414
1 1 O TSP UPR PP 415
1= O POP PP 416
1= O POP PP PP 417
TRUNC . L M. ettt s et e e bt e ettt e s b e e e oo he e e e amEe e e et e e e anb et e e ne e e eabneeenbeeenreas 418
TRUNC . WWLIME Lottt e bt e ek et e e eh e et e ehe e e e aab e e e s be e e anbe e e e sb e e enneeeanbeeennneas 419
L T OSSP UPROURPPTRPP 420
WRPGIPR .ttt ettt b et ekt e e bt e b b e ek E e e AR e oo R e et e e AR et e e R et e e Ee e e e R e e e enn e e e anreeenreas 422
LTS] = PP OP PP 423

D (O] T OO PP PPPTOUUPPOPPRRPPION 424

D (O] TP U PP UPPTOPRPOTPRPRPPIO 425
Appendix A: Instruction Bit ENCOAINGS.......cccciiiiiiiiiniiiiiissnnnnnnnnnnnnennnmennenneene s nn s nnnnnens 426
A.1: Instruction Encodings and INStruCtioN ClaSSEScooiuiiiiiiiiiiiiiic et 426
A.2: Instruction Bit ENCOAING TabIES.........eeiiiie e 426
A.3: Floating Point Unit Instruction Format ENCOINGSuuiiiiiiiiiiiie e 437
A.4: Release 6 INStruCtioN ENCOTINGS.uuiiiiiiiii ittt e et e e et e e e s s nnneee s 439
Appendix B: Revision HiSTOrY ... s s 444
The MIPS32® Instruction Set Manual, Revision 6.05 8

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

List of Figures

Figure 2.1: Example of INStruction DESCHPLIONuiiiiiiiiiiie et e e e et e e e s e snbee e e e s ereeeeeeans 11
Figure 2.2: Example Of INSTrUCHON FIEIASeiii it e e e st e e e s e rsbee e e e s abaeeeeeans 12
Figure 2.3: Example of Instruction Descriptive Name and MNemMONICcc.ueiiiiiiiiiiee e e e 12
Figure 2.4: Example Of INSTrUCHION FOIMAL........ooiiiiiiiii it e e e e s bt e e e s ernbae e e e s anbaeeaeeaas 12
Figure 2.5: Example Of INSrUCHON PUIPOSEciiiiiiiiii ittt ettt e e s sttt e e e e snt e e e e s enbeeeeesansaeeaeean 13
Figure 2.6: Example of INStruction DESCHPLIONuiiiiiiiiiiie et e e e et e e e s e rnbee e e e s araeeeeeans 13
Figure 2.7: Example of INStruction RESIMCHONSooiiiiiiiiii e e e e e 14
Figure 2.8: Example of INStruction OPErationoeiiiiiiiie oottt e st e e e e st e e e s esnbeeeeessreeeaeeans 15
Figure 2.9: Example Of INSrUCtON EXCEPTIONcouviiiiiiiiiiie ettt ettt e e st e e e s ent e e e e s eenbaeeeesanbaeeaeean 15
Figure 2.10: Example of Instruction Programming NOTEScccuiiiiiiiiiiiiiiee e 16
Figure 2.11: COP_LW PSeudoCOde FUNCHONoiuiiiiiieiieie ettt e e 16
Figure 2.12: COP_LD PSeudocode FUNCHON.........citiiiiiiieiiete ettt 17
Figure 2.13: COP_SW PSeudoCOde FUNCHONoiuiiiiiiieiieee ittt ab e ne e anne e snne e e 17
Figure 2.14: COP_SD Pseudocode FUNCHONciuiiiiiiieiiiie ittt 17
Figure 2.15: CoprocessorOperation Pseudocode FUNCHONooiiiiiiiiiiiiiiiee et 18
Figure 2.16: MisalignedSupport PSeudocode FUNCLONcoiiiiiiiiiiiiiieiiiee e 18
Figure 2.17: AddressTranslation Pseudocode FUNCHONccuuiiiiiiiiiiic e 19
Figure 2.18: LoadMemory PSeudocode FUNCHONooiiiiiiiiiiiec et e e 19
Figure 2.19: StoreMemory PSeudoCOde FUNCHONeiiiiiiiiiiieiiie ettt 20
Figure 2.20: Prefetch PSeudoCode FUNCHON..........oiiuiii i 20
Figure 2.21: SyncOperation PSeudocode FUNCHONooiiuiiiiiiiiiiiie et 21
Figure 2.22: ValueFPR Pseudocode FUNCHON...... ... et e e e e e e e e e 21
Figure 2.23: StoreFPR Pseudocode FUNCHONcuiiiiii e 22
Figure 2.24: CheckFPEXxception Pseudocode FUNCHONooiiiiiiiiiiiii et 23

Figure 2.25:

FPConditionCode PSeUdOCOTE FUNCHION........cciiuitiiiiiiiet et e e e e e e e e e et e e e e e eabeeeeaeees 23

Figure 2.26: SetFPConditionCode Pseudocode FUNCHONoiiiiiiiiiiieiiei e 24
Figure 2.27: sign_extend Pseudocode FUNCLIONSooo e a e 24
Figure 2.28: memory_address PSeudocode FUNCLIONccoiiiiiiiiiiiiiee et e e 25
Figure 2.29: Instruction Fetch Implicit memory_address Wrappingcccoiuireeeeriieieeeiirieeee e e snneeeee s 25
Figure 2.30: AddressTranslation implicit memory_addresSs Wrapping.......ocueeeeeiiiimeeeiiiiieee e e e 25
Figure 2.31: SignalException PSeudocode FUNCHIONcciiiiiiiiiiiieiie e 26
Figure 2.32: SignalDebugBreakpointException Pseudocode FUNCHONcoocviiiiiiiiiiiieee e 26
Figure 2.33: SignalDebugModeBreakpointException Pseudocode FUNCHON...........cuviiieiiiiieeiiiie e 26
Figure 2.34: NullifyCurrentinstruction PseudoCode FUNCHONcoiiiiiiiiiiiii e 26
Figure 2.35: PolyMult PSEUAOCOAE FUNCHIONiviiiiiiiiiiee et e e e e 27

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:

F VI [C T o] o= = o T (€ 72 o 1 PR 39
Example of an ALNV.PS OPErationccuuiiiiiiiiiiee ettt e sttt e e ee e s a e e e nnnbee e e e e snnbeeeeeeneee 41
Usage of Address Fields to Select INndex and Waycoceiiiiiiiiiieiiic e 113
Usage of Address Fields to Select INndex and Waycocviiiiiiiiiieiieeeiee e 119
Operation of the EXT INSIFUCTIONooiiiiiiiie et e e et e e e s e e s s nnneeeeas 173

Operation of the INS INSIFUCLIONcoiiiiiiiii e e e e e s ee e s s nnneeeeas 177
Unaligned Word Load Using LWL and LWR.........oooiiiiii e 225
Bytes Loaded by LWL INSTIUCTIONviiiiiiiiiiee et e e e e 226
Unaligned Word Load Using LWLE and LWRE ...t 227
Bytes Loaded by LWLE INSTIUCTION........ooiiiiiiiei e 228
Unaligned Word Load Using LWL and LWR.........cooi et 231
Bytes Loaded by LWR INSTIUCTHIONoeiiiiiiieiie et 232

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Figure 4.7: Unaligned Word Load Using LWLE and LWRE...........coo e 234

Figure 4.8: Bytes Loaded by LWRE INSTIUCTIONoviiiiiiiiie ettt 235
Figure 5.9: Unaligned Word Store Using SWL and SWRcoooiiiiiiiiiieie et 374
Figure 5.10: Bytes Stored by an SWL INSTIUCHONooiuiiiiiiiieiii et 375
Figure 5.11: Unaligned Word Store Using SWLE and SWREc.coiiiiiiiiiie e 377
Figure 5.12: Bytes Stored by an SWLE INSTrUCTION........uiiiiiiieiiii ettt 378
Figure 5.13: Unaligned Word Store Using SWR @nd SWLoiiiiiiiiiii e 379
Figure 5.14: Bytes Stored by SWR INSIIUCHIONccoiuiiiiiiiiiiie e 380
Figure 5.15: Unaligned Word Store Using SWRE and SWLEcoiiiiiiiiieie e 382
Figure 5.16: Bytes Stored by SWRE INSTIUCHIONoiiiiiiiiii e 383
Figure A.1: Sample Bit ENCOAING TaADIEiiiiiiiiiiiie ettt ettt e s rnre e snne e 427
The MIPS32® Instruction Set Manual, Revision 6.05 2

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

List of Tables

Table 1.1: Symbols Used in Instruction Operation Statements...........coceiiiiiiiiiiie e 4
Table 1.2: Read/Write Register Field NOTatioNcoiiiiiiiii e 7
Table 2.1: AccessLength Specifications for LOAAS/STOreSeciiiiiiiiiiiiiie e 20
Table 3.1: FPU Comparisons Without Special Operand EXCEPHIONSc.uueiieiiiiiiiieiiiiieie et 109
Table 3.2: FPU Comparisons With Special Operand Exceptions for QNaNScccociiiiiieiieeee e, 110
Table 3.3: Usage Of EffECHVE AQUIrESS......c.uiiiiiiieitiie ettt e e sb e e sne e e s b e s anne e e 112
Table 3.4: Encoding of Bits[17:16] of CACHE INSrUCHONuiiiiiiiiiiee e 113
Table 3.5: Encoding of Bits [20:18] of the CACHE INSIrUCHONocuviiiiiiiiiiie e 114
Table 3.6: Usage Of EffECHVE AQUIrESS........uiiiiiiieiiie ettt e st e e sar e s b e e s anne e e 119
Table 3.7: Encoding of Bits[17:16] of CACHEE INSTrUCIONcciiiiiiiiiiiiiiee e 120
Table 3.8: Encoding of Bits [20:18] of the CACHEE INStruCHONcooiiiiiiiiiiiiee e 121
Table 4.1: Special Cases for FP MAX, MIN, MAXA, MINA e a e e e e e e e 247
Table 5.2: Values of hint Field for PREF INSTUCHONoocuiiiiiie e 303
Table 5.3: Values of hint Field for PREFE INSTUCHON............oiiiiiiiiiiie et 307
Table 5.4: RDHWR Register NUMDETSoeiiiiiiiiiie ettt e s e e e e e e 313
Table 5.5: Encodings of the Bits[10:6] of the SYNC instruction; the SType Field...........ccccooiiiiiiiiiiiieiiiieeeee 387
Table A.1: Symbols Used in the Instruction ENcoding TabIescooiiiiiiiiiiiiii e 427
Table A.2: MIPS32 Encoding of the Opcode FIeldcocuiiiiiiiiiiieiiie e 429
Table A.3: MIPS32 SPECIAL Opcode Encoding of FUNction Fieldccooiiiiiiiiiiiee e 430
Table A.4: MIPS32 REGIMM ENcoding Of rt FIEIAciiiiiiieiie et 430
Table A.5: MIPS32 SPECIAL2 Encoding of FUNCHON Fieldc.coiiiiiiiiii e 431
Table A.6: MIPS32 SPECIAL3 Encoding of Function Field for Release 2 of the Architecture..............cccccoveenee 431
Table A.7: MIPS32 MOVCIBR ENCOdiNg Of tf Bitceiiiiiiiiiiieiiie et 431
Table A.8: MIPS32 SRL Encoding of Shift/ROtatecooiiiiiiiii e 432
Table A.9: MIPS32 SRLV Encoding of Shift/ROtate...........ccueiiiiiiiii e 432
Table A.10: MIPS32 BSHFL ENcoding Of S& FIeld..........cooiiiiiiiiieii et 432
Table A.11: MIPS32 COPO ENcoding Of IS FIldcooiiuiiiiiiiiiiie it 433
Table A.12: MIPS32 COPO Encoding of Function Field When rS=CO...........ccccuviiiiiiieiiiie e 433
Table A.13: PCREL Encoding of Minor Opcode Fildocuiiiiiiiiiiiiieeiee e 433
Table A.14: MIPS32 ENCodiNg Of I'S FI@IAcouiiiiiiieiie e 434
Table A.15: MIPS32 COP1 Encoding of Function Field When rS=S.........ccooiiiiiiiiiiiiieee e 434
Table A.16: MIPS32 COP1 Encoding of Function Field When rS=Dccccciiiiiiiiiieiiiceec e 435
Table A.17: MIPS32 COP1 Encoding of Function Field When rS=W OF Lcceoiiiiiiiiieeec e 435
Table A.18: MIPS32 COP1 Encoding of Function Field When rS=PS ... 436
Table A.19: MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS6R, Function=MOVCF6Rcccceeenn. 436
Table A.20: MIPS32 COP2 ENCOdiNg Of IS FIIAeiiiiiiiiiiieiiie ettt 436
Table A.21: MIPS32 COP1X6R Encoding of FUNCHON Fieldc.cooiiiiiiiiiiii e 437
Table A.22: Floating Point Unit Instruction Format ENCOAINGS...........uviiiiiiiiiiiiiiieee e 437
Table A.23: Release 6 MUL/DIV @NCOTINGSeoeitiieiiiiaiiiie ettt ee sttt sbe e e st e st e sanneesneeesanneeenes 440
Table A.24: Release 6 PC-relative family @NCOAING........coiuiiiiiiiiiii e 440
Table A.25: Release 6 PC-relative family encoding bitStringsooooiiiiiiiiiii e 441
Table A.26: B*C compact branch @NCOAINGScoueiiiiiiiiiiie ettt be e ann e 442
1 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Chapter 1

About This Book

| The MIPS32® Instruction Set Manual comes as part of a multi-volume set.

* Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

* Volume I-B describes conventions used throughout the document set, and provides an introduction to the micro-
MIPS™ Architecture

* Volume II-A provides detailed descriptions of each instruction in the MIPS32® instruction set

* Volume II-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

* Volume III describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

e Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size. Release 6 removes
MIPS16e: MIPS16e cannot be implemented with Release 6.

* Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™, It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time. Release 6 removes MDMX: MDMX cannot be implemented with Release 6.

* Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture. Release 6
removes MIPS-3D: MIPS-3D cannot be implemented with Release 6.

* Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture . Release 6 removes SmartMIPS: SmartMIPS cannot be implemented with
Release 6, neither MIPS32 Release 6 nor MIPS64 Release 6.

* Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture.

* Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

* Volume I'V-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

e Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture

* Volume I'V-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

I The MIPS32® Instruction Set Manual, Revision 6.05 2

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

About This Book

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

* is used for emphasis

» is used for bits, fields, and registers that are important from a software perspective (for instance, address bits
used by software, and programmable fields and registers), and various floating point instruction formats, such as
Sand D

» is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

» represents a term that is being defined

» isused for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

» isused for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers
5 through 1

» is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

3 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:
* UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

* Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described using a high-level language pseudocode resem-
bling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

“«— Assignment

| =, Tests for equality and inequality

I Bit string concatenation

<Y A y-bit string formed by Yy copies of the single-bit value X

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
Oxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
I The MIPS32® Instruction Set Manual, Revision 6.05 4

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
Xy 2 Selection of bits y through z of bit string X. Little-endian bit notation (rightmost bit is 0) is used. If'y is less
than z, this expression is an empty (zero length) bit string.
x.bit[y] Bity of bitstring X. Alternative to the traditional MIPS notation x,.
x.bits[y..z] Selection of bits y through z of bit string X. Alternative to the traditional MIPS notation x, .
x.byte[y] Byte y of bitstring X. Equivalent to the traditional MIPS notation Xgs«y+7_ gy
x.bytes[y..z] Selection of bytes y through z of bit string X. Alternative to the traditional MIPS notation Xgsy.7 g,
x.halfword[y] Similar extraction of particular bitfields (used in e.g., MSA packed SIMD vectors).
x.word][i]
x.doubleword][i]
x.bit31, x.byte0, etc. | Examples of abbreviated form of x.bit[y], etc. notation, when y is a constant.
x.fieldy Selection of a named subfield of bitstring X, typically a register or instruction encoding.
More formally described as “Field y of register x”.
For example, FIR.D = “the D bit of the Coprocessor 1 Floating-point Implementation Register (FIR)”.
+, - 2’s complement or floating point arithmetic: addition, subtraction
* X 2’s complement or floating point multiplication (both used for either)
div 2’s complement integer division
mod 2’s complement modulo
/ Floating point division
< 2’s complement less-than comparison
> 2’s complement greater-than comparison
< 2’s complement less-than or equal comparison
> 2’s complement greater-than or equal comparison
nor Bitwise logical NOR
Xor Bitwise logical XOR
and Bitwise logical AND
or Bitwise logical OR
not Bitwise inversion
&& Logical (non-Bitwise) AND
<< Logical Shift left (shift in zeros at right-hand-side)
>> Logical Shift right (shift in zeros at left-hand-side)
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[x] CPU general-purpose register X. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlcgs, X].
SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR([s,X] refers to GPR set S, register X.
FPR[X] Floating Point operand register X
FCCICC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
Release 6 removes the floating point condition codes.
FPR[X] Floating Point (Coprocessor unit 1), general register X

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol

Meaning

CPR[z,x,s]

Coprocessor unit z, general register X, select S

CP2CPR[x]

Coprocessor unit 2, general register X

CCR[z,X]

Coprocessor unit z, control register X

CP2CCR[x]

Coprocessor unit 2, control register X

coc[z]

Coprocessor unit Z condition signal

Xlat[x]

Translation of the MIPS16e GPR number X into the corresponding 32-bit GPR number

BigEndianMem

Endian mode as configured at chip reset (0 — Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions) and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU

The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian

Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRgg and User mode).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

1+n:
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled 1+1.

The effect of pseudocode statements for the current instruction labeled 1+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC

The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. Release 6 adds PC-relative address computation and load instructions. The PC value contains a
full 32-bit address, all of which are significant during a memory reference.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:
Encoding Meaning
0 The processor is executing 32-bit MIPS instructions
1 The processor is executing MIIPS16e or microMIPS
instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

HPABITS _ 536

ical address bits were implemented, the size of the physical address space would be bytes.

FP32RegistersMode | Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32 Release 1, the FPU
has 32, 32-bit FPRs, in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and
optionally in MIPS32 Release2 and Release 3) the FPU has 32 64-bit FPRs in which 64-bit data types are
stored in any FPR.

In MIPS32 Release 1 implementations, FP32RegistersMode is always a 0. MIPS64 implementations have a
compatibility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In
such a case FP32RegisterMode is computed from the FR bit in the Status register. If this bit is a 0, the pro-
cessor operates as if it had 32, 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch

laySlot or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 Notation for Register Field Accessibility

In this document, the read/write properties of register fields use the notations shown in Table 1.1.

Table 1.2 Read/Write Register Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation
R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software read. Software updates of this field are visible by
hardware read.
If the Reset State of this field is “Undefined”, either software or hardware must initialize the value before
the first read will return a predictable value. This should not be confused with the formal definition of
UNDEFINED behavior.
7 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1.4 Notation for Register Field Accessibility

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation
R A field which is either static or is updated only by | A field to which the value written by software is
hardware. ignored by hardware. Software may write any value
If the Reset State of this field is either “0”, “Pre- | to this field without affecting hardware behavior.
set”, or “Externally Set”, hardware initializes this | Software reads of this field return the last value
field to zero or to the appropriate state, respectively, | updated by hardware.
on powerup. The term “Preset” is used to suggest | If the Reset State of this field is “Undefined”, soft-
that the processor establishes the appropriate state, | ware reads of this field result in an UNPREDICT-
whereas the term “Externally Set” is used to sug- | ABLE value except after a hardware update done
gest that the state is established via an external under the conditions specified in the description of
source (e.g., personality pins or initialization bit the field.
stream). These terms are suggestions only, and are
not intended to act as a requirement on the imple-
mentation.
If the Reset State of this field is “Undefined”, hard-
ware updates this field only under those conditions
specified in the description of the field.
RO RO = reserved, read as zero, ignore writes by soft- | Architectural Compatibility: RO fields are reserved,
ware. and may be used for not-yet-defined purposes in
future revisions of the architecture.
Hardware ignores software writes to an RO field.
Neither the occurrence of such writes, nor the val- | When writing an RO field, current software should
ues written, affects hardware behavior. only write either all Os, or, preferably, write back the
same value that was read from the field.
Hardware always returns 0 to software reads of RO
fields. Current software should not assume that the value
read from RO fields is zero, because this may not be
The Reset State of an RO field must always be 0. true on future hardware.
If software performs an mtc0 instruction which Future revisions of the architecture may redefine an
writes a non-zero value to an RO field, the write to | RO field, but must do so in such a way that software
the RO field will be ignored, but permitted writes to | which is unaware of the new definition and either
other fields in the register will not be affected. writes zeros or writes back the value it has read from
the field will continue to work correctly.
Writing back the same value that was read is guaran-
teed to have no unexpected effects on current or
future hardware behavior. (Except for non-atomicity
of such read-writes.)
Writing zeros to an RO field may not be preferred
because in the future this may interfere with the oper-
ation of other software which has been updated for
the new field definition.
I The MIPS32® Instruction Set Manual, Revision 6.05 8

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

About This Book

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation
0 Release 6
Release 6 legacy “0” behaves like RO - read as zero, nonzero writes ignored.
Legacy “0” should not be defined for any new control register fields; RO should be used instead.
HW returns 0 when read. Only zero should be written, or, value read from reg-
HW ignores writes. ister.
pre-Release 6
pre-Release 6 legacy “0” - read as zero, nonzero writes UNDEFINED
A field which hardware does not update, and for A field to which the value written by software must
which hardware can assume a zero value. be zero. Software writes of non-zero values to this
field may result in UNDEFINED behavior of the
hardware. Software reads of this field return zero as
long as all previous software writes are zero.
If the Reset State of this field is “Undefined”, soft-
ware must write this field with zero before it is guar-
anteed to read as zero.
R/WO Like R/W, except that writes of non-zero to a R/WO field are ignored.

E.g. Status. NMI

Hardware may set or clear an R/WO bit. Software can only clear an R/WO0 bit.

Hardware ignores software writes of nonzero to an | Software writes 0 to an R/WO field to clear the field.
R/WO field. Neither the occurrence of such writes,
nor the values written, affects hardware behavior. | Software writes nonzero to an R/WO0 bit in order to
guarantee that the bit is not affected by the write.
Software writes of 0 to an R/WO0 field may have an
effect.

Hardware may return 0 or nonzero to software
reads of an R/WO bit.

If software performs an mtc0 instruction which
writes a non-zero value to an R/WO field, the write
to the R/WO field will be ignored, but permitted
writes to other fields in the register will not be
affected.

1.5 For More Information

MIPS processor manuals and additional information about MIPS products can be found at http://www.imgtec.com.

For comments or questions on the MIPS32® Architecture or this document, send Email to IMGBA-DocFeed-
back@imgtec.com.

9 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

http://www.mips.com/

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical

order in the tables at the beginning of the next chapter.
2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:
e “Instruction Fields” on page 12

e “Instruction Descriptive Name and Mnemonic” on page 12

* “Format Field” on page 12

e “Purpose Field” on page 13

e “Description Field” on page 13

e “Restrictions Field” on page 13

e “Operation Field” on page 15

* “Exceptions Field” on page 15

e “Programming Notes and Implementation Notes Fields” on page 15

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

10

Guide to the Instruction Set

Figure 2.1 Example of Instruction Description

Instruction Mnemonic and —s= Example Instruction Name EXAMPLE
Descriptive Name
EXAMPLE

31 26 25 21 20 16 15 1 10 6 5 0
Instruction Encoding
Constant and Variable —— SPECIAL 0 t rd 0 EXAMPLE
Field Names and Values 000000 00000 000000
Architecture Level at 6 > 5 ° 5 6
which Instruction Was
Defined/Redefined
Assembler Format(s) for ———— Format: EXAMPLE fd,rs,rt MIPS32
Each Definition

Short Description —————p Purpose: Example Instruction Name
To execute an EXAMPLE op.

Symbolic Description ——————» Description: GPR[rd] «— GPR[r]s exampleop GPR[rt]

Full Description of ———gm This section describes the operation of the instruction in text, tables, and illustrations. It
Instruction Operation includes information that would be difficult to encode in the Operation section.

Restrictions on Instruction ————® Restrictions:

and Operands
This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca-
tions.

High-Level Language — > Operation:
Description of the

Instruction Operation /* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */

temp <— GPR[rs] exampleop GPR[rt]
GPR[rd] « sign_extend(temps;_ g)

Exceptions that the Instruction——~ Exceptions:

Can Cause
A list of exceptions taken by the instruction.

Notes for Programmers—® Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction.

Notes for Implementers—— Implementation Notes:

Like Programming Notes, except for processor implementors.

11 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.1 Understanding the Instruction Fields

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

* The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

* All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

» Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

31 26 25 21 20 16 15 1 10 6 5 0
SPECIAL 4 0 ADD
000000 s rt r 00000 100000
6 5 5 5 5 6

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

Add Word ADD

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

Format: ADD fd,rs,rt MIPS32

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields.

The architectural level at which the instruction was first defined, for example “MIPS32” is shown at the right side of
the page. Instructions introduced at different times by different ISA family members, are indicated by markings such

I The MIPS32® Instruction Set Manual, Revision 6.05 12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set
as “MIPS64, MIPS32 Release 2”. Instructions removed by particular architecture release are indicated in the Avail-
ability section.
There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the

ADD.fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

Description: GPR[rd] « GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

» Ifthe addition results in 32-bit 2’s complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

» Ifthe addition does not overflow, the 32-bit result is placed into GPR rd.

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register

fd” is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

* Valid values for instruction fields (for example, see floating point ADD.fmt)

13 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.1 Understanding the Instruction Fields

* ALIGNMENT requirements for memory addresses (for example, see LW)
* Valid values of operands (for example, see ALNV.PS)
* Valid operand formats (for example, see floating point ADD.fmt)

* Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

* Valid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

Restrictions:

None

2.1.7 Availability and Compatibility Fields

The Availability and Compatibility sections are not provided for all instructions. These sections list considerations
relevant to whether and how an implementation may implement some instructions, when software may use such
instructions, and how software can determine if an instruction or feature is present. Such considerations include:

* Some instructions are not present on all architecture releases. Sometimes the implementation is required to
signal a Reserved Instruction exception, but sometimes executing such an instruction encoding is architec-
turally defined to give UNPREDICTABLE results.

* Some instructions are available for implementations of a particular architecture release, but may be provided
only if an optional feature is implemented. Control register bits typically allow software to determine if the
feature is present.

+ Some instructions may not behave the same way on all implementations. Typically this involves behavior
that was UNPREDICTABLE in some implementations, but which is made architectural and guaranteed con-
sistent so that software can rely on it in subsequent architecture releases.

* Some instructions are prohibited for certain architecture releases and/or optional feature combinations.

* Some instructions may be removed for certain architecture releases. Implementations may then be required
to signal a Reserved Instruction exception for the removed instruction encoding; but sometimes the instruc-
tion encoding is reused for other instructions.

All of these considerations may apply to the same instruction. If such considerations applicable to an instruction are
simple, the architecture level in which an instruction was defined or redefined in the Format field, and/or the Restric-
tions section, may be sufficient; but if the set of such considerations applicable to an instruction is complicated, the
Availability and Compatibility sections may be provided.

I The MIPS32® Instruction Set Manual, Revision 6.05 14

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

2.1.8 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 2.8 Example of Instruction Operation

Operation:

temp « (GPR[rsl];;||GPR[rsls; o) + (GPR[rtls;||GPRIrtls; o)
if temp;, # temps; then
SignalException (IntegerOverflow)
else
GPR [rd] <« temp
endif

See 2.2 “Operation Section Notation and Functions” on page 16 for more information on the formal notation used
here.

2.1.9 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception

Exceptions:

Integer Overflow

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.
2.1.10 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

15 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

Figure 2.10 Example of Instruction Programming Notes
Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 16

* “Pseudocode Functions” on page 16

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

* “Coprocessor General Register Access Functions” on page 16
* “Memory Operation Functions” on page 18
* “Floating Point Functions” on page 21

* “Miscellaneous Functions” on page 25

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and
how a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted
into the functions described in this section.

2.2.2.1.1 COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-
word in coprocessor general register It.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)

The MIPS32® Instruction Set Manual, Revision 6.05 16

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */
endfunction COP_LW
2.2.2.1.2 COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 2.12 COP_LD Pseudocode Function
COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.
/* Coprocessor-dependent action */
endfunction COP_LD

2.2.2.1.3 COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in

coprocessor general register rt.
Figure 2.13 COP_SW Pseudocode Function

dataword <« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word wvalue

/* Coprocessor-dependent action */
endfunction COP_SW
2.2.2.1.4 COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-

order doubleword in coprocessor general register rt.
Figure 2.14 COP_SD Pseudocode Function
datadouble <« COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier

datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

17 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

endfunction COP_SD

2.2.2.1.5 CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function
CoprocessorOperation (z, cop fun)

/* zZ: Coprocessor unit number */
/* cop fun: Coprocessor function from function field of instruction */

/* Transmit the cop fun value to coprocessor z */
endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the Access-
Length field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

2.2.2.2.1 Misalighed Support

MIPS processors originally required all memory accesses to be naturally aligned. MSA (the MIPS SIMD Architec-
ture) supported misaligned memory accesses for its 128 bit packed SIMD vector loads and stores, from its introduc-
tion in MIPS Release 5. Release 6 requires systems to provide support for misaligned memory accesses for all
ordinary memory reference instructions: the system must provide a mechanism to complete a misaligned memory ref-
erence for this instruction, ranging from full execution in hardware to trap-and-emulate.

The pseudocode function MisalignedSupport encapsulates the version number check to determine if misalignment is
supported for an ordinary memory access.

Figure 2.16 MisalignedSupport Pseudocode Function
predicate <« MisalignedSupport ()

return Config.AR > 2 // Architecture Revision 2 corresponds to MIPS Release 6.
end function

See Appendix B, “Misaligned Memory Accesses” on page 511 for a more detailed discussion of misalignment,
including pseudocode functions for the actual misaligned memory access.

2.2.2.2.2 AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

The MIPS32® Instruction Set Manual, Revision 6.05 18

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

Given the virtual address vAddr, and whether the reference is to Instructions or Data (lorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.17 AddressTranslation Pseudocode Function
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* TIorD: 1Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

2.2.2.2.3 LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 2.18 LoadMemory Pseudocode Function
MemElem <« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */

/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* VvAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

19 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

2.2.2.2.4 StoreMemory
The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will
actually be changed.

Figure 2.19 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */

/* AccessLength: Length, in bytes, of access */

/* MemElem: Data in the width and alignment of a memory element. */

/* The width is the same size as the CPU general */

/* purpose register, either 4 or 8 bytes, */

/* aligned on a 4- or 8-byte boundary. For a */

/* partial-memory-element store, only the bytes that will bex*/
/* stored must be valid.x/

/* pAddr: physical address */

/* VvAddr: virtual address */

endfunction StoreMemory

2.2.2.2.5 Prefetch
The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.20 Prefetch Pseudocode Function
Prefetch (CCA, pAddr, vAddr, DATA, hint)
/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: 1Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
I The MIPS32® Instruction Set Manual, Revision 6.05 20

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
3
2

WORD 4 bytes (32 bits)
TRIPLEBYTE 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

2.2.2.2.6 SyncOperation
The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by Stype occur in the same order for all
processors.

Figure 2.21 SyncOperation Pseudocode Function
SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

2.2.2.3.1 ValueFPR
The ValueFPR function returns a formatted value from the floating point registers.
Figure 2.22 ValueFPR Pseudocode Function
value <« ValueFPR (fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */

/* OB, QH, */

/* UNINTERPRETED WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1l and SDC1 */

21 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

case fmt of
S, W, UNINTERPRETED WORD:
valueFPR « FPR[fpr]

D, UNINTERPRETED DOUBLEWORD:

if (FP32RegistersMode = 0)
if (fpry # 0) then
valueFPR <« UNPREDICTABLE
else
valueFPR <« FPR[fpr+ll;; , || FPRIfprls;. o
endif
else
valueFPR « FPR[fpr]
endif
| L:
if (FP32RegistersMode = 0) then
valueFPR <« UNPREDICTABLE
else
valueFPR « FPR[fpr]
endif
DEFAULT:
valueFPR <« UNPREDICTABLE
endcase

endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

2.2.2.3.2 StoreFPR

StoreFPR

/*
/*
/*
/*
/*
/*
/*

/*
/*

fpr:
fmt:

value:

Figure 2.23 StoreFPR Pseudocode Function

(fpr, fmt, value)

The FPR number */

The format of the data, one of: */

S, D, W, L, PS, */

OB, QH, */

UNINTERPRETED WORD, */

UNINTERPRETED DOUBLEWORD */

The formattted value to be stored into the FPR */

The UNINTERPRETED values are used to indicate that the datatype */
is not known as, for example, in LWC1 and LDC1l */

case fmt of
S, W, UNINTERPRETED WORD:
FPR[fpr] <« wvalue

D, UNINTERPRETED DOUBLEWORD:

I The MIPS32® Instruction Set Manual, Revision 6.05 22

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

if (FP32RegistersMode = 0)
if (fpry # 0) then
UNPREDICTABLE
else
FPR[fpr] < UNPREDICTABLE>? | value,;.
FPR [fpr+1] < UNPREDICTABLE’? | valueg,
endif
else
FPR[fpr] <« value
endif

..32

if (FP32RegistersMode = 0) then
UNPREDICTABLE

else
FPR[fpr] <« value

endif

endcase

endfunction StoreFPR

2.2.2.3.3 CheckFPException

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

Figure 2.24 CheckFPException Pseudocode Function

CheckFPException ()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */

/* and the corresponding bit in the Enable field are both 1 */

if ((FCSRyy = 1) or
((FCSRy¢. 15 and FCSRyq; 5) # 0))) then
SignalException (FloatingPointException)
endif

endfunction CheckFPException

2.2.2.3.4 FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.

Figure 2.25 FPConditionCode Pseudocode Function
tf <-FPConditionCode (cc)
/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */
if cc = 0 then
FPConditionCode < FCSR,,

else
FPConditionCode < FCSRy4.cc

23 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

endif
endfunction FPConditionCode
2.2.2.3.5 SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.26 SetFPConditionCode Pseudocode Function

SetFPConditionCode (cc, tf)
if cc = 0 then

FCSR « FCSR3; o4 || tf || FCSR,y o
else
FCSR < FCSR31 ss5icc || tf || FCSRa3icc. .o

endif

endfunction SetFPConditionCode

2.2.2.4 Pseudocode Functions Related to Sigh and Zero Extension
2.2.2.4.1 Sign extension and zero extension in pseudocode

Much pseudocode uses a generic function sign extend without specifying from what bit position the extension is
done, when the intention is obvious. E.g. sign extend (immediatel6) orsign extend (disp9).

However, sometimes it is necessary to specify the bit position. For example, sign extend (temp;;) or the

more complicated (offset,) CPREEN-(16+2) || offset || 02

The explicit notation sign_extend.nbits(val) orsign extend(val,nbits) issuggested as a simpli-
fication. They say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually appar-
ent by context, and is usually GPRLEN, 32 or 64 bits. The previous examples then become.

sign extend(temps;)

= sign extend.32 (temp)

and
(of fset) CFRUEN-(16+2) | offget || 02
= sign extend.1l6 (offset)<<2

Note that sign_extend.N(value) extends from bit position N-1, if the bits are numbered 0..N-1 as is typical.

The explicit notations sign extend.nbits(val) or sign extend(val,nbits) is used as a simplifica-
tion. These notations say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually
apparent by context, and is usually GPRLEN, 32 or 64 bits.

Figure 2.27 sign_extend Pseudocode Functions
sign extend.nbits(val) = sign extend(val,nbits) /* syntactic equivalents */

function sign extend(val,nbits)
return (valnbits_l)GPRLEN—nblts ||
end function

Valnbits—l ..0

The earlier examples can be expressed as
(of fset) CFRLEN-(16+2) 1| offget || 02

The MIPS32® Instruction Set Manual, Revision 6.05 24

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

= sign extend.1l6 (offset) << 2)

and
sign extend(temp;; ¢)
= sign extend.32(temp)

Similarly for zero extension, although zero extension is less common than sign extension in the MIPS ISA.

Floating point may use notations such as zero_extend. fmt corresponding to the format of the FPU instruction.
E.g. zero_extend.S and zero_extend.D are equivalent to zero_extend.32 and zero_extend. 64.

Existing pseudocode may use any of these, or other, notations.

2.2.2.4.2 memory_address

The pseudocode function memory address performs mode-dependent address space wrapping for compatibility
between MIPS32 and MIPS64. 1t is applied to all memory references. It may be specified explicitly in some places,
particularly for new memory reference instructions, but it is also declared to apply implicitly to all memory refer-
ences as defined below. In addition, certain instructions that are used to calculate effective memory addresses but
which are not themselves memory accesses specify memory_address explicitly in their pseudocode.

Figure 2.28 memory_address Pseudocode Function
function memory address (ea)
return ea
end function

On a 32-bit CPU, memory address returns its 32-bit effective address argument unaffected.

In addition to the use of memory address for all memory references (including load and store instructions, LL/
SC), Release 6 extends this behavior to control transfers (branch and call instructions), and to the PC-relative address
calculation instructions (ADDIUPC, AUIPC, ALUIPC). In newer instructions the function is explicit in the pseudo-
code.

Implicit address space wrapping for all instruction fetches is described by the following pseudocode fragment which
should be considered part of instruction fetch:

Figure 2.29 Instruction Fetch Implicit memory_address Wrapping
PC <« memory address(PC)
(instruction data, length) < instruction fetch(PC)
/* decode and execute instruction */

Implicit address space wrapping for all data memory accesses is described by the following pseudocode, which is
inserted at the top of the AddressTranslation pseudocode function:

Figure 2.30 AddressTranslation implicit memory_address Wrapping
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)
vAddr < memory address (vAddr)
In addition to its use in instruction pseudocode,

2.2.2.5 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

25 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

2.2.2.5.1 SignalException
The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.31 SignalException Pseudocode Function
SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

2.2.2.5.2 SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.32 SignalDebugBreakpointException Pseudocode Function
SignalDebugBreakpointException ()
endfunction SignalDebugBreakpointException

2.2.2.5.3 SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.33 SignalDebugModeBreakpointException Pseudocode Function
SignalDebugModeBreakpointException ()
endfunction SignalDebugModeBreakpointException
2.2.2.5.4 NullifyCurrentinstruction
The NullifyCurrentInstruction function nullifies the current instruction.
The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification

kills the instruction in the delay slot of the branch likely instruction.

Figure 2.34 NullifyCurrentinstruction PseudoCode Function

NullifyCurrentInstruction ()

The MIPS32® Instruction Set Manual, Revision 6.05 26

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

endfunction NullifyCurrentInstruction

2.2.2.5.5 PolyMult
The PolyMult function multiplies two binary polynomial coefficients.

Figure 2.35 PolyMult Pseudocode Function

PolyMult (x, V)

temp « O
for i in 0 .. 31
if x; = 1 then
temp « temp xor (y(s;-i)..0 || 0%
endif
endfor

PolyMult <« temp

endfunction PolyMult
2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
0op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name con-
tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a

variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16¢
instructions.

See “Op and Function Subfield Notation” on page 27 for a description of the op and function subfields.

27 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.4 FPU Instructions

I The MIPS32® Instruction Set Manual, Revision 6.05 28

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Chapter 3

The MIPS32® Instruction Set

3.1 Compliance and Subsetting

To be compliant with the MIPS32 Architecture, designs must implement a set of required features, as described in
this document set. To allow implementation flexibility, the MIPS32 Architecture provides subsetting rules. An imple-
mentation that follows these rulesis compliant with the M1PS32 Architecture aslong asit adheres strictly to the rules,
and fully implements the remaining instructions. Supersetting of the MIPS32 Architecture is only allowed by adding
functionsto the SPECIAL2, COP2, or both major opcodes, by adding control for co-processors viathe COP2, LWC2,
SWC2, LDC2, and/or SDC2, or viathe addition of approved Application Specific Extensions.

Release 6 removes all instructions under the SPECIAL2 major opcode, either by removing them or moving them to
the COP2 major opcode. All coprocessor 2 support instructions (for example, LWC2) have been moved to the COP2
major opcode. Supersetting of the Release 6 architecture is only allowed in the COP2 major opcode, or viathe addi-
tion of approved Application Specific Extensions. SPECIAL 2 isreserved for MIPS.

Note: The use of COP3 as a customizable coprocessor has been removed in the Release 2 of the M1PS32 architecture.
The COP3 isreserved for the future extension of the architecture. |mplementations using Releasel of the MIPS32
architecture are strongly discouraged from using the COP3 opcode for a user-available coprocessor as doing so will
limit the potential for an upgrade path to a 64-bit floating point unit.

Theinstruction set subsetting rules are described in the subsections bel ow, and also the following rule:

» Co-dependence of Architecture Features: MIPSr5™ (also called Release 5) and subsequent releases (such as
Release 6) include a number of features. Some are optional; some are required. Features provided by arelease,
such as MIPSr5 or later, whether optional or required, must be consistent. If any feature that is introduced by a
particular release is implemented (such as a feature described as part of Release 5 and not any earlier release)
then al other features must be implemented in a manner consistent with that release. For example: the VZ and
MSA features are introduced by Release 5 but are optional. The FR=1 64-bit FPU register model was optional
when introduced earlier, but is now required by Release 5 if any FPU isimplemented. If any or al of VZ or MSA
areimplemented, then Release 5 isimplied, and then if an FPU isimplemented, it must implement the FR=1 64-
bit FPU register model.

3.1.1 Subsetting of Non-Privileged Architecture

» All non-privileged (do not need access to Coprocessor 0) CPU (non-FPU) instructions must be implemented —
no subsetting of these are allowed — per the MIPS Instruction Set Architecture release supported.

« If any instruction is subsetted out based on the rules below, an attempt to execute that instruction must cause the
appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

» TheFPU and related support instructions, such as CPU conditional branches on FPU conditions (pre-Release 6
BC1T/BC1F, Release 6 BCINEQZ) and CPU conditional moves on FPU conditions (pre-Release 6 MOV T/
MOVF), may be omitted. Software may determine if an FPU isimplemented by checking the state of the FP bit
in the Configl CPO register. Software may determine which FPU data types are implemented by checking the

| The MIPS32® Instruction Set Manual, Revision 6.05 29

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.1 Compliance and Subsetting

appropriate bitsin the FIR CP1 register. The following allowable FPU subsets are compliant with the M1PS32

architecture:
« NoFPU
Configl.FP=0

* FPU with S, and W formats and all supporting instructions.
This 32-bit subset is permitted by Release 6, but prohibited by pre-Release 6 releases.
Configl.FP=1, Status.FR=0, FIR.S=FIR.L=1, FIR.D=FIR.L=FIR.PS=0.

e FPUwith S, D, W, and L formats and all supporting instructions
Configl.FP=1, Status.FR=(see below), FIR.S=FIR.L=FIR.D=FIR.L=1, FIR.PS=0.

pre-MIPSr5 permits this 64-bit configuration, and allows both FPU register modes. Status.FR=0 support is
required but Status.FR=1 support is optional.

MIPSr5 permits this 64-bit configuration, and requires both FPU register modes, i.e. both Status.FR=0 and
Status.FR=1 support are required.

Release 6 permits this 64-bit configuration, but requires Status.FR=1 and FIR.F64=1. Release 6 prohibits
Status.FR=0if FIR.D=1 or FIR.L=1.

* FPUwith S, D, PS, W, and L formats and all supporting instructions
Configl.FP=1, Status.FR=0/1, FIR.S=FIR.L=FIR.D=FIR.L=FIR.PS=1.
Release 6 prohibits this mode, and any mode with FIR.PS=1 paired single support.

* InRelease5 of the Architecture, if floating point isimplemented then FR=1 isrequired. |.e. the 64-bit FPU,
with the FR=1 64-bit FPU register model, is required. The FR=0 32-bit FPU register model continuesto be
required.

» Coprocessor 2 isoptional and may be omitted. Software may determine if Coprocessor 2 isimplemented by
checking the state of the C2 bit in the Configl CPO register. If Coprocessor 2 isimplemented, the Coprocessor 2
interface instructions (BC2, CFC2, COP2, CTC2, LDC2, LWC2, MFC2, MTC2, SDC2, and SWC2) may be
omitted on an instruction-by-instruction basis.

* Thecachesareoptional. The Configlp, and Configl,, fields denote whether thefirst level caches are present or
not.

e Instruction, CPO Register, and CP1 Control Register fields that are marked “ Reserved” or shown as“0” in the
description of that field are reserved for future use by the architecture and are not available to implementations.
Implementations may only use those fields that are explicitly reserved for implementation dependent use.

e Supported Modules/ASEs are optional and may be subsetted out. In most cases, software may determineif asup-
ported Module/ASE isimplemented by checking the appropriate bit in the Configl or Config3 or Config4 CPO
register. If they areimplemented, they must implement the entire | SA applicable to the component, or implement
subsets that are approved by the Module/A SE specifications.

| The MIPS32® Instruction Set Manual, Revision 6.05 30

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

The MIPS32® Instruction Set

» EJTAG isoptional and may be subsetted out. If it isimplemented, it must implement only those subsets that are
approved by the EJTAG specification. If EJTAG is not implemented, the EJTAG instructions (SDBBP and
DERET) can be subsetted out.

* InMIPS Release 3, there are two architecture branches (MI1PS32/64 and microMIPS32/64). A single deviceis
alowed to implement both architecture branches. The Privileged Resource Architecture (COPO) registers do not
mode-switch in width (32-bit vs. 64-hit). For thisreason, if a device implements both architecture branches, the
address/data widths must be consistent. If adevice implements M1PS64 and al so implements microMIPS, it must
implement microM1PS64 not just microM1PS32. Simiarly, If adevice implements microMI1PS64 and also imple-
ments MI1PS32/64, it must implement MIPS64 not just MIPS32.

» Priorto Release 6, the JALX instruction is required if and only if ISA mode-switching is possible. If both of the
architecture branches are implemented (M1PS32/64 and microMIPS32/64) or if MIPS16e isimplemented then
the JALX instructions are required. If only one branch of the architecture family and MIPS16eis not imple-
mented then the JAL X instruction is not implemented. The JALX instruction was removed in Release 6.

3.2 Alphabetical List of Instructions

31

The following pages present detailed descriptions of instructions, arranged alphabetical order of opcode mnemonic
(except where several similar instructions are described together.)

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ABS.fmt Floating Point Absolute Value

31 26 25 21 20 16 15 1 10 6 5 0
COP1 0 ABS
010001 fimt 00000 fs fd 000101
6 5 5 5 5 6
Format: ABS.fmt
ABS.S fd, fs MIPS32
ABS.D fd, fs MIPS32
ABS.PS fd, fs MIPS64,MIPS32 Release 2, removed in Release 6
Purpose: Floating Point Absolute Value
Description: FPR[£fd] < abs(FPR[fs])
The absolute value of the value in FPR fs is placed in FPR fd. The operand and result are values in format fmt.
ABS.PS takes the absolute value of the two values in FPR fs independently, and ORs together any generated excep-
tions.
The Cause bits are ORed into the Flag bits if no exception is taken.
If FIR{as2008=0 or FCSRags2008=0 then this operation is arithmetic. For this case, any NaN operand signals invalid
operation.
If FCSRaRs200s=1 then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN
values are treated alike, only the sign bit is affected by this instruction. No IEEE exception can be generated for this
case, and the FCSRcq e and FCSREqgs fields are not modified.
Restrictions:
The fields fs and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.
The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
The result of ABS.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model.
ABS.PS is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.
Availability and Compatibility:
ABS.PS has been removed in Release 6.
Operation:
StoreFPR (fd, fmt, AbsoluteValue (ValueFPR(fs, fmt)))
Exceptions:
Coprocessor Unusable, Reserved Instruction
Floating Point Exceptions:
Unimplemented Operation, Invalid Operation
The MIPS32® Instruction Set Manual, Revision 6.05 32

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADD Add Word
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL . " d 0 ADD
000000 s 00000 100000
6 5 5 5 5 6
Format: abD rd, rs, rt MIPS32

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR [rd] < GPR[rs] + GPR[rt]
The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result.

» If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

» If'the addition does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp < (GPR[rslj;||GPRIrslsyy o) + (GPRIrtlyq||GPRIrtls; o)
if temp;, # temp;; then
SignalException (IntegerOverflow)
else
GPR [rd] <« temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

The MIPS32® Instruction Set Manual, Revision 6.05 33

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADD.fmt Floating Point Add

31 26 25 21 20 16 15 11 10 6 5 0
COPI ADD
010001 fmt fi fs fd 000000
6 5 5 5 5 6

34

Format: ADD.fmt

ADD.S fd, fs, ft MIPS32
ADD.D fd, fs, ft MIPS32
ADD.PS fd, fs, ft MIPS64,MIPS32 Release 2, removed in Release 6

Purpose: Floating Point Add

To add floating point values.

Description: FPR[£d] ¢ FPR[fs] + FPR[ft]

The value in FPR ft is added to the value in FPR fs. The result is calculated to infinite precision, rounded by using to
the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

ADD.PS adds the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated excep-
tions.

The Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt. If the fields are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of ADD.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model.
ADD.PS is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:
ADD.PS has been removed in Release 6.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) +¢, ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADDI Add Immediate Word

31 26 25 21 20 16 15 0
ADDI I t immediat
001000 s cdiate
6 5 5 16
Format: ADDI rt, rs, immediate MIPS32, removed in Release 6

Purpose: Add Immediate Word

To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: GPR[rt] ¢ GPR[rs] + immediate
The 16-bit signed immediate is added to the 32-bit value in GPR rs to produce a 32-bit result.

» If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

« If'the addition does not overflow, the 32-bit result is placed into GPR rt.
Restrictions:

Availability and Compatibility:

This instruction has been removed in Release 6. The encoding has been reused for other instructions introduced by
Release 6.

Operation:

temp « (GPR[rsl];;||GPR[rsl;; o) + sign extend(immediate)
if temp;, # temp;; then
SignalException (IntegerOverflow)
else
GPR[rt] <« temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but does not trap on overflow.

| The MIPS32® Instruction Set Manual, Revision 6.05 35

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADDIU Add Immediate Unsigned Word
31 26 25 21 20 16 15
ADDIU rs immediate
001001
6 5 16
Format: ADDIU rt, rs, immediate

Purpose: Add Immediate Unsigned Word

To add a constant to a 32-bit integer.

Description: GPR[rt] ¢ GPR[rs] + immediate

MIPS32

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into

GPR 1t.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ¢ GPR[rs]
GPR[rt] €« temp

Exceptions:

None

Programming Notes:

+ sign_extend (immediate)

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-

metic environments that ignore overflow, such as C language arithmetic.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

36

ADDIUPC Add Immediate to PC (unsigned - non-trapping)

31 26 25 21 20 19 18 0
| PCREL s ADDIUPC immediate
111011 00
6 5 2 19
Format: ADDIUPC rs,immediate MIPS32 Release 6
| Purpose: Add Immediate to PC (unsigned - non-trapping)

Description: GPR[rs] <« (PC + sign extend(immediate << 2))

This instruction performs a PC-relative address calculation. The 19-bit immediate is shifted left by 2 bits, sign-
extended, and added to the address of the ADDIUPC instruction. The result is placed in GPR rs.

Restrictions:
None
Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation:

| GPR[rs] « (PC + sign extend(immediate << 2))

Exceptions:

None

Programming Notes:

The term “unsigned” in this instruction mnemonic is a misnomer. “Unsigned” here means “non-trapping”. It does not
trap on a signed 32-bit overflow. ADDIUPC corresponds to unsigned ADDIU, which does not trap on overflow, as
opposed to ADDI, which does trap on overflow.

| The MIPS32® Instruction Set Manual, Revision 6.05 37

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADDU Add Unsigned Word

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s it d 0 ADDU
000000 00000 100001
6 5 5 5 5 6
Format: ADDU rd, rs, rt MIPS32

Purpose: Add Unsigned Word
To add 32-bit integers.

Description: GPR[rd] « GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ¢ GPR[rs] + GPR[rt]
GPR[rd] <« temp
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

38 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ALIGN Concatenate two GPRs, and extract a contiguous subset at a byte position

31 26 25 21 20 16 15 1 10 8 7 6 5 0
SPECIAL3 s " rd ALIGN b BSHFL
011111 010 P 100000
6 5 5 5 3 2 6

Format: ALIGN
ALIGN rd,rs,rt,bp MIPS32 Release 6

Purpose: Concatenate two GPRs, and extract a contiguous subset at a byte position

Description: GPR[rd] <« (GPR[rt] << (8*bp)) or (GPR[rs] >> (GPRLEN-8*bp))

The input registers GPR rt and GPR rs are concatenated, and a register width contiguous subset is extracted, which is
specified by the byte pointer bp .

The ALIGN instruction operates on 32-bit words, and has a 2-bit byte position field bp.

* The 32-bit word in GPR rt is left shifted as a 32-bit value by bp byte positions. The 32-bit word in register rs is
right shifted as a 32-bit value by (4-bp) byte positions. These shifts are logical shifts, zero-filling. The shifted
values are then or-ed together to create a 32-bit result that is written to destination GPR rd.

Restrictions:

Executing ALIGN with shift count bp=0 acts like a register to register move operation, and is redundant, and there-

fore discouraged. Software should not generate ALIGN with shift count bp=0.

Availability and Compatibility:

The ALIGN instruction is introduced by and required as of Release 6.

Programming Notes:

Release 6 ALIGN instruction corresponds to the pre-Release 6 DSP Module BALIGN instruction, except that
BALIGN with shift counts of 0 and 2 are specified as being UNPREDICTABLE, whereas ALIGN defines all bp val-
ues, discouraging only bp=0.

Graphically,
Figure 3.1 ALIGN operation (32-bit)
GPR[rt] GPR(rs|
4-b
—GPRJ[rd]
| Operation:

tmp_rt _hi <-unsigned word(GPR[rt]) << (8*bp)
tmp_rs lo <-unsigned word(GPR[rs]) >> (8*(4-bp))
tmp <—tmp_rt hi or tmp rt lo

GPR [rd] <« tmp
/* end of instruction */

| The MIPS32® Instruction Set Manual, Revision 6.05 39

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:

None

40 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ALNV.PS Floating Point Align Variable

31 26 25 21 20 16 15 1 10 6 5 0
COP1X ALNV.PS
010011 rs fi fs fd 011110
6 5 5 5 5 6
Format: aALNV.PS fd, fs, ft, rs MIPS64,MIPS32 Release 2, removed in Release 6

Purpose: Floating Point Align Variable
To align a misaligned pair of paired single values.
Description: FPR [fd] ¢« ByteAlign(GPR[rsl, ,, FPR[fs], FPRIft])

FPR fs is concatenated with FPR ft and this value is funnel-shifted by GPR rs, j bytes, and written into FPR fd. If
GPR s, is 0, FPR fd receives FPR fs. If GPR s, g is 4, the operation depends on the current endianness.

Figure 3-1 illustrates the following example: for a big-endian operation and a byte alignment of 4, the upper half of
FPR fd receives the lower half of the paired single value in fs, and the lower half of FPR fd receives the upper half of
the paired single value in FPR ft.

Figure 3.2 Example of an ALNV.PS Operation

FPR[fs] FPRIft]

63 32 31 0 63 32 31

=]

63 32 31

The move is non arithmetic; it causes no IEEE 754 exceptions, and the FCSRcayse and FCSREags fields are not
modified.
Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If the fields are not valid, the result is
UNPREDICTABLE.

If GPR rs;_g are non-zero, the results are UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model. The instruction is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on
a 32-bit FPU.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

if GPR[rsl, o = 0 then

| The MIPS32® Instruction Set Manual, Revision 6.05 41

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ALNV.PS

StoreFPR (fd, PS,ValueFPR(fs,PS))
else if GPR[rsl, # 4 then
UNPREDICTABLE
else if BigEndianCPU then

StoreFPR(fd, PS, ValueFPR(fs, PS);;.

else
StoreFPR (fd, PS, ValueFPR(ft,
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

PS)3;.

Floating Point Align Variable

o || ValueFPR(ft,PS)g5 35)

o || ValueFPR(fs,PS)¢s 35)

ALNV.PS is designed to be used with LUXCI1 to load 8 bytes of data from any 4-byte boundary. For example:

/* Copy T2 bytes (a multiple of 16)

of data TO to T1,

TO unaligned, T1 aligned.

Reads one dw beyond the end of TO0. */

set up by reading 1st src dw */
index into src and dst arrays */

Fl1 for little-endian */

FO for little-endian */

LUXC1 Fo, o(TO0) /*

LI T3, 0 /*

ADDIU T4, TO, 8 /* base for odd dw loads */

ADDIU TS5, Tl, -8/* base for odd dw stores */
LOOP:

LUXC1 Fl1, T3(T4)

ALNV.PS F2, F0, Fl, TO/* switch FoO,

SDC1 F2, T3(T1)

ADDIU T3, T3, 16

LUXC1 FO, T3(TO)

ALNV.PS F2, Fl1, FO, TO/* switch F1,

BNE T3, T2, LOOP

SDC1 F2, T3(T5)
DONE :

ALNV.PS is also useful with SUXCI to store paired-single results in a vector loop to a possibly misaligned address:

/* T1[i] = To[i] + F8,
CVT.PS.S F8, F8,

/* Loop header computes 1lst pair into FO,

/* misaligned */

TO aligned, T1 unaligned. */
F8/* make addend paired-single */

stores high half if T1 */

LOOP:
LDC1 F2, T3(T4)/* get TO[i+2]/TO[i+3] */
ADD.PS Fl, F2, F8/* compute T1[i+2]/T1[i+3] */
ALNV.PS F3, FO, F1, Tl1/* align to dst memory */
SUXC1 F3, T3(Tl)/* store to T1[i+0]/T1[i+1] */

ADDIU T3, 16 /¥ 1 =1 + 4 */

LDC1 F2, T3(TO)/* get TO[i+0]/TO[i+1] */
ADD.PS FO, F2, F8/* compute T1[i+0]/T1[i+1] */
ALNV.PS F3, Fl1l, F0, Tl1/* align to dst memory */
BNE T3, T2, LOOP

SUXC1 F3, T3(T5)/* store to T1[i+2]/T1[i+3] */

/* Loop trailer stores all or half of FoO,

The MIPS32® Instruction Set Manual, Revision 6.05

depending on T1 alignment */

42

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ALUIPC Alighed Add Upper Immediate to PC
31 26 25 21 20 16 15 0
PCREL] ALUIPC immediate
111011 11111
6 5 5 16
Format: ALUIPC rs, immediate MIPS32 Release 6
Purpose: Aligned Add Upper Immediate to PC
| Description: GPR [rs] < ~0x0FFFF & (PC + sign_extend(immediate << 16))

This instruction performs a PC-relative address calculation. The 16-bit immediate is shifted left by 16 bits, sign-
extended, and added to the address of the ALUIPC instruction. The low 16 bits of the result are cleared, that is the

result is aligned on a 64K boundary. The result is placed in GPR rs.

Restrictions:

None

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation:

I GPR[rs] <« ~O0xOFFFF &

Exceptions:

None

| The MIPS32® Instruction Set Manual, Revision 6.05

(PC + sign extend(immediate << 16))

43

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s " d 0 AND
000000 00000 100100
6 5 5 5 5 6
Format: AND rd, rs, rt MIPS32

Purpose: and
To do a bitwise logical AND.

Description: GPR[rd] ¢ GPR[rs] and GPRI[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:
GPR[rd] < GPR[rs] and GPR[rt]

Exceptions:

None

44 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

31 26 25 21 20 16 15 0
ANDI . .
001100 rs rt immediate
6 5 5 16
Format: ANDI rt, rs, immediate MIPS32
| Purpose: and immediate

To do a bitwise logical AND with a constant

| Description: GPR[rt] ¢ GPR[rs] and zero extend(immediate)

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical AND
operation. The result is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ¢ GPR[rs] and zero_ extend(immediate)

Exceptions:

None

| The MIPS32® Instruction Set Manual, Revision 6.05 45

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

46

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

AUI

31

Add Immediate to Upper Bits

26 25 21 20 16 15 0

AUI

001111 s rt immediate

6 5 5 16

Format: AUI rt, rs immediate MIPS32 Release 6

Purpose: Add Immediate to Upper Bits

Add Upper Immediate

Description:

GPR[rt] <« GPR[rs] + sign_extend(immediate << 16)
The 16 bit immediate is shifted left 16 bits, sign-extended, and added to the register rs, storing the result in rt.
In Release 6, LUI is an assembly idiom for AUI with rs=0.

Restrictions:

Availability and Compatibility:
AUI is introduced by and required as of Release 6.

Operation:

GPR[rt] <« GPR[rs] + sign extend(immediate << 16)

Exceptions:

None.

Programming Notes:

AUI can be used to synthesize large constants in situations where it is not convenient to load a large constant from
memory. To simplify hardware that may recognize sequences of instructions as generating large constants, AUI
should be used in a stylized manner.

To create an integer:
LUI rd, imm low (rtmp)
ORI rd, rd, imm_ upper

To create a large offset for a memory access whose address is of the form rbase+large offset:
AUI rtmp, rbase, imm upper
LW rd, (rtmp)imm low

To create a large constant operand for an instruction of the form rd:=rs+large immediate
orrd:=rs-large immediate:

AUI rtmp, rs, imm_ upper

ADDIU rd, rtmp, imm low

The MIPS32® Instruction Set Manual, Revision 6.05 47

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

AUIPC Add Upper Immediate to PC
31 26 25 21 20 16 15 0
PCREL s AUIPC immediate
111011 11110
6 5 5 16
Format: AUIPC rs, immediate MIPS32 Release 6

48

Purpose: Add Upper Immediate to PC

Description: GPR [rs] <«

(PC +

immediate << 16))

This instruction performs a PC-relative address calculation. The 16-bit immediate is shifted left by 16 bits, sign-
extended, and added to the address of the AUIPC instruction. The result is placed in GPR rs.

Restrictions:

None

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation:

GPR[rs] <«

Exceptions:

None

(PC +

(immediate << 16))

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Unconditional Branch

31 26 25 21 20 16 15 0
BEQ 0 0
000100 00000 00000 offset
6 5 5 16

Format: B offset

Purpose: Unconditional Branch

To do an unconditional branch.

Description: branch

Assembly Idiom

B offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the

hardware as BEQ r0, r0, offset.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs

include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the

delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-

mentations are required to signal a Reserved Instruction exception.

Operation:

I: target offset ¢« sign extend(offset || 0?)

I+1: PC <« PC + target offset

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is £ 128 Kbytes. Use jump (J) or jump register

(JR) or the Release 6 branch compact (BC) instructions to branch to addresses outside this range.

The MIPS32® Instruction Set Manual, Revision 6.05

49

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BAL

Branch and Link

pre-Release 6:

31 26 25 21 20 16 15 0
REGIMM BGEZAL
000001 00000 10001 offset
6 5 5 16
Release 6:
31 26 25 21 20 16 15 0
REGIMM 0 BAL offset
000001 00000 10001
6 5 5 16
Format: BAL offset Assembly Idiom MIPS32, MIPS32 Release 6
Purpose: Branch and Link
To do an unconditional PC-relative procedure call.
Description: procedure call
Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.
An 18-bit signed offset (the 16-bit offset field shifted left 2-bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.
Restrictions:
Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.
Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the
delay slot of a branch or jump.
Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.
Availability and Compatibility:
Pre-Release 6: BAL offset is the assembly idiom used to denote an unconditional branch. The actual instruction is
interpreted by the hardware as BGEZAL 10, offset.
Release 6 keeps the BAL special case of BGEZAL, but removes all other instances of BGEZAL. BGEZAL with rs
any register other than GPR [0] is required to signal a Reserved Instruction exception.
Operation:
I: target offset <« sign extend(offset || 02)
GPR[31] « PC + 8
I+1: PC <« PC + target offset
Exceptions:
None
Programming Notes:
BAL without a corresponding return should NOT be used to read the PC. Doing so is likely to cause a performance
loss on processors with a return address predictor.
The MIPS32® Instruction Set Manual, Revision 6.05 50

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

With the 18-bit signed instruction offset, the conditional branch range is £ 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

51 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BALC Branch and Link, Compact

31 26 25 0
BALC
111010 offset
6 26
Format: BALC offset MIPS32 Release 6

Purpose: Branch and Link, Compact

To do an unconditional PC-relative procedure call.

Description: procedure _call (no delay slot)

Place the return address link in GPR 31. The return link is the address of the instruction immediately following the
branch, where execution continues after a procedure call. (Because compact branches have no delay slots, see below.)

A 28-bit signed offset (the 26-bit offset field shifted left 2 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed when the branch is
taken.

Restrictions:

This instruction is an unconditional, always taken, compact branch. It does not have a forbidden slot, that is, a
Reserved Instruction exception is not caused by a Control Transfer Instruction placed in the slot following the branch.
Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Release 6 instruction BALC occupies the same encoding as pre-Release 6 instruction SWC2. The SWC2 instruction
has been moved to the COP2 major opcode in MIPS Release 6.

Exceptions:

None

Operation:

target offset <« sign extend(offset || 0%)
GPR[31] <« PC+4
PC < PC+4 + sign extend(target offset)

The MIPS32® Instruction Set Manual, Revision 6.05 52

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC Branch, Compact
31 26 25 0
BC
110010 offset
6 26

Format: BC offset MIPS32 Release 6
Purpose: Branch, Compact
Description: PC «- PC+4 + sign_extend(offset << 2)
A 28-bit signed offset (the 26-bit offset field shifted left 2 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.
Compact branches have no delay slot: the instruction after the branch is NOT executed when the branch is taken.
Restrictions:
This instruction is an unconditional, always taken, compact branch. It does not have a forbidden slot, that is, a
Reserved Instruction exception is not caused by a Control Transfer Instruction placed in the slot following the branch.
Availability and Compatibility:
This instruction is introduced by and required as of Release 6.
Release 6 instruction BC occupies the same encoding as pre-Release 6 instruction LWC2. The LWC2 instruction has
been moved to the COP2 major opcode in MIPS Release 6.
Exceptions:
None
Operation:

target offset <« sign extend(offset || 0%)

PC < (PC+4 + sign extend(target offset))

53 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC1EQZ BC1NEZ Branch if Coprocessor 1 (FPU) Register Bit 0 Equal/Not Equal to Zero

31 26 25 21 20 16 15 0
COPI1 BCIEQZ
010001 01001 ft offset
COP1 BCINEZ
010001 01101 ft offset
6 5 5 16
Format: BC1EQZ BCINEZ
BClEQZ ft, offset MIPS32 Release 6
BCINEZ ft, offset MIPS32 Release 6
Purpose: Branch if Coprocessor 1 (FPU) Register Bit 0 Equal/Not Equal to Zero
BCI1EQZ: Branch if Coprocessor 1 (FPU) Register Bit 0 is Equal to Zero
BCINEZ: Branch if Coprocessor 1 (FPR) Register Bit 0 is Not Equal to Zero
Description:
BC1lEQZ: if FPR[ft] & 1 = 0 then branch
BCINEZ: 1f FPR[ft] & 1 # 0 then branch
The condition is evaluated on FPU register ft.
* For BC1EQZ, the condition is true if and only if bit 0 of the FPU register ft is zero.
* For BCINEZ, the condition is true if and only if bit 0 of the FPU register ft is non-zero.
If the condition is false, the branch is not taken, and execution continues with the next instruction.
A 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address. Execute the instruction in the delay slot
before the instruction at the target.
Restrictions:
If access to Coprocessor 1 is not enabled, a Coprocessor Unusable Exception is signaled.
Because these instructions BC1EQZ and BCINEZ do not depend on a particular floating point data type, they operate
whenever Coprocessor 1 is enabled.
Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.
If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 implementations are
required to signal a Reserved Instruction exception.
Availability and Compatibility:
These instructions are introduced by and required as of Release 6.
Exceptions:
Coprocessor Unusable!
Operation:
1. InRelease 6, BCIEQZ and BCINEZ are required, if the FPU is implemented. They must not signal a Reserved Instruction
exception. They can signal a Coprocessor Unusable Exception.
| The MIPS32® Instruction Set Manual, Revision 6.05 54

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

55

BC1EQZ BC1NEZ Branch if Coprocessor 1 (FPU) Register Bit 0 Equal/Not Equal to Zero

tmp <« ValueFPR(ft, UNINTERPRETED_WORD)

BClEQZ: cond <« tmp & 1 = 0

BCINEZ: cond <« tmp & 1 # 0

if cond then
I: target PC « (PC+4 + sign extend(offset << 2)
I+1: PC <« target PC

Programming Notes:

Release 6: These instructions, BC1EQZ and BCINEZ, replace the pre-Release 6 instructions BC1F and BCIT. These
Release 6 FPU branches depend on bit 0 of the scalar FPU register.

Note: BC1EQZ and BCINEZ do not have a format or data type width. The same instructions are used for branches
based on conditions involving any format, including 32-bit S (single precision) and W (word) format, and 64-bit D
(double precision) and L (longword) format, as well as 128-bit MSA. The FPU scalar comparison instructions
CMP.condn.fmt produce an all ones or all zeros truth mask of their format width with the upper bits (where applica-
ble) UNPREDICTABLE. BC1EQZ and BCINEZ consume only bit 0 of the CMP.condn.fmt output value, and there-
fore operate correctly independent of fmt.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC1F Branch on FP False
31 26 25 21 20 18 17 16 15 0
COP1 BC cc nd| tf offiset
010001 01000 0|0
6 5 3 1 1 16
Format: BCL1F offset (cc = 0 implied) MIPS32, removed in Release 6
BC1F cc, offset MIPS32, removed in Release 6

Purpose: Branch on FP False

To test an FP condition code and do a PC-relative conditional branch.

Description: if FPConditionCode(cc) = 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code bit cc is false (0), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the delay dlot of a
branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

I: condition < FPConditionCode(cc) = 0
target offset « (offset,g)CPRMEN-(16+2) || offget || 02
I+1: if condition then
PC ¢« PC + target offset
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

This instruction has been removed in Release 6 and has been replaced by the BC1EQZ instruction. Refer to the
‘BC1EQZ’ instruction in this manual for more information.
Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS 1, 1I, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are

The MIPS32® Instruction Set Manual, Revision 6.05 56

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

valid for MIPS IV and MIPS32.

57 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC1FL Branch on FP False Likely

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf ffset
010001 01000 ce 10 otise
6 5 3 1 1 16
Format: BC1FL offset (cc = 0 implied) MIPS32, removed in Release 6
BC1FL cc, offset MIPS32, removed in Release 6

Purpose: Branch on FP False Likely

To test an FP condition code and make a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch is taken.

Description: if FPConditionCode(cc) = 0 then branch likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP Con-
dition Code bit cc is false (0), the program branches to the effective target address after the instruction in the delay
slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BCI1T, and BC1TL have specific values for

tf and nd.
I: condition ¢ FPConditionCode(cc) = 0
target offset ¢« (offset;g)CFRMEN-(16+2) || offget || 02
I+1: if condition then
PC ¢« PC + target offset
else
NullifyCurrentInstruction ()
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Implementation Note:

Some implementations always predict that the branch will be taken, and do not use nor do they update the branch
internal processor branch prediction tables for this instruction. To maintain performance compatibility, future imple-
mentations are encouraged to do the same.

| The MIPS32® Instruction Set Manual, Revision 6.05 58

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC1FL Branch on FP False Likely

59

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

In Pre-Release 6 implementations, software is strongly encouraged to avoid the use of the Branch Likely instructions,
as they will be removed from a future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC1F instruction instead.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS I, II, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BCIT Branch on FP True

31 26 25 21 20 18 17 16 15 0
COP1 BC cc nd | tf offiset
010001 01000 01
6 5 3 1 1 16
Format: BCL1T offset (cc = 0 implied) MIPS32, removed in Release 6
BC1T cc, offset MIPS32, removed in Release 6

Purpose: Branch on FP True

To test an FP condition code and do a PC-relative conditional branch.

Description: if FPConditionCode (cc) = 1 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code bit cc is true (1), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the delay slot of a
branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

I: condition <« FPConditionCode(cc) = 1
target offset « (offset;y)CPRVEN-(16+2) || offget || 02
I+1l: if condition then
PC < PC + target offset
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

This instruction has been replaced by the BCINEZ instruction. Refer to the ‘BCINEZ’ instruction in this manual for
more information.
Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS 1, 1I, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

| The MIPS32® Instruction Set Manual, Revision 6.05 60

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

61 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC1TL Branch on FP True Likely

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf ffset
010001 01000 ce 1)1 otise
6 5 3 1 1 16
Format: BC1TL offset (cc = 0 implied) MIPS32, removed in Release 6
BC1TL cc, offset MIPS32, removed in Release 6

Purpose: Branch on FP True Likely

To test an FP condition code and do a PC-relative conditional branch; execute the instruction in the delay slot only if
the branch is taken.

Description: if FPConditionCode(cc) = 1 then branch likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP Con-
dition Code bit cc is true (1), the program branches to the effective target address after the instruction in the delay slot
is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for

tf and nd.
I: condition ¢ FPConditionCode(cc) = 1
target offset « (offset;g)CFRMEN-(16+2) || offget || 02
I+1: if condition then
PC ¢« PC + target offset
else
NullifyCurrentInstruction/()
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Implementation Note:

Some implementations always predict that the branch will be taken, and do not use nor do they update the branch
internal processor branch prediction tables for this instruction. To maintain performance compatibility, future imple-
mentations are encouraged to do the same.

| The MIPS32® Instruction Set Manual, Revision 6.05 62

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC1TL Branch on FP True Likely

63

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

In Pre-Release 6 implementations, software is strongly encouraged to avoid the use of the Branch Likely instructions,
as they will be removed from a future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC1T instruction instead.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS I, II, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC2EQZ BC2NEZ

Branch if Coprocessor 2 Condition (Register) Equal/Not Equal to Zero

31 26 25 21 20 16 15 0
coP2 BC2EQZ
010010 01001 ot offset
coP2 BC2NEZ o et
010010 01101
6 5 5 16

Format: BC2EQZ BC2NEZ

BC2EQZ ct, offset

BC2NEZ ct, offset
Purpose: Branch if Coprocessor 2 Condition (Register) Equal/Not Equal to Zero
BC2EQZ: Branch if Coprocessor 2 Condition (Register) is Equal to Zero
BC2NEZ: Branch if Coprocessor 2 Condition (Register) is Not Equal to Zero

Description:

BC2EQZ: if COP2Condition[ct] = 0 then branch
BC2NEZ: if COP2Condition([ct] # 0 then branch

The 5-bit field ct specifies a coprocessor 2 condition.
* For BC2EQZ if the coprocessor 2 condition is true the branch is taken.

* For BC2NEZ if the coprocessor 2 condition is false the branch is taken.

MIPS32 Release 6
MIPS32 Release 6

A 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address. Execute the instruction in the delay slot

before the instruction at the target.

Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs

include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 implementations are

required to signal a Reserved Instruction exception.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is signaled.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Operation:

tmpcond <« Coprocessor2Condition(ct)
if BC2EQZ then

tmpcond <« not (tmpcond)

endif

if tmpcond then
PC < PC+4 + sign_extend(immediate << 2))
endif

The MIPS32® Instruction Set Manual, Revision 6.05

64

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

65

BC2EQZ BC2NEZ Branch if Coprocessor 2 Condition (Register) Equal/Not Equal to Zero

Implementation Notes:

As of Release 6 these instructions, BC2EQZ and BC2NEZ, replace the pre-Release 6 instructions BC2F and BC2T,
which had a 3-bit condition code field (as well as nullify and true/false bits). Release 6 makes all 5 bits of the ct con-
dition code available to the coprocessor designer as a condition specifier.

A customer defined coprocessor instruction set can implement any sort of condition it wants. For example, it could
implement up to 32 single-bit flags, specified by the 5-bit field ct. It could also implement conditions encoded as
values in a coprocessor register (such as testing the least significant bit of a coprocessor register) as done by Release
6 instructions BC1EQZ/BCINEZ.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC2F Branch on COP2 False
31 26 25 21 20 18 17 16 15 0
COP2 BC cc nd| tf offiset
010010 01000 0|0
6 5 3 1 1 16
Format: BC2F offset (cc = 0 implied) MIPS32, removed in Release 6
BC2F cc, offset MIPS32, removed in Release 6

Purpose: Branch on COP2 False

To test a COP2 condition code and do a PC-relative conditional branch.

Description: if coP2Condition(cc) = 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is false (0), the program branches to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the delay slot of a
branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

I: condition < COP2Condition(cc) = 0
target offset « (offset,g)CPRMEN-(16+2) || offget || 02
I+1: if condition then
PC ¢« PC + target offset
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

This instruction has been replaced by the BC2EQZ instruction. Refer to the ‘BC2EQZ’ instruction in this manual for
more information.

The MIPS32® Instruction Set Manual, Revision 6.05 66

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC2FL Branch on COP2 False Likely

67

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf ffset
010010 01000 ce 10 otise
6 5 3 1 1 16
Format: BC2FL offset (cc = 0 implied) MIPS32, removed in Release 6
BC2FL cc, offset MIPS32, removed in Release 6

Purpose: Branch on COP2 False Likely

To test a COP2 condition code and make a PC-relative conditional branch; execute the instruction in the delay slot
only if the branch is taken.

Description: if coP2Condition(cc) = 0 then branch likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is false (0), the program branches to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.
I: condition ¢ COP2Condition(cc) = 0
target offset ¢« (offset,gy)CPRPEN-(16+2) || offget || 02
I+1: if condition then
PC « PC + target_ offset
else
NullifyCurrentInstruction ()
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Implementation Note:

Some implementations always predict that the branch will be taken, and do not use nor do they update the branch
internal processor branch prediction tables for this instruction. To maintain performance compatibility, future imple-
mentations are encouraged to do the same.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

In Pre-Release 6 implementations, software is strongly encouraged to avoid the use of the Branch Likely instructions,

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

| as they will be removed from a future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2F instruction instead.

| The MIPS32® Instruction Set Manual, Revision 6.05 68

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC2T Branch on COP2 True
31 26 25 21 20 18 17 16 15 0
COP2 BC cc nd| tf offiset
010010 01000 0|1
6 5 3 1 1 16
Format: BC2T offset (cc = 0 implied) MIPS32, removed in Release 6
BC2T cc, offset MIPS32, removed in Release 6

69

Purpose: Branch on COP2 True

To test a COP2 condition code and do a PC-relative conditional branch.

Description: if CcOP2Condition(cc) = 1 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is true (1), the program branches to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the delay slot of a
branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

I: condition < COP2Condition(cc) = 1
target offset « (offset,g)CPRMEN-(16+2) || offget || 02
I+1: if condition then
PC ¢« PC + target offset
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

This instruction has been replaced by the BC2NEZ instruction. Refer to the ‘BC2NEZ’ instruction in this manual for
more information.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC2TL Branch on COP2 True Likely

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf ffset
010010 01000 ce 1)1 otise
6 5 3 1 1 16
Format: BC2TL offset (cc = 0 implied) MIPS32, removed in Release 6
BC2TL cc, offset MIPS32, removed in Release 6

Purpose: Branch on COP2 True Likely

To test a COP2 condition code and do a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch is taken.

Description: if CcOP2Condition(cc) = 1 then branch likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is true (1), the program branches to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.
I: condition ¢ COP2Condition(cc) =1
target offset ¢« (offset,gy)CPRPEN-(16+2) || offget || 02
I+1: if condition then
PC « PC + target_ offset
else
NullifyCurrentInstruction ()
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Implementation Note:

Some implementations always predict that the branch will be taken, and do not use nor do they update the branch
internal processor branch prediction tables for this instruction. To maintain performance compatibility, future imple-
mentations are encouraged to do the same.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

In Pre-Release 6 implementations, software is strongly encouraged to avoid the use of the Branch Likely instructions,

| The MIPS32® Instruction Set Manual, Revision 6.05 70

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

71

as they will be removed from a future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2T instruction instead.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BEQ Branch on Equal

31 26 25 21 20 16 15 0
BEQ
000100 rs rt offset
6 5 5 16
Format: BEQ rs, rt, offset MIPS32

Purpose: Branch on Equal

To compare GPRs then do a PC-relative conditional branch.

Description: if GPR[rs] = GPR[rt] then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the effective target address after the instruction in the delay
slot is executed.
Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the
delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.

Operation:

I: target offset ¢« sign extend(offset || 02)
condition ¢« (GPR[rs] = GPRI[rt])
I+1: if condition then
PC ¢« PC + target offset
endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
| (JR) to branch to addresses outside this range.

BEQ 10, 10 offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

| The MIPS32® Instruction Set Manual, Revision 6.05 72

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BEQL Branch on Equal Likely

73

31 26 25 21 20 16 15 0
BEQL
010100 s rt offset
6 5 5 16
Format: BEQL rs, rt, offset MIPS32, removed in Release 6

Purpose: Branch on Equal Likely

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: i1£ GPR[rs] = GPR[rt] then branch likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the target address after the instruction in the delay slot is
executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
I: target offset ¢« sign extend(offset || 0?)
condition ¢ (GPR[rs] = GPR[rt])
I+1: if condition then
PC « PC + target_ offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Implementation Note:

Some implementations always predict that the branch will be taken, and do not use nor do they update the branch
internal processor branch prediction tables for this instruction. To maintain performance compatibility, future imple-
mentations are encouraged to do the same.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

In Pre-Release 6 implementations, software is strongly encouraged to avoid the use of the Branch Likely instructions,
as they will be removed from a future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BEQ instruction instead.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Historical Information:

| In the MIPS I architecture, this instruction signaled a Reserved Instruction exception.

| The MIPS32® Instruction Set Manual, Revision 6.05 74

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BGEZ Branch on Greater Than or Equal to Zero
31 26 25 21 20 16 15 0
REGIMM s BGEZ offset
000001 00001
6 5 5 16
Format: BGEZ rs, offset MIPS32

75

Purpose: Branch on Greater Than or Equal to Zero

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] > 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the

instruction in the delay slot is executed.

Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the

delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.

Operation:

I: target offset ¢« sign extend(offset || 02)
condition ¢ GPR[rs] > QCFRLEN
I+1: if condition then

PC ¢« PC + target offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BGEZAL Branch on Greater Than or Equal to Zero and Link

31 26 25 21 20 16 15 0
REGIMM s BGEZAL offset
000001 10001
6 5 5 16
Format: BGEZAL rs, offset MIPS32, removed in Release 6

Purpose: Branch on Greater Than or Equal to Zero and Link

To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] > 0 then procedure call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Availability and Compatibility

This instruction has been removed in Release 6 with the exception of special case BAL (unconditional Branch and
Link) which was an alias for BGEZAL with rs=0.

Restrictions:

Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the delay dlot of a
branch or jump.

Branch-and-link Restartability: GPR 31 must not be used for the source register rs, because such an instruction does
not have the same effect when reexecuted. The result of executing such an instruction is UNPREDICTABLE. This
restriction permits an exception handler to resume execution by reexecuting the branch when an exception occurs in
the branch delay slot or forbidden slot.

Operation:

I: target offset ¢ sign extend(offset || 02)
condition ¢ GPR[rs] > QCFRLEN
GPR[31] < PC + 8
I+1: if condition then
PC <« PC + target_ offset
endif
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is £ 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch and link.
BAL is used in a manner similar to JAL, but provides PC-relative addressing and a more limited target PC range.

| The MIPS32® Instruction Set Manual, Revision 6.05 76

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

B{LE,GE,GT,LT,EQ,NE}ZALC Compact Zero-Compare and Branch-and-Link Instructions

31 26 25 21 20 16 15 0
POPOG BLEZALC
000110 offset
00000 1t = 00000
BGEZALC
POP06 rs =t # 00000
000110 offset
s It
POPO7 BGTZALC
000111 offset
00000 1t = 00000
BLTZALC
POPO7 rs = rt = 00000
000111 offset
s 1t
BEQZALC
POP10 s < 1t
001000 offset
00000 rt 00000
BNEZALC
POP30 s <rt
011000 offset
00000 rt 00000
6 5 5 16

Format: B{LE,GE,GT,LT, EQ, NE}ZALC

BLEZALC rt, offset MIPS32 Release 6

BGEZALC rt, offset MIPS32 Release 6

BGTZALC rt, offset MIPS32 Release 6

BLTZALC rt, offset MIPS32 Release 6

BEQZALC rt, offset MIPS32 Release 6

BNEZALC rt, offset MIPS32 Release 6
| Purpose: Compact Zero-Compare and Branch-and-Link Instructions

BLEZALC: Compact branch-and-link if GPR rt is less than or equal to zero
BGEZALC: Compact branch-and-link if GPR rt is greater than or equal to zero
BGTZALC: Compact branch-and-link if GPR rt is greater than zero
BLTZALC: Compact branch-and-link if GPR rt is less than to zero
BEQZALC: Compact branch-and-link if GPR rt is equal to zero

BNEZALC: Compact branch-and-link if GPR rt is not equal to zero

Description: if condition(GPR[rt]) then procedure call branch (no delay slot)
The condition is evaluated. If the condition is true, the branch is taken.

Places the return address link in GPR 31. The return link is the address of the instruction immediately following the
branch, where execution continues after a procedure call.

The return address link is unconditionally updated.

A 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

| The MIPS32® Instruction Set Manual, Revision 6.05 77

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

B{LE,GE,GT,LT,EQ,NE}ZALC Compact Zero-Compare and Branch-and-Link Instructions

BLEZALC: the condition is true if and only if GPR rt is less than or equal to zero.
BGEZALC: the condition is true if and only if GPR rt is greater than or equal to zero.
BLTZALC: the condition is true if and only if GPR rt is less than zero.

BGTZALC: the condition is true if and only if GPR rt is greater than zero.
BEQZALC: the condition is true if and only if GPR rt is equal to zero.

BNEZALC: the condition is true if and only if GPR rt is not equal to zero.

Compact branches do not have delay slots. The instruction after a compact branch is only executed if the branch is not
taken.

Restrictions:

Control Transfer Instructions (CTlIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

If a control transfer instruction (CTI) is executed in the forbidden slot of a compact branch, Release 6 implementa-
tions are required to signal a Reserved Instruction exception, but only when the branch is not taken.

Branch-and-link Restartability: GPR 31 must not be used for the source registers, because such an instruction does
not have the same effect when reexecuted. The result of executing such an instruction is UNPREDICTABLE. This
restriction permits an exception handler to resume execution by reexecuting the branch when an exception occurs in
the branch delay slot or forbidden slot.

Availability and Compatibility:
These instructions are introduced by and required as of Release 6.

*+ BEQZALC reuses the opcode assigned to pre-Release 6 ADDI.
« BNEZALC reuses the opcode assigned to pre-Release 6 MIPS64 DADDI.

These instructions occupy primary opcode spaces originally allocated to other instructions. BLEZALC and
BGEZALC have the same primary opcode as BLEZ, and are distinguished by rs and rt register numbers. Similarly,
BGTZALC and BLTZALC have the same primary opcode as BGTZ, and are distinguished by register fields.
BEQZALC and BNEZALC reuse the primary opcodes ADDI and DADDI.

BEQZALC: cond
BNEZALC: cond

GPR[rt]
GPR[rt]

Exceptions:
None
Operation:
GPR[31] <« PC+4
target offset <« sign extend(offset || 0%)
BLTZALC: cond <« GPR[rt] < O
BLEZALC: cond <« GPR[rt] < 0
BGEZALC: cond <« GPR[rt] = 0
BGTZALC: cond <« GPR[rt] > 0
«— =0
« # 0

if cond then
PC « (PC+4+ sign extend(target offset))
endif

Programming Notes:

Software that performs incomplete instruction decode may incorrectly decode these new instructions, because of their

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

B{LE,GE,GT,LT,EQ,NE}ZALC Compact Zero-Compare and Branch-and-Link Instructions

very tight encoding. For example, a disassembler might look only at the primary opcode field, instruction bits 31-26,
to decode BLEZL without checking that the “rt” field is zero. Such software violated the pre-Release 6 architecture
specification.

With the 16-bit offset shifted left 2 bits and sign extended, the conditional branch range is + 128 KBytes. Other
instructions such as pre-Release 6 JAL and JALR, or Release 6 JIALC and BALC have larger ranges. In particular,
BALC, with a 26-bit offset shifted by 2 bits, has a 28-bit range, = 128 MBytes. Code sequences using AUIPC and
JIALC allow still greater PC-relative range.

| The MIPS32® Instruction Set Manual, Revision 6.05 79

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely

31 26 25 21 20 16 15 0
REGIMM BGEZALL st
000001 s 10011 otise
6 5 5 16
Format: BGEZALL rs, offset MIPS32, removed in Release 6

Purpose: Branch on Greater Than or Equal to Zero and Link Likely

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Description: if GPR[rs] > 0 then procedure call likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.
Restrictions:

Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the delay slot of a
branch or jump.

Branch-and-link Restartability: GPR 31 must not be used for the source register rs, because such an instruction does
not have the same effect when reexecuted. The result of executing such an instruction is UNPREDICTABLE. This
restriction permits an exception handler to resume execution by reexecuting the branch when an exception occurs in
the branch delay slot.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
I: target offset ¢« sign extend(offset || 02)
condition ¢ GPR[rs] 2> QGPRLEN
GPR[31] <« PC + 8
I+1l: if condition then
PC ¢« PC + target offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is £ 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is

| The MIPS32® Instruction Set Manual, Revision 6.05 80

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

encouraged to use the BGEZAL instruction instead.

Historical Information:

| In the MIPS I architecture, this instruction signaled a Reserved Instruction exception.

| The MIPS32® Instruction Set Manual, Revision 6.05 81

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

B<cond>C

Compact Compare-and-Branch Instructions

31 26 25 21 20 16 15 o
POP26 BLEZC
010110 offset
00000 rt # 00000

POP26 BGEZC rs =1t

010110 offset
rs = 00000 rt = 00000

POP26 BGEC (BLEC) rs # rt

010110 offset
rs = 00000 rt = 00000

POP27 BGTZC

010111 offset

00000 rt = 00000

POP27 BLTZCrs=rt

010111 offset
rs = 00000 rt = 00000

POP27 BLTC (BGTC) 1s # 1t

010111 offset
rs # 00000 rt = 00000

POP06 BGEUC (BLEUC) 1s # rt

000110 offset
rs # 00000 rt = 00000

POP07 BLTUC (BGTUC) rs # t

000111 offset
rs # 00000 rt = 00000

POP10 BEQCrs<rt

001000 offset
rs = 00000 t = 00000

POP30 BNEC rs <rt

011000 offset
rs # 00000 rt = 00000

° ° 5 16
31 26 25 21 20 .
110110
IS
BNEZC
POP76
11110 rs = 00000 offset
IS
° ° 21
Format: B<cond>C rs, rt, offset MIPS32 Release 6

Purpose: Compact Compare-and-Branch Instructions

Format Details:

Equal/Not-Equal register-register compare and branch with 16-bit offset:
rt, offset
rt, offset

82

BEQC rs,
BNEC rs,

MIPS32 Release 6
MIPS32 Release 6

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

B<cond>C

Signed register-register compare and branch with 16-bit offset:

Compact Compare-and-Branch Instructions

BLTC rs, rt, offset MIPS32 Release 6
BGEC rs, rt, offset MIPS32 Release 6

Unsigned register-register compare and branch with 16-bit offset:

BLTUC rs, rt, offset MIPS32 Release 6
BGEUC rs, rt, offset MIPS32 Release 6

Assembly idioms with reversed operands for signed/unsigned compare-and-branch:

BGTC rt, rs, offset Assembly Idiom
BLEC rt, rs, offset Assembly Idiom
BGTUC rt, rs, offset Assembly Idiom
BLEUC rt, rs, offset Assembly Idiom

Signed Compare register to Zero and branch with 16-bit offset:

BLTZC rt, offset MIPS32 Release 6
BLEZC rt, offset MIPS32 Release 6
BGEZC rt, offset MIPS32 Release 6
BGTZC rt, offset MIPS32 Release 6

Equal/Not-equal Compare register to Zero and branch with 21-bit offset:

BEQZC rs, offset MIPS32 Release 6
BNEZC rs, offset MIPS32 Release 6

Description: if condition (GPR[rs] and/or GPR[rt]) then compact branch (no delay slot)

The condition is evaluated. If the condition is true, the branch is taken.

An 18/23-bit signed offset (the 16/21-bit offset field shifted left 2 bits) is added to the address of the instruction fol-

lowing the branch (not the branch itself), to form a PC-relative effective target address.

The offset is 16 bits for most compact branches, including BLTC, BLEC, BGEC, BGTC, BNEQC, BNEC, BLTUC,

BLEUC, BGEUC, BGTC, BLTZC, BLEZC, BGEZC, BGTZC. The offset is 21 bits for BEQZC and BNEZC.
Compact branches have no delay slot: the instruction after the branch is NOT executed if the branch is taken.

The conditions are as follows:

Equal/Not-equal register-register compare-and-branch with 16-bit offset:
BEQC: Compact branch if GPRs are equal
BNEC: Compact branch if GPRs are not equal

Signed register-register compare and branch with 16-bit offset:
BLTC: Compact branch if GPR rs is less than GPR rt
BGEC: Compact branch if GPR rs is greater than or equal to GPR rt

Unsigned register-register compare and branch with 16-bit offset:
BLTUC: Compact branch if GPR rs is less than GPR rt, unsigned
BGEUC: Compact branch if GPR rs is greater than or equal to GPR rt, unsigned

Assembly Idioms with Operands Reversed:
BLEC: Compact branch if GPR rt is less than or equal to GPR rgs (alias for BGEC)
BGTC: Compact branch if GPR rt is greater than GPR rs (alias for BLTC)
BLEUC: Compact branch if GPR rt is less than or equal to GPR rt, unsigned (alias for BGEUC)
BGTUC: Compact branch if GPR rt is greater than GPR rs, unsigned (alias for BLTUC)

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

83

B<cond>C Compact Compare-and-Branch Instructions

Compare register to zero and branch with 16-bit offset:
BLTZC: Compact branch if GPR rt is less than zero
BLEZC: Compact branch if GPR rt is less than or equal to zero
BGEZC: Compact branch if GPR rt is greater than or equal to zero
BGTZC: Compact branch if GPR rt is greater than zero

Compare register to zero and branch with 21-bit offset:
BEQZC: Compact branch if GPR rs is equal to zero
BNEZC: Compact branch if GPR rs is not equal to zero

Restrictions:

Control Transfer Instructions (CTlIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

If a control transfer instruction (CTI) is placed in the forbidden slot of a compact branch, Release 6 implementations
are required to signal a Reserved Instruction exception, but only when the branch is not taken.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

* BEQZC reuses the opcode assigned to pre-Release 6 LDC2.

* BNEZC reuses the opcode assigned to pre-Release 6 SDC2.

* BEQC reuses the opcode assigned to pre-Release 6 ADDI.

e BNEC reuses the opcode assigned to pre-Release 6 MIPD64 DADDI.

Exceptions:

None

Operation:

target offset <« sign extend(offset || 0%)

/* Register-register compare and branch, 16 bit offset: */
/* Equal / Not-Equal */

BEQC: cond <« GPR[rs] = GPR[rt]

BNEC: cond <« GPR[rs] # GPR[rt]

/* Signed */

BLTC: cond <« GPR[rs] < GPR[rt]

BGEC: cond ¢« GPR[rs] = GPR[rt]

/* Unsigned: */

BLTUC: cond <« unsigned(GPR[rs]) < unsigned (GPR[rt])
BGEUC: cond <« unsigned(GPR[rs]) 2= unsigned(GPR[rt])

/* Compare register to zero, small offset: */
BLTZC: cond <« GPR[rt] < O
BLEZC: cond <« GPR[rt] < 0
BGEZC: cond <« GPR[rt] > 0
BGTZC: cond <« GPR[rt] > 0
/* Compare register to zero, large offset: */
BEQZC: cond <« GPR[rs] = 0
BNEZC: cond « GPR[rs] # O

if cond then

PC « (PC+4+ sign extend(offset))

84 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

B<cond>C Compact Compare-and-Branch Instructions

end 1if

Programming Notes:

Legacy software that performs incomplete instruction decode may incorrectly decode these new instructions, because
of their very tight encoding. For example, a disassembler that looks only at the primary opcode field (instruction bits
31-26) to decode BLEZL without checking that the “rt” field is zero violates the pre-Release 6 architecture specifica-
tion. Complete instruction decode allows reuse of pre-Release 6 BLEZL opcode for Release 6 conditional branches.

The MIPS32® Instruction Set Manual, Revision 6.05 85
Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BGEZL Branch on Greater Than or Equal to Zero Likely

86

31 26 25 21 20 16 15 0
REGIMM BGEZL ffset
000001 s 00011 otise
6 5 5 16
Format: BGEZL rs, offset MIPS32, removed in Release 6

Purpose: Branch on Greater Than or Equal to Zero Likely

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] > 0 then branch likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.
Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
I: target offset ¢« sign extend(offset || 0?)
condition ¢ GPR[rs] > QCPRLEN
I+1: if condition then
PC « PC + target_ offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Implementation Note:

Some implementations always predict that the branch will be taken, and do not use nor do they update the branch
internal processor branch prediction tables for this instruction. To maintain performance compatibility, future imple-
mentations are encouraged to do the same.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

In Pre-Release 6 implementations, software is strongly encouraged to avoid the use of the Branch Likely instructions,
as they will be removed from a future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGEZ instruction instead.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Historical Information:

| In the MIPS I architecture, this instruction signaled a Reserved Instruction exception.

| The MIPS32® Instruction Set Manual, Revision 6.05 87

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BGTZ Branch on Greater Than Zero
31 26 25 21 20 16 15 0
BGTZ 0
000111 rs 00000 offset
6 5 5 16
Format: BGTZ rs, offset MIPS32

88

Purpose: Branch on Greater Than Zero

To test a GPR then do a PC-relative conditional branch.

Description: if GPR[rs] > 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address

after the instruction in the delay slot is executed.

Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the

delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.

Operation:

I: target offset ¢« sign extend(offset || 02)

condition < GPR[rs]

I+1: if condition then

PC ¢« PC + target offset

endif

Exceptions:

None

Programming Notes:

> OGPRLEN

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BGTZL Branch on Greater Than Zero Likely

31 26 25 21 20 16 15 0
BGTZL 0
010111 rs 00000 offset
6 5 5 16
Format: BGTZL rs, offset MIPS32, removed in Release 6

Purpose: Branch on Greater Than Zero Likely

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] > 0 then branch likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not exe-
cuted.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
I: target offset ¢« sign extend(offset || 0?)
condition ¢ GPR[rs] > QCFRLEN
I+1: if condition then
PC « PC + target_ offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Implementation Note:

Some implementations always predict that the branch will be taken, and do not use nor do they update the branch
internal processor branch prediction tables for this instruction. To maintain performance compatibility, future imple-
mentations are encouraged to do the same.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

In Pre-Release 6 implementations, software is strongly encouraged to avoid the use of the Branch Likely instructions,
as they will be removed from a future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is

| The MIPS32® Instruction Set Manual, Revision 6.05 89

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

encouraged to use the BGTZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction exception.

90 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BITSWAP

31

26 25

21 20

16 15

11

Swaps (reverses) bits in each byte

10

SPECIAL3
011111

00000

rd

BITSWAP
00000

BSHFL
100000

6

Format: BITSWAP
BITSWAP rd,rt

Purpose: Swaps (reverses) bits in each byte

5

6

MIPS32 Release 6

Description: GPR [rd] .byte (i) <« reverse bits in byte (GPR[rt] .byte(i)), for all

bytes 1

Each byte in input GPR rt is moved to the same byte position in output GPR rd, with bits in each byte reversed.

BITSWAP operates on all 4 bytes of a 32-bit GPR on a 32-bit CPU.

Restrictions:

None.

Availability and Compatibility:

The BITSWAP instruction is introduced by and required as of Release 6.

Operation:

BITSWAP:

for i in 0 to 3 do

endfor

GPR[rd] <« tmp

where

function reverse bits in byte (inbyte)
outbyte, <
outbyteg <

Exceptions:

None

outbytesg
outbytey
outbyte,
outbyte,
outbyte;
outbyte,

%
(_
(_
«
&

<«

inbyte,
inbyte,
inbyte,
inbyte,
inbyte,
inbyteg
inbyteg
inbyte,

return outbyte

end function

Programming Notes:

/* for all bytes in 32-bit GPR width */
tmp.byte (1) <« reverse bits in byte(GPR[rt] .byte(i)

The Release 6 BITSWAP instruction corresponds to the DSP Module BITREV instruction, except that the latter bit-
reverses the least-significant 16-bit halfword of the input register, zero extending the rest, while BITSWAP operates

on 32-bits.

The MIPS32® Instruction Set Manual, Revision 6.05

91

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

92

The MIPS32® Instruction Set Manual, Revision 6.05
Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BLEZ Branch on Less Than or Equal to Zero
31 26 25 21 20 16 15 0
BLEZ 0
000110 s 00000 offset
6 5 5 16
Format: BLEZ rs, offset MIPS32

Purpose: Branch on Less Than or Equal to Zero

To test a GPR then do a PC-relative conditional branch.

Description: if GPR[rs]
An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

0 then branch

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs

include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the

delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-

mentations are required to signal a Reserved Instruction exception.

Operation:

I: target offset <« sign extend(offset || 02)

condition <« GPR[rs] < QCGPRLEN
I+1: if condition then

PC <« PC + target offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

93

BLEZL Branch on Less Than or Equal to Zero Likely

94

31 26 25 21 20 16 15 0
BLEZL 0
010110 rs 00000 offset
6 5 5 16
Format: BLEZL rs, offset MIPS32, removed in Release 6

Purpose: Branch on Less Than or Equal to Zero Likely

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] £ 0 then branch likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is
not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
I: target offset ¢« sign extend(offset || 0?)
condition ¢ GPR[rs] < QCPRLEN
I+1: if condition then
PC « PC + target_ offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Implementation Note:

Some implementations always predict that the branch will be taken, and do not use nor do they update the branch
internal processor branch prediction tables for this instruction. To maintain performance compatibility, future imple-
mentations are encouraged to do the same.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

In Pre-Release 6 implementations, software is strongly encouraged to avoid the use of the Branch Likely instructions,
as they will be removed from a future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

encouraged to use the BLEZ instruction instead.

Historical Information:

| In the MIPS T architecture, this instruction signaled a Reserved Instruction exception.

| The MIPS32® Instruction Set Manual, Revision 6.05 95

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BLTZ Branch on Less Than Zero
31 26 25 21 20 16 15 0
REGIMM s BLTZ offset
000001 00000
6 5 5 16
Format: BLTZ rs, offset MIPS32

96

Purpose: Branch on Less Than Zero

To test a GPR then do a PC-relative conditional branch.

Description: if GPR[rs] < 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in

the delay slot is executed.

Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the

delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.

Operation:
I: target offset ¢« sign extend(offset || 0?)
condition ¢ GPR[rs] < QCPRLEN
I+1: if condition then
PC « PC + target_ offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is £ 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BLTZAL Branch on Less Than Zero and Link

31 26 25 21 20 16 15 0
REGIMM s BLTZAL offset
000001 10000
6 5 5 16
Format: BLTZAL rs, offset MIPS32, removed in Release 6

Purpose: Branch on Less Than Zero and Link

To test a GPR then do a PC-relative conditional procedure call.

Description: if GPR[rs] < 0 then procedure call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed.

Availability and Compatibility:
This instruction has been removed in Release 6.

The special case BLTZAL 10, offset, has been retained as NAL in Release 6.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Branch-and-link Restartability: GPR 31 must not be used for the source register rs, because such an instruction does
not have the same effect when re-executed. The result of executing such an instruction is UNPREDICTABLE. This
restriction permits an exception handler to resume execution by re-executing the branch when an exception occurs in
the branch delay slot.

Operation:
I: target_offset ¢ sign extend(offset || 0?)
condition ¢ GPR[rs] < OQCPRLEN
GPR[31] <« PC + 8
I+1l: if condition then
PC ¢« PC + target offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

| The MIPS32® Instruction Set Manual, Revision 6.05 97

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BLTZALL Branch on Less Than Zero and Link Likely

98

31 26 25 21 20 16 15 0
REGIMM BLTZALL ffset
000001 s 10010 otise
6 5 5 16
Format: BLTZALL rs, offset MIPS32, removed in Release 6

Purpose: Branch on Less Than Zero and Link Likely

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Description: if GPR[rs] < 0 then procedure call likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.
Restrictions:

Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the delay slot of a
branch or jump.

Branch-and-link Restartability: GPR 31 must not be used for the source register rs, because such an instruction does
not have the same effect when reexecuted. The result of executing such an instruction is UNPREDICTABLE. This
restriction permits an exception handler to resume execution by reexecuting the branch when an exception occurs in
the branch delay slot.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
I: target offset ¢« sign extend(offset || 02)
condition €< GPR[rs] < QGPRLEN
GPR[31] <« PC + 8
I+1l: if condition then
PC ¢« PC + target offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Implementation Note:

Some implementations always predict that the branch will be taken, and do not use nor do they update the branch
internal processor branch prediction tables for this instruction. To maintain performance compatibility, future imple-
mentations are encouraged to do the same.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump and link (JAL) or

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BLTZALL Branch on Less Than Zero and Link Likely

jump and link register (JALR) instructions for procedure calls to addresses outside this range.

In Pre-Release 6 implementations, software is strongly encouraged to avoid the use of the Branch Likely instructions,
as they will be removed from a future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZAL instruction instead.

Historical Information:

| In the MIPS I architecture, this instruction signaled a Reserved Instruction exception.

| The MIPS32® Instruction Set Manual, Revision 6.05 99

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BLTZL Branch on Less Than Zero Likely

100

31 26 25 21 20 16 15 0
REGIMM BLTZL ffset
000001 s 00010 otise
6 5 5 16
Format: BLTZL rs, offset MIPS32, removed in Release 6

Purpose: Branch on Less Than Zero Likely

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] < 0 then branch likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
I: target offset ¢« sign extend(offset || 0?)
condition ¢ GPR[rs] < OCFRLEN
I+1: if condition then
PC « PC + target_ offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Implementation Note:

Some implementations always predict that the branch will be taken, and do not use nor do they update the branch
internal processor branch prediction tables for this instruction. To maintain performance compatibility, future imple-
mentations are encouraged to do the same.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

In Pre-Release 6 implementations, software is strongly encouraged to avoid the use of the Branch Likely instructions,
as they will be removed from a future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZ instruction instead.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Historical Information:

| In the MIPS I architecture, this instruction signaled a Reserved Instruction exception.

| The MIPS32® Instruction Set Manual, Revision 6.05 101

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BNE

102

31

26 25

21 20

16 15

Branch on Not Equal

BNE
000101

s

offset

6

Format: BNE rs,

Purpose: Branch on Not Equal

To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] # GPR[rt] then branch

5

rt, offset

16

MIPS32

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the

delay slot is executed.

Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the

delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.

Operation:

I: target offset ¢« sign extend(offset || 02)

condition <

I+1: if condition then

PC ¢« PC + target offset

endif

Exceptions:

None

Programming Notes:

(GPR[rs] # GPR[rt])

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register

(JR) to branch to addresses outside this range.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BNEL Branch on Not Equal Likely

31 26 25 21 20 16 15 0
BNEL
010101 s rt offset
6 5 5 16
Format: BNEL rs, rt, offset MIPS32, removed in Release 6

Purpose: Branch on Not Equal Likely

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] # GPR[rt] then branch likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
I: target offset ¢« sign extend(offset || 0?)
condition ¢ (GPR[rs] # GPR([rt])
I+1: if condition then
PC « PC + target_ offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Implementation Note:

Some implementations always predict that the branch will be taken, and do not use nor do they update the branch
internal processor branch prediction tables for this instruction. To maintain performance compatibility, future imple-
mentations are encouraged to do the same.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

In Pre-Release 6 implementations, software is strongly encouraged to avoid the use of the Branch Likely instructions,
as they will be removed from a future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BNE instruction instead.

| The MIPS32® Instruction Set Manual, Revision 6.05 103

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction exception.

104 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BOVC BNVC Branch on Overflow, Compact; Branch on No Overflow, Compact

31 26 25 21 20 16 15 0
POP10 BOVC rs >=rt offset
001000 s »
POP30 BNVC rs>=rt offset
011000 s »
6 5 5 16

Format: BovC BNVC
BOVC rs,rt,offset MIPS32 Release 6
BNVC rs,rt,offset MIPS32 Release 6
Purpose: Branch on Overflow, Compact; Branch on No Overflow, Compact
BOVC: Detect overflow for add (signed 32 bits) and branch if overflow.
BNVC: Detect overflow for add (signed 32 bits) and branch if no overflow.

Description: branch if/if-not NotWordvValue (GPR[rs]+GPR[rt])

* BOVC performs a signed 32-bit addition of rs and rt. BOVC discards the sum, but detects signed 32-bit inte-
ger overflow of the sum, and branches if such overflow is detected.

* BNVC performs a signed 32-bit addition of rs and rt. BNVC discards the sum, but detects signed 32-bit inte-
ger overflow of the sum, and branches if such overflow is not detected.

BOVC and BNVC are compact branches—they have no branch delay slots, but do have a forbidden slot.

A 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

The special case with rt=0 (for example, GPR[0]) is allowed. On MIPS32, BOVC rs,10 offset never branches, while
BNVC rs,r0 offset always branches.

The special case of rs=0 and rt=0 is allowed. BOVC never branches, while BNVC always branches.

Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

If a control transfer instruction (CTI) is executed in the forbidden slot of a compact branch, Release 6 implementa-
tions are required to signal a Reserved Instruction exception, but only when the branch is not taken.

Availability and Compatibility:
These instructions are introduced by and required as of Release 6.

See section A.4 on page 439 in Volume II for a complete overview of Release 6 instruction encodings. Brief notes
related to these instructions:

* BOVC uses the primary opcode allocated to MIPS32 pre-Release 6 ADDI. Release 6 reuses the ADDI primary
opcode for BOVC and other instructions, distinguished by register numbers.

* BNVC uses the primary opcode allocated to MIPS64 pre-Release 6 DADDI. Release 6 reuses the DADDI pri-
mary opcode for BNVC and other instructions, distinguished by register numbers.
Operation:

templ <« GPR[rs]
temp2 <« GPR[rt]

The MIPS32® Instruction Set Manual, Revision 6.05 105

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

tempd <« templ + temp2 // wider than 32-bit precision
sum _overflow <« (tempd;, # tempds;)

BOVC: cond <« sum_overflow
BNVC: cond <« not(sum overflow)

if cond then
PC < (PC+4 + sign_extend(offset << 2))
endif

Exceptions:

None

106 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BREAK Breakpoint
31 26 25 0
SPECIAL code BREAK
000000 001101
6 20 6
Format: BREAK MIPS32

Purpose: Breakpoint

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the

contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException (Breakpoint)

Exceptions:

Breakpoint

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

107

C.cond.fmt Floating Point Compare

108

31 26 25 21 20 16 15 1 10 8 7 6 5 4 3 0
COP1 A | FC
010001 fmt ft fs cc 0 0 1 cond
6 5 5 5 3 1 1 2 4
Format: cC.cond.fmt

C.cond.S fs, ft (cc = 0 implied) MIPS32, removed in Release 6
C.cond.D fs, ft (cc = 0 implied) MIPS32, removed in Release 6
C.cond.PS fs, ft(cc = 0 implied) MIPS32 Release 2, removed in Release 6
C.cond.S cc, fs, ft MIPS32, removed in Release 6
C.cond.D cc, fs, ft MIPS32, removed in Release 6
C.cond.PS cc, fs, ft MIPS32 Release 2, removed in Release 6

Purpose: Floating Point Compare

To compare FP values and record the Boolean result in a condition code.

Description: FpPConditionCode(cc) € FPR[fs] compare cond FPR[ft]

The value in FPR fs is compared to the value in FPR ft; the values are in format fmt. The comparison is exact and nei-
ther overflows nor underflows.

If the comparison specified by the cond field of the instruction is true for the operand values, the result is true; other-
wise, the result is false. If no exception is taken, the result is written into condition code CC; true is 1 and false is 0.

In the cond field of the instruction: cond, 4 specify the nature of the comparison (equals, less than, and so on). condy
specifies whether the comparison is ordered or unordered, that is, false or true if any operand is a NaN; condy indi-
cates whether the instruction should signal an exception on QNaN inputs, or not (see Table 3.2).

C.cond.PS compares the upper and lower halves of FPR fs and FPR ft independently and writes the results into condi-
tion codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operation of the
instruction is UNPREDICTABLE.

If one of the values is an SNaN, or conds is set and at least one of the values is a QNaN, an Invalid Operation condi-

tion is raised and the Invalid Operation flag is set in the FCSR. If the Invalid Operation Enable bit is set in the FCSR,
no result is written and an Invalid Operation exception is taken immediately. Otherwise, the Boolean result is written
into condition code CC.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is always true
and the others are false. The familiar relations are greater than, less than, and equal. In addition, the IEEE floating
point standard defines the relation unordered, which is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such as less than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The Bool-
ean result of the instruction is obtained by substituting the Boolean value of each ordering relation for the two FP val-
ues in the equation. If the equal relation is true, for example, then all four example predicates above yield a true
result. If the unordered relation is true then only the final predicate, unordered or equal, yields a true result.

Logical negation of a compare result allows eight distinct comparisons to test for the 16 predicates as shown in Table
3.2. Each mnemonic tests for both a predicate and its logical negation. For each mnemonic, compare tests the truth of
the first predicate. When the first predicate is true, the result is true as shown in the “If Predicate Is True” column, and
the second predicate must be false, and vice versa. (Note that the False predicate is never true and False/True do not
follow the normal pattern.)

The truth of the second predicate is the logical negation of the instruction result. After a compare instruction, test for
the truth of the first predicate can be made with the Branch on FP True (BC1T) instruction and the truth of the second

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

C.cond.fmt

can be made with Branch on FP False (BC1F).

Floating Point Compare

Table 3.2 shows another set of eight compare operations, distinguished by a cond value of 1 and testing the same 16

conditions. For these additional comparisons, if at least one of the operands is a NaN, including Quiet NaN, then an
Invalid Operation condition is raised. If the Invalid Operation condition is enabled in the FCSR, an Invalid Operation
exception occurs.

Table 3.1 FPU Comparisons Without Special Operand Exceptions

Instruction Comparison Predicate Comparison CC Result | Instruction
Relation Inv Op Con_dition
Cond Name of Predicate and Logically Negated Values If Predicate| Excp. if Field
Mnemonic Predicate (Abbreviation) >i<|=|7? Is True QNaN? 3 2.0
F False [this predicate is always False] F|F|F|F F No 0 0
True (T) TIT|T|T
UN Unordered FIF|F|T T 1
Ordered (OR) T|T|T|F F
EQ Equal F|F|T|F T 2
Not Equal (NEQ) T|T|F|T F
UEQ Unordered or Equal F|F|T|T T 3
Ordered or Greater Than or Less Than (OGL) T|T|F|F F
OLT Ordered or Less Than F|T|F|F T 4
Unordered or Greater Than or Equal (UGE) T F|T|T F
ULT Unordered or Less Than F|T|F|T T 5
Ordered or Greater Than or Equal (OGE) T F|T|F F
OLE Ordered or Less Than or Equal F|T|T|F T 6
Unordered or Greater Than (UGT) T F|F|T F
ULE Unordered or Less Than or Equal FIT|T|T T 7
Ordered or Greater Than (OGT) T F|F|F F
Key: ? = unordered, > = greater than, <= less than, = is equal, T = True, F = False

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

109

C.cond.fmt

Floating Point Compare

Table 3.2 FPU Comparisons With Special Operand Exceptions for QNaNs

110

Instruction Comparison Predicate Comparison CC Result | Instruction
Relation Inv Op Con.dition
Cond Name of Predicate and Logically Negated Values If Predicate| Excp If Field
Mnemonic Predicate (Abbreviation) >i<|=|? Is True QNaN? 3 2.0
SF Signaling False [this predicate always False] F|F|F|F F Yes 1 0
Signaling True (ST) T|IT|T|T
NGLE Not Greater Than or Less Than or Equal F|F|F|T T 1
Greater Than or Less Than or Equal (GLE) T|IT|T|F F
SEQ Signaling Equal F|F|T|F T 2
Signaling Not Equal (SNE) T|IT|F|T F
NGL Not Greater Than or Less Than FIF|T|T T 3
Greater Than or Less Than (GL) T|T|F|F F
LT Less Than F|T|F|F T 4
Not Less Than (NLT) T|F|T|T F
NGE Not Greater Than or Equal F|T|F|T T 5
Greater Than or Equal (GE) T|F|T|F F
LE Less Than or Equal F|T|T|F T 6
Not Less Than or Equal (NLE) T|IF|F|T F
NGT Not Greater Than FIT|T|T T 7
Greater Than (GT) T|F|F|F F
Key: ? = unordered, > = greater than, <= less than, = is equal, T = True, F = False

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of C.cond.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU,.

The result of C.cond.PS is UNPREDICTABLE if the condition code number is odd.

Availability and Compatibility:

This instruction has been removed in Release 6 and has been replaced by the ‘CMP.cond.fmt’ instruction. Refer to the
CMP.cond.fmt instruction in this manual for more information. Release 6 does not support Paired Single (PS).

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or
ONaN (ValueFPR (fs, fmt)) or QONaN(ValueFPR(ft, fmt)) then

less <« false

equal ¢« false

unordered € true

if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or

(cond; and (QNaN (ValueFPR(fs,fmt)) or QONaN(ValueFPR(ft,fmt)))) then

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

C.cond.fmt Floating Point Compare

SignalException (InvalidOperation)
endif
else
less ¢ ValueFPR(fs, fmt) <g, ValueFPR(ft, fmt)
equal ¢ ValueFPR(fs, fmt) =¢,. ValueFPR(ft, fmt)
unordered ¢ false
endif
condition ¢ (cond, and less) or (cond; and equal)
or (cond, and unordered)
SetFPConditionCode (cc, condition)

For C.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each half as an
independent single-precision values. Exceptions on the two halves are logically ORed and reported together. The
results of the lower half comparison are written to condition code CC; the results of the upper half comparison are
written to condition code CC+1.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

Programming Notes:

FP computational instructions, including compare, that receive an operand value of Signaling NaN raise the Invalid
Operation condition. Comparisons that raise the Invalid Operation condition for Quiet NaNs in addition to SNaNs
permit a simpler programming model if NaNs are errors. Using these compares, programs do not need explicit code
to check for QNaNs causing the unordered relation. Instead, they take an exception and allow the exception handling
system to deal with the error when it occurs. For example, consider a comparison in which we want to know if two
numbers are equal, but for which unordered would be an error.

comparisons using explicit tests for QNaN
c.eq.d sf2,sf4 # check for equal
nop
bclt L2
c.un.d $f2,5f4

it is equal
it is not equal,
but might be unordered
bclt ERROR unordered goes off to an error handler
not-equal-case code here

#
#
#
#

equal-case code here
L2:

comparison using comparisons that signal QNaN
c.seq.d $f2,$f4 # check for equal
nop
bclt L2 # it is equal
nop
it is not unordered here

not-equal-case code here

equal-case code here

| The MIPS32® Instruction Set Manual, Revision 6.05 111

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHE

112

pre-Release 6

Perform Cache Operation

31 26 25 21 20 16 15 0
CACHE
101111 base op offset
6 5 5 16
Release 6
31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 CACHE
011111 base op offset 0 100101
6 5 5 9 1 6
Format: CACHE op, offset (base) MIPS32

Purpose: Perform Cache Operation

To perform the cache operation specified by op.

Description:

The 9-bit offset is sign-extended and added to the contents of the base register to form an effective address. The effec-
tive address is used in one of the following ways based on the operation to be performed and the type of cache as

described in the following table.

Table 3.3 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address

Address Virtual The effective address is used to address the cache. An address translation may or
may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address. It is imple-

mentation dependent whether the effective address or the translated physical
address is used to index the cache. As such, an unmapped address (such as within
kseg0) should always be used for cache operations that require an index. See the
Programming Notes section below.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ¢ Log2 (BPT)

IndexBit ¢« Log2(CS / A)

WayBit ¢ IndexBit + Ceiling(Log2 (A))

Way € Addryaypit-1..IndexBit

Index ¢ Addripgexpit-1..0ffsetBit
For a direct-mapped cache, the Way calculation is ignored and the Index value fully
specifies the cache tag. This is shown symbolically in the figure below.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHE Perform Cache Operation

Figure 3.3 Usage of Address Fields to Select Index and Way

/— WayBit/_ IndexBit /_ OffsetBit
0

Unused Way Index Byte Index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag), software must use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

As aresult, a Cache Error exception may occur because of some operations performed by this instruction. For exam-
ple, if a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported
via a Cache Error exception. Also, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHE instruction and the memory transactions which are sourced by the CACHE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Table 3.4 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache
0b00 I Primary Instruction

0b01 D Primary Data or Unified Primary

0b10 T Tertiary

Obl11 S Secondary

Bits [20:18] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

When implementing multiple level of caches and where the hardware maintains the smaller cache as a proper subset
of a larger cache (every address which is resident in the smaller cache is also resident in the larger cache; also known
as the inclusion property). It is recommended that the CACHE instructions which operate on the larger, outer-level
cache; must first operate on the smaller, inner-level cache. For example, a Hit Writeback Invalidate operation tar-
geting the Secondary cache, must first operate on the primary data cache first. If the CACHE instruction implementa-
tion does not follow this policy then any software which flushes the caches must mimic this behavior. That is, the
software sequences must first operate on the inner cache then operate on the outer cache. The software must place a
SYNC instruction after the CACHE instruction whenever there are possible writebacks from the inner cache to

| The MIPS32® Instruction Set Manual, Revision 6.05 113

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHE Perform Cache Operation

ensure that the writeback data is resident in the outer cache before operating on the outer cache. If neither the CACHE
instruction implementation nor the software cache flush sequence follow this policy, then the inclusion property of
the caches can be broken, which might be a condition that the cache management hardware cannot properly deal with.

When implementing multiple level of caches without the inclusion property, the use of a SYNC instruction after the
CACHE instruction is still needed whenever writeback data has to be resident in the next level of memory hierarchy.

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHE instruction oper-
ations may optionally affect all coherent caches within the implementation. If the effective address uses a coherent
Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent
caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHE instruction, all of the affected cache levels
must be processed in the same manner - either all affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

Table 3.5 Encoding of Bits [20:18] of the CACHE Instruction

Code

Effective
Address
Operand Compliance
Caches Name Type Operation Implemented

0b000

I Index Invalidate Index Set the state of the cache block at the specified Required
index to invalid.

This required encoding may be used by software
to invalidate the entire instruction cache by step-
ping through all valid indices.

D Index Writeback Index For a write-back cache: If the state of the cache Required
Invalidate / Index block at the specified index is valid and dirty,

Invalidate write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

S, T Index Writeback Index
Invalidate / Index
Invalidate

Required if S, T cache
is implemented

For a write-through cache: Set the state of the
cache block at the specified index to invalid.
This required encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. The Index Store Tag
must be used to initialize the cache at power up.

0b001

All Index Load Tag Index Read the tag for the cache block at the specified Recommended
index into the TagLo and TagHi Coprocessor 0
registers. If the DatalLo and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the Datal.o and
DataHi registers. This operation must not cause
a Cache Error Exception.

The granularity and alignment of the data read
into the DatalLo and DataHi registers is imple-
mentation-dependent, but is typically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

114

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHE Perform Cache Operation
Table 3.5 Encoding of Bits [20:18] of the CACHE Instruction (Continued)
Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b010 All Index Store Tag Index Write the tag for the cache block at the specified Required
index from the TagLo and TagHi Coprocessor 0
registers. This operation must not cause a Cache
Error Exception.
This required encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.
0b011 All Implementation Unspecified | Available for implementation-dependent opera- Optional
Dependent tion.
0b100 I,D Hit Invalidate Address If the cache block contains the specified Required (Instruction
address, set the state of the cache block to Cache Encoding
invalid. Only), Recom-
This required encoding may be used by software | mended otherwise
to invalidate a range of addresses from the
S, T Hit Invalidate Address instruction cache by s‘Fepplp g through the Optional, if
address range by the line size of the cache. Hit Invalidate D is
. . . . imﬁlemented, the S
In multiprocessor implementations with coher- and T variants are rec-
ent caches, the operation may optionally be ommended
broadcast to all coherent caches within the sys- ’
tem.
0b101 I Fill Address Fill the cache from the specified address. Recommended
D Hit Writeback Inval- Address For a write-back cache: If the cache block con- Required
idate / Hit Invalidate tains the specified address and it is valid and
dirty, write the contents back to memory. After
S,T | Hit Writcback Inval- | Address | ‘1t operation is completed, set the state of the - o o0 1o ¢S T cache
. . . cache block to invalid. If the block is valid but . .
idate / Hit Invalidate is implemented

not dirty, set the state of the block to invalid.
For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.

This required encoding may be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

The MIPS32® Instruction Set Manual, Revision 6.05

115

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHE Perform Cache Operation

Table 3.5 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented

0b110 D Hit Writeback Address If the cache block contains the specified address Recommended
and it is valid and dirty, write the contents back

to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state. For a write-through cache, this oper-
ation may be treated as a nop.

S, T Hit Writeback Address Optional, if
Hit Writeback D is
implemented, the S
and T variants are rec-

. . . . ommended.
In multiprocessor implementations with coher-

ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Obl11 I,D Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a write- Recommended
back if required. Set the state to valid and
locked.

If the cache already contains the specified
address, set the state to locked. In set-associative
or fully-associative caches, the way selected on
a fill from memory is implementation depen-
dent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or via an Index Store
Tag operation to the line that clears the lock bit.
Clearing the lock state via Index Store Tag is
dependent on the implementation-dependent
cache tag and cache line organization, and that
Index and Index Writeback Invalidate opera-
tions are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.

It is implementation dependent whether a locked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.

It is implementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. It is
recommended that only the single line contain-
ing the referenced address be affected.

116 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHE Perform Cache Operation

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented. In
Release 6, the instruction in this case should perform no operation.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
| able. In Release 6, the instruction in this case should perform no operation.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHE instruction is the
target of an invalidate or a writeback invalidate.

If this instruction is used to lock all ways of a cache at a specific cache index, the behavior of that cache to subsequent
cache misses to that cache index is UNDEFINED.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Any use of this instruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback data is not yet visible at the next level of the memory hierarchy.

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Availability and Compatibility:

| This instruction has been recoded for Release 6.

Operation:

vAddr ¢ GPR[base] + sign_extend(offset)
(pAddr, uncached) ¢ AddressTranslation(vAddr, DataReadReference)
CacheOp (op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception
Coprocessor Unusable Exception
Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

| Release 6 architecture implements a 9-bit offset, whereas all release levels lower than Release 6 implement a 16-bit
offset.

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to an
unmapped address (such as an kseg0 address - by ORing the index with 0x80000000 before being used by the cache
instruction). For example, the following code sequence performs a data cache Index Store Tag operation using the

index passed in GPR a0:
1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */
| The MIPS32® Instruction Set Manual, Revision 6.05 117

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

118 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHEE Perform Cache Operation EVA

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 CACHEE
011111 base op offset 0 011011
6 5 5 9 1 6
Format: CACHEE op, offset (base) MIPS32

Purpose: Perform Cache Operation EVA

To perform the cache operation specified by op using a user mode virtual address while in kernel mode.

Description:

The 9-bit offset is sign-extended and added to the contents of the base register to form an effective address. The effec-
tive address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 3.6 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address

Address Virtual The effective address is used to address the cache. An address translation may or
may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address. It is imple-

mentation dependent whether the effective address or the translated physical
address is used to index the cache. As such, a kseg0 address should always be used
for cache operations that require an index. See the Programming Notes section
below.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ¢ Log2 (BPT)

IndexBit < Log2(CS / A)

WayBit ¢ IndexBit + Ceiling(Log2 (A))

Way ¢ Addryaypit-1..IndexBit

Index ¢ Addripgexpit-1..0ffsetBit
For a direct-mapped cache, the Way calculation is ignored and the Index value fully
specifies the cache tag. This is shown symbolically in the figure below.

Figure 3.4 Usage of Address Fields to Select Index and Way

[WayBit[IndexBit /_ OffsetBit
0

Unused Way Index Byte Index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index

The MIPS32® Instruction Set Manual, Revision 6.05 119

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHEE Perform Cache Operation EVA

120

operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHEE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHEE instruction and the memory transactions which are sourced by the CACHEE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Table 3.7 Encoding of Bits[17:16] of CACHEE Instruction

Code Name Cache
0b00 I Primary Instruction

0b01 D Primary Data or Unified Primary

0b10 T Tertiary

Obl11 S Secondary

Bits [20:18] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

When implementing multiple level of caches and where the hardware maintains the smaller cache as a proper subset
of a larger cache, it is recommended that the CACHEE instructions must first operate on the smaller, inner-level
cache. For example, a Hit Writeback Invalidate operation targeting the Secondary cache, must first operate on the
primary data cache first. If the CACHEE instruction implementation does not follow this policy then any software
which flushes the caches must mimic this behavior. That is, the software sequences must first operate on the inner
cache then operate on the outer cache. The software must place a SYNC instruction after the CACHEE instruction
whenever there are possible writebacks from the inner cache to ensure that the writeback data is resident in the outer
cache before operating on the outer cache. If neither the CACHEE instruction implementation nor the software cache
flush sequence follow this policy, then the inclusion property of the caches can be broken, which might be a condition
that the cache management hardware cannot properly deal with.

When implementing multiple level of caches without the inclusion property, you must use SYNC instruction after the
CACHEE instruction whenever writeback data has to be resident in the next level of memory hierarchy.

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHEE instruction
operations may optionally affect all coherent caches within the implementation. If the effective address uses a coher-
ent Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHEE

Perform Cache Operation EVA

caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHEE instruction, all of the affected cache levels
must be processed in the same manner — either all affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

The CACHEE instruction functions the same as the CACHE instruction, except that address translation is performed
using the user mode virtual address space mapping in the TLB when accessing an address within a memory segment
configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also acces-
sible . Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy field being set to 1.

Table 3.8 Encoding of Bits [20:18] of the CACHEE Instruction

Code

Caches

Name

Effective

Address

Operand
Type

Operation

Compliance
Implemented

0b000

I

Index Invalidate

Index

Set the state of the cache block at the specified
index to invalid.

This required encoding may be used by software
to invalidate the entire instruction cache by step-
ping through all valid indices.

Required

Index Writeback
Invalidate / Index
Invalidate

Index

S, T

Index Writeback
Invalidate / Index
Invalidate

Index

For a write-back cache: If the state of the cache
block at the specified index is valid and dirty,
write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

For a write-through cache: Set the state of the
cache block at the specified index to invalid.
This required encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
power up.

Required

Required if S, T cache
is implemented

0b001

All

Index Load Tag

Index

Read the tag for the cache block at the specified
index into the TagLo and TagHi Coprocessor 0
registers. If the DataLo and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the DataLo and
DataHi registers. This operation must not cause
a Cache Error Exception.

The granularity and alignment of the data read
into the DatalLo and DataHi registers is imple-
mentation-dependent, but is typically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

Recommended

| The MIPS32® Instruction Set Manual, Revision 6.05

121

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHEE Perform Cache Operation EVA
Table 3.8 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)
Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b010 All Index Store Tag Index Write the tag for the cache block at the specified Required
index from the TagLo and TagHi Coprocessor 0
registers. This operation must not cause a Cache
Error Exception.
This required encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.
0b011 All Implementation Unspecified | Available for implementation-dependent opera- Optional
Dependent tion.
0b100 I,D Hit Invalidate Address If the cache block contains the specified Required (Instruction
address, set the state of the cache block to Cache Encoding
invalid. Only), Recom-
This required encoding may be used by software | mended otherwise
to invalidate a range of addresses from the
S, T Hit Invalidate Address instruction cache by s'Feppm g through the Optional, if
address range by the line size of the cache. Hit_Invalidate D is
. . . . implemented, the S
In multiprocessor implementations with coher- .
. . and T variants are rec-
ent caches, the operation may optionally be
o ommended.
broadcast to all coherent caches within the sys-
tem.
0b101 I Fill Address Fill the cache from the specified address. Recommended
D Hit Writeback Inval- Address For a write-back cache: If the cache block con- Required
idate / Hit Invalidate tains the specified address and it is valid and
dirty, write the contents back to memory. After
S,T | Hit Writcback Inval- | Address | ‘1t operation is completed, set the state of the - o o0 1o ¢S T cache
. . . cache block to invalid. If the block is valid but ..
idate / Hit Invalidate ; . . is implemented
not dirty, set the state of the block to invalid.
For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.
This required encoding may be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.
In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.
122 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHEE

Table 3.8 Encoding of Bits [20:18]

Perform Cache Operation EVA

of the CACHEE Instruction (Continued)

back if required. Set the state to valid and
locked.

If the cache already contains the specified
address, set the state to locked. In set-associative
or fully-associative caches, the way selected on
a fill from memory is implementation depen-
dent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or via an Index Store
Tag operation to the line that clears the lock bit.
Clearing the lock state via Index Store Tag is
dependent on the implementation-dependent
cache tag and cache line organization, and that
Index and Index Writeback Invalidate opera-
tions are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.

It is implementation dependent whether a locked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.

It is implementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. It is
recommended that only the single line contain-
ing the referenced address be affected.

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b110 D Hit Writeback Address If the cache block contains the specified address Recommended
and it is valid and dirty, write the contents back
S, T Hit Writeback Address | 10 memory. After the operation is completed, Optional, if
leave the state of the line valid, but clear the . . .
. . . Hit Writeback D is
dirty state. For a write-through cache, this oper- | . -
. implemented, the S
ation may be treated as a nop. .
and T variants are rec-
. . . . ommended.
In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.
Obl11 I,D Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a write- Recommended

The MIPS32® Instruction Set Manual, Revision 6.05

123

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHEE Perform Cache Operation EVA

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented. In
Release 6, the instruction in this case should perform no operation.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able. In Release 6, the instruction in this case should perform no operation.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHEE instruction is the
target of an invalidate or a writeback invalidate.

If this instruction is used to lock all ways of a cache at a specific cache index, the behavior of that cache to subsequent
cache misses to that cache index is UNDEFINED.

Any use of this instruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback data is not yet visible at the next level of the memory hierarchy.

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Operation:

vAddr ¢ GPR[base] + sign extend(offset)
(pAddr, uncached) ¢ AddressTranslation(vAddr, DataReadReference)
CacheOp (op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Reserved Instruction

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to a kseg0
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR a0:

1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */
124 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CEIL.L.fmt Fixed Point Ceiling Convert to Long Fixed Point

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 CEIL.L
010001 fmt 00000 fs fd 001010
6 5 5 5 5 6

Format: CEIL.L.fmt
CEIL.L.S fd, fs MIPS32 Release 2
CEIL.L.D fd, fs MIPS32 Release 2

Purpose: Fixed Point Ceiling Convert to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding up.

Description: FPR[fd] < convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounding toward +x
(rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range 263 t0 293-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to fd. On cores with FCSRyan2005=0, the default result is

263_1. On cores with FCSRyaN2008=1, the default result is:
e 0 when the input value is NaN

« 251 when the input value is +00 or rounds to a number larger than 2631

« 2951 when the input value is —00 or rounds to a number smaller than |

Restrictions:

The fields fs and fd must specify valid FPRs: fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

| The MIPS32® Instruction Set Manual, Revision 6.05 125

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed Point

126

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 CEIL.W
010001 fimt 00000 fs fd 001110
6 5 5 5 5 6

Format: CEIL.W.fmt
CEIL.W.S fd, fs MIPS32
CEIL.W.D fd, fs MIPS32
Purpose: Floating Point Ceiling Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding up

Description: FPR[fd] ¢ convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounding toward +x
(rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range 23110 2311, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to fd. On cores with FCSRyan2008=0, the default result is

2311, On cores with FCSRyaN2008=1, the default result is:

e 0 when the input value is NaN

« 2°11 when the input value is +00 or rounds to a number larger than 231

« 23| when the input value is —00 or rounds to a number smaller than 23

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR (fd, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CFC1

Move Control Word From Floating Point

31 26 25 21 20 16 15 11 10 0
COP1 CF " fs 0
010001 00010 000 0000 0000
6 5 5 5 11
Format: crci1i rt, fs MIPS32

Purpose: Move Control Word From Floating Point

To copy a word from an FPU control register to a GPR.

Description: GPR[rt] « FP_Control [fs]
Copy the 32-bit word from FP (coprocessor 1) control register fs into GPR rt.

The definition of this instruction has been extended in Release 5 to support user mode read and write of Statusyg
under the control of Config5yg. This optional feature is meant to facilitate transition from FR=0 to FR=1 float-

ing-point register modes in order to obsolete FR=0 mode in a future architecture release. User code may set and clear
Statuspy without kernel intervention, providing kernel explicitly provides permission.

This UFR facility is not supported in Release 6 because Release 6 only allows FR=1 mode. Accessing the UFR and
UNEFR registers causes a Reserved Instruction exception in Release 6 because FIRypgp is always 0.

The definition of this instruction has been extended in Release 6 to allow user code to read and modify the
Config5pgg bit. Such modification is allowed when this bit is present (as indicated by FIRzrp) and user mode

modification of the bit is enabled by the kernel (as indicated by Config5yyg). Setting Config5pggto 1 causes all

floating point instructions which are not compatible with FR=1 mode to take an Reserved Instruction exception. This
makes it possible to run pre-Release 6 FR=0 floating point code on a Release 6 core which only supports FR=1 mode,
provided the kernel has been set up to trap and emulate FR=0 behavior for these instructions. These instructions
include floating-point arithmetic instructions that read/write single-precision registers, LWC1, SWC1, MTCI, and
MFCI instructions.

The FRE facility uses COP1 register aliases FRE and NFRE to access Config5ppg.

Restrictions:

There are a few control registers defined for the floating point unit. Prior to Release 6, the result is UNPREDICT-
ABLE if fs specifies a register that does not exist. In Release 6 and later, a Reserved Instruction exception occurs if fs
specifies a register that does not exist.

The result is UNPREDICTABLE if fs specifies the UNFR or NFRE write-only control. Release 6 and later imple-
mentations are required to produce a Reserved Instruction exception; software must assume it is UNPREDICT-
ABLE.

Operation:

if fs = 0 then
temp ¢ FIR
elseif fs = 1 then /* read UFR (CP1l Register 1) */

if FIRypgp then
if not Config5ypg then SignalException (ReservedInstruction) endif
temp ¢ Statusgy

else
if Configpp > 2 SignalException(ReservedInstruction) /* Release 6 traps */
endif
temp ¢ UNPREDICTABLE

endif

The MIPS32® Instruction Set Manual, Revision 6.05 127

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CFC1 Move Control Word From Floating Point

elseif fs = 4 then /* read fs=4 UNFR not supported for reading - UFR suffices */
if Config,z>2 SignalException(ReservedInstruction) /* Release 6 traps */
endif
temp ¢ UNPREDICTABLE
elseif fs=5 then /* user read of FRE, if permitted */
if Configpg<2 then temp ¢ UNPREDICTABLE
else
if not Config5ypy then SignalException (ReservedInstruction) endif
temp « 0°! || Config5pgg
endif
elseif fs = 25 then /* FCCR */
temp < 0%* || FCSRy; .5 || FCSR,
elseif fs = 26 then /* FEXR */
temp &« 0'* || FCSRy; 1 || 0° || FCSRg , || 07
elseif fs = 28 then /* FENR */
temp « 0?° || FCSRyy , || 0% || FCSRy || FCSRy,
elseif fs = 31 then /* FCSR */
temp ¢ FCSR
else
if Config2,; = 2 SignalException(ReservedInstruction)
/*Release 6 traps; includes NFRE*/
endif
temp < UNPREDICTABLE
endif

if Config2,; < 2 then
GPR[rt] <« temp
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For the MIPS 1, IT and III architectures, the contents of GPR rt are UNPREDICTABLE for the instruction immedi-
ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS I, II, III, or IV.

MIPS32 Release 5 introduced the UFR and UNFR register aliases that allow user level access to Statusgg. Release 6

removes them.

128 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CFC2 Move Control Word From Coprocessor 2
31 26 25 21 20 16 15 11 10 0
COP2 CF
010010 00010 n fmpl
6 5 5 16
Format: crc2 rt, Impl MIPS32

The syntax shown above is an example using CFC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Control Word From Coprocessor 2

To copy a word from a Coprocessor 2 control register to a GPR

Description: GPR[rt] <« CP2CCR[Impl]

Copy the 32-bit word from the Coprocessor 2 control register denoted by the Impl field. The interpretation of the

Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result is UNPREDICTABLE if Impl specifies a register that does not exist.

Operation:

temp ¢ CP2CCR[Impl]
GPR[rt] €« temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

129

CLASS.fmt Scalar Floating-Point Class Mask

130

31 26 25 21 20 16 15 11 10 6 5 0
COP1 CLASS
010001 fmt 00000 fs fd 011011
6 5 5 5 2 9

Format: cCLASS.fmt
CLASS.S fd,fs MIPS32 Release 6
CLASS.D fd4,fs MIPS32 Release 6
Purpose: Scalar Floating-Point Class Mask
Scalar floating-point class shown as a bit mask for Zero, Negative, Infinite, Subnormal, Quiet NaN, or Signaling
NaN.
Description: FPR[£fd] « class (FPR[fs])
Stores in fd a bit mask reflecting the floating-point class of the floating point scalar value fs.

The mask has 10 bits as follows. Bits 0 and 1 indicate NaN values: signaling NaN (bit 0) and quiet NaN (bit 1). Bits
2, 3, 4, 5 classify negative values: infinity (bit 2), normal (bit 3), subnormal (bit 4), and zero (bit 5). Bits 6, 7, 8, 9
classify positive values: infinity (bit 6), normal (bit 7), subnormal (bit 8), and zero (bit 9).

This instruction corresponds to the class operation of the IEEE Standard for Floating-Point Arithmetic 754™.2008.
This scalar FPU instruction also corresponds to the vector FCLASS.df instruction of MSA.

The input values and generated bit masks are not affected by the flush-subnormal-to-zero mode FCSR.FS.

The input operand is a scalar value in floating-point data format fmt. Bits beyond the width of fmt are ignored. The
result is a 10-bit bitmask as described above, zero extended to fmt-width bits. Coprocessor register bits beyond fmt-
width bits are UNPREDICTABLE (e.g., for CLASS.S bits 32-63 are UNPREDICTABLE on a 64-bit FPU, while bits
32-128 bits are UNPREDICTABLE if the processor supports MSA).

Restrictions:

No data-dependent exceptions are possible.

Availability and Compatibility:
This instruction is introduced by and required as of Release 6.

CLASS.fmt is defined only for formats S and D. Other formats must produce a Reserved Instruction exception
(unless used for a different instruction).

Operation:

if not IsCoprocessorEnabled (1)

then SignalException (CoprocessorUnusable, 1) endif
if not IsFloatingPointImplemented (fmt))

then SignalException (ReservedInstruction) endif

fin < ValueFPR (fs, fmt)
masktmp <« ClassFP(fin, fmt)
StoreFPR (fd, fmt, ftmp)
/* end of instruction */

function ClassFP(tt, ts, n)
/* Implementation defined class operation. */
endfunction ClassFP

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction
Floating Point Exceptions:

Unimplemented Operation

| The MIPS32® Instruction Set Manual, Revision 6.05 131

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CLO Count Leading Ones in Word

132

pre-Release 6

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 .) 1 0 CLO
011100 r r : 00000 100001
6 5 5 5 5 6
Release 6
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL CLO
100000 rs 00000 rd 00001 010001
6 5 5 5 5 6
Format: cLo rd, rs MIPS32

Purpose: Count Leading Ones in Word

To count the number of leading ones in a word.

Description: GPR[rd] < count leading ones GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading ones is counted
and the result is written to GPR rd. If all of bits 31..0 were set in GPR rs, the result written to GPR rd is 32.
Restrictions:

Pre-Release 6: To be compliant with the MIPS32 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if the rt and rd fields of the
instruction contain different values. Release 6’s new instruction encoding does not contain an rt field.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

temp ¢ 32
for i in 31 .. 0
if GPR[rs]l; = 0 then
temp ¢« 31 - i
break
endif
endfor
GPR [rd] < temp

Exceptions:

None

Programming Notes:

As shown in the instruction drawing above, the Release 6 architecture sets the ‘rt’ field to a value of 00000.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CLZ

pre-Release 6

Count Leading Zeros in Word

31 26 25 21 20 16 15 11 10 0
SPECIAL2 s " wd 0 CLZ
011100 00000 100000
6 5 5 5 5 6
Release 6
31 26 25 21 20 16 15 11 10 0
SPECIAL CLZ
000000 s 00000 rd 00001 010000
6 5 5 5 5 6
Format: cLz rd, rs MIPS32

Purpose: Count Leading Zeros in Word

Count the number of leading zeros in a word.

Description: GPR[rd] <« count leading zeros GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading zeros is counted
and the result is written to GPR rd. If no bits were set in GPR rs, the result written to GPR rdis 32.

Restrictions:

Pre-Release 6: To be compliant with the MIPS32 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if the rt and rd fields of the
instruction contain different values. Release 6’s new instruction encoding does not contain an rt field.

Availability and Compatibility:

| This instruction has been recoded for Release 6.
Operation:
temp € 32
for i in 31 .. 0

if GPR[rs]; = 1 then
temp ¢« 31 - i
break
endif
endfor
GPR [rd] <« temp
Exceptions:

None

Programming Notes:
Release 6 sets the ‘rt’ field to a value of 00000.

| The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

133

CMP.condn.fmt Floating Point Compare Setting Mask

134

31 26 25 21 20 16 15 11 10 6 5 4 0
COP1 CMP.condn.S
010001 10100 ft fs fd 0 condn
COP1 CMP.condn.D
010001 10101 ft fs fd 0 condn
6 5 5 5 5 1 5

Format: cMP.condn.fmt
CMP.condn.S fd, fs, ft MIPS32 Release 6
CMP.condn.D fd, fs, ft MIPS32 Release 6

Purpose: Floating Point Compare Setting Mask

To compare FP values and record the result as a format-width mask of all Os or all 1s in a floating point register

Description: FPR[fd] ¢« FPR[fs] compare cond FPRI[ft]
The value in FPR fs is compared to the value in FPR ft.
The comparison is exact and neither overflows nor underflows.

If the comparison specified by the condn field of the instruction is true for the operand values, the result is true; other-
wise, the result is false. If no exception is taken, the result is written into FPR fd; true is all 1s and false is all Os,
repeated the operand width of fmt. All other bits beyond the operand width fmt are UNPREDICTABLE. For example,
a 32-bit single precision comparison writes a mask of 32 Os or 1s into bits 0 to 31 of FPR fd. It makes bits 32 to 63
UNPREDICTABLE if a 64-bit FPU without MSA is present. It makes bits 32 to 127 UNPREDICTABLE if MSA is
present.

The values are in format fmt. These instructions, however, do not use an fmt field to determine the data type.

The condn field of the instruction specifies the nature of the comparison: equals, less than, and so on, unordered or
ordered, signalling or quiet, as specified in Table 3.9 “Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt, and
MSA FP compares” on page 136.

Release 6: The condn field bits have specific purposes: cond,, and cond, 4 specify the nature of the comparison
(equals, less than, and so on); condy specifies whether the comparison is ordered or unordered, that is false or true if
any operand is a NaN; conds indicates whether the instruction should signal an exception on QNaN inputs. However,
in the future the MIPS ISA may be extended in ways that do not preserve these meanings.

All encodings of the condn field that are not specified (for example, items shaded in Table 3.9) are reserved in
Release 6 and produce a Reserved Instruction exception.

If one of the values is an SNaN, or if a signalling comparison is specified and at least one of the values is a QNaN, an
Invalid Operation condition is raised and the Invalid Operation flag is set in the FCSR. If the Invalid Operation
Enable bit is set in the FCSR, no result is written and an Invalid Operation exception is taken immediately. Otherwise,
the mask result is written into FPR fd.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is always true
and the others are false. The familiar relations are greater than, less than, and equal. In addition, the IEEE floating
point standard defines the relation unordered, which is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such as less than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The Bool-
ean result of the instruction is obtained by substituting the Boolean value of each ordering relation for the two FP val-
ues in the equation. For example: If the equal relation is true, then all four example predicates above yield a true
result. If the unordered relation is true then only the final predicate, unordered or equal, yields a true result.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CMP.condn.fmt Floating Point Compare Setting Mask

The predicates implemented are described in Table 3.9 “Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt,
and MSA FP compares” on page 136. Not all of the 16 IEEE predicates are implemented directly by hardware. For
the directed comparisons (LT, LE, GT, GE) the missing predicates can be obtained by reversing the FPR register
operands ft and fs. For example, the hardware implements the “Ordered Less Than” predicate LT(fs, ft); reversing the
operands LT(ft,fs) produces the dual predicate “Unordered or Greater Than or Equal” UGE(fs,ft). Table 3.9 shows
these mappings. Reversing inputs is ineffective for the symmetric predicates such as EQ; Release 6 implements these
negative predicates directly, so that all mask values can be generated in a single instruction.

| Table 3.9 compares CMP.condn.fmt to (1) the MIPS32 Pre-Release 6 C.cond.fmt instructions, and (2) the (MSA)
MIPS SIMD Architecture packed vector floating point comparison instructions. CMP.condn.fmt provides exactly the
same comparisons for FPU scalar values that MSA provides for packed vectors, with similar mnemonics.
CMP.condn.fmt provides a superset of the MIPS32 Release 5 C.cond.fmt comparisons.

In addition, Table 3.9 shows the corresponding IEEE 754-2008 comparison operations.

| The MIPS32® Instruction Set Manual, Revision 6.05 135

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

panlasal s1ybul ||y "saluedwo) dnois parel|ily Sl Jo/pue ‘al saibojouyosa] uoneuibew| 910z ® 1YybLuAdoD

9€T

G0'9 UOISIADY ‘[ENUBIA 19S UORINASU| ®ZESJIIN U L

Table 3.9 Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt, and MSA FP compares

Shaded entries in the table are unimplemented, and reserved.

Instruction Encodings

CMP.condn. fmt:
C.cond. fmt:
MSA:

MSA: minor opcode mmmmmm Bits 5...0 = 26 - 011010

010001 fffff ttttt sssss ddddd Occccc
010001 fffff ttttt sssss CCCOO0 lleccecc
011110 oooof ttttt sssss ddddd mmmmmm

MSA: minor opcode mmmmmm Bits 5...0 = 28 - 011100

2 MSA: operation CMP: condn Bit 5.4 =00 C: only applicable CMP: condn Bit5..4 =01 C: not applicable
S ¢ |oooo Bits 25...22 . .
g2 C: cond Predicates Negated Predicates
Og Bits 3.0
=L cccc|3|p_- colnsdn“ Relation E E Relation E E
g B < 5 |&s< L IEEE d & |E< L IEEE
c lccecce - Bits 3. Oc « = kel ong names O g « = kel ong names
= >|< ? c = O c >|< ? aq = O c
o o [s o
(8] (8] O} (8]
0 0000 FIF|FIF] F FCAF | AF False T|T|T|T| T AT True
Always False Always True
compareQuietUnordered compareQuietOrdered
1 0001 FIF|F|T| UN | FCUN | UN | Unordered ? T|T|T|FJOR|FCOR| OR | Ordered <=>
isUnordered NOT(isUnordered)
compareQuietEqual compareQuietNotEqual
2 0010 FIF|T|F| EQ | FCEQ | EQ | Equal & T|T|F|T|NEQIFCUNE| UNE | Not Equal e NOT (), =
= Ordered
? % 3 0011 F|F T] UEQ | FCUEQ |UEQ| Unordered or Equa| T|T F|OGL] FCNE | NE Greater Than
5 E or Less Than
=y
= . Unordered or _
52| 4 1 FITIFIF| ot | FouT | LT compareQuietless T/F|T|T|UGE UGE G ETEO MENELLESS
5|8 0100 o c Ordered LessThan | "S™F UG Greater Than [- _"\ o7 ist ess)
<z or Equal
e|s
[2]
3 Unordered or Less compareQuietL essUnor- Ordered compareQuiet-
5 0101 F|T|F|T] uLT | FCULT |ULT dered T|F|T|F|OGE OGE Greater Than GreatrEqual
<, isGreaterEqu isGreaterEqui
Than 2<, NOT (isGresterEqual or Equal isGreaterEqual
) compareQuietGreaterUn-
6 o110 JF 7|7 F| oe | FoLe | Le | Ordered Lessthanor ﬁ“gé@;'e"-&qua' T/F|F|T|uaT] ueT | Unordered or -
Equal [qu Greater Than | o ‘NOT(isLessEqual)
7 o1 |fr7/7/7| e | Foute |uLe|UnorderedorLess f comparequieoGreater |7 £ | £ fog] gy || HEEEE compareQuietGreater
Than or Equal 7<=, NOT(isGreater) Greater Than | isGreater

Jwj upuod dNd

se Bunias aredwo) julod Buneo|4

panlasal s1ybul ||y "saluedwo) dnois parel|ily Sl Jo/pue ‘al saibojouyosa] uoneuibew| 910z ® 1YybLuAdoD

LET

G0'9 UOISIADY ‘[ENUBIA 19S UORINASU] @ZESJIIN UL

Table 3.9 Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt, and MSA FP compares (Continued)

Shaded entries in the table are unimplemented, and reserved.

Instruction Encodings

CMP.condn. fmt :
C.cond. fmt:
MSA:

MSA: minor opcode mmmmmm Bits 5...0 = 26 - 011010

010001 fffff ttttt sssss ddddd Occccc
010001 fffff ttttt sssss CCCOO0 lleccecec
011110 ooocof ttttt sssss ddddd mmmmmm

MSA: minor opcode mmmmmm Bits 5...0 = 28 - 011100

e MSA: operation CMP: condn Bit 5.4 =00 C: only applicable CMP: condn Bit5..4 =01 C: not applicable
© ¢ | oooo Bits 25...22 . .
g2 C: cond Predicates Negated Predicates
og Bits 3..0 i
o g [eece - PSSO polation E E Relation g E
S CMP: condn = < o= = o=
z lccecce - Bits 3..4 [OF-] (%) =K Long names IEEE o5 v s5 Long names IEEE
= > < ? c = O c >|< ? g = oc
[e] (e} [(e}
O O O} O
Signalling False Signalling True
8 1000 FIF|F|F| sF FSAF | sAF| Signalling T|T|T|T|ST SAT | Signalling
Always False Always True
Greater Than or
Not Greater Than or Less Than or Equal
9 1001 F|F T] NGLE | FSUN |SUN Less Than or Equal T|T F|GLE] FSOR| SOR Signalling
Signalling Unordered
9 9 Ordered
Sonalling Equal Signalling Not Equal
gnalling Equ Signalling Unor- onalli
10 1010 |IF|F|T|F| SE FSEQ |seEa| Ordered Signallin ignalli T|T|F|T|SNE|FSUNE| SUNE compareSignalling-
Q Q Q g g compareSignalling Equal dered or Not NotEqual
Equal
Equal
Greater Than or
Not Greater Than or Less Than
sl |11 1011 [lFFlTiT| neL | Fsuea fsued o ST 7/7/F FlaL] Fsne | sne | Signaling
2 Signalling Unordered
= Ordered
g or Equal
5 Not Equal
Z
o Not Less Than
Q LessThan) Sianallingl. Signalling compareSignallingNot-
12 1100 FITIFIF] T FSLT | sLT | Ordered Signalling iompare gnalingLess It |F|T|T|NLT SUGE | Unordered or Less
Less Than Greater Than or NOT(<)
Equal
Not Greater Than or Equal | compareSignalling- Signalling Ordered | compareSignalling-
13 1101 FIT T] NGE FSULT |suLT| Unordered or Less LessUnordered T|F F| GE SOGE Greater Than or GreaterEqual
Than NOT(>=) Equal >= >
Less Than or.EquaI) compareSignalling- NotELe;sThan o compareSignalling-
14 1110 FIT|T|F| LE FSLE | SLE | Ordered Signalling LessEqual T|F|F|TINLE SUGT | _ EAU GreaterUnordered
_ Signalling Unordered -
Less Than or Equal | <= < or Greater Than | NOT(<9)
Not Greater Than
Signalling Unordered | compareSignalling- Greater Than compareSignalling-
15 1111 FIT T] NGT | FSULE |SULE] L Th NotGreater T|F F]IGT SOGT | Signalling Ordered Greater
orLess han or NOT(>) Greater Than >
Equal

Jwj upuod dNd

se Bunias aredwo) julod Buneo|4

CMP.condn.fmt Floating Point Compare Setting Mask

Restrictions:

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or
QONaN (ValueFPR (fs, fmt)) or QNaN(ValueFPR (ft, fmt))
then
less < false
equal ¢« false
unordered ¢ true
if (SNaN(ValueFPR (fs,fmt)) or SNaN (ValueFPR(ft,fmt))) or
(cond; and (QNaN (ValueFPR(fs,fmt)) or QONaN(ValueFPR(ft,fmt)))) then
SignalException (InvalidOperation)
endif
else
less ¢ ValueFPR(fs, fmt) <f,. ValueFPR(ft, fmt)
equal ¢ ValueFPR(fs, fmt) =¢,. ValueFPR(ft, fmt)
unordered ¢ false
endif
condition ¢ cond, xor (
(cond, and less)
or (cond; and equal)
or (condy, and unordered))

StoreFPR (fd, fmt, ExtendBit.fmt (condition))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

138 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

COP2 Coprocessor Operation to Coprocessor 2
31 26 25 24
COP2 CO cofun
010010 1 "
6 1 25

Format: cop2 func

Purpose: Coprocessor Operation to Coprocessor 2

To perform an operation to Coprocessor 2.

Description: CoprocessorOperation (2, cofun)

MIPS32

An implementation-dependent operation is performed to Coprocessor 2, with the cofun value passed as an argument.
The operation may specify and reference internal coprocessor registers, and may change the state of the coprocessor
conditions, but does not modify state within the processor. Details of coprocessor operation and internal state are

described in the documentation for each Coprocessor 2 implementation.

Restrictions:

Operation:

CoprocessorOperation (2, cofun)

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

139

CTC1 Move Control Word to Floating Point
31 26 25 21 20 16 15 11 10 0
COP1 CT " fs 0
010001 00110 000 0000 0000
6 5 5 5 11
Format: cTCci rt, fs MIPS32

140

Purpose: Move Control Word to Floating Point
To copy a word from a GPR to an FPU control register.

Description: FP_Control [fs] € GPR[rt]
Copy the low word from GPR rt into the FP (coprocessor 1) control register indicated by fs.

Writing to the floating point Control/Status register, the FCSR, causes the appropriate exception if any Cause bit
and its corresponding Enable bit are both set. The register is written before the exception occurs. Writing to FEXR to
set a cause bit whose enable bit is already set, or writing to FENR to set an enable bit whose cause bit is already set
causes the appropriate exception. The register is written before the exception occurs and the EPC register contains
the address of the CTC1 instruction.

The definition of this instruction has been extended in Release 5 to support user mode read and write of Statusgg

under the control of Config5yg. This optional feature is meant to facilitate transition from FR=0 to FR=1 float-

ing-point register modes in order to obsolete FR=0 mode in a future architecture release. User code may set and clear
Statusgp without kernel intervention, providing kernel explicitly provides permission.

This UFR facility is not supported in Release 6 since Release 6 only allows FR=1 mode. Accessing the UFR and
UNEFR registers causes a Reserved Instruction exception in Release 6 since FIRyzgp is always 0.

The definition of this instruction has been extended in Release 6 to allow user code to read and modify the
Config5pgy bit. Such modification is allowed when this bit is present (as indicated by FIR;zrp) and user mode
modification of the bit is enabled by the kernel (as indicated by Config5yyg). Setting Config5pggto 1 causes all
floating point instructions which are not compatible with FR=1 mode to take an Reserved Instruction exception. This
makes it possible to run pre-Release 6 FR=0 floating point code on a Release 6 core which only supports FR=1 mode,
provided the kernel has been set up to trap and emulate FR=0 behavior for these instructions. These instructions
include floating-point arithmetic instructions that read/write single-precision registers, LWC1, SWC1, MTCI, and
MFCI instructions.

The FRE facility uses COP1 register aliases FRE and NFRE to access Config5pgg.

Restrictions:

There are a few control registers defined for the floating point unit. Prior to Release 6, the result is UNPREDICT-
ABLE if fs specifies a register that does not exist. In Release 6 and later, a Reserved Instruction exception occurs if fs
specifies a register that does not exist.

Furthermore, the result is UNPREDICTABLE if fd specifies the UFR, UNFR, FRE and NFRE aliases, with fs any-
thing other than 00000, GPR[0]. Release 6 implementations and later are required to produce a Reserved Instruction
exception; software must assume it is UNPREDICTABLE.

Operation:

temp < GPRI[rtls;
if (fs = 1 or fs = 4) then
/* clear UFR or UNFR(CP1l Register 1)*/
if Config,y >2 SignalException(ReservedInstruction) /* Release 6 traps */ endif

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CTC1 Move Control Word to Floating Point

if not Config5ypg then SignalException (ReservedInstruction) endif
if not (rt = 0 and FIRypgp) then UNPREDICTABLE /*end of instruction*/ endif
if fs = 1 then Statusgg < 0
elseif fs = 4 then Statusgg < 1
else /* cannot happen */
elseif fs=5 then /* user write of 1 to FRE, if permitted */
if Configagy<2 then UNPREDICTABLE
else
if rt # 0 then SignalException (ReservedInstruction) endif
if not Config5ypg then SignalException(ReservedInstruction) endif
Config5ypg < O
endif
elseif fs=6 then /* user write of 0 to FRE, if permitted (NFRE alias) */
if COnfigARS2 then UNPREDICTABLE
else
if rt # 0 then SignalException(ReservedInstruction) endif
if not Config5ypg then SignalException(ReservedInstruction) endif
Configbypg ¢ 1
endif
elseif fs = 25 then /* FCCR */
if tempy; g # 0°* then
UNPREDICTABLE
else
FCSR « temp, , || FCSR,, || temp, || FCSR,y
endif
elseif fs = 26 then /* FEXR */
if tempsy 153 # 0 or temp;; 5 # 0 or temp, , # Othen
UNPREDICTABLE
else
FCSR € FCSR3;. 15 || tempy; 15 || FCSRyp. 7 ||
tempg , || FCSRy. o
endif
elseif fs = 28 then /* FENR */
if temps; ,, # 0 or tempg 3 # O then

UNPREDICTABLE

else
FCSR ¢ FCSRyq 5 || temp, || FCSRy3 15 || tempyy 4
|| FCSRg. 5 || tempy o

endif

elseif fs = 31 then /* FCSR */
if (FCSRppy field is not implemented) and(temp,, .4 # 0) then
UNPREDICTABLE
elseif (FCSRpy,; field is implemented) and temp,, 15 # 0 then
UNPREDICTABLE
else
FCSR €« temp
endif
else
if Config2,z > 2 SignalException(ReservedInstruction) /* Release 6 traps */
endif
UNPREDICTABLE
endif
CheckFPException ()

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

141

CTC1 Move Control Word to Floating Point

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical Information:

For the MIPS I, II and III architectures, the contents of floating point control register fs are UNPREDICTABLE for
the instruction immediately following CTC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS I, 11, III, or I'V.

MIPS32 Release 5 introduced the UFR and UNFR register aliases that allow user level access to Statusgg.

MIPS32 Release 6 introduced the FRE and NFRE register aliases that allow user to cause traps for FR=0 mode emu-
lation.

142 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CTC2 Move Control Word to Coprocessor 2
31 26 25 21 20 16 15 11 10 0
COP2 CT
010010 00110 n fmpl
6 5 5 16
Format: cTC2 rt, Impl MIPS32

The syntax shown above is an example using CTC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Control Word to Coprocessor 2

To copy a word from a GPR to a Coprocessor 2 control register.

Description: CP2CCR[Impl] < GPR[rt]

Copy the low word from GPR rt into the Coprocessor 2 control register denoted by the Impl field. The interpretation

of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result is UNPREDICTABLE if rd specifies a register that does not exist.

Operation:

temp ¢ GPR[rt]
CP2CCR [Impl] < temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

143

CVT.D.fmt Floating Point Convert to Double Floating Point
31 26 25 21 20 16 15 11 10 0
COP1 0 CVT.D
010001 fimt 00000 fs fd 100001
6 5 5 5 5 6

Format: cvT.D.fmt

144

CVT.D.S fd, fs
CVT.D.W fd, fs
CVT.D.L fd, fs

Purpose: Floating Point Convert to Double Floating Point

To convert an FP or fixed point value to double FP.

Description: FPR[fd] < convert and round (FPR[fs])

MIPS32
MIPS32
MIPS32 Release 2

The value in FPR fs, in format fmt, is converted to a value in double floating point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR fd. If fmt is S or W, then the operation is always

exact.

Restrictions:

The fields fs and fd must specify valid FPRs, fs for type fmt and fd for double floating point. If the fields are not valid,
the result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.D.L, the result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit
FPU register model.

Operation:

StoreFPR

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

(fd, D, ConvertFmt (ValueFPR(fs,

fmt) ,

fmt, D))

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CVT.L.fmt Floating Point Convert to Long Fixed Point

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 CVTL
010001 fmt 00000 fs fd 100101
6 5 5 5 5 6

Format: cvT.L.fmt
CVT.L.S fd, fs MIPS32 Release 2
CVT.L.D fd, fs MIPS32 Release 2
Purpose: Floating Point Convert to Long Fixed Point

To convert an FP value to a 64-bit fixed point.

Description: FPR[fd] ¢ convert and round (FPR[fs])

Convert the value in format fmt in FPR fs to long fixed point format and round according to the current rounding
mode in FCSR. The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range 263 t0 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to fd. On cores with FCSRyan2008=0, the default result is

263_1. On cores with FCSRyaN2008=1, the default result is:
e 0 when the input value is NaN
« 291 when the input value is +00 or rounds to a number larger than 2631

29_1 when the input value is —00 or rounds to a number smaller than 201

Restrictions:

The fields fs and fd must specify valid FPRs, fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact,

| The MIPS32® Instruction Set Manual, Revision 6.05 145

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CVT.PS.S Floating Point Convert Pair to Paired Single

31 26 25 21 20 16 15 1 10 6 5 0
COP1 fmt CVT.PS
010001 10000 ft fs fd 100110
6 5 5 5 5 6
Format: cvr.ps.s fd, fs, ft MIPS32 Release 2, removed in Release 6

Purpose: Floating Point Convert Pair to Paired Single

To convert two FP values to a paired single value.

Description: FPR[fd] ¢ FPRI[fsli; .o || FPRIftls;. o

The single-precision values in FPR fs and ft are written into FPR fd as a paired-single value. The value in FPR fs is
written into the upper half, and the value in FPR ft is written into the lower half.

fs ft

31 0 31 0

63 32 31

fd
CVT.PS.S is similar to PLL.PS, except that it expects operands of format S instead of PS.

o

The move is non-arithmetic; it causes no IEEE 754 exceptions, and the FCSRcayse and FCSRE 545 fields are not
modified.
Restrictions:

The fields fs and ft must specify FPRs valid for operands of type S. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format S; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
StoreFPR (fd, S, ValueFPR(fs,S) || ValueFPR(ft,S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation

146 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

| The MIPS32® Instruction Set Manual, Revision 6.05 147

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CVT.S.PL Floating Point Convert Pair Lower to Single Floating Point

148

31 26 25 21 20 16 15 1 10 6 5 0
COP1 fmt 0 s fd CVT.S.PL
010001 10110 00000 101000
6 5 5 5 5 6
Format: cvT.s.PL fd, fs MIPS32 Release 2, removed in Release 6

Purpose: Floating Point Convert Pair Lower to Single Floating Point

To convert one half of a paired single FP value to single FP.

Description: FPR[fd] « FPR[fsly; o

The lower paired single value in FPR fs, in format PS, is converted to a value in single floating point format. The
result is placed in FPR fd. This instruction can be used to isolate the lower half of a paired single value.

The operation is non-arithmetic; it causes no IEEE 754 exceptions, and the FCSRc5yse and FCSREags fields are
not modified.
Restrictions:

The fields fs and fd must specify valid FPRs—fs for type PS and fd for single floating point. If the fields are not valid,
the result is UNPREDICTABLE.

The operand must be a value in format PS; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of CVT.S.PL is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

StoreFPR (fd, S, ConvertFmt (ValueFPR(fs, PS), PL, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CVT.S.PU Floating Point Convert Pair Upper to Single Floating Point

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 s fd CVT.S.PU
010001 10110 00000 100000
6 5 5 5 5 6
Format: cvT.s.pU fd, fs MIPS32 Release 2, , removed in Release 6

Purpose: Floating Point Convert Pair Upper to Single Floating Point

To convert one half of a paired single FP value to single FP

Description: FPR[fd] <« FPR[fslg; 35

The upper paired single value in FPR fs, in format PS, is converted to a value in single floating point format. The
result is placed in FPR fd. This instruction can be used to isolate the upper half of a paired single value.

The operation is non-arithmetic; it causes no IEEE 754 exceptions, and the FCSRc5yse and FCSREags fields are
not modified.
Restrictions:

The fields fs and fd must specify valid FPRs—fs for type PS and fd for single floating point. If the fields are not valid,
the result is UNPREDICTABLE.

The operand must be a value in format PS; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of CVT.S.PU is UNPREDICTABLE if the processor is executing the FR=0 32-bit FPU register model; it
is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU

Availability and Compatibility:

This instruction was removed in Release 6.

Operation:

StoreFPR (fd, S, ConvertFmt (ValueFPR(fs, PS), PU, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

| The MIPS32® Instruction Set Manual, Revision 6.05 149

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CVT.S.fmt Floating Point Convert to Single Floating Point
31 26 25 21 20 16 15 11 10 0
COP1 0 CVT.S
010001 fimt 00000 fs fd 100000
6 5 5 5 5 6
Format: cvT.s.fmt

CVT.S.D f£d, fs MIPS32
CVT.S.W f£d, fs MIPS32

150

Purpose: Floating Point Convert to Single Floating Point

CVT.S.L fd, fs

To convert an FP or fixed point value to single FP.

Description: FPR[fd] < convert and round (FPR[fs])

MIPS32 Release 2

The value in FPR fs, in format fmt, is converted to a value in single floating point format and rounded according to the
current rounding mode in FCSR. The result is placed in FPR fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for single floating point. If the fields are not valid,
the result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.S.L, the result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit
FPU register model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on
a 32-bit FPU.

Operation:

StoreFPR (fd, S,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

ConvertFmt (ValueFPR (fs,

fmt) ,

fmt, S))

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CVT.W.fmt Floating Point Convert to Word Fixed Point

31 26 25 21 20 16 15 11 10 0
COP1 0 CVI.W
010001 fmt 00000 fs fd 100100
6 5 5 5 5 6
Format: cvT.w.fmt
CVT.W.S fd, fs MIPS32
CVT.W.D £d, fs MIPS32

Purpose: Floating Point Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point.

Description: FPR[fd] ¢ convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded according to

the current rounding mode in FCSR. The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range 23110 2311, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

263_1. On cores with FCSRyaN2008=1, the default result is:

e 0 when the input value is NaN

63

Restrictions:

« 291 when the input value is +00 or rounds to a number larger than 2631

—1 when the input value is —00 or rounds to a number smaller than 201

taken immediately. Otherwise, a default result is written to fd. On cores with FCSRyan2008=0, the default result is

The fields fs and fd must specify valid FPRs: fs for type fmt and fd for word fixed point. If the fields are not valid, the

result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand

FPR becomes UNPREDICTABLE.

Operation:

StoreFPR (fd, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

| The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

151

DDIV Doubleword Divide

31 26 25 21 20 16 15 0
SPECIAL rs " 0 DDIV
000000 00 0000 0000 011110
6 5 5 10 6
Format: DDIV rs, rt MIPS64, removed in Release 6

Purpose: Doubleword Divide
To divide 64-bit signed integers.

Description: (LO, HI) <« GPRI[rs] / GPRIrt]

The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt, treating both operands as signed val-
ues. The 64-bit quotient is placed into special register LO and the 64-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
If the divisor in GPR rt is zero, the arithmetic result value is UNPREDICTABLE.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
LO « GPR[rs] div GPR[rt]
HI < GPR[rs] mod GPR[rt]
Exceptions:

Reserved Instruction

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO specia register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS IV and MIPS32 and all
subsequent levels of the architecture.

| The MIPS32® Instruction Set Manual, Revision 6.05 152

DDIVU Doubleword Divide Unsigned
31 26 25 21 20 16 15 6 5
SPECIAL s it 0 DDIVU
000000 00 0000 0000 011111
6 5 5 10 6

Format: DDIVU rs, rt

Purpose: Doubleword Divide Unsigned
To divide 64-bit unsigned integers.

Description: (LO, HI) <« GPRI[rs] / GPRIrt]

MIPS64, removed in Release 6

The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt, treating both operands as unsigned
values. The 64-bit quotient is placed into specia register LO and the 64-bit remainder is placed into specia register

HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPR rt is zero, the arithmetic result value is UNPREDICTABLE.

Availability and Compatibility:

Thisinstruction has been removed in Release 6.

Operation:
g < (0 || GPR[rs]) div (0 || GPR[rt])
r < (0 || GPR[rs]) mod (0 || GPR[rt])

LO <« dg63..0
HI <« Tg3..0

Exceptions:

Reserved Instruction

Programming Notes:
See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS IV and MIPS32 and all

subsequent levels of the architecture.

The MIPS32® Instruction Set Manual, Revision 6.05

153

DERET Debug Exception Return

31 26 25 24 6 5 0
COPO CO 0 DERET
010000 1 000 0000 0000 0000 0000 011111
6 1 19 6
Format: DERET EJTAG

Purpose: Debug Exception Return

To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it has
no delay slot).

Restrictions:
A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTCO or a DMTCO instruction, a
CPO hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

This instruction is legal only if the processor is executing in Debug Mode.

Pre-Release 6: The operation of the processor is UNDEFINED if a DERET is executed in the delay slot of a branch
or jump instruction.

Release 6 implementations are required to signal a Reserved Instruction exception if DERET is encountered in the
delay slot or forbidden slot of a branch or jump instruction.

Operation:

Debugpy « 0

Debugipxr < 0

if IsMIPSlé6Implemented() | (Config3;qy > 0) then
PC « DEPC3;, 1 || O
ISAMode <« DEPCj

else
PC <« DEPC

endif

ClearHazards ()

Exceptions:

Coprocessor Unusable, Reserved Instruction

154 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DI Disable Interrupts

31 26 25 21 20 16 15 1 10 6 5 4 3 2 0
COPO MFMCO " 12 0 sc 0 0
0100 00 01011 01100 000 00 0| 00 000
6 5 5 5 5 1 2 3
Format: b1 MIPS32 Release 2
DI rt MIPS32 Release 2

Purpose: Disable Interrupts

To return the previous value of the Status register and disable interrupts. If DI is specified without an argument, GPR
10 is implied, which discards the previous value of the Status register.

Description: GPR[rt] « Status; Status;z < O

The current value of the Status register is loaded into general register rt. The Interrupt Enable (IE) bit in the Status
register is then cleared.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

| In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

This operation specification is for the general interrupt enable/disable operation, with the sc field as a variable. The
individual instructions DI and EI have a specific value for the sc field.

data ¢ Status
GPR[rt] <« data
Statusiy < 0
Exceptions:
Coprocessor Unusable
Reserved Instruction (Release 1 implementations)
| Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR,
clearing the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the DI
instruction cannot be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

| The MIPS32® Instruction Set Manual, Revision 6.05 155

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DIV Divide Word
31 26 25 21 20 16 15 6 5 0
SPECIAL s " 0 DIV
000000 00 0000 0000 011010
6 5 5 10 6
Format: DIV rs, rt MIPS32, removed in Release 6

156

Purpose: Divide Word
To divide a 32-bit signed integers.

Description: (HI, LO) < GPR[rs] / GPRI[rt]

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as signed values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder isplaced into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
If the divisor in GPR rt is zero, the arithmetic result value is UNPREDICTABLE.

Availability and Compatibility:

DIV has been removed in Release 6 and has been replaced by DIV and MOD instructions that produce only quotient
and remainder, respectively. Refer to the Release 6 introduced ‘DIV’ and ‘MOD” instructions in this manual for more
information. This instruction remains current for all release levels lower than Release 6 of the MIPS architecture.

Operation:
g € GPR[rslz;, o div GPRI[rtls;. .o
LO ¢« g
r € GPR[rsls;, .o mod GPRI[rtls;y, .o
HI < r

Exceptions:

None

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction is followed by additional instructions to check for a zero divisor and/or
for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the divide. The
action taken on either divide-by-zero or overflow is either a convention within the program itself, or within the sys-
tem software. A possibility is to take a BREAK exception with a code field value to signal the problem to the system
software.

As an example, the C programming language in a UNIX® environment expects division by zero to either terminate
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if a zero is detected.

By default, most compilers for the MIPS architecture emits additional instructions to check for the divide-by-zero and
overflow cases when this instruction is used. In many compilers, the assembler mnemonic “DIV 10, s, rt” can be used
to prevent these additional test instructions to be emitted.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DIV Divide Word

ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

| The MIPS32® Instruction Set Manual, Revision 6.05 157

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DIV MOD DIVU MODU Divide Integers (with result to GPR)

158

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL N rt i DIV SOP32
000000 00010 011010
SPECIAL N rt i MOD SOP32
000000 00011 011010
SPECIAL) N i DIVU SOP33
000000 S 00010 011011
SPECIAL MODU SOP33
I rt rd
000000 00011 011011
6 5 5 5 5 6

Format: DIV MOD DIVU MODU

DIV rd,rs,rt MIPS32 Release 6
MOD rd,rs,rt MIPS32 Release 6
DIVU rd,rs,rt MIPS32 Release 6
MODU rd,rs,rt MIPS32 Release 6

Purpose: Divide Integers (with result to GPR)

DIV: Divide Words Signed
MOD: Modulo Words Signed
DIVU: Divide Words Unsigned
MODU: Modulo Words Unsigned

Description:

DIV: GPR [rd] « (divide.signed(GPR[rs], GPR[rt])
MOD : GPR [rd] <« (modulo.signed(GPR[rs], GPRI[rt])
DIVU: GPR[rd] <« (divide.unsigned(GPR[rs], GPR[rt])
MODU: GPR[rd] <« (modulo.unsigned(GPR[rs], GPR[rt])

The Release 6 divide and modulo instructions divide the operands in GPR rs and GPR rt, and place the quotient or
remainder in GPR rd.

For each of the div/mod operator pairs DIV/M OD, DIVU/MODU, the results satisfy the equation
(A div B)*B + (A mod B) = A, where (A mod B) has same sign as the dividend 2, and
abs (A mod B) < abs (B). This equation uniquely defines the results.

NOTE: if the divisor B=0, this equation cannot be satisfied, and the result is UNPREDICTABLE. This is commonly
called “truncated division”.

DIV performs a signed 32-bit integer division, and places the 32-bit quotient result in the destination register.

MOD performs a signed 32-bit integer division, and places the 32-bit remainder result in the destination register. The
remainder result has the same sign as the dividend.

DIVU performs an unsigned 32-bit integer division, and places the 32-bit quotient result in the destination register.
MODU performs an unsigned 32-bit integer division, and places the 32-bit remainder result in the destination regis-
ter.

Restrictions:

If the divisor in GPR rt is zero, the result value is UNPREDICTABLE.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DIV MOD DIVU MODU DIV: Divide Words Signed MOD: Modulo Words Signed DIVU: Divide Words Un-

Availability and Compatibility:
These instructions are introduced by and required as of Release 6.

Release 6 divide instructions have the same opcode mnemonic as the pre-Release 6 divide instructions (DIV, DIVU).
The instruction encodings are different, as are the instruction semantics: the Release 6 instruction produces only the
quotient, whereas the pre-Release 6 instruction produces quotient and remainder in HI/LO registers respectively, and
separate modulo instructions are required to obtain the remainder.

The assembly syntax distinguishes the Release 6 from the pre-Release 6 divide instructions. For example, Release 6
“DIV rd, rs,rt” specifies 3 register operands, versus pre-Release 6 “DIV rs, rt”, which has only two register
arguments, with the HI/LO registers implied. Some assemblers accept the pseudo-instruction syntax
“DIV rd,rs,rt” and expand it to do “DIV rs, rt;MFHI rd”. Phrases such as “DIV with GPR output” and
“DIV with HI/LO output” may be used when disambiguation is necessary.

Pre-Release 6 divide instructions that produce quotient and remainder in the HI/LO registers produce a Reserved
Instruction exception on Release 6. In the future, the instruction encoding may be reused for other instructions.

Programming Notes:

Because the divide and modulo instructions are defined to not trap if dividing by zero, it is safe to emit code that
checks for zero-divide after the divide or modulo instruction.

Operation

DIV, MOD:
sl <« signed word(GPR[rs])
s2 <« signed word(GPR[rt])
DIVU, MODU:
sl <« unsigned word(GPR[rs])
s2 <« unsigned word (GPR[rt])

DIV, DIVU:
quotient <« sl div s2
MOD, MODU:

remainder <« sl mod s2

DIV: GPR [rd] <« quotient
MOD: GPR[rd] <« remainder
DIVU: GPR[rd] <« quotient
MODU: GPR[rd] <« remainder
/* end of instruction */

Exceptions:

No arithmetic exceptions occur. Division by zero produces an UNPREDICTABLE result.

The MIPS32® Instruction Set Manual, Revision 6.05 159

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DIV.fmt Floating Point Divide
31 26 25 21 20 16 15 11 10 5 0
COP1 DIV
010001 fimt fs fd 000011
6 5 5 5 6
Format: DIV.fmt

DIV.S fd, fs, ft MIPS32
DIV.D fd, fs, ft MIPS32

Purpose: Floating Point Divide

To divide FP values.

Description: FPR[fd] « FPR[fs] / FPR[ft]

The value in FPR fs is divided by the value in FPR ft. The result is calculated to infinite precision, rounded according
to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is

UNPREDICABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the

operand FPRs becomes UNPREDICTABLE.

Operation:

StoreFPR (fd,

Exceptions:

Coprocessor Unusable, Reserved Instruction

fmt,

Floating Point Exceptions:

ValueFPR (fs, fmt)

/ ValueFPR (ft,

fmt))

Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

160

DIVU Divide Unsigned Word

31 26 25 21 20 16 15 6 5 0
SPECIAL s " 0 DIVU
000000 00 0000 0000 011011
6 5 5 10 6
Format: DIVU rs, rt MIPS32, removed in Release 6

Purpose: Divide Unsigned Word
| To divide 32-bit unsigned integers

Description: (HI, LO) < GPR[rs] / GPRI[rt]

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as unsigned values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
If the divisor in GPR rt is zero, the arithmetic result value is UNPREDICTABLE.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
g < (0 || GPRIrslsy, o) div (0 || GPRI[rtlsz;. o)
r < (0 || GPRIrslsy. o) mod (0 || GPRIrtlsq. .)
LO ¢« sign extend(qsp.)
HI < sign_extend(rs;. o)

Exceptions:

None

Programming Notes:

Pre-Release 6 instruction DIV has been removed in Release 6 and has been replaced by DIV and MOD instructions
that produce only quotient and remainder, respectively. Refer to the Release 6 introduced ‘DIV’ and ‘MOD”’ instruc-
tions in this manual for more information. This instruction remains current for all release levels lower than Release 6
of the MIPS architecture.

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

| The MIPS32® Instruction Set Manual, Revision 6.05 161

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DVP Disable Virtual Processor

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0
| COPO MFMCO0 " 0 0 sc| 0 4
010000 01011 00000 00000 1| 00 100
6 5 5 5 5 1 2 3
| Format: DVP rt MIPS32 Release 6

Purpose: Disable Virtual Processor

To disable all virtual processors in a physical core other than the virtual processor that issued the instruction.

Description: GPR [rt] ¢ VPControl ; VPControlprg ¢ 1

Disabling a virtual processor means that instruction fetch is terminated, and all outstanding instructions for the
affected virtual processor(s) must be complete before the DVP itself is allowed to retire. Any outstanding events such
as hardware instruction or data prefetch, or page-table walks must also be terminated.

The DVP instruction has implicit SYNC(stype=0) semantics but with respect to the other virtual processors in the
physical core.

After all other virtual processors have been disabled, VPControlp s is set. Prior to modification and if rt is non-
zero, VPControl is written to GPR[rt].If DVP is specified without rt, then rt must be 0.

DVP may also take effect on a virtual processor that has executed a WAIT or a PAUSE instruction. If a virtual proces-
sor has executed a WAIT instruction, then it cannot resume execution on an interrupt until an EVP has been executed.
If the EVP is executed before the interrupt arrives, then the virtual processor resumes in a state as if the DVP had not
been executed, that is, it waits for the interrupt.

If a virtual processor has executed a PAUSE instruction, then it cannot resume execution until an EVP has been exe-
cuted, even if LLbit is cleared. If an EVP is executed before the LLbit is cleared, then the virtual processor resumes in
a state as if the DVP has not been executed, that is, it waits for the LLDbit to clear.

The execution of a DVP must be followed by the execution of an EVP. The execution of an EVP causes execution to
resume immediately—where applicable—on all other virtual processors, as if the DVP had not been executed. The
execution is completely restorable after the EVP. If an event occurs in between the DVP and EVP that renders state of
the virtual processor UNPREDICTABLE (such as power-gating), then the effect of EVP is UNPREDICTABLE.

DVP may only take effect if VPControl,;s=0. Otherwise it is treated as a NOP instruction.

If a virtual processor is disabled due to a DVP, then interrupts are also disabled for the virtual processor, that is, logi-
cally Status;z=0. Statusy for the target virtual processors though is not cleared though as software cannot

access state on the virtual processors that have been disabled. Similarly, deferred exceptions will not cause a disabled
virtual processor to be re-enabled for execution, at least until execution is re-enabled by the EVP instruction. The vir-
tual processor that executes the DVP, however, continues to be interruptible.

In an implementation, the ability of a virtual processor to execute instructions may also be under control external to
the physical core which contains the virtual processor. If disabled by DVP, a virtual processor must not resume fetch
in response to the assertion of this external signal to enable fetch. Conversely, if fetch is disabled by such external
control, then execution of EVP will not cause fetch to resume at a target virtual processor for which the control is
deasserted.

This instruction never executes speculatively. It must be the oldest unretired instruction to take effect.

This instruction is only available in Release 6 implementations. For implementations that do not support multi-
threading (Config5,,p=0), this instruction must be treated as a NOP instruction.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

| The MIPS32® Instruction Set Manual, Revision 6.05 162

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DVP Disable Virtual Processor

In implementations prior to Release 6 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

The pseudo-code below assumes that the DVP is executed by virtual processor 0, while the target virtual processor is
numbered ‘n’, where n is each of all remaining virtual processors.

if (VPControlprg = 0)

// Pseudo-code in italics provides recommended action wrt other VPs
disable fetch(vpPn) {

if PAUSE (VPn) retires prior or at disable event

then VPn execution is not resumed if LLbit is cleared prior to EVP

}

disable interrupt (VPn) f{
if WAIT(VPn) retires prior or at disable event
then interrupts are ignored by VPn until EVP

}

// DVPO not retired until instructions for VPn completed
while (VPn outstanding instruction)

DVPO unretired
endwhile

endif

data ¢ VPControl
GPR[rt] < data
VPControlprg < 1

Exceptions:

Coprocessor Unusable
Reserved Instruction (pre-Release 6 implementations)

Programming Notes:

DVP may disable execution in the target virtual processor regardless of the operating mode - kernel, supervisor, user.
Kernel software may also be in a critical region, or in a high-priority interrupt handler when the disable occurs. Since
the instruction is itself privileged, such events are considered acceptable.

Before executing an EVP in a DVP/EVP pair, software should first read vPControlp;g, returned by DVP, to deter-
mine whether the virtual processors are already disabled. If so, the DVP/EVP sequence should be abandoned. This
step allows software to safely nest DVP/EVP pairs.

Privileged software may use DVP/EVP to disable virtual processors on a core, such as for the purpose of doing a
cache flush without interference from other processes in a system with multiple virtual processors or physical cores.

DVP (and EVP) may be used in other cases such as for power-savings or changing state that is applicable to all virtual
processors in a core, such as virtual processor scheduling priority, as described below :

11 t0 0(a0)
dvp // disable all other virtual processors
pause // wait for LLbit to clear
evp // enable all othe virtual processors
163 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

11 t0 0(a0)

dvp // disable all other virtual processors
<change core-wide state>

evp // enable all othe virtual processors

| The MIPS32® Instruction Set Manual, Revision 6.05 164
Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

EHB Execution Hazard Barrier
31 26 25 21 20 16 15 1 10 6 5 0
SPECIAL 0 0 0 3 SLL
000000 00000 00000 00000 00011 000000
6 5 5 5 5 6
Format: EHB Assembly Idiom MIPS32 Release 2

165

Purpose: Execution Hazard Barrier

To stop instruction execution until all execution hazards have been cleared.

Description:
EHB is used to denote execution hazard barrier. The actual instruction is interpreted by the hardware as SLL 10, r0, 3.

This instruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execu-
tion hazards have been cleared. Other than those that might be created as a consequence of setting Statusc,q, there

are no execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by
previous instructions are cleared for instructions executed immediately following the EHB, even if the EHB is exe-
cuted in the delay slot of a branch or jump. The EHB instruction does not clear instruction hazards—such hazards are
cleared by the JALR.HB, JR.HB, and ERET instructions.

Restrictions:

None

Operation:

ClearExecutionHazards ()

Exceptions:

None

Programming Notes:

In Release 2 implementations, this instruction resolves all execution hazards. On a superscalar processor, EHB alters
the instruction issue behavior in a manner identical to SSNOP. For backward compatibility with Release 1 implemen-
tations, the last of a sequence of SSNOPs can be replaced by an EHB. In Release 1 implementations, the EHB will be
treated as an SSNOP, thereby preserving the semantics of the sequence. In Release 2 implementations, replacing the
final SSNOP with an EHB should have no performance effect because a properly sized sequence of SSNOPs will
have already cleared the hazard. As EHB becomes the standard in MIPS implementations, the previous SSNOPs can
be removed, leaving only the EHB.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

El Enable Interrupts

31 26 25 21 20 16 15 1 10 6 5 4 3 2 0
COPO MFMCO " 12 0 sc 0 0
0100 00 01011 01100 000 00 1 00 000
6 5 5 5 5 1 2 3
Format: EI MIPS32 Release 2
EI rt MIPS32 Release 2

Purpose: Enable Interrupts

To return the previous value of the Status register and enable interrupts. If EI is specified without an argument, GPR
10 is implied, which discards the previous value of the Status register.

Description: GPR[rt] « Status; Statusp < 1

The current value of the Status register is loaded into general register rt. The Interrupt Enable (IE) bit in the Status
register is then set.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

| In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

This operation specification is for the general interrupt enable/disable operation, with the sc field as a variable. The
individual instructions DI and EI have a specific value for the sc field.

data ¢ Status
GPR[rt] < data
Statusigy < 1
Exceptions:
Coprocessor Unusable
Reserved Instruction (Release 1 implementations)
Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR, set-
ting the |IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the EI
instruction cannot be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

| The MIPS32® Instruction Set Manual, Revision 6.05 166

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ERET

Exception Return

31 26 25 24 6 5 0
COPO CcO 0 ERET
010000 1 000 0000 0000 0000 0000 011000
6 1 19 6
Format: ERET MIPS32
Purpose: Exception Return
To return from interrupt, exception, or error trap.
Description:
ERET clears execution and instruction hazards, conditionally restores SRSCtlcgg from SRSCltlpgg in a Release 2
implementation, and returns to the interrupted instruction at the completion of interrupt, exception, or error process-
ing. ERET does not execute the next instruction (that is, it has no delay slot).
Restrictions:
Pre-Release 6: The operation of the processor is UNDEFINED if an ERET is executed in the delay slot of a branch
or jump instruction.
Release 6: Implementations are required to signal a Reserved Instruction exception if ERET is encountered in the
delay slot or forbidden slot of a branch or jump instruction.
An ERET placed between an LL and SC instruction will always cause the SC to fail.
ERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the ERET returns.
In a Release 2 implementation, ERET does not restore SRSCtl-gg from SRSCltlpgg if Statusggy = 1, or if Statusgg,.
= 1 because any exception that sets Statusgg, to 1 (Reset, Soft Reset, NMI, or cache error) does not save SRSCtlgg
in SRSCltlpgs. If software sets Statusgg, to 1, it must be aware of the operation of an ERET that may be subse-
quently executed.
Operation:
if Statusgg; = 1 then
temp ¢ ErrorEPC
Statusggy, < O
else
temp ¢ EPC
Statusgy;, < 0
if (ArchitectureRevision > 2) and (SRSCtlygg > 0) and (Statusggy = 0) then
SRSCtlegg ¢ SRSCtlpgg
endif
endif
if IsMIPSl16Implemented() | (Config3igx > 0) then
PC « temps; ; || O
ISAMode < temp,
else
PC < temp
endif
LLbit « 0
ClearHazards ()
The MIPS32® Instruction Set Manual, Revision 6.05 167

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Coprocessor Unusable Exception

| The MIPS32® Instruction Set Manual, Revision 6.05 168

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ERETNC Exception Return No Clear

31 26 25 24 6 5 0
COPO CcO 0 1 ERET
010000 1 000 0000 0000 0000 000 011000
6 1 18 1 6
Format: ERETNC MIPS32 Release 5
Purpose: Exception Return No Clear
To return from interrupt, exception, or error trap without clearing the LLbit.
Description:
ERETNC clears execution and instruction hazards, conditionally restores SRSCtlcgg from SRSCtlpgg when imple-
mented, and returns to the interrupted instruction at the completion of interrupt, exception, or error processing.
ERETNC does not execute the next instruction (i.e., it has no delay slot).
ERETNC is identical to ERET except that an ERETNC will not clear the LLbit that is set by execution of an LL
instruction, and thus when placed between an LL and SC sequence, will never cause the SC to fail.
An ERET must continue to be used by default in interrupt and exception processing handlers. The handler may have
accessed a synchronizable block of memory common to code that is atomically accessing the memory, and where the
code caused the exception or was interrupted. Similarly, a process context-swap must also continue to use an ERET in
order to avoid a possible false success on execution of SC in the restored context.
Multiprocessor systems with non-coherent cores (i.e., without hardware coherence snooping) should also continue to
use ERET, because it is the responsibility of software to maintain data coherence in the system.
An ERETNC is useful in cases where interrupt/exception handlers and kernel code involved in a process context-
swap can guarantee no interference in accessing synchronizable memory across different contexts. ERETNC can also
be used in an OS-level debugger to single-step through code for debug purposes, avoiding the false clearing of the
LLbit and thus failure of an LL and SC sequence in single-stepped code.
Software can detect the presence of ERETNC by reading Config5, | g -
Restrictions:
Release 6 implementations are required to signal a Reserved Instruction exception if ERETNC is executed in the
delay slot or Release 6 forbidden slot of a branch or jump instruction.
ERETNC implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes. (For Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream.) The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction in the PC to which the ERETNC returns.
Operation:
if Statusgg; = 1 then
temp ¢ ErrorEPC
Statusgg, < 0
else
temp ¢ EPC
Statusgyy, < O
if (ArchitectureRevision > 2) and (SRSCtlygg > 0) and (Statusggy = 0) then
SRSCtleagg € SRSCtlpgg
endif
endif
if IsMIPSlé6Implemented() | (Config3;ga > 0) then
The MIPS32® Instruction Set Manual, Revision 6.05 169

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

| PC ¢ temps; 1 || O
ISAMode ¢ temp,
else
PC < temp
endif
ClearHazards ()

Exceptions:
Coprocessor Unusable Exception

| The MIPS32® Instruction Set Manual, Revision 6.05 170

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

EVP Enable Virtual Processor

31 26 25 21 20 16 15 1 10 6 5 4 3 2 0
COPO MFMCO0 " 0 0 scl 4
010000 01011 00000 00000 0 00 100
6 5 5 5 5 1 2 3
| Format: EVP rt MIPS32 Release 6

Purpose: Enable Virtual Processor

To enable all virtual processors in a physical core other than the virtual processor that issued the instruction.

Description: GPR[rt] ¢ VPControl ; VPControlprg ¢« 0
Enabling a virtual processor means that instruction fetch is resumed.

After all other virtual processors have been enabled, VPControlyrg is cleared. Prior to modification, if rt is non-
zero, VPControl is written to GPR[rt].If EVP is specified without rt, then rt must be 0.

See the DVP instruction to understand the application of EVP in the context of WAIT/PAUSE/external-control
(“DVP” on page 162).

The execution of a DVP must be followed by the execution of an EVP. The execution of an EVP causes execution to
resume immediately, where applicable, on all other virtual processors, as if the DVP had not been executed, that is,
execution is completely restorable after the EVP. On the other hand, if an event occurs in between the DVP and EVP
that renders state of the virtual processor UNPREDICTABLE (such as power-gating), then the effect of EVP is
UNPREDICTABLE.

| EVP may only take effect if VPControl ;;s~1. Otherwise it is treated as a NOP

This instruction never executes speculatively. It must be the oldest unretired instruction to take effect.

This instruction is only available in Release 6 implementations. For implementations that do not support multi-
threading (Config5yp=0), this instruction must be treated as a NOP instruction.

Restrictions:
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

| In implementations prior to Release 6 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

The pseudo-code below assumes that the EVP is executed by virtual processor 0, while the target virtual processor is
numbered ‘n’, where n is each of all remaining virtual processors.

if (VPControlprg = 1)

// Pseudo-code in italics provides recommended action wrt other VPs
enable fetch(VPn) {

if PAUSE (VPn) retires prior or at disable event

then VPn execution is not resumed if LLbit is cleared prior to EVP
}
enable interrupt (VPn) {

if WAIT(VPn) retires prior or at disable event

then interrupts are ignored by VPn until EVP

| The MIPS32® Instruction Set Manual, Revision 6.05 171

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

EVP Enable Virtual Processor

endif

data ¢« VPControl
GPR[rt] <« data
VPControlprg < O

Exceptions:

Coprocessor Unusable
Reserved Instruction (pre-Release 6 implementations)

Programming Notes:

Before executing an EVP in a DVP/EVP pair, software should first read vPControlpy;g, returned by DVP, to deter-
mine whether the virtual processors are already disabled. If so, the DVP/EVP sequence should be abandoned. This
step allows software to safely nest DVP/EVP pairs.

Privileged software may use DVP/EVP to disable virtual processors on a core, such as for the purpose of doing a
cache flush without interference from other processes in a system with multiple virtual processors or physical cores.

DVP (and EVP) may be used in other cases such as for power-savings or changing state that is applicable to all virtual
processors in a core, such as virtual processor scheduling priority, as described below:

11 to 0(ao0)

dvp // disable all other virtual processors
pause // wait for LLbit to clear
evp // enable all othe virtual processors
11 t0 0(a0)
dvp // disable all other virtual processors
<change core-wide statex>
evp // enable all othe virtual processors
172 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

EXT Extract Bit Field

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 s it msbd Isb EXT
011111 (size-1) (pos) 000000
6 5 5 5 5 6
Format: EXT rt, rs, pos, size MIPS32 Release 2

Purpose: Extract Bit Field
To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] ¢« ExtractField(GPR[rs], msbd, lsb)

The bit field starting at bit pos and extending for Size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and Size are converted by the assembler to the
instruction fields mshd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and Isb
(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd €« size-1
lsb ¢ pos
The values of pos and size must satisfy all of the following relations:
0 < pos < 32
<

0 size < 32
0 pos+size < 32

A

Figure 3-9 shows the symbolic operation of the instruction.

Figure 3.5 Operation of the EXT Instruction

pos+size pos+size-1 pos pos-1
31 Isb+msbd+1 Isb+msbd Isb Isb-1 0
DKL MNOP ™| QRST
GPRrs 32-(pos+size) size
Initial Value 32-(Isb+msbd+1) msbd+1
size size-1
31 msbd+1 mshd 0
0 MNOP
GPR rtFinal 32-size size
Value 32-(mshd+1) msbd+1

Restrictions:
In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

The operation is UNPREDICTABLE if Isb+mshd > 31.

Operation:
if (lsb + msbd) > 31) then
UNPREDICTABLE
endif

temp €« 0327 (msbd+1)

GPR[rt] < temp

|| GPRIrs]mspariso..1sb

The MIPS32® Instruction Set Manual, Revision 6.05 173

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:

Reserved Instruction

174 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

FLOOR.L.fmt Floating Point Floor Convert to Long Fixed Point

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 FLOOR.L
010001 fmt 00000 fs fd 001011
6 5 5 5 5 6

Format: FLOOR.L.fmt
FLOOR.L.S fd, fs MIPS32 Release 2
FLOOR.L.D fd, fs MIPS32 Release 2
Purpose: Floating Point Floor Convert to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding down

Description: FPR[fd] ¢ convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward >
(rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range 263 t0 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to fd. On cores with FCSRyan2008=0, the default result is

263_1. On cores with FCSRyaN2008=1, the default result is:
e 0 when the input value is NaN
« 291 when the input value is +00 or rounds to a number larger than 2631

29_1 when the input value is —00 or rounds to a number smaller than 201

Restrictions:

The fields fs and fd must specify valid FPRs: fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

| The MIPS32® Instruction Set Manual, Revision 6.05 175

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point

176

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 FLOOR.W
010001 fmt 00000 fs fd 001111
6 5 5 5 5 6

Format: FLOOR.W.fmt
FLOOR.W.S fd, fs MIPS32
FLOOR.W.D £d, fs MIPS32
Purpose: Floating Point Floor Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding down

Description: FPR[fd] ¢ convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward —>
(rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range 23110 2311, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to fd. On cores with FCSRyan2008=0, the default result is

2311, On cores with FCSRyaN2008=1, the default result is:

e 0 when the input value is NaN

« 2°11 when the input value is +00 or rounds to a number larger than 231

« 23| when the input value is —00 or rounds to a number smaller than 23

Restrictions:

The fields fs and fd must specify valid FPRs: fs for type fmt and fd for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR (fd, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

INS Insert Bit Field
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 . it msb Isb INS
011111 s (postsize-1) (pos) 000100
6 5 5 5 5 6
Format: INS rt, rs, pos, size MIPS32 Release 2

The MIPS32® Instruction Set Manual, Revision 6.05

Purpose: Insert Bit Field

To merge a right-justified bit field from GPR rs into a specified field in GPR rt.

Description: GPR[rt] ¢ InsertField(GPR[rt], GPR[rs], msb, 1lsb)

The right-most Size bits from GPR rs are merged into the value from GPR rt starting at bit position pos. The result is
placed back in GPR rt. The assembly language arguments pos and Size are converted by the assembler to the instruc-
tion fields msb (the most significant bit of the field), in instruction bits 15..11, and Isb (least significant bit of the

field), in instruction bits 10..6, as follows:

msb ¢ pos+size-1

1sb < pos

The values of pos and size must satisfy all of the following relations:

0 <
0 <
0

A

pos < 32
size < 32
pos+size

< 32

Figure 3-10 shows the symbolic operation of the instruction.

Figure 3.6 Operation of the INS Instruction

size size-1
31 msb-Isb+1 msb-Isb 0
GPRrs ABCD EFGH
32-size size
32-(msb-Isb+1) msb-Isb+1
pos+size pos+size-1 pos pos-1
31 msb+1 msb Isb Isb-1 0
IJKL MNOP QRST
GPR 1t 32-(pos+size) size pos
Initial Value 32-(msb+1) msb-Isb+1 Isb
pos+size pos+size-1 pos pos-1
31 msb+1 msb Isb Isb-1 0
DKL EFGH QRST
GPR rtFinal 32-(pos+size) size pos
Value 32-(msb+1) msb-Isb+1 Isb

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

177

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

The operation is UNPREDICTABLE if Isb > msb.

Operation:

if 1sb > msb) then
UNPREDICTABLE
endif

GPR[rt] <« GPR[rt]}l..msb+1 | I GPR[rs]msb—lsb..O | I C:"']?R[:':‘t]lsb—l..O

Exceptions:

Reserved Instruction

178 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

J Jump

31 26 25 0
! instr_inde
000010 ~tndex
6 26
Format: J target MIPS32

Purpose: Jump

To branch within the current 256 MB-aligned region.

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the instr_index field shifted left 2bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.
Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the
delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.

Operation:

I:

I+l: PC © PCgprrpn-1..28 || instr_index || 02
Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256MB region aligned on a 256MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction is in the last word of a 256 MB region,
it can branch only to the following 256MB region containing the branch delay slot.

| The Jump instruction has been deprecated in Release 6. Use BC instead.

| The MIPS32® Instruction Set Manual, Revision 6.05 179

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JAL Jump and Link

31 26 25 0
JAL instr inde
000011 —dex
6 26
Format: JAL target MIPS32

Purpose: Jump and Link

To execute a procedure call within the current 256MB-aligned region.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256MB-aligned region.
The low 28 bits of the target address is the instr_index field shifted left 2bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.
Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the
delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.

Operation:

I: GPR[31] < PC + 8

I+l: PC ¢ PCeppren-1 28 || instr index || 02
Exceptions:
None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256MB region aligned on a 256MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256MB
region, it can branch only to the following 256MB region containing the branch delay slot.

The Jump-and-Link instruction has been deprecated in Release 6. Use BALC instead.

180 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JALR Jump and Link Register

pre-Release 6

31 26 25 21 20 16 15 1 10 6 5 0
SPECIAL S 0 q hint JALR
000000 r 00000) ! 001001
6 5 5 5 5 6
Release 6
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL . 0 d hint JALR
000000 s 00000 rd = 00000 001001
6 5 5 5 5 6
Format: JAIR rs (rd = 31 implied) MIPS32
JALR rd, rs MIPS32

Purpose: Jump and Link Register

To execute a procedure call to an instruction address in a register

Description: GPR[rd] ¢ return addr, PC ¢ GPRI[rs]

Place the return address link in GPR rd. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16e or microMIPS ISA:

* Jump to the effective target address in GPR rs. If the target address is not 4-byte aligned, an Address Error
exception will occur when the target address is fetched.

For processors that do implement the MIPS16e or microMIPS ISA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

In both cases, execute the instruction that follows the jump, in the branch delay slot, before executing the jump itself.

In Release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JALR. In
Release 2 of the architecture, bit 10 of the hint field is used to encode a hazard barrier. See the JALR.HB instruction
description for additional information.

Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the
delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.

Jump-and-Link Restartability: Register specifiers rs and rd must not be equal, because such an instruction does not
have the same effect when re-executed. The result of executing such an instruction is UNPREDICTABLE. This
restriction permits an exception handler to resume execution by re-executing the branch when an exception occurs in
the delay slot.

Restrictions Related to Multiple Instruction Sets: This instruction can change the active instruction set, if more than
one instruction set is implemented.

| The MIPS32® Instruction Set Manual, Revision 6.05 181

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JALR

182

Jump and Link Register

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that do not implement the microMIPS32/64 ISA, the effective target address in GPR rs must be natu-
rally-aligned. For processors that do not implement the MIPS16e ASE nor microMIPS32/64 ISA, if either of the two
least-significant bits are not zero, an Address Error exception occurs when the branch target is subsequently fetched
as an instruction.

For processors that do implement the MIPS16e ASE or microMIPS32/64 ISA, if target ISAMode bit is zero (GPR rs
bit 0) and bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

Availability and Compatibility:
Release 6 maps JR and JR.HB to JALR and JALR.HB with rd = 0:

Pre-Release 6, JR and JALR were distinct instructions, both with primary opcode SPECIAL, but with distinct func-
tion codes.

Release 6: JR is defined to be JALR with the destination register specifier rd set to 0. The primary opcode and func-
tion field are the same for JR and JALR. The pre-Release 6 instruction encoding for JR is removed in Release 6.

Release 6 assemblers should accept the JR and JR.HB mnemonics, mapping them to the Release 6 instruction encod-
ings.
Operation:

I: temp < GPR[rs]
GPR[rd] <« PC + 8
I+1l:if (Config3;gy = 0) and (Configley = 0) then

PC < temp
else
PC < tempgprren-1..1 || 0
ISAMode < temp,
endif
Exceptions:
None

Programming Notes:

This jump-and-link register instruction can select a register for the return link; other link instructions use GPR 31.
The default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JALR.HB Jump and Link Register with Hazard Barrier

pre-Release 6:

31 26 25 21 20 16 15 11 10 9 6 5 0
SPECIAL . 0 . | ‘;nil"l?i’gf JALR
000000 00000 & 001001
value
6 5 5 5 1 4 6
Release 6:
31 26 25 21 20 16 15 11 10 9 6 5 0
SPECIAL . 0 rd ' ‘;nil"ltl}i’;r JALR
000000 00000 rd # 00000 & 001001
value
6 5 5 5 1 4 6
Format: JALR.HB rs (rd = 31 implied) MIPS32 Release 2
| JALR.HB rd, rs MIPS32 Release 2

Purpose: Jump and Link Register with Hazard Barrier

To execute a procedure call to an instruction address in a register and clear all execution and instruction hazards

DESCI’iptiOI’]: GPR[rd] ¢ return addr, PC ¢« GPR[rs], clear execution and instruction hazards

Place the return address link in GPR rd. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16e or microMIPS ISA:

* Jump to the effective target address in GPR rs. If the target address is not 4-byte aligned, an Address Error
exception will occur when the target address is fetched.

For processors that do implement the MIPS16e or microMIPS ISA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

In both cases, execute the instruction that follows the jump, in the branch delay slot, before executing the jump itself.

JALR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALR.HB instruction jumps. An equivalent bar-
rier is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0 is
| enabled, whereas JALR.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JALR.HB uses bit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

Restrictions:

JALR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALR.HB. Only
hazards created by instructions executed before the JALR.HB are cleared by the JALR.HB.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the instruction hazard has been cleared with JALR.HB, JR.HB, ERET, or
DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

| The MIPS32® Instruction Set Manual, Revision 6.05 183

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JALR.HB Jump and Link Register with Hazard Barrier

184

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the
delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.

Jump-and-Link Restartability: Register specifiers rs and rd must not be equal, because such an instruction does not
have the same effect when re-executed. The result of executing such an instruction is UNPREDICTABLE. This
restriction permits an exception handler to resume execution by re-executing the branch when an exception occurs in
the delay slot.

Restrictions Related to Multiple Instruction Sets: This instruction can change the active instruction set, if more than
one instruction set is implemented.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that do not implement the microMIPS32/64 ISA, the effective target address in GPR rs must be natu-
rally-aligned. For processors that do not implement the MIPS16 ASE nor microMIPS32/64 ISA, if either of the two
least-significant bits are not zero, an Address Error exception occurs when the branch target is subsequently fetched
as an instruction.

For processors that do implement the MIPS16 ASE or microMIPS32/64 ISA, if bit 0 is zero and bit 1 is one, an
Address Error exception occurs when the jump target is subsequently fetched as an instruction.

Availability and Compatibility:
Release 6 maps JR and JR.HB to JALR and JALR.HB with rd = 0:

Pre-Release 6, JR.HB and JALR.HB were distinct instructions, both with primary opcode SPECIAL, but with distinct
function codes.

Release 6: JR.HB is defined to be JALR.HB with the destination register specifier rd set to 0. The primary opcode
and function field are the same for JR.HB and JALR.HB. The pre-Release 6 instruction encoding for JR.HB is
removed in Release 6.

Release 6 assemblers should accept the JR and JR.HB mnemonics, mapping them to the Release 6 instruction encod-
ings.
Operation:

I: temp ¢« GPR[rs]
GPR[xrd] « PC + 8
I+l:if (Config3;gy = 0) and (Configlyy = 0) then
PC <« temp
else

PC < tempgprren-1..1 || O
ISAMode ¢ temp,

endif

ClearHazards ()

Exceptions:

None

Programming Notes:

This branch-and-link instruction can select a register for the return link; other link instructions use GPR 31. The

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JALR.HB Jump and Link Register with Hazard Barrier

default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

| Release 6 JR.HB rs is implemented as JALR.HB rO0, rs. For example, as JALR . HB with the destination set to
the zero register, 0.

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards

| can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
* Code used to modify ASID and call a routine with the new
* mapping established.
*
* a0 = New ASID to establish
* al = Address of the routine to call
*/
mfcO v0, CO_EntryHi /* Read current ASID */
1i vl, ~M_EntryHiASID /* Get negative mask for field */
and v0o, v0, vl /* Clear out current ASID value */
or v0, vO0, a0 /* OR in new ASID value */
mtcO v0, CO_EntryHi /* Rewrite EntryHi with new ASID */
jalr.hb al /* Call routine, clearing the hazard */
| The MIPS32® Instruction Set Manual, Revision 6.05 185

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

186 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JALX Jump and Link Exchange

31 26 25 o
()J ﬁlf())(l instr_index
6 26
| Format: JALX target MIPS32 with (microMIPS or MIPS16e), removed in Release 6

Purpose: Jump and Link Exchange

To execute a procedure call within the current 256 MB-aligned region and change the ISA Mode from MIPS32 to
microMIPS32 or MIPS16e.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit 0 reflects the current
value of the ISA Mode bit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the instr_index field shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, toggling the ISA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.
Restrictions:

This instruction only supports 32-bit aligned branch target addresses.

Control Transfer Instructions (CTIs) should not be placed in branch delay slots. CTIs include all branches and jumps,
NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the delay slot of a
branch or jump.
Availability and Compatibility:

If the microMIPS base architecture is not implemented and the MIPS16e ASE is not implemented, a Reserved
Instruction exception is initiated.

The JALX instruction has been removed in Release 6. Pre-Release 6 code using JALX cannot run on Release 6 by
trap-and-emulate. Equivalent functionality is provided by the JIALC instruction added by Release 6.

Operation:
I: GPR[31] « PC + 8
I+l: PC < PCoppren-1..28 || instr_index || 02
ISAMode < (not ISAMode)
Exceptions:
None

Programming Notes:

Forming the branch target address by concatenating PC and index bits rather than adding a signed offset to the PC is
an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a
branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB

| The MIPS32® Instruction Set Manual, Revision 6.05 187

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

region, it can branch only to the following 256 MB region containing the branch delay slot.

| The MIPS32® Instruction Set Manual, Revision 6.05 188

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JIALC Jump Indexed and Link, Compact

31 26 25 21 20 16 15 0
POP76 JALC
111110 00000 it offset
6 5 5 16
Format: JIALC rt, offset MIPS32 Release 6

Purpose: Jump Indexed and Link, Compact

Description: GPR[31] « PC+4, PC <« (GPR[rt] + sign extend(offset))

The jump target is formed by sign extending the offset field of the instruction and adding it to the contents of GPR
rt.

The offset is NOT shifted, that is, each bit of the offset is added to the corresponding bit of the GPR.

Places the return address link in GPR 31. The return link is the address of the following instruction, where execution
continues after a procedure call returns.

For processors that do not implement the MIPS16e or microMIPS ISA:

* Jump to the effective target address derived from GPR rt and the offset. If the target address is not 4-byte
aligned, an Address Error exception will occur when the target address is fetched.

For processors that do implement the MIPS16e or microMIPS ISA:

* Jump to the effective target address derived from GPR rt and the offset. Set the ISA Mode bit to bit 0 of the effec-
tive address. Set bit 0 of the target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-
byte aligned, an Address Error exception will occur when the target instruction is fetched.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

This instruction is an unconditional, always taken, compact jump, and hence has neither a delay slot nor a forbidden
slot. The instruction after the jump is not executed when the jump is executed.

The register specifier may be set to the link register $31, because compact jumps do not have the restartability issues
of jumps with delay slots. However, this is not common programming practice.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Release 6 instructions JTALC and BNEZC differ only in the rs field, instruction bits 21-25. JIALC and BNEZC
| occupy the same encoding as pre-Release 6 instruction encoding SDC2, which is recoded in Release 6.

Exceptions:

None

Operation:

temp <« GPR[rt] + sign_extend(offset)

GPR[31] « PC + 4

if (Config3:gy = 0) and (Configlyy = 0) then
PC <« temp

else
PC « (tempgprrey-1..1 || 0)
ISAMode <« temp,
| endif
| The MIPS32® Instruction Set Manual, Revision 6.05 189

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Programming Notes:

JIALC does NOT shift the offset before adding it the register. This can be used to eliminate tags in the least signifi-
cant bits that would otherwise produce misalignment. It also allows JIALC to be used as a substitute for the JALX
instruction, removed in Release 6, where the lower bits of the target PC, formed by the addition of GPR[rt] and the
unshifted offset, specify the target ISAmode.

190 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JIC Jump Indexed, Compact

31 26 25 21 20 16 15 0
POP66 it
110110 00000 it offset
6 5 5 16
Format: JIC rt, offset MIPS32 Release 6

Purpose: Jump Indexed, Compact

Description: PC « (GPR[rt] + sign extend(offset))

The branch target is formed by sign extending the offset field of the instruction and adding it to the contents of GPR
rt.

The offset is NOT shifted, that is, each bit of the offset is added to the corresponding bit of the GPR.
For processors that do not implement the MIPS16e or microMIPS ISA:

* Jump to the effective target address derived from GPR rt and the offset. If the target address is not 4-byte
aligned, an Address Error exception will occur when the target address is fetched.

For processors that do implement the MIPS16e or microMIPS ISA:

* Jump to the effective target address derived from GPR rt and the offset. Set the ISA Mode bit to bit 0 of the effec-
tive address. Set bit 0 of the target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-
byte aligned, an Address Error exception will occur when the target instruction is fetched.

Compact jumps do not have a delay slot. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

This instruction is an unconditional, always taken, compact jump, and hence has neither a delay slot nor a forbidden
slot. The instruction after the jump is not executed when the jump is executed.

Availability and Compatibility:
This instruction is introduced by and required as of Release 6.

Release 6 instructions JIC and BEQZC differ only in the rs field. JIC and BEQZC occupy the same encoding as pre-
| Release 6 instruction LDC2, which is recoded in Release 6.

Exceptions:

None

Operation:

temp <« GPR[rt] + sign extend(offset)
if (Config3igy = 0) and (Configly, = 0) then
PC <« temp
else
PC « (tempgppren-1..1 || 0)
ISAMode <« temp,
endif

Programming Notes:

JIC does NOT shift the offset before adding it the register. This can be used to eliminate tags in the least significant
bits that would otherwise produce misalignment. It also allows JIALC to be used as a substitute for the JALX instruc-
tion, removed in Release 6, where the lower bits of the target PC, formed by the addition of GPR[rt] and the unshifted
offset, specify the target ISAmode.

| The MIPS32® Instruction Set Manual, Revision 6.05 191

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JR

192

pre-Release 6:

Jump Register

31 26 25 21 20 11 10 0
SPECIAL . 0 hint JR
000000 r 00 0000 0000 ! 001000
6 5 10 5 6
Release 6:
31 26 25 21 20 16 15 11 10 9 0
SPECIAL 0 . JALR
000000 s 00000 00000 hint 001001
6 5 5 5 5 6
Format: JR rs MIPS32

Assembly idiom MIPS32 Release 6

Purpose: Jump Register

To execute a branch to an instruction address in a register

Description: PC < GPR[rs]

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.
For processors that do not implement the MIPS16e or microMIPS ISA:

* Jump to the effective target address in GPR rs. If the target address is not 4-byte aligned, an Address Error
exception will occur when the target address is fetched.

For processors that do implement the MIPS16e or microMIPS ISA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the
delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.

Restrictions Related to Multiple Instruction Sets: This instruction can change the active instruction set, if more than
one instruction set is implemented.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that do not implement the microMIPS ISA, the effective target address in GPR rs must be naturally-
aligned. For processors that do not implement the MIPS16e ASE or microMIPS ISA, if either of the two least-signif-
icant bits are not zero, an Address Error exception occurs when the branch target is subsequently fetched as an
instruction.

For processors that do implement the MIPS16e ASE or microMIPS ISA, if bit 0 is zero and bit 1 is one, an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JR Jump Register

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JR. In Release 2
of the architecture, bit 10 of the hint field is used to encode an instruction hazard barrier. See the JR.HB instruction
description for additional information.

Availability and Compatibility:

Release 6 maps JR and JR.HB to JALR and JALR.HB with rd = 0:

Pre-Release 6, JR and JALR were distinct instructions, both with primary opcode SPECIAL, but with distinct func-
tion codes.

Release 6: JR is defined to be JALR with the destination register specifier rd set to 0. The primary opcode and func-
tion field are the same for JR and JALR. The pre-Release 6 instruction encoding for JR isremoved in Release 6.

Release 6 assemblers should accept the JR and JR.HB mnemonics, mapping them to the Release 6 instruction encod-

ings.
Operation:
I: temp < GPR[rs]
| I+1l:if (Config3;gy = 0) and (Configley = 0) then
PC <« temp
else
PC € tempgprrey-1..1 || 0
ISAMode < temp,
endif
Exceptions:
None

Programming Notes:

Software should use the value 31 for the rs field of the instruction word on return from a JAL, JALR, or BGEZAL,
and should use a value other than 31 for remaining uses of JR.

| The MIPS32® Instruction Set Manual, Revision 6.05 193

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JR.HB

194

pre-Release 6:

Jump Register with Hazard Barrier

31 26 25 21 20 11 10 9 6 5
SPECIAL . 0 | ‘;nil"l?i’gf R
000000 00 0000 0000 & 001000
value
6 5 10 1 4 6
Release 6:
26 25 21 20 16 15 11 10 9 6 5 0
SPECIAL 0 0 Any other JALR
] 1 legal hint
000000 00000 00000 001001
value
6 5 5 5 1 4 6
Format: JR.HB rs MIPS32 Release 2

Assembly idiom Release 6

Purpose: Jump Register with Hazard Barrier

To execute a branch to an instruction address in a register and clear all execution and instruction hazards.

DESCI’iptiOI’]: PC ¢« GPR[rs], clear execution and instruction hazards

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.
For processors that do not implement the MIPS16e or microMIPS ISA:

* Jump to the effective target address in GPR rs. If the target address is not 4-byte aligned, an Address Error
exception will occur when the target address is fetched.

For processors that do implement the MIPS16e or microMIPS ISA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

JR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JR.HB instruction jumps. An equivalent barrier
is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0 is
enabled, whereas JR.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JR.HB uses bit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

Restrictions:

JR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JR.HB. Only hazards
created by instructions executed before the JR.HB are cleared by the JR.HB.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the hazard has been cleared with JALR.HB, JR.HB, ERET, or DERET. Fur-
ther, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JR.HB Jump Register with Hazard Barrier

include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the
delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.

Restrictions Related to Multiple Instruction Sets: This instruction can change the active instruction set, if more than
one instruction set is implemented.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that do not implement the microMIPS ISA, the effective target address in GPR rs must be naturally-
aligned. For processors that do not implement the MIPS16 ASE or microMIPS ISA, if either of the two least-signifi-
cant bits are not zero, an Address Error exception occurs when the branch target is subsequently fetched as an instruc-
tion.

For processors that do implement the MIPS16 ASE or microMIPS ISA, if bit 0 is zero and bit 1 is one, an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

Availability and Compatibility:

Release 6 maps JR and JR.HB to JALR and JALR.HB with rd = 0:

Pre-Release 6, JR.HB and JALR.HB were distinct instructions, both with primary opcode SPECIAL, but with distinct
function codes.

Release 6: JR.HB is defined to be JALR.HB with the destination register specifier rd set to 0. The primary opcode and
function field are the sasme for JR.HB and JALR.HB. The pre-Release 6 instruction encoding for JR.HB isremoved in
Release 6.

Release 6 assemblers should accept the JR and JR.HB mnemonics, mapping them to the Release 6 instruction encod-

ings.
Operation:
I: temp < GPR[rs]
| I+1l:if (Config3;gy = 0) and (Configle, = 0) then
PC &« temp
else
PC € tempgpprey-1..1 || 0
ISAMode ¢ temp,
endif
ClearHazards ()
Exceptions:
None

Programming Notes:

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)

| The MIPS32® Instruction Set Manual, Revision 6.05 195

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JR.HB Jump Register with Hazard Barrier

sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
* Routine called to modify ASID and return with the new
* mapping established.

* a0 = New ASID to establish

*/
mfco v0, CO_EntryHi /* Read current ASID */
1i vl, ~M _EntryHiASID /* Get negative mask for field */
and v0, vO0, vl /* Clear out current ASID value */
or v0, vO0, a0 /* OR in new ASID value */
mtcO v0, CO_EntryHi /* Rewrite EntryHi with new ASID */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Making a write to the instruction stream visible

/*
* Routine called after new instructions are written to
* make them visible and return with the hazards cleared.

*/
{Synchronize the caches - see the SYNCI and CACHE instructions}
sync /* Force memory synchronization */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Clearing instruction hazards in-line

la AT, 10f
jr.hb AT /* Jump to next instruction, clearing */
nop /* hazards */
10:
196 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LB Load Byte
31 26 25 21 20 16 15 0
LB
100000 base offset
6 5 16
Format: LB rt, offset (base) MIPS32

Purpose: Load Byte

To load a byte from memory as a signed value.

Description: GPR[rt] < memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ¢ sign extend(offset)
¢ AddressTranslation (vAddr,

(pAddr,
(pAddr; , xor ReverseEndian?)

CCA)

pAddr « pAddrpgrze-1..2 ||

memword ¢ LoadMemory (CCA, BYTE, pAddr,
byte ¢ vAddr; , xor BigEndianCPU?
GPR[rt] ¢ sign_extend (memword;,g«pyte..g*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

The MIPS32® Instruction Set Manual, Revision 6.05

+ GPR [base]

DATA, LOAD)

197

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LBE Load Byte EVA
31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 LBE
011111 base n offset 0 101100
6 5 5 9 1 6
Format: LBE rt, offset (base) MIPS32

198

Purpose: Load Byte EVA

To load a byte as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] < memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBE instruction functions the same as the LB instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode and executing in kernel mode. Memory segments using UUSK or MUSK
access modes are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional informa-
tion.

Implementation of this instruction is specified by the Config5g field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrze.1. .o || (PAddr; , xor ReverseEndian?)
memword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte € vAddr; , xor BigEndianCPU?
GPR[rt] ¢ sign_extend (memword;,gspyte..g*byte)

Exceptions:

TLB Refill, TLB Invalid

Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LBU Load Byte Unsigned
31 26 25 21 20 16 15 0
LBU
100100 base offset
6 5 16
Format: LBU rt, offset (base) MIPS32

Purpose: Load Byte Unsigned

To load a byte from memory as an unsigned value

Description: GPR[rt] < memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ¢ sign extend(offset)
¢ AddressTranslation (vAddr,

(pAddr,
(pAddr; , xor ReverseEndian?)

CCA)

pAddr « pAddrpgrze-1..2 ||

memword ¢ LoadMemory (CCA, BYTE, pAddr,
byte ¢ vAddr; , xor BigEndianCPU?
GPR[rt] ¢ zero_extend (memword,, g«pyte..g*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

The MIPS32® Instruction Set Manual, Revision 6.05

+ GPR [base]

DATA, LOAD)

199

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LBUE Load Byte Unsigned EVA
31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 LBUE
011111 base n offset 0 101000
6 5 5 9 1 6
Format: LBUE rt, offset (base) MIPS32

200

Purpose: Load Byte Unsigned EVA

To load a byte as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] < memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBUE instruction functions the same as the LBU instruction, except that address translation is performed using
the user mode virtual address space mapping in the TLB when accessing an address within a memory segment con-
figured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrze.1. .o || (PAddr; , xor ReverseEndian?)
memword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte € vAddr; , xor BigEndianCPU?

GPR[rt] ¢ zero_extend (memword,,gspyte..g*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LDCA1 Load Doubleword to Floating Point

31 26 25 21 20 16 15 0
LDC1
110101 base ft offset
6 5 5 16
Format: 1DC1 ft, offset (base) MIPS32

Purpose: Load Doubleword to Floating Point

To load a doubleword from memory to an FPR.

Description: FPR[ft] < memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
Pre-Release 6: An Address Error exception occurs if EffectiveAddress, # 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[basel

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
paddr < paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

paddr ¢ paddr xor 0bl0O0

memmsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)
memdoubleword < memmsw || memlsw

StoreFPR (ft, UNINTERPRETED DOUBLEWORD, memdoubleword)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

The MIPS32® Instruction Set Manual, Revision 6.05 201

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LDC2

202

pre-Release 6

Load Doubleword to Coprocessor 2

31 26 25 21 20 16 15 0
LDC2
110110 base rt offset
6 5 5 16
Release 6
26 25 21 20 16 15 11 10 0
COP2 LDC2
010010 01110 n base offset
6 5 5 5 11
Format: LDC2 rt, offset (base) MIPS32

Purpose: Load Doubleword to Coprocessor 2

To load a doubleword from memory to a Coprocessor 2 register.

Description: CPR[2,rt,0] < memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 register rt. The signed offset is added to the contents of GPR base to form the effective
address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress, ¢ # 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
paddr ¢ paddr xor ((BigEndianCPU xor ReverseEndian) || 0?)
memlsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
paddr ¢ paddr xor 0bl0O0
memmsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)
<memlsw
memmsw

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

Programming Notes:

Release 6 implements a 9-bit offset, whereas all release levels lower than Release 6 implement a 16-bit offset.

Programming Notes:

As shown in the instruction drawing above, Release 6 implements an 11-bit offset, whereas all release levels lower

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

than Release 6 of the MIPS architecture implement a 16-bit offset.

| The MIPS32® Instruction Set Manual, Revision 6.05 203

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LDXCH1 Load Doubleword Indexed to Floating Point

31 26 25 21 20 16 15 11 10 6 5 0
COP1X . 0 LDXC1
010011 base index 00000 fd 000001
6 5 5 5 5 6
Format: 1DXC1 fd, index(base) MIPS32 Release 2 removed in Release 6

Purpose: Load Doubleword Indexed to Floating Point
To load a doubleword from memory to an FPR (GPR+GPR addressing)

Description: FPR[fd] <« memory [GPR[base] + GPRI[index]]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR fd. The contents of GPR index and GPR base are added to form the effective address.
Restrictions:

An Address Error exception occurs if EffectiveAddress, (# 0 (not doubleword-aligned).

Availability and Compatibility:
This instruction has been removed in Release 6.

Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32 Release 1. Required in
MIPS32 Release 2 and all subsequent versions of MIPS32. When required, required whenever FPU is present,
whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1, Statusgr=0 or 1).

Operation:

vAddr < GPR[base] + GPR[index]
if vAddr, , #0° then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
paddr < paddr xor ((BigEndianCPU xor ReverseEndian) || 02)

memlsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

paddr ¢ paddr xor 0bl0O0

memmsw € LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)

memdoubleword < memmsw || memlsw

StoreFPR (fd, UNINTERPRETED DOUBLEWORD, memdoubleword)
Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

204 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LH Load Halfword
31 26 25 21 20 16 15 0
LH
100001 base rt offset
6 5 5 16

Format: LH rt, offset (base) MIPS32
Purpose: Load Halfword
To load a halfword from memory as a signed value
Description: GPR[rt] < memory[GPR[base] + offset]
The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.
Restrictions:
Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.
Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.
Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.
Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)

pPAddr ¢« pAddrpgrzg.1. . || (pAddr; , xor (ReverseEndian || 0))

memword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)

byte ¢« vAddr,; , xor (BigEndianCPU || 0)

GPR[rt] ¢ sign_ extend(memword;s,gspyte..g+byte)
Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

The MIPS32® Instruction Set Manual, Revision 6.05 205

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LHE Load Halfword EVA
31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 LHE
011111 base n offset 0 101101
6 5 5 9 1 6
Format: LHE rt, offset (base) MIPS32

206

Purpose: Load Halfword EVA

To load a halfword as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] < memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHE instruction functions the same as the LH instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)

pPAddr ¢« pAddrpgrzg.1. o || (pAddr; , xor (ReverseEndian || 0))
memword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢ vAddr, , xor (BigEndianCPU || 0)

GPR[rt] ¢ sign_ extend(memword;s,gspyte..g*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

Watch, Reserved Instruction, Coprocessor Unusable

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LHU Load Halfword Unsigned
31 26 25 21 20 16 15 0
LHU
100101 base rt offset
6 5 5 16
Format: LHU rt, offset (base) MIPS32

Purpose: Load Halfword Unsigned

To load a halfword from memory as an unsigned value

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)

pPAddr ¢« pAddrpgrzg.1. . || (pAddr; , xor (ReverseEndian || 0))
memword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢« vAddr,; , xor (BigEndianCPU || 0)

GPR[rt] ¢ zero_extend(memword;s,gspyte..g+byte)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

The MIPS32® Instruction Set Manual, Revision 6.05 207

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LHUE Load Halfword Unsigned EVA

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 LHUE
011111 base t offset 0 101001
6 5 5 9 1 6
Format: LHUE rt, offset (base) MIPS32

Purpose: Load Halfword Unsigned EVA

To load a halfword as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] < memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHUE instruction functions the same as the LHU instruction, except that address translation is performed using
the user mode virtual address space mapping in the TLB when accessing an address within a memory segment con-
figured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)

pPAddr ¢« pAddrpgrzg.1. o || (pAddr; , xor (ReverseEndian || 0))
memword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢ vAddr, , xor (BigEndianCPU || 0)

GPR[rt] ¢ zero_extend(memword;s,gspyte..g+byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

208 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LL

Load Linked Word

pre-Release 6

31 26 25 21 20 16 15 0
LL
110000 base t offset
6 5 5 16
Release 6
31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 LL
011111 base rt offset 0 110110
6 5 5 9 1 6
Format: LL rt, offset (base) MIPS32

Purpose: Load Linked Word

To load a word from memory for an atomic read-modify-write

Description: GPR[rt] ¢ memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.
Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Availability and Compatibility:

This instruction has been reallocated an opcode in Release 6.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
if vAddr; , # 07 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, LOAD)

The MIPS32® Instruction Set Manual, Revision 6.05 209

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] memword
Llbit « 1

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

Programming Notes:
Release 6 implements a 9-bit offset, whereas all release levels lower than Release 6 implement a 16-bit offset.

| The MIPS32® Instruction Set Manual, Revision 6.05 210

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLE Load Linked Word EVA
31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 LLE
011111 base t offset 0 101110
6 5 5 9 1 6
Format: LLE rt, offset (base) MIPS32

Purpose: Load Linked Word EVA

To load a word from a user mode virtual address when executing in kernel mode for an atomic read-modify-write

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The LLE and SCE instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations using user mode virtual addresses while executing in kernel mode.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 9-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LLE is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SCE instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LLE on one processor does not cause an action that, by itself, causes an SCE for the same block to fail on
another processor.

An execution of LLE does not have to be followed by execution of SCE; a program is free to abandon the RMW
sequence without attempting a write.

The LLE instruction functions the same as the LL instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Segmentation Control for additional information.

Implementation of this instruction is specified by the Config5g field being set to one.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SCE instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]
if vAddr,; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
<GPR[rt] < memword
LLbit « 1

The MIPS32® Instruction Set Manual, Revision 6.05 211

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch, Coprocessor Unusable

Programming Notes:

212 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLWP Load Linked Word Paired

31 26 25 21 20 16 15 11 10 7 6 5 0
SPECIAL3 0 LL
011111 base it rd 0000 L 110110
6 5 5 5 4 1 6
Format: LLWP rt, rd, (base) MIPS32 Release 6

Purpose: Load Linked Word Paired

To load two words from memory for an atomic read-modify-write, writing a word each to two registers.

Description: GPR[rd] < memory[GPR[basells; 35, GPRIrt] ¢« memory[GPRI[basells;

The LLWP and SCWP instructions provide primitives to implement a paired word atomic read-modify-write (RMW)
operation at a synchronizable memory location.

The 64-bit paired word, as a concatenation of two words, at the memory location specified by the double-word
aligned effective address is read. The least significant word is written into GPR rt,and the most significant word is
written into GPR rd.

A paired word read or write occurs as a pair of word reads or writes that is double-word atomic.
The instruction has no offset. The effective address is equal to the contents of GPR base.

The execution of LLWP begins a RMW sequence on the current processor. There can be only one active RMW
sequence per processor. When an LLWP is executed it starts an active RMW sequence replacing any other sequence
that was active. The RMW sequence is completed by a subsequent SCWP instruction that either completes the RMW
sequence atomically and succeeds, or does not and fails.

Successful execution of the LLWP results in setting LLbit and writing COP0 LLAddr, where LLbit is the least-sig-
nificant bit of LLAddr. LLAddr contains the data-type aligned address of the operation, in this case a double-word.

Executing LLWP on one processor does not cause an action that, by itself, causes a store conditional instruction type
for the same block to fail on another processor.

An execution of LLWP does not have to be followed by execution of SCWP; a program is free to abandon the RMW
sequence without attempting a write.
Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAddr is optional.

Providing misaligned support is not a requirement for this instruction.

Availability and Compatibility
This instruction is introduced by Release 6. It is only present if ConTig5y\p=0.

Operation:

vAddr < GPR [base]

(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)

// PAIREDWORD: two word data-type that is double-word atomic
memdoubleword ¢ LoadMemory (CCA, PAIREDWORD, pAddr, vAddr, DATA)

The MIPS32® Instruction Set Manual, Revision 6.05 213

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

GPR[rt] ¢ memdoubleword;;
GPR[rd] ¢ memdoublewordg; ;,
LLAddr ¢ pAddr // double-word aligned i.e., pAddr, , are 0, or not supported.
Llbit « 1
Exceptions:

TLB Refill, TLB Invalid, Reserved Instruction, Address Error, Watch

Programming Notes:

An LLWP instruction for which the two destination registers are the same but non-zero is UNPREDICTABLE. An
LLWP with two zero destination registers followed by a SCWP can be used to accomplish a double-word atomic
write.

214 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLWPE Load Linked Word Paired EVA

31 26 25 21 20 16 15 1 10 7 6 5 0
SPECIAL3 0 LLE
011111 base " d 0000 | T 101110
6 5 5 5 4 1 6

Format: LLWPE rt, rd, (base) MIPS32 Release 6
Purpose: Load Linked Word Paired EVA
To load two words from memory for an atomic read-modify-write, writing a word each to two registers. The load
occurs in kernel mode from user virtual address space.
Description: GPR[rd] ¢ memory[GPR[basellq; 35, GPRIrt] ¢ memory[GPR[basell;;
The LLWPE and SCWPE instructions provide primitives to implement a paired word atomic read-modify-write
(RMW) operation at a synchronizable memory location.
The 64-bit paired word at the memory location specified by the double-word aligned effective address is read. The
least significant word is written into GPR rt. The most significant word is written into GPR rd.
A paired word read or write occurs as a pair of word reads or writes that is double-word atomic.
The instruction has no offset. The effective address is equal to the contents of GPR base.
The execution of LLWPE begins a RMW sequence on the current processor. There can be only one active RMW
sequence per processor. When an LLWPE is executed it starts an active RMW sequence replacing any other sequence
that was active. The RMW sequence is completed by a subsequent SCWPE instruction that either completes the
RMW sequence atomically and succeeds, or does not and fails.
Successful execution of the LLWPE results in setting LLbit and writing COP0 LLAddr, where LLbit is the least-sig-
nificant bit of LLAddr. LLAddr contains the data-type aligned address of the operation, in this case a double-word
aligned address.
The LLWPE instruction functions the same as the LLWP instruction, except that address translation is performed
using the user mode virtual address space mapping in the TLB when accessing an address within a memory segment
configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also acces-
sible. Refer to Volume III, Segmentation Control for additional information.
Executing LLWPE on one processor does not cause an action that, by itself, causes a store conditional instruction
type for the same block to fail on another processor.
An execution of LLWPE does not have to be followed by execution of SCWPE; a program is free to abandon the
RMW sequence without attempting a write.
Restrictions:
The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.
The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAddr is optional.
Providing misaligned support is not a requirement for this instruction.
Availability and Compatibility
This instruction is introduced by Release 6. It is only present if ConTig5yyp=0 and ConTig5gys=1.

The MIPS32® Instruction Set Manual, Revision 6.05 215

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLWPE Load Linked Word Paired EVA

Operation:

vAddr < GPR [base]
(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)

// PAIREDWORD: two word data-type that is double-word atomic
memdoubleword ¢ LoadMemory (CCA, PAIREDWORD, pAddr, vAddr, DATA)

GPR[rt] ¢ memdoubleword,;

GPR[rd] ¢ memdoublewordg; 3,
LLAddr ¢« pAddr // double-word aligned i.e., pAddr, , are 0, or not supported.

LLbit « 1

Exceptions:
TLB Refill, TLB Invalid, Reserved Instruction, Address Error, Watch, Coprocessor Unusable.

Programming Notes:

An LLWPE instruction for which the two destination registers are the same but non-zero is UNPREDICTABLE. An
LLWPE with two zero destination registers followed by a SCWPE can be used to accomplish a double-word atomic

write.

216 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LSA Load Scaled Address
31 26 25 21 20 16 15 1 10 5
SPECIAL LSA
000000 s rd 000 000101
6 5 5 3 6
Format: wnsA
LSA rd,rs,rt,sa MIPS32 Release 6
Purpose: Load Scaled Address
Description:
GPR[rd] <« sign _extend.32((GPR[rs] << (sa+l)) + GPR[rt]

LSA adds two values derived from registers rs and rt, with a scaling shift on rs. The scaling shift is formed by
adding 1 to the 2-bit sa field, which is interpreted as unsigned. The scaling left shift varies from 1 to 5, corresponding

to multiplicative scaling values of x2, x4, x8, x16, bytes, or 16, 32, 64, or 128 bits.

Restrictions:

None

Availability and Compatibility:

LSA instruction is introduced by and required as of Release 6.

Operation

GPR[rd] <« sign extend.32(GPR[rs]

Exceptions:

None

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

<<

(sa+1)

+ GPR[rt]

217

LUI

218

Pre-Release 6

Load Upper Immediate

31 26 25 21 20 16 15 0
LUI 0 . .
001111 00000 rt immediate
6 5 5 16
Release 6
31 26 25 21 20 16 15 0
AUI _ .
001111 00000 rt immediate
6 5 5 16

Format: LUI rt, immediate

Purpose: Load Upper Immediate

To load a constant into the upper half of a word

Description: GPR[rt] ¢« immediate || 0'°

MIPS32, Assembly Idiom Release 6

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is

placed into GPR rt.

Restrictions:

None.

Operation:

GPR[rt] ¢« immediate || 0%°

Exceptions:

None

Programming Notes:

In Release 6, LUI is an assembly idiom of AUI with rs=0.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LUXCA1 Load Doubleword Indexed Unaligned to Floating Point

31 26 25 21 20 16 15 11 10 6 5 0
COP1X . 0 LUXC1
010011 base index 00000 fd 000101
6 5 5 5 5 6
Format: LUxC1l fd, index(base) MIPS32 Release 2, removed in Release 6

Purpose: Load Doubleword Indexed Unaligned to Floating Point
To load a doubleword from memory to an FPR (GPR+GPR addressing), ignoring alignment

Description: FPR[fd] ¢ memory[(GPR[base] + GPR[index])pgrze-1. 3]

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetched and
placed into the low word of FPR fd. The contents of GPR index and GPR base are added to form the effective
address. The effective address is doubleword-aligned; EffectiveAddress, (are ignored.

Restrictions:

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.
Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
vAddr ¢« (GPR[base] +GPR[index])s; 5 || 0°
(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)
paddr < paddr xor ((BigEndianCPU xor ReverseEndian) || 02)

memlsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
paddr ¢ paddr xor 0bl0O0

memmsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)
memdoubleword ¢ memmsw || memlsw

StoreFPR (ft, UNINTERPRETED DOUBLEWORD, memdoubleword)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Watch

The MIPS32® Instruction Set Manual, Revision 6.05 219

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Lw Load Word
31 26 25 21 20 16 15 0
Lw
100011 base offset
6 5 16

Format: 1w rt, offset (base) MIPS32
Purpose: Load Word
To load a word from memory as a signed value
Description: GPR[rt] ¢« memory [GPR[base] + offset]
The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the con-
tents of GPR base to form the effective address.
Restrictions:
Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.
Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.
Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.
Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)

memword € LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

GPR[rt] memword
Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

220 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWC1 Load Word to Floating Point
31 26 25 21 20 16 15 0
LWCI1
110001 base ft offset
6 5 5 16
Format: 1wci ft, offset (base) MIPS32

Purpose: Load Word to Floating Point

To load a word from memory to an FPR

Description: FPR[ft] < memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR ft. If FPRs are 64 bits wide, bits 63..32 of FPR ft become UNPREDICTABLE. The

16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress; # 0 (not word-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-

tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
¢« AddressTranslation (vAddr,

(pAddr, cCcCAa)

memword € LoadMemory (CCA, WORD, pAddr,

StoreFPR (ft, UNINTERPRETED WORD, memword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DATA, LOAD)

221

LwWC2 Load Word to Coprocessor 2

222

pre-Release 6

31 26 25 21 20 16 15 0
LWC2
110010 base t offset
6 5 5 16
Release 6
31 26 25 21 20 16 15 1 10 0
CcoP2 LWC2
010010 01010 rt base offset
6 5 5 5 11
Format: Lwc2 rt, offset (base) MIPS32

Purpose: Load Word to Coprocessor 2

To load a word from memory to a COP2 register.

Description: CPR[2,rt,0] < memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general register rt. The signed offset is added to the contents of
GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if +EffectiveAddress; (# 0 (not word-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
CPR[2,rt,0] < memword

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

Programming Notes:

Release 6 implements an 11-bit offset, whereas all release levels lower than Release 6 implement a 16-bit offset.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

| The MIPS32® Instruction Set Manual, Revision 6.05 223

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWE Load Word EVA

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 LWE
011111 base n offset 0 101111
6 5 5 9 1 6
Format: LWE rt, offset (base) MIPS32

Purpose: Load Word EVA

To load a word from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] < memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 9-bit signed offset is added to the contents
of GPR base to form the effective address.

The LWE instruction functions the same as the LW instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g, field being set to one.
Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]

(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] < memword

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

224 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWL Load Word Left

31 26 25 21 20 16 15 0
LWL
100010 base t offset
6 5 5 16
Format: LWL rt, offset (base) MIPS32, removed in Release 6

Purpose: Load Word Left

To load the most-significant part of a word as a signed value from an unaligned memory address

Description: GPR[rt] ¢ GPR[rt] MERGE memory [GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes of W is in the aligned word containing the EffAddr. This part of W is loaded into the
most-significant (left) part of the word in GPR rt. The remaining least-significant part of the word in GPR rt is
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination register word
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remainder of
the unaligned word

Figure 4.1 Unaligned Word Load Using LWL and LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
| 0 | 1] 2 J 3 I 4 J 5|6 | 7 I 8 | 9 | Memory initial contents

Cerrer e

| sign bit (31) extend | 2 | 3 | g | h

GPR 24 initial contents

After executing LWL $24,2($0)

| sign bit (31) extend | 2 | 3 | 4 | 5 | Then after LWR $24,5(30)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (), and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

| The MIPS32® Instruction Set Manual, Revision 6.05 225

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWL

226

Load Word Left

Figure 4.2 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <big-endian
‘ | ‘ J ‘ K | L ‘ offset (vAddry q) ‘ e ‘ f ‘ g ‘ h ‘
3 2 1 0 «little-endian most least
most least — significance —
— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian vAddry o Little-endian
I J K L 0 L | f g h
J K L | h 1 K L | g h
K L | g h 2 J K L | h
L | f g h 3 I J K L

Restrictions:

None

Availability and Compatibility:

Release 6 removes the load/store-left/right family of instructions, and requires the system to support misaligned
memory accesses.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrge.1. .2 || (PAddr; , xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr ¢ pAddrpgizg.i..p || 0
endif

byte ¢ vAddr; , xor BigEndianCPU?
memword ¢ LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢ memwords,gspyte..o || GPRITt],;3 gupyte. .o
GPR[rt] €« temp
Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information:

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecture in MIPS II.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWLE Load Word Left EVA

31

26 25 21 20 16 15 7 6 5 0

SPECIAL3 LWLE
011111 base rt offset 0 011001

6 5 5 9 1 6

Format: LWLE rt, offset (base) MIPS32, removed in Release 6

Purpose: Load Word Left EVA

To load the most-significant part of a word as a signed value from an unaligned user mode virtual address while exe-
cuting in kernel mode.

Description: GPR[rt] ¢ GPR[rt] MERGE memory [GPR[base] + offset]

The 9-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes of W is in the aligned word containing the EffAddr. This part of W is loaded into the
most-significant (left) part of the word in GPR rt. The remaining least-significant part of the word in GPR rt is
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W (2 bytes) is in the aligned word con-
taining the most-significant byte at 2.

1. LWLE loads these 2 bytes into the left part of the destination register word and leaves the right part of the desti-
nation word unchanged.

2. The complementary LWRE loads the remainder of the unaligned word.

Figure 4.3 Unaligned Word Load Using LWLE and LWRE

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
| 0 | 1] 2 J 3 | 4 J

Cabcdef
EILEEREY

| sign bit (31) extend | 2 | 3 | g |

(6]

6 | 7 I 8 | 9 | Memory initial contents

| g | GPR 24 initial contents

=

After executing LWLE $24,2 ($0)

| sign bit (31) extend | 2 | 3 | 4 | 5 | Then after LWRE $24,5 ($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (), and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.
The LWLE instruction functions the same as the LWL instruction, except that address translation is performed using
the user mode virtual address space mapping in the TLB when accessing an address within a memory segment con-

figured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy, field being set to 1.

The MIPS32® Instruction Set Manual, Revision 6.05 227

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWLE Load Word Left EVA

228

Figure 4.4 Bytes Loaded by LWLE Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <big-endian
‘ | ‘ J ‘ K | L ‘ offset (vAddry o) ‘ e ‘ f ‘ g ‘ h ‘
3 2 1 0 <«little-endian most least
most least — significance —
— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian vAddry o Little-endian
I J K L 0 L | f g h
J K L | h 1 K L | g h
K L | g h 2 J K L | h
L | f g h 3 I J K L

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Availability and Compatibility:

Release 6 removes the load/store-left/right family of instructions, and requires the system to support misaligned
memory accesses.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrze.1. .. || (pAddr; , xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr « pAddrpsrzg-i..z || 07
endif

byte ¢« vAddr; , xor BigEndianCPU?

memword ¢ LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp < memword;,gspyte..o || GPRITtl,s gupyte. .o

GPR[rt] <« temp

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information:

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecture in MIPS II.

| The MIPS32® Instruction Set Manual, Revision 6.05 229

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWPC Load Word PC-relative

230

31 26 25 21 20 19 18 0
PCREL . LWPC offset
111011 r 01
6 5 2 19
Format: LwWPC rs, offset MIPS32 Release 6

Purpose: Load Word PC-relative

To load a word from memory as a signed value, using a PC-relative address.

Description: GPR [rs] <« memory[PC + sign _extend(offset << 2)]

The offset is shifted left by 2 bits, sign-extended, and added to the address of the LWPC instruction.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rs.

Restrictions:

LWPC is naturally aligned, by specification.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation

vAddr <« (PC + sign_extend(offset)<<2)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rs] <« memword

Exceptions:

TLB Refill, TLB Invalid, TLB Read Inhibit, Bus Error, Address Error, Watch

Programming Note
The Release 6 PC-relative loads (LWPC) are considered data references.

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data reference rather than an instruction reference. That is, the watchpoint
or breakpoint is triggered only if enabled for data references.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWR

31

Load Word Right

26 25 21 20 16 15 0

LWR

100110 base rt offset

6 5 5 16

Format: LWR rt, offset (base) MIPS32, removed in Release 6

Purpose: Load Word Right

To load the least-significant part of a word from an unaligned memory address as a signed value

Description: GPR[rt] ¢ GPR[rt] MERGE memory [GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

A part of W (the least-significant 1 to 4 bytes) is in the aligned word containing EffAddr. This part of W is loaded into
the least-significant (right) part of the word in GPR rt. The remaining most-significant part of the word in GPR rt is
unchanged.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the least-significant byte at 5.

1. LWR loads these 2 bytes into the right part of the destination register.

2. The complementary LWL loads the remainder of the unaligned word.

Figure 4.5 Unalighed Word Load Using LWL and LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least

| 0 | 1] 2]3]4a]s5]s | 7 | 8 | 9 | Memory initial contents

|a I bl c | d I e I f | g | h GPR 24 initial contents

no cng or sign bit (31) After executing LWR $24,5(3$0)
extend e f 4 5

L N

sign bit (31) extend | 2 | 3 | 4 | 5 | Then after LWL $24,2 ($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (), and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

The MIPS32® Instruction Set Manual, Revision 6.05 231

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWR

232

Load Word Right

Figure 4.6 Bytes Loaded by LWR Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <big-endian
‘ | ‘ J ‘ K | L ‘ offset (vAddry o) ‘ e ‘ f ‘ g ’ h ‘
3 2 1 0 «little-endian most least
most least — significance—
— significance —
Destination register contents after instruction (shaded is unchanged)
Big-endian VAddry o Little-endian
e f g I | 0 I J K L
e f | I J 1 e | I J K
e | I J K 2 e f | I J
I J K L 3 e f g | I

Restrictions:

None

Availability and Compatibility:

Release 6 removes the load/store-left/right family of instructions, and requires the system to support misaligned
memory accesses.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

pAddr < pAddrpgrge.1. .2 || (PAddr; , xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr ¢ pAddrpgizg.i..p || 0
endif

byte ¢ vAddr,; , xor BigEndianCPU?
memword ¢ LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢ memwords; 3z-gspyte || GPRITt]3i_gspyre..o
GPR[rt] €« temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information:

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecture in MIPS II.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

| The MIPS32® Instruction Set Manual, Revision 6.05 233

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWRE Load Word Right EVA

234

31 26 25 21 20 16 15 7 6 5 0
LWRE
SPECIAL3
011111 base t offset 0 011010
6 5 5 9 1 6
Format: LWRE rt, offset (base) MIPS32, removed in Release 6

Purpose: Load Word Right EVA

To load the least-significant part of a word from an unaligned user mode virtual memory address as a signed value
while executing in kernel mode.

Description: GPR[rt] ¢ GPR[rt] MERGE memory [GPR[base] + offset]

The 9-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

A part of W (the least-significant 1 to 4 bytes) is in the aligned word containing EffAddr. This part of W is loaded into
the least-significant (right) part of the word in GPR rt. The remaining most-significant part of the word in GPR rt is
unchanged.

Executing both LWRE and LWLE, in either order, delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W (2 bytes) is in the aligned word con-
taining the least-significant byte at 5.

1. LWRE loads these 2 bytes into the right part of the destination register.

2. The complementary LWLE loads the remainder of the unaligned word.

The LWRE instruction functions in exactly the same fashion as the LWR instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to one.

Figure 4.7 Unaligned Word Load Using LWLE and LWRE

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
| 0 | 1]2]3]4a]s5]s | 7 I 8 | 9 | Memory initial contents
| a | b | c | d | e | f | g | h GPR 24 initial contents
no cng or sign bit (31) After executing LWRE $24,5($0)
extend e f 4 5
sign bit (31) extend | 2 | 3 | 4 | 5 | Then after LWLE $24,2(3$0)

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWRE Load Word Right EVA

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (), and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

Figure 4.8 Bytes Loaded by LWRE Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <big-endian
‘ | ‘ J ‘ K | L ‘ offset (vAddry o) ‘ e ‘ f ‘ g ‘ h ‘
3 2 1 0 <«little-endian most least
most least — significance—
— significance —
Destination register contents after instruction (shaded is unchanged)
Big-endian vAddry o Little-endian
e f g | | 0 I J K L
e f | I J 1 e | I J K
e | I J K 2 e f | I J
I J K L 3 e f g | I

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Availability and Compatibility:

Release 6 removes the load/store-left/right family of instructions, and requires the system to support misaligned
memory accesses.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrze-1. .2 || (PAddr; , xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr ¢« pAddrpgizg.i..z || 07
endif

byte ¢ vAddr, , xor BigEndianCpPU?
memword ¢ LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢ memwords; 33-gspyte || GPRITt]3i_gapyte..o
GPR[rt] <« temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

| The MIPS32® Instruction Set Manual, Revision 6.05 235

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Historical Information:

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecture in MIPS 11.

236 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWXC1 Load Word Indexed to Floating Point

31 26 25 21 20 16 15 11 10 6 5 0
COP1X . 0 LWXCI
010011 base index 00000 fd 000000
6 5 5 5 5 6
Format: LwxC1l fd, index(base) MIPS32 Release 2, removed in Release 6

Purpose: Load Word Indexed to Floating Point
To load a word from memory to an FPR (GPR+GPR addressing).

Description: FPR[fd] < memory[GPR[base] + GPR[index]]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR fd. If FPRs are 64 bits wide, bits 63..32 of FPR fs become UNPREDICTABLE. The
contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress; # 0 (not word-aligned).

Availability and Compatibility:
This instruction has been removed in Release 6.

Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32 Release 1. Required in
MIPS32 Release 2 and all subsequent versions of MIPS32. When required, required whenever FPU is present,
whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1, Statusgr=0 or 1).

Operation:

vAddr < GPR[base] + GPR[index]
if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

StoreFPR (fd, UNINTERPRETED WORD,

memword)
Exceptions:
| TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch
| The MIPS32® Instruction Set Manual, Revision 6.05 237

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MADD Multiply and Add Word to Hi, Lo
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 s 0 0 MADD
011100 0000 00000 000000
6 5 5 5 6

238

Format: MADD rs, rt

Purpose: Multiply and Add Word to Hi, Lo

To multiply two words and add the result to Hi, Lo.

MIPS32, removed in Release 6

Description: (HI,LO) < (HI,LO) + (GPR[rs] X GPRI[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both operands as signed
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of Hl and LO. The most sig-
nificant 32 bits of the result are written into HI and the least significant 32 bits are written into LO. No arithmetic

exception occurs under any circumstances.

Restrictions:

This instruction does not provide the capability of writing directly to a target GPR.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

temp ¢« (HI || LO) + (GPR[rs] x GPR[rt])

HI ¢ tempgsz, .3
LO < tempsy;. o

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MADD.fmt Floating Point Multiply Add

31 26 25 21 20 16 15 1 10 6 5 3 2 0
COPIX MADD
010011 fr ft fs fd 100 fmt
6 5 5 5 5 3 3

Format: MADD.fmt

MADD.S fd, fr, fs, ft MIPS32 Release 2, removed in Release 6
MADD.D fd, fr, fs, ft MIPS32 Release 2, removed in Release 6
MADD.PS fd, fr, fs, ft MIPS32 Release 2, removed in Release 6

Purpose: Floating Point Multiply Add

To perform a combined multiply-then-add of FP values.

Description: FPR[fd] < (FPR[fs] x FPR[ft]) + FPRI[fr]
The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product.

The intermediate product is rounded according to the current rounding mode in FCSR. The value in FPR fr is added
to the product. The result sum is calculated to infinite precision, rounded according to the current rounding mode in
FCSR, and placed into FPR fd. The operands and result are values in format fmt. The results and flags are as if sepa-
rate floating-point multiply and add instructions were executed.

MADD.PS multiplies then adds the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

The Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of MADD.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model.
It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:

MADD.S and MADD.D: Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32
Release 1. Required in MIPS32 Release 2 and all subsequent versions of MIPS32. When required, these instructions
are to be implemented if an FPU is present either in a 32-bit or 64-bit FPU or in a 32-bit or 64-bit FP Register Mode
(F|R|:64:0 orl, StatUSFR:() or 1)

This instruction has been removed in Release 6 and has been replaced by the fused multiply-add instruction. Refer to
the fused multiply-add instruction ‘M ADDF.fmt’ in this manual for more information. Release 6 does not support
Paired Single (PS).

Operation:

vifr < ValueFPR(fr, fmt)
vEfs ¢« ValueFPR(fs, fmt)
vift < ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vEs Xgye VEL) +epe VED)

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05 239

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

240 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

| The MIPS32® Instruction Set Manual, Revision 6.05 241

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MADDF.fmt MSUBF.fmt Floating Point Fused Multiply Add, Floating Point Fused Multiply Subtract

31 26 25 21 20 16 15 11 10 6 5 0
COPI MADDF
010001 fmt fi fs fd 011000
COPI MSUBF
010001 fmt fi fs fd 011001
6 5 5 5 5 3 3

Format: MADDF.fmt MSUBF.fmt

MADDF.S fd, fs, ft MIPS32 Release 6
MADDF.D fd, fs, ft MIPS32 Release 6
MSUBF.S fd, fs, ft MIPS32 Release 6
MSUBF.D fd, fs, ft MIPS32 Release 6

Purpose: Floating Point Fused Multiply Add, Floating Point Fused Multiply Subtract
MADDF.fmt: To perform a fused multiply-add of FP values.
MSUBE.fmt: To perform a fused multiply-subtract of FP values.

Description:
MADDF.fmt: FPR[fd] <« FPR[fd] + (FPR[fs] xFPR[ft])
MSUBF.fmt: FPR[fd] <« FPR[fd] - (FPR[fs] x FPR[ft])

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is calculated to infinite precision. The product is added to the value in FPR fd. The result sum is calculated to infinite
precision, rounded according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result
are values in format fmt.

(For MSUBEF.fmt, the product is subtracted from the value in FPR fd.)
Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

None

Availability and Compatibility:
MADDF.fmt and MSUBF.fmt are required in Release 6.
MADDF.fmt and MSUBF.fmt are not available in architectures pre-Release 6.

The fused multiply add instructions, MADDF.fmt and MSUBF.fmt, replace pre-Release 6 instructions such as
MADD.fmt, MSUB.fmt, NMADD.fmt, and NMSUB.fmt. The replaced instructions were unfused multiply-add, with
an intermediate rounding.

Release 6 MSUBF.fmt, £d«£d-£fsx£ft, corresponds more closely to pre-Release 6 NMADD.fmt, £d«fr-fsxft,
than to pre-Release 6 MSUB.fmt, fd«fsxft-fr.

FPU scalar MADDF.fmt corresponds to MSA vector MADD.df.
FPU scalar MSUBF.fmt corresponds to MSA vector MSUB.df.

Operation:

if not IsCoprocessorEnabled (1)

then SignalException (CoprocessorUnusable, 1) endif
if not IsFloatingPointImplemented (fmt))

then SignalException (ReservedInstruction) endif

242 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MADDF.fmt MSUBF.fmt Floating Point Fused Multiply Add, Floating Point Fused Multiply Subtract

| vEr < ValueFPR (fr, fmt)
vfs « ValueFPR(fs, fmt)
vEid <« ValueFPR(fd, fmt)
MADDF.fmt: vinf <« vfd +, (vis *, vit)
MADDF. fmt: vinf « vifd -, (vfs *, vft)
StoreFPR (fd, fmt, wvinf)
Special Considerations:

The fused multiply-add computation is performed in infinite precision, and signals Inexact, Overflow, or Underflow
if and only if the final result differs from the infinite precision result in the appropriate manner.

Like most FPU computational instructions, if the flush-subnormals-to-zero mode, FCSR.FS=1, then subnormals are
flushed before beginning the fused-multiply-add computation, and Inexact may be signaled.

L.e. Inexact may be signaled both by input flushing and/or by the fused-multiply-add: the conditions or ORed.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

| The MIPS32® Instruction Set Manual, Revision 6.05 243

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MADDU Multiply and Add Unsigned Word to Hi,Lo

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 s " 0 0 MADDU
011100 00000 00000 000001
6 5 5 5 5 6
Format: MADDU rs, rt MIPS32, removed in Release 6

Purpose: Multiply and Add Unsigned Word to Hi,Lo
To multiply two unsigned words and add the result to HI, LO.

Description: (HI,LO) < (HI,LO) + (GPR[rs] x GPRI[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of Hl and LO. The most sig-
nificant 32 bits of the result are written into HI and the least significant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

temp < (HI || LO) + (GPR[rs] x GPR[rt])
HI < tempgy. 35
LO < temps;. o

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

244 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt

Scalar Floating-Point Max/Min/maxNumMag/minNumMag

31 26 25 21 20 16 15 11 10 0
I oclggol 1 fimt ft fs fd 01\1/13 o
6 5 5 5 5 6
31 26 25 21 20 16 15 11 10 0
coP1 MAXA
I 010001 fmt ft fs fd 011111
6 5 5 5 5 6
31 26 25 21 20 16 15 11 10 0
I 010001 fimt ft fs fd 11100
6 5 5 5 5 6
31 26 25 21 20 16 15 11 10 0
I OCI(())g 01 | fmt ft fs fd (1)\/11 ?II()AI
6 5 5 5 5 6
Format: MAX.fmt MIN.fmt MAXA.fmt MINA.fmt

| The MIPS32® Instruction Set Manual, Revision 6.05

MAX.S fd,fs, ft
MAX.D fd,fs, ft
MAXA.S fd,fs, ft
MAXA.D fd, fs, ft
MIN.S fd,fs, ft
MIN.D fd,fs, ft
MINA.S fd,fs, ft
MINA.D fd,fs, ft

Purpose: Scalar Floating-Point Max/Min/maxNumMag/minNumMag

Scalar Floating-Point Maximum

Scalar Floating-Point Minimum
Scalar Floating-Point argument with Maximum Absolute Value

Scalar Floating-Point argument with Minimum Absolute Value

Description:

MAX. fmt :
MIN. fmt:
MAXA. fmt:
MINA. fmt:

MAX.fmt writes the maximum value of the inputs £s and £t to the destination £d.

MIN.fmt writes the minimum value of the inputs £s and £t to the destination £d.

FPR[fd] < maxNum (FPR[fs] ,FPR[ft])
FPR[fd] < minNum (FPR[fs] ,FPR[ft])
FPR[fd] <~ maxNumMag (FPR[fs],FPR[ft])
FPR[fd] ¢~ minNumMag (FPR [fs] ,FPR[ft])

MIPS32 Release 6
MIPS32 Release 6
MIPS32 Release 6
MIPS32 Release 6
MIPS32 Release 6
MIPS32 Release 6
MIPS32 Release 6
MIPS32 Release 6

MAXA . .fmt takes input arguments £s and £t and writes the argument with the maximum absolute value to the desti-

nation f£d.

MINA.fmt takes input arguments £s and £t and writes the argument with the minimum absolute value to the desti-

nation £d.

The instructions MAX.fmt/MIN.fmt/MAXA .fmt/MINA.fmt correspond to the IEEE 754-2008 operations maxNum/

245

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt Scalar Floating-Point Max/Min/maxNumMag/minNumMag

minNum/maxNumMag/minNumMag.
* MAX.fmt corresponds to the IEEE 754-2008 operation maxNum.
* MIN.fmt corresponds to the IEEE 754-2008 operation minNum.
* MAXA.fmt corresponds to the IEEE 754-2008 operation maxNumMag.

* MINA.fmt corresponds to the IEEE 754-2008 operation minNumMag.
Numbers are preferred to NaNs: if one input is a NaN, but not both, the value of the numeric input is returned. If both
are NaNs, the NaN in fs is returned.!

The scalar FPU instructions MAX.fmt/MIN.fmt/MAXA.fmt/MINA.fmt correspond to the MSA instructions
FMAX.df/FMIN.df/FMAXA.df/FMINA.df.

* Scalar FPU instruction MAX.fmt corresponds to the MSA vector instruction FMAX.df.

* Scalar FPU instruction MIN.fmt corresponds to the MSA vector instruction FMIN.df.

* Scalar FPU instruction MAXA.fmt corresponds to the MSA vector instruction FMAX A.df.
* Scalar FPU instruction MINA.fmt corresponds to the MSA vector instruction FMIN_A.df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754 ™.
2008. See also the section “Special Cases”, below.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Operation:

if not IsCoprocessorEnabled (1)

then SignalException (CoprocessorUnusable, 1) endif
if not IsFloatingPointImplemented (fmt)

then SignalException (ReservedInstruction) endif

vl <« ValueFPR(fs, fmt)
v2 <« ValueFPR(ft, fmt)

if SNaN(vl) or SNaN(v2) then
then SignalException (InvalidOperand) endif

if NaN(vl) and NaN(v2)then
ftmp « vl
elseif NaN(vl) then
ftmp <« v2
elseif NaN(v2) then
ftmp « vl
else
case instruction of

1. IEEE standard 754-2008 allows either input to be chosen if both inputs are NaNs. Release 6 specifies that the first input must
be propagated.

246 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt

FMAX . fmt: ftmp <« MaxFP.fmt (ValueFPR (fs, fmt) ,ValueFPR(ft, fmt))
FMIN. fmt: ftmp <« MinFP.fmt (ValueFPR (fs, fmt) ,ValueFPR(ft, fmt))
FMAXA . fmt: ftmp <« MaxAbsoluteFP.fmt (ValueFPR (fs, fmt), ValueFPR(ft, fmt))
FMINA. fmt: ftmp <« MinAbsoluteFP.fmt (ValueFPR (fs, fmt),ValueFPR(ft, fmt))

end case
endif

StoreFPR (fd, fmt, ftmp)
/* end of instruction */

function MaxFP(tt, ts, n)
/* Returns the largest argument. */
endfunction MaxFP

function MinFP(tt, ts, n)
/* Returns the smallest argument. */
endfunction MaxFP

function MaxAbsoluteFP(tt, ts, n)
/* Returns the argument with largest absolute value.
For equal absolute values, returns the largest argument.*/
endfunction MaxAbsoluteFP

function MinAbsoluteFP(tt, ts, n)
/* Returns the argument with smallest absolute value.
For equal absolute values, returns the smallest argument.*/
endfunction MinAbsoluteFP

function NaN(tt, ts, n)
/* Returns true if the value is a NaN */
return SNaN (value) or QNaN (value)
endfunction MinAbsoluteFP

Table 4.1 Special Cases for FP MAX, MIN, MAXA, MINA

Operand Release 6 Instructions
Other
fs ft MAX MIN MAXA MINA
-0.0 0.0 0.0 -0.0 0.0 -0.0
0.0 -0.0
QNaN # # # # #
QNaN
QNaN1 QNaN2 Release 6 QNanl QNaN1 QNaN1 QNaN1
IEEE Arbitrary choice. Not allowed to clear sign bit.
754 2008

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Scalar Floating-Point Max/Min/maxNumMag/minNumMag

247

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt

248

Scalar Floating-Point Max/Min/maxNumMag/minNumMag

Table 4.1 Special Cases for FP MAX, MIN, MAXA, MINA

Operand Release 6 Instructions
Other
fs ft MAX MIN MAXA MINA
Either or both operands Invalid Signal Invalid Operation Exception.
SNaN Operation | Destination not written.
exception
enabled
... disabled | Treat as if the SNaN were a QNaN (do not quieten the result).

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MFCO Move from Coprocessor 0
31 26 25 21 20 16 15 11 10 0
COPO MF ” wd 0 sel
010000 00000 00000000
6 5 5 5 8 3
Format: MFCO rt, rd MIPS32
MFCO rt, rd, sel MIPS32

Purpose: Move from Coprocessor 0

To move the contents of a coprocessor 0 register to a general register.

Description: GPR[rt] < CPRI[O,rd,sel]

The contents of the coprocessor 0 register specified by the combination of rd and sel are loaded into general register

rt. Not all coprocessor 0 registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

Pre-Release 6: The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rd and sel.

Release 6: Reading a reserved register or a register that is not implemented for the current core configuration returns

0.

Operation:

reg = rd

if IsCoprocessorRegisterImplemented (0,
data < CPR[0, reg,
GPR[rt] <« data

else

if ArchitectureRevision ()

GPR [rt]
else

< 0

UNDEFINED

endif
endif

Exceptions:

sell

> 6 then

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05

reqg,

then

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

249

MFC1 Move Word From Floating Point

31 26 25 21 20 16 15 11 10 0
COP1 MF " s 0
010001 00000 000 0000 0000
6 5 5 5 11
Format: MFC1 rt, fs MIPS32

Purpose: Move Word From Floating Point
To copy a word from an FPU (CP1) general register to a GPR.

Description: GPR[rt] « FPR[fs]

The contents of FPR fs are loaded into general register rt.
Restrictions:

Operation:

data < ValueFPR(fs, UNINTERPRETED_WORD)
GPR[rt] < data

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS I, MIPS II, and MIPS III the contents of GPR rt are UNPREDICTABLE for the instruction immediately
following MFCI.

250 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MFC2

Move Word From Coprocessor 2

31 26 25 21 20 16 15 11 10 8 7 0
COP2 MF
010010 00000 it fmpl
6 5 5
Format: MrFC2 rt, Impl MIPS32
MFC2, rt, Impl, sel MIPS32

The syntax shown above is an example using MFC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word From Coprocessor 2

To copy a word from a COP2 general register to a GPR.

Description: GPR[rt] < CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field are and placed into general register rt. The inter-
pretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.
Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a coprocessor 2 register that does not exist.

Operation:

data ¢« CP2CPR[Impl]
GPR[rt] < data

Exceptions:

Coprocessor Unusable

The MIPS32® Instruction Set Manual, Revision 6.05 251

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MFHCO Move from High Coprocessor 0

31 26 25 21 20 16 15 11 10 3 2 0
COPO MFH ” wd 0 sel
010000 00010 00000000
6 5 5 5 8 3
Format: MFHCO rt, rd MIPS32 Release 5
MFHCO rt, rd, sel MIPS32 Release 5

Purpose: Move from High Coprocessor 0

To move the contents of the upper 32 bits of a Coprocessor 0 register, extended by 32-bits, to a general register.

Description: GPR[rt] < CPRI[O,rd,sel] [63:32]

The contents of the Coprocessor 0 register specified by the combination of rd and sel are loaded into general register
rt. Not all Coprocessor 0 registers support the sel field, and in those instances, the sel field must be zero.

The MFHCO operation is not affected when the Coprocessor 0 register specified is the EntryLoO or the EntryLol reg-
ister. Data is read from the upper half of the 32-bit register extended to 64-bits without modification before writing to
the GPR. This is because RI and XI bits are not repositioned on write from GPR to EntryLoO or the EntryLo1l.

Restrictions:

Pre-Release 6: The results are UNDEFINED if Coprocessor 0 does not contain a register as specified by rd and sel,
or the register exists but is not extended by 32-bits,or the register is extended for XPA, but XPA is not supported or
enabled.

Release 6: Reading the high part of a register that is reserved, not implemented for the current core configuration, or
that is not extended beyond 32 bits returns 0.

Operation:

if Config5yyy = 0 then SignalException(ReservedInstruction) endif
reg < rd
if IsCoprocessorRegisterImplemented (0, reg, sel) and
IsCoprocessorRegisterExtended (0, reg, sel) then
data ¢« CPR[0, reg, sell
GPR[rt] € datag; 33
else
if ArchitectureRevision() > 6 then
GPR[rt] « O
else
UNDEFINED
endif
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

252 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MFHCA1 Move Word From High Half of Floating Point Register
31 26 25 21 20 16 15 11 10 0
COP1 MFH fs 0
010001 00011 000 0000 0000
6 5 5 11
Format: MFHC1 rt, fs MIPS32 Release 2

Purpose: Move Word From High Half of Floating Point Register
To copy a word from the high half of an FPU (CP1) general register to a GPR.

Description: GPR[rt] ¢ FPRIfslg;. 35

The contents of the high word of FPR fs are loaded into general register rt. This instruction is primarily intended to
support 64-bit floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

The results are UNPREDICTABLE if Statusgg = 0 and fs is odd.

Operation:

data ¢ ValueFPR(fs, UNINTERPRETED DOUBLEWORD) g3 1,

GPR [rt]

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05

< data

253

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MFHC2 Move Word From High Half of Coprocessor 2 Register

254

31 26 25 21 20 16 15 11 10 3 2 0
COP2 MFH
010010 00011 nt fmpl
6 5 5 16
Format: MFHC2 rt, Impl MIPS32 Release 2
MFHC2, rt, rd, sel MIPS32 Release 2

The syntax shown above is an example using MFHCI1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word From High Half of Coprocessor 2 Register
To copy a word from the high half of a COP2 general register to a GPR.

Description: GPR[rt] ¢« CP2CPR[Impllgs. 55

The contents of the high word of the coprocessor 2 register denoted by the Impl field are placed into GPR rt. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a coprocessor 2 register that does not exist, or if that
register is not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

data < CP2CPRI[Impllgs 3,
GPR [rt] ¢« data

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MFHI Move From HI Register
31 26 25 16 15 11 10 6 5
SPECIAL 0 d 0 MFHI
000000 00 0000 0000 00000 010000
6 10 5 5 6

Format: MFHI rd

Purpose: Move From HI Register
To copy the special purpose HI register to a GPR.

Description: GPR[rd] « HI

The contents of special register HI are loaded into GPR rd.

Restrictions:

None

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
GPR[rd] <« HI

Exceptions:

None

Historical Information:

MIPS32, removed in Release 6

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not modify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS

IV and MIPS32, and all subsequent levels of the architecture.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

255

MFLO Move From LO Register

31 26 25 16 15 11 10 6 5 0
SPECIAL 0 wd 0 MFLO
000000 00 0000 0000 00000 010010
6 10 5 5 6
Format: MFLO rd MIPS32, removed in Release 6

Purpose: Move From LO Register
To copy the special purpose LO register to a GPR.

Description: GPR[rd] < LO

The contents of special register LO are loaded into GPR rd.

Restrictions:

None

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
GPR[rd] <« LO

Exceptions:

None

Historical Information:

In the MIPS 1, II, and III architectures, the two instructions which follow the MFLO must not modify the HI register.
If this restriction is violated, the result of the MFLO is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

256 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MOV.fmt Floating Point Move

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 MOV
010001 fimt 00000 fs fd 000110
6 5 5 5 5 6

Format: Mov.fmt

MOV.S fd, fs MIPS32
MOV.D fd, fs MIPS32
MOV.PS fd, fs MIPS64,MIPS32 Release 2, removed in Release 6

Purpose: Floating Point Move

To move an FP value between FPRs.

Description: FPR[fd] < FPR[fs]

The value in FPR fs is placed into FPR fd. The source and destination are values in format fmt. In paired-single for-
mat, both the halves of the pair are copied to fd.

The move is non-arithmetic; it causes no IEEE 754 exceptions, and the FCSRcayse and FCSRE 545 fields are not
modified.
Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of MOV.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model. It
is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:
MOV.PS has been removed in Release 6.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

The MIPS32® Instruction Set Manual, Revision 6.05 257

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MOVF Move Conditional on Floating Point False

258

31 26 25 21 20 18 17 16 15 11 10 6 5 0
SPECIAL 0| tf 0 MOVCI
s cc rd
000000 0|0 00000 000001
6 5 3 1 1 5 5 6
Format: MOVF rd, rs, cc MIPS32, removed in Release 6

Purpose: Move Conditional on Floating Point False

To test an FP condition code then conditionally move a GPR.

Description: if FPConditionCode(cc) = 0 then GPR[rd] ¢ GPR[rs]

If the floating point condition code specified by CC is zero, then the contents of GPR rs are placed into GPR rd.
Restrictions:

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:
if FPConditionCode(cc) = 0 then
GPR[rd] ¢« GPR[rs]
endif
Exceptions:

Reserved Instruction, Coprocessor Unusable

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MOVF.fmt Floating Point Move Conditional on Floating Point False

31 26 25 21 20 18 17 16 15 11 10 6 5 0
COP1 0| tf MOVCF
010001 fimt ce 010 fs fd 010001

6 5 3 1 1 5 5 6

Format: MOVF.fmt

MOVF.S fd, fs, cc MIPS32, removed in Release 6
MOVF.D fd, fs, cc MIPS32, removed in Release 6
MOVF.PS fd, fs, cc removed in Release 6

Purpose: Floating Point Move Conditional on Floating Point False

To test an FP condition code then conditionally move an FP value.

Description: if FPConditionCode(cc) = 0 then FPR[fd] ¢« FPRI[fs]

If the floating point condition code specified by CC is zero, then the value in FPR fs is placed into FPR fd. The source
and destination are values in format fmt.

If the condition code is not zero, then FPR fs is not copied and FPR fd retains its previous value in format fmt. If fd did
not contain a value either in format fmt or previously unused data from a load or move-to operation that could be
interpreted in format fmt, then the value of fd becomes UNPREDICTABLE.

MOVEF.PS merges the lower half of FPR fs into the lower half of FPR fd if condition code CC is zero, and indepen-
dently merges the upper half of FPR fs into the upper half of FPR fd if condition code CC+1 is zero. The CC field
must be even; if it is odd, the result of this operation is UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions, and the FCSRcq,se and FCSREjags fields are not
modified.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE. The operand must be a value in format fmt. If it is not, the result is UNPREDITABLE and the value of
the operand FPR becomes UNPREDICTABLE.

The result of MOVE.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:
This instruction has been removed in Release 6 and has been replaced by the ‘SEL.fmt’ instruction. Refer to the
SEL.fmt instruction in this manual for more information. Release 6 does not support Paired Single (PS).

Operation:

if FPConditionCode(cc) = 0 then
StoreFPR (fd, fmt, ValueFPR(fs, fmt))
else
StoreFPR (fd, fmt, ValueFPR(fd, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

| The MIPS32® Instruction Set Manual, Revision 6.05 259

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Floating Point Exceptions:

Unimplemented Operation

260 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MOVN Move Conditional on Not Zero

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s " wd 0 MOVN
000000 00000 001011
6 5 5 5 5 6
Format: MOVN rd, rs, rt MIPS32, removed in Release 6

Purpose: Move Conditional on Not Zero

To conditionally move a GPR after testing a GPR value.

Description: if GPR[rt] # 0 then GPR[rd] ¢« GPR[rs]

If the value in GPR rt is not equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Availability and Compatibility:

This instruction has been removed in Release 6 and has been replaced by the ‘SELNEZ’ instruction. Refer to the
SELNEZ instruction in this manual for more information.

Operation:

if GPR[rt] # 0 then
GPR[rd] < GPR|[rs]
endif

Exceptions:

None

Programming Notes:

The non-zero value tested might be the condition true result from the SLT, SLTI, SLTU, and SLTIU comparison
instructions or a boolean value read from memory.

The MIPS32® Instruction Set Manual, Revision 6.05 261

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MOVN.fmt Floating Point Move Conditional on Not Zero

262

31 26 25 21 20 16 15 11 10 6 5 0
CoP1 MOVN
010001 fimt it fs fd 010011
6 5 5 5 5 6

Format: MOVN.fmt

MOVN.S fd, fs, rt MIPS32, removed in Release 6
MOVN.D fd, fs, rt MIPS32, removed in Release 6
MOVN.PS fd, fs, rt MIPS32 Release 2, removed in Release 6

Purpose: Floating Point Move Conditional on Not Zero

To test a GPR then conditionally move an FP value.

Description: if GPR[rt] # 0 then FPR[fd] ¢ FPR[fs]

If the value in GPR rt is not equal to zero, then the value in FPR fs is placed in FPR fd. The source and destination are
values in format fmt.

If GPR rt contains zero, then FPR fs is not copied and FPR fd contains its previous value in format fmt. If fd did not
contain a value either in format fmt or previously unused data from a load or move-to operation that could be inter-
preted in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions, and the FCSRcayse and FCSRE 545 fields are not
modified.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of MOVN.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model.
It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.
Availability and Compatibility:

This instruction has been removed in Release 6 and has been replaced by the ‘SELNEZ.fmt’ instruction. Refer to the
SELNEZ.fmt instruction in this manual for more information. Release 6 does not support Paired Single (PS).
Operation:

if GPR[rt] # 0 then

StoreFPR (fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR (fd, fmt, ValueFPR (fd, fmt))
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MOVT Move Conditional on Floating Point True
31 26 25 21 20 18 17 16 15 1 10 6 5
SPECIAL 0| tf 0 MOVCI
I cc rd
000000 01 00000 000001
6 5 3 11 5 5 6

Format: MOVT rd, rs, MIPS32, removed in Release 6
Purpose: Move Conditional on Floating Point True
To test an FP condition code then conditionally move a GPR.
Description: if FPConditionCode(cc) = 1 then GPR[rd] ¢ GPR[rs]

If the floating point condition code specified by CC is one, then the contents of GPR rs are placed into GPR rd.
Restrictions:

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

if FPConditionCode(cc) = 1 then

GPR [rd]

endif

Exceptions:

¢« GPR[rs]

Reserved Instruction, Coprocessor Unusable

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

263

MOVT.fmt Floating Point Move Conditional on Floating Point True

264

31 26 25 21 20 18 17 16 15 11 10 6 5 0
COP1 0| tf MOVCF
010001 fimt ce 01 fs fd 010001
6 5 3 1 1 5 5 6

Format: MOVT.fmt

MOVT.S fd, fs, cc MIPS32, removed in Release 6
MOVT.D fd, fs, cc MIPS32, removed in Release 6
MOVT.PS fd, fs, cc MIPS32 Release 2, removed in Release 6

Purpose: Floating Point Move Conditional on Floating Point True

To test an FP condition code then conditionally move an FP value.

Description: if FPConditionCode(cc) = 1 then FPR[fd] ¢« FPRI[fs]

If the floating point condition code specified by CC is one, then the value in FPR fs is placed into FPR fd. The source
and destination are values in format fmt.

If the condition code is not one, then FPR fs is not copied and FPR fd contains its previous value in format fmt. If fd
did not contain a value either in format fmt or previously unused data from a load or move-to operation that could be
interpreted in format fmt, then the value of fd becomes UNPREDICTABLE.

MOVT.PS merges the lower half of FPR fs into the lower half of FPR fd if condition code CC is one, and indepen-
dently merges the upper half of FPR fs into the upper half of FPR fd if condition code CC+1 is one. The CC field
should be even; if it is odd, the result of this operation is UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions, and the FCSRcayse and FCSREjags fields are not
modified.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

The result of MOVT.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model.
It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility

This instruction has been removed in Release 6 and has been replaced by the ‘SEL.fmt’ instruction. Refer to the
SEL.fmt instruction in this manual for more information. Release 6 does not support Paired Single (PS).

Operation:

if FPConditionCode(cc) = 1 then
StoreFPR (fd, fmt, ValueFPR(fs, fmt))
else
StoreFPR (fd, fmt, ValueFPR(fd, fmt))
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Floating Point Exceptions:

Unimplemented Operation

| The MIPS32® Instruction Set Manual, Revision 6.05 265

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MOVZ Move Conditional on Zero

266

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s " wd 0 MOVZ
000000 00000 001010
6 5 5 5 5 6
Format: Movz rd, rs, rt MIPS32, removed in Release 6

Purpose: Move Conditional on Zero

To conditionally move a GPR after testing a GPR value.

Description: if GPR[rt] = 0 then GPR[rd] ¢ GPR[rs]

If the value in GPR rt is equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Availability and Compatibility:

This instruction has been removed in Release 6 and has been replaced by the ‘SELEQZ’ instruction. Refer to the
SELEQZ instruction in this manual for more information.

Operation:

if GPR[rt] = 0 then
GPR[rd] < GPR|[rs]
endif

Exceptions:

None

Programming Notes:

The zero value tested might be the condition false result from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions or a boolean value read from memory.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MOVZ.fmt Floating Point Move Conditional on Zero

31 26 25 21 20 16 15 11 10 6 5 0
COP1 MOVZ
010001 fimt & fs fd 010010
6 5 5 5 5 6
Format: MoOVZ.fmt
MOvVz.S fd, fs, rt MIPS32, removed in Release 6
MOVZ.D fd, fs, rt MIPS32, removed in Release 6
MOVZ.PS fd, fs, rt MIPS32 Release 2, removed in Release 6
Purpose: Floating Point Move Conditional on Zero
To test a GPR then conditionally move an FP value.
Description: if GPR[rt] = 0 then FPR[fd] ¢ FPRI[fs]
If the value in GPR rt is equal to zero then the value in FPR fs is placed in FPR fd. The source and destination are val-
ues in format fmt.
If GPR rt is not zero, then FPR fs is not copied and FPR fd contains its previous value in format fmt. If fd did not con-
tain a value either in format fmt or previously unused data from a load or move-to operation that could be interpreted
in format fmt, then the value of fd becomes UNPREDICTABLE.
The move is non-arithmetic; it causes no IEEE 754 exceptions, and the FCSRcayse and FCSRE 545 fields are not
modified.
Restrictions:
The fields fs and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.
The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
The result of MOVZ.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model.
It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.
Availability and Compatibility:
This instruction has been removed in Release 6 and has been replaced by the ‘SELEQZ.fmt’ instruction. Refer to the
SELEQZ.fmt instruction in this manual for more information. Release 6 does not support Paired Single (PS).
Operation:
if GPR[rt] = 0 then
StoreFPR (fd, fmt, ValueFPR(fs, fmt))
else
StoreFPR (fd, fmt, ValueFPR (fd, fmt))
endif
Exceptions:
Coprocessor Unusable, Reserved Instruction
Floating Point Exceptions:
Unimplemented Operation
The MIPS32® Instruction Set Manual, Revision 6.05 267

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MSUB Multiply and Subtract Word to Hi, Lo

268

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 s " 0 0 MSUB
011100 00000 00000 000100
6 5 5 5 5 6
Format: MSUB rs, rt MIPS32, removed in Release 6

Purpose: Multiply and Subtract Word to Hi, Lo
To multiply two words and subtract the result from HI, LO.

Description: (HI,LO) < (HI,LO) - (GPR[rs] x GPR[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI and LO. The most sig-
nificant 32 bits of the result are written into HI and the least significant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

No restrictions in any architecture releases except Release 6.

This instruction does not provide the capability of writing directly to a target GPR.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

temp ¢« (HI || LO) - (GPR[rs] x GPR[rt])
HI < tempgy. 35
LO < temps;. o

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MSUB.fmt Floating Point Multiply Subtract

31 26 25 21 20 16 15 1 10 6 5 3 2 0
COPIX MSUB
010011 fr ft fs fd 101 fmt
6 5 5 5 5 3 3

Format: MSUB.fmt

MSUB.S fd, fr, fs, ft MIPS32 Release 2, removed in Release 6
MSUB.D fd, fr, fs, ft MIPS32 Release 2, removed in Release 6
MSUB.PS fd, fr, fs, ft MIPS32 Release 2, removed in Release 6

Purpose: Floating Point Multiply Subtract

To perform a combined multiply-then-subtract of FP values.

Description: FPR[fd] < (FPR[fs] x FPR[ft]) — FPRI[fr]

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The subtraction result is calculated to infinite precision,
rounded according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values
in format fmt. The results and flags are as if separate floating-point multiply and subtract instructions were executed.

MSUB.PS multiplies then subtracts the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

The Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of MSUB.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model.
It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:

MSUB.S and MSUB.D: Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32
Release 1. Required in MIPS32 Release 2 and all subsequent versions of MIPS32. When required, these instructions
are to be implemented if an FPU is present, either in a 32-bit or 64-bit FPU or in a 32-bit or 64-bit FP Register Mode
(FIRF64:0 or 1, StatUSFR:() or 1)

This instruction has been removed in Release 6 and has been replaced by the fused multiply-subtract instruction.
Refer to the fused multiply-subtract instruction ‘MSUBF.fmt’ in this manual for more information. Release 6 does
not support Paired Single (PS).

Operation:

vfr ¢« ValueFPR(fr, fmt)
vEfs ¢« ValueFPR(fs, fmt)
vit ¢« ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs Xgye VEE) —gpe VvEX))

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05 269

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

270 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MSUBU Multiply and Subtract Word to Hi,Lo
31 26 25 21 20 16 15 1 10 6 5
SPECIAL2 s 0 0 MSUBU
011100 00000 00000 000101
6 5 5 5 6

Format: MSUBU rs, rt MIPS32, removed in Release 6
Purpose: Multiply and Subtract Word to Hi,Lo
To multiply two words and subtract the result from HI, LO.
Description: (HI,LO) < (HI,LO) - (GPR[rs] x GPRI[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of Hl and LO. The
most significant 32 bits of the result are written into HI and the least significant 32 bits are written into LO. No arith-

metic exception occurs under any circumstances.

Restrictions:

This instruction does not provide the capability of writing directly to a target GPR.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

temp ¢« (HI || LO)

HI ¢ tempgsz, .3
LO < tempsy;. o

Exceptions:

None

Programming Notes:

(GPR [rs]

x GPR[rt])

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

271

MTCO Move to Coprocessor 0

272

31 26 25 21 20 16 15 11 10 3 2 0
COPO MT " wd 0 sel
010000 00100 0000 000
6 5 5 5 8 3
Format: MTCO rt, rd MIPS32
MTCO rt, rd, sel MIPS32

Purpose: Move to Coprocessor 0

To move the contents of a general register to a coprocessor 0 register.

Description: CcPrR[0, rd, sel]l < GPRI[rt]

The contents of general register rt are loaded into the coprocessor 0 register specified by the combination of rd and
sel. Not all coprocessor 0 registers support the sel field. In those instances, the sel field must be set to zero.

In Release 5, for a 32-bit processor, the MTCO instruction writes all zeroes to the high-order bits of selected COPO
registers that have been extended beyond 32 bits. This is required for compatibility with legacy software that does not
use MTHCO, yet has hardware support for extended COPO registers (such as for Extended Physical Addressing
(XPA)). Because MTCO overwrites the result of MTHCO, software must first read the high-order bits before writing
the low-order bits, then write the high-order bits back either modified or unmodified. For initialization of an extended
register, software may first write the low-order bits, then the high-order bits, without first reading the high-order bits.

Restrictions:
Pre-Release 6: The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rd and sel.

Release 6: Writes to a register that is reserved or not defined for the current core configuration are ignored.

Operation:

data < GPRI[rt]
reg < rd
if IsCoprocessorRegisterImplemented (0, reg, sel) then
CPR[0,reg,sel] < data
if (Config5yyy = 1) then
// The most-significant bit may vary by register. Only supported
// bits should be written 0. Extended LLAddr is not written with Os,
// as it is a read-only register. BadVAddr is not written with 0s, as
// it is read-only
if (Config3;py = 1) then
if (reg,sel = EntryLo0 or EntryLol) then CPR[0,reg,sellgs.3, = 0°2
endif
if (reg,sel = MAAR) then CPR[0,reg,sellgy.35 = 032 endif
// TagLo is zeroed only if the implementation-dependent bits
// are writeable
if (reg,sel = TagLo) then CPR[0,reg,sellq;.3, = 032 endif
if (Config3yz; = 1) then
if (reg,sel = EntryHi) then CPR[O0,reg,sellqz.35 = 032 endif
endif
endif
endif
else
if ArchitectureRevision() > 6 then
// nop (no exceptions, coprocessor state not modified)
else
UNDEFINED

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

endif
endif
Exceptions:
| Coprocessor Unusable, Reserved Instruction
| The MIPS32® Instruction Set Manual, Revision 6.05 273

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MTC1 Move Word to Floating Point
31 26 25 21 20 16 15 11 10 0
COP1 MT s 0
010001 00100 000 0000 0000
6 5 5 11
Format: mMmTC1 rt, fs MIPS32

274

Purpose: Move Word to Floating Point

To copy a word from a GPR to an FPU (CP1) general register.

Description: FPR[fs] « GPR[rt]

The low word in GPR rt is placed into the low word of FPR fs.

Restrictions:

Operation:

data < GPR[rtl;; o
StoreFPR (fs, UNINTERPRETED WORD, data)

Exceptions:

Coprocessor Unusable

Historical Information:
For MIPS I, MIPS II, and MIPS III the value of FPR fs is UNPREDICTABLE for the instruction immediately fol-

lowing MTCI.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MTC2 Move Word to Coprocessor 2

31 26 25 21 20 16 15 11 10 8 7 0
COP2 MT
010010 00100 it fmpl
6 5 5 16
Format: MTC2 rt, Impl MIPS32
MTC2 rt, Impl, sel MIPS32

The syntax shown above is an example using MTC1 as a model. The specific syntax is implementation-dependent.

Purpose: Move Word to Coprocessor 2

To copy a word from a GPR to a COP2 general register.

Description: CP2CPR[Impl] < GPR[rt]

The low word in GPR rt is placed into the low word of a Coprocessor 2 general register denoted by the Impl field.
The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the
architecture.

Restrictions:
The results are UNPREDICTABLE if the Impl field specifies a Coprocessor 2 register that does not exist.

Operation:

data < GPRI[rt]
CP2CPR [Impl] < data

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05 275

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MTHCO Move to High Coprocessor O

31 26 25 21 20 16 15 1 10 3 2 0
COPO MTH " wd 0 sel
010000 00110 0000 0000
6 5 5 5 8 3
Format: MTHCO rt, rd MIPS32 Release 5
MTHCO rt, rd, sel MIPS32 Release 5

Purpose: Move to High Coprocessor 0
To copy a word from a GPR to the upper 32 bits of a COP2 general register that has been extended by 32 bits.

Description: CPrR[0, rd, sell [63:32] < GPR[rt]

The contents of general register rt are loaded into the Coprocessor 0 register specified by the combination of rd and
sel. Not all Coprocessor 0 registers support the sel field; the sel field must be set to zero.

Restrictions:

Pre-Release 6: The results are UNDEFINED if Coprocessor 0 does not contain a register as specified by rd and sel,
or if the register exists but is not extended by 32 bits, or the register is extended for XPA, but XPA is not supported or
enabled.

Release 6: A write to the high part of a register that is reserved, not implemented for the current core, or that is not
extended beyond 32 bits is ignored.

Operation:

if Config5yyy = 0 then SignalException(ReservedInstruction) endif
data < GPR[rt]
reg < rd
if IsCoprocessorRegisterImplemented (0, reg, sel) and
IsCoprocessorRegisterExtended (0, reg, sel) then
CPR[0, reg, sell [g3.32] ¢ data
else
if ArchitectureRevision() > 6 then
// nop (no exceptions, coprocessor state not modified)
else
UNDEFINED
endif
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

276 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MTHC1 Move Word to High Half of Floating Point Register

31

26 25 21 20 16 15 1 10 0

COP1 MTH 0
010001 00111 000 0000 0000

6 5 5 5 11

Format: MTHC1 rt, fs MIPS32 Release 2

Purpose: Move Word to High Half of Floating Point Register
To copy a word from a GPR to the high half of an FPU (CP1) general register.

Description: FPR[fsl¢; 3, ¢ GPR[rtl]

The word in GPR rt is placed into the high word of FPR fs. This instruction is primarily intended to support 64-bit
floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

The results are UNPREDICTABLE if Statusgg = 0 and fs is odd.

Operation:

newdata ¢ GPR[rt]
olddata ¢ ValueFPR(fs, UNINTERPRETED DOUBLEWORD);; g
StoreFPR (fs, UNINTERPRETED DOUBLEWORD, newdata || olddata)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes

When paired with MTC1 to write a value to a 64-bit FPR, the MTC1 must be executed first, followed by the MTHCI.
This is because of the semantic definition of MTC1, which is not aware that software is using an MTHC] instruction
to complete the operation, and sets the upper half of the 64-bit FPR to an UNPREDICTABLE value.

The MIPS32® Instruction Set Manual, Revision 6.05 277

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MTHC2 Move Word to High Half of Coprocessor 2 Register

278

31 26 25 21 20 16 15 11 10 0
COP2 MTH
010010 00111 n fmpl
6 5 5 16
Format: MTHC2 rt, Impl MIPS32 Release 2
MTHC2 rt, Impl, sel MIPS32 Release 2

The syntax shown above is an example using MTHC]1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word to High Half of Coprocessor 2 Register
To copy a word from a GPR to the high half of a COP2 general register.

Description: CP2CPR[Implls; 3, € GPR[rt]

The word in GPR rt is placed into the high word of coprocessor 2 general register denoted by the Impl field. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a coprocessor 2 register that does not exist, or if that
register is not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

data < GPRI[rt]
CP2CPR [Impl] < data || CPRI2,rd,sell;; o

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes

When paired with MTC2 to write a value to a 64-bit CPR, the MTC2 must be executed first, followed by the
MTHC?2. This is because of the semantic definition of MTC2, which is not aware that software is using an MTHC2
instruction to complete the operation, and sets the upper half of the 64-bit CPR to an UNPREDICTABLE value.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MTHI Move to HI Register
31 26 25 21 20 6 5
SPECIAL s 0 MTHI
000000 000 0000 0000 0000 010001
6 5 15 6

Format: MTHI rs

Purpose: Move to HI Register
To copy a GPR to the special purpose HI register.

Description: HI « GPRI[rs]

The contents of GPR rs are loaded into special register HI.

Restrictions:

MIPS32, removed in Release 6

A computed result written to the HI/LO pair by DIV, DIVU, MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into either HI or LO.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI

instruction, the contents of LO are UNPREDICTABLE. The following example shows this illegal situation:

MULT r2,r4 # start operation that will eventually write to HI,LO
code not containing mfhi or mflo

MTHI ré

MFLO r3

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

HI < GPR[rs]

Exceptions:

None

code not containing mflo

this mflo would get an UNPREDICTABLE value

Historical Information:

In MIPS I-111, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32, this restriction does not exist.

| The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

279

MTLO Move to LO Register
31 26 25 21 20 6 5 0
SPECIAL s 0 MTLO
000000 000 0000 0000 0000 010011
6 5 15 6

Format: MTLO rs

Purpose: Move to LO Register
To copy a GPR to the special purpose LO register.

Description: LO « GPR[rs]

The contents of GPR rs are loaded into special register LO.

Restrictions:

MIPS32, removed in Release 6

A computed result written to the HI/LO pair by DIV, DIVU, MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into either HI or LO.

If an MTLO instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of HI are UNPREDICTABLE. The following example shows this illegal situation:

MULT r2,r4 # start operation that will eventually write to HI,LO
code not containing mfhi or mflo

MTLO ré

MFHI r3

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

LO ¢ GPR[rs]

Exceptions:

None

code not containing mfhi

this mfhi would get an UNPREDICTABLE value

Historical Information:

In MIPS I-111, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32, this restriction does not exist.

280

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MUL Multiply Word to GPR
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 s " d 0 MUL
011100 00000 000010
6 5 5 5 5 6
Format: MUL rd, rs, rt MIPS32, removed in Release 6

Purpose: Multiply Word to GPR
To multiply two words and write the result to a GPR.

Description: GPR[rd] < GPRI[rs] x GPR[rt]

The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The least significant 32 bits of the product are written to GPR rd. The contents of HI and
LO are UNPREDICTABLE after the operation. No arithmetic exception occurs under any circumstances.

Restrictions:

Note that this instruction does not provide the capability of writing the result to the HI and LO registers.

Availability and Compatibility:

The pre-Release 6 MUL instruction has been removed in Release 6. It has been replaced by a similar instruction of
the same mnemonic, MUL, but different encoding, which is a member of a family of single-width multiply instruc-
tions. Refer to the ‘MUL’ and ‘MUH” instructions in this manual for more information.

Operation:

temp ¢ GPR[rs] x GPR[rt]
GPR[rd] < temps; o
HI < UNPREDICTABLE
LO ¢« UNPREDICTABLE

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read GPR rd before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

The MIPS32® Instruction Set Manual, Revision 6.05 281

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MUL MUH MULU MUHU

Multiply Integers (with result to GPR)

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL MUL SOP30
s t rd

000000 00010 011000

SPECIAL s " rd MUH SOP30

000000 00011 011000

SPECIAL MULU SOP31
rs rt rd

000000 00010 011001

SPECIAL MUHU SOP31
s rt rd

000000 00011 011001

6 5 5 5 5 6
Format: MUL MUH MULU MUHU

MUL rd,rs,rt
MUH rd,rs,rt
MULU rd,rs,rt

MIPS32 Release 6
MIPS32 Release 6
MIPS32 Release 6

282

MUHU rd,rs,rt MIPS32 Release 6

Purpose: Multiply Integers (with result to GPR)

MUL: Multiply Words Signed, Low Word
MUH: Multiply Words Signed, High Word
MULU: Multiply Words Unsigned, Low Word
MUHU: Multiply Words Unsigned, High Word

Description:

MUL : GPR[rd] <« 1lo word(multiply.signed(GPR[rs] x GPR[rt]))
MUH : GPR[rd] « hi word(multiply.signed(GPR[rs] x GPR[rt]))
MULU: GPR[rd] <« 1lo word(multiply.unsigned(GPR[rs] xGPR[rt]))
MUHU: GPR[rd] <« hi word(multiply.unsigned(GPR[rs] xGPR[rt]))

The Release 6 multiply instructions multiply the operands in GPR[rs] and GPR[rd], and place the specified high or
low part of the result, of the same width, in GPR[rd].

MUL performs a signed 32-bit integer multiplication, and places the low 32 bits of the result in the destination regis-
ter.

MUH performs a signed 32-bit integer multiplication, and places the high 32 bits of the result in the destination regis-
ter.

MULU performs an unsigned 32-bit integer multiplication, and places the low 32 bits of the result in the destination
register.

MUHU performs an unsigned 32-bit integer multiplication, and places the high 32 bits of the result in the destination
register.
Restrictions:

MUL behaves correctly even if its inputs are not sign extended 32-bit integers. Bits 32-63 of its inputs do not affect
the result.

MULU behaves correctly even if its inputs are not zero or sign extended 32-bit integers. Bits 32-63 of its inputs do
not affect the result.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MUL MUH MULU MUHU

Availability and Compatibility:

Multiply Integers (with result to GPR)

These instructions are introduced by and required as of Release 6.

Programming Notes:

The low half of the integer multiplication result is identical for signed and unsigned. Nevertheless, there are distinct
instructions MUL MULU. Implementations may choose to optimize a multiply that produces the low half followed
by a multiply that produces the upper half. Programmers are recommended to use matching lower and upper half

multiplications.

The Release 6 MUL instruction has the same opcode mnemonic as the pre-Release 6 MUL instruction. The semantics
of these instructions are almost identical: both produce the low 32-bits of the 32x32=64 product; but the pre-Release
6 MUL is unpredictable if its inputs are not properly sign extended 32-bit values on a 64 bit machine, and is defined
to render the HI and LO registers unpredictable, whereas the Release 6 version ignores bits 32-63 of the input, and
there are no HI/LO registers in Release 6 to be affected.

Operation:

MUL, MUH:

sl <« signed word(GPR[rs])
s2 <« signed word(GPR[rt])

MULU, MUHU:

sl <« unsigned word(GPR[rs])
s2 <« unsigned word (GPR[rt])

product <« sl xs2

MUL: GPR[rd] <«
MUH:: GPR[rd] <«
MULU: GPR[rd] <«
MUHU: GPR[rd] <«

Exceptions:

None

/* product is

lo _word(product
hi word(product
lo_word(product
hi_word(product

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

twice the width of sources */

)
)
)
)

283

MUL.fmt Floating Point Multiply

31 26 25 21 20 16 15 11 10 6 5 0
CoPl MUL
010001 fimt fi fs fd 000010
6 5 5 5 5 6

Format: MUL.fmt

MUL.S fd, fs, ft MIPS32
MUL.D fd, fs, ft MIPS32
MUL.PS fd, fs, ft MIPS64,MIPS32 Release 3, removed in Release 6

Purpose: Floating Point Multiply
To multiply FP values.

Description: FPR[fd] « FPR[fs] x FPR[ft]

The value in FPR fs is multiplied by the value in FPR ft. The result is calculated to infinite precision, rounded accord-
ing to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
MUL.PS multiplies the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated
exceptional conditions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of MUL.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model. It
is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:
MUL.PS has been removed in Release 6.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) xg,¢ ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

284 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MULT Multiply Word

31 26 25 21 20 16 15 6 5 0
SPECIAL s " 0 MULT
000000 00 0000 0000 011000
6 5 5 10 6
Format: MULT rs, rt MIPS32, removed in Release 6

Purpose: Multiply Word
To multiply 32-bit signed integers.

Description: (HI, LO) €« GPR[rs] x GPRI[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the high-
order 32-bit word is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Availability and Compatibility:

The MULT instruction has been removed in Release 6. It has been replaced by the Multiply Low (MUL) and Multiply
High (MUH) instructions, whose output is written to a single GPR. Refer to the ‘MUL’ and ‘MUH” instructions in
this manual for more information.

Operation:

prod ¢ GPR[rsli; o X GPR[rtls; o
LO €< prods;
HI < prodgs. 35

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

Implementation Note:

| The MIPS32® Instruction Set Manual, Revision 6.05 285

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MULTU Multiply Unsigned Word

31 26 25 21 20 16 15 6 5 0
SPECIAL s " 0 MULTU
000000 00 0000 0000 011001
6 5 5 10 6
Format: MULTU rs, rt MIPS32, removed in Release 6

Purpose: Multiply Unsigned Word
To multiply 32-bit unsigned integers.

Description: (HI, LO) €« GPR[rs] x GPRI[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the high-
order 32-bit word is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
None

Availability and Compatibility:

The MULTU instruction has been removed in Release 6. It has been replaced by the Multiply Low (MULU) and Mul-
tiply High (MUHU) instructions, whose output is written to a single GPR. Refer to the ‘MULU’ and ‘MUHU”
instructions in this manual for more information.

Operation:

prod « (0 || GPRI[rsls; o) x (0 || GPRIrtls;)
LO ¢ prodsz;
HI < prodgs. 35

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

286 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

NAL No-op and Link

31 26 25 21 20 16 15 0
REGIMM 0 NAL offset
000001 00000 10000
6 5 5 16
| Format: ~NAL Assembly Idiom MIPS32 pre-Release 6, MIPS32 Release 6

Purpose: No-op and Link

Description: GPR[31]« PC+8

NAL is an instruction used to read the PC.

NAL was originally an alias for pre-Release 6 instruction BLTZAL. The condition is false, so the 16-bit target offset
field is ignored, but the link register, GPR 31, is unconditionally written with the address of the instruction past the
delay slot.

Restrictions:

NAL is considered to be a not-taken branch, with a delay slot, and may not be followed by instructions not allowed in
delay slots. Nor is NAL allowed in a delay slot or forbidden slot.

Availability and Compatibility:

This is a deprecated instruction in Release 6. It is strongly recommended not to use this deprecated instructions
because it will be removed from a future revision of the MIPS Architecture.

The pre-Release 6 instruction BLTZAL when rs is not GPR[0], is removed in Release 6, and is required to signal a
Reserved Instruction exception. Release 6 adds BLTZALC, the equivalent compact conditional branch and link, with
no delay slot.

This instruction, NAL, is introduced by and required as of Release 6, the mnemonic NAL becomes distinguished
from the BLTZAL instruction removed in Release 6. The NAL instruction encoding, however, works on all imple-
mentations, both pre-Release 6, where it was a special case of BLEZAL, and Release 6, where it is an instruction in
its own right.

NAL is provided only for compatibility with pre-Release 6 software. It is recommended that you use ADDIUPC to
generate a PC-relative address.

Exceptions:

None

Operation:

GPR[31] « PC + 8

| The MIPS32® Instruction Set Manual, Revision 6.05 287

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

NEG.fmt Floating Point Negate

288

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 NEG
010001 fimt 00000 fs fd 000111
6 5 5 5 5 6

Format: NEG.fmt

NEG.S fd, fs MIPS32
NEG.D fd, fs MIPS32
NEG.PS fd, fs MIPS32 Release 2, removed in Release 6

Purpose: Floating Point Negate

To negate an FP value.

Description: FPR[fd] ¢ -FPR[fs]

The value in FPR fs is negated and placed into FPR fd. The value is negated by changing the sign bit value. The oper-
and and result are values in format fmt. NEG.PS negates the upper and lower halves of FPR fs independently, and ORs
together any generated exceptional conditions.

If FIRa52008=0 or FCSR ygs2003=0 then this operation is arithmetic. For this case, any NaN operand signals invalid
operation.

If FCSR 4 gs2008=! then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN
values are treated alike, only the sign bit is affected by this instruction. No IEEE 754 exception can be generated for

this case, and the FCSRcayse and FCSREjags fields are not modified.
Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

The result of NEG.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model. It
is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:
NEG.PS has been removed in Release 6.

Operation:

StoreFPR (fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

NMADD.fmt Floating Point Negative Multiply Add

31 26 25 21 20 16 15 1 10 6 5 3 2 0
COPIX NMADD
010011 fr ft fs fd 110 fmt
6 5 5 5 5 3 3

Format: NMADD. fmt

NMADD.S fd, fr, fs, ft MIPS32 Release 2, removed in Release 6
NMADD.D fd, fr, fs, ft MIPS32 Release 2, removed in Release 6
NMADD.PS fd, fr, fs, ft MIPS32 Release 2, removed in Release 6

Purpose: Floating Point Negative Multiply Add

To negate a combined multiply-then-add of FP values.

Description: FPR[fd] < — ((FPR[fs] x FPR[ft]) + FPR[fr])

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The value in FPR fr is added to the product.

The result sum is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated
by changing the sign bit, and placed into FPR fd. The operands and result are values in format fmt. The results and
flags are as if separate floating-point multiply and add and negate instructions were executed.

NMADD.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and
ORs together any generated exceptional conditions.

The Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of NMADD.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model. It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:
This instruction has been removed in Release 6.

NMADD.S and NMADD.D: Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32
Release 1. Required by MIPS32 Release 2 and subsequent versions of MIPS32. When required, these instructions are
to be implemented if an FPU is present, either in a 32-bit or 64-bit FPU or in a 32-bit or 64-bit FP Register Mode
(F|R|:64=0 orl, StatUSFRZO or 1)

Operation:

vifr < ValueFPR(fr, fmt)
vEfs ¢« ValueFPR(fs, fmt)
(

vift < ValueFPR(ft, fmt)
StoreFPR(fd, fmt, —(vfr +gpe (VEs xgpe vEE)))
Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05 289

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

290 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

NMSUB.fmt Floating Point Negative Multiply Subtract

31 26 25 21 20 16 15 1 10 6 5 3 2 0

COP1X NMSUB
010011 fr ft fs fd 11 fmt

6 5 5 5 5 3 3

Format: NMSUB. fmt

NMSUB.S fd, fr, fs, ft MIPS32 Release 2, removed in Release 6
NMSUB.D fd, fr, fs, ft MIPS32 Release 2, removed in Release 6
NMSUB.PS fd, fr, fs, ft MIPS32 Release 2, removed in Release 6

Purpose: Floating Point Negative Multiply Subtract

To negate a combined multiply-then-subtract of FP values.

Description: FPR[fd] < ((FPR[fs] x FPR[ft]) — FPR[fr])

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The value in FPR fr is subtracted from the product.

The result is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated by
changing the sign bit, and placed into FPR fd. The operands and result are values in format fmt. The results and flags
are as if separate floating-point multiply and subtract and negate instructions were executed.

NMSUB.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and
ORs together any generated exceptional conditions.

The Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of NMSUB.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model. It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0 and not on a 32-bit FPU.

Availability and Compatibility:
This instruction has been removed in Release 6.

NMSUB.S and NMSUB.D: Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32
Release 1. Required in MIPS32 Release 2 and all subsequent versions of MIPS32. When required, these instructions

| are to be implemented if an FPU is present, either in a 32-bit or 64-bit FPU or in a 32-bit or 64-bit FP Register Mode
(F|R|:64=0 orl, StatUSFRZO or 1)

Operation:

vifr < ValueFPR(fr, fmt)
vEfs ¢« ValueFPR(fs, fmt)
(

vift < ValueFPR(ft, fmt)
StoreFPR(fd, fmt, —((vis xXgpe VEL) —fgpe VEX))
Exceptions:

Coprocessor Unusable, Reserved Instruction

| The MIPS32® Instruction Set Manual, Revision 6.05 291

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

292 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

NOP No Operation
31 26 25 21 20 16 15 11 10
SPECIAL 0 0 0 0 SLL
000000 00000 00000 00000 00000 000000
6 5 5 5 5 6

Format: nNop

Purpose: No Operation

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation.

10, 10, 0.

Restrictions:

None

Operations:

None

Exceptions:

None

Programming Notes:

Assembly Idiom

The actual instruction is interpreted by the hardware as SLL

The zero instruction word, which represents SLL, r0, 10, 0, is the preferred NOP for software to use to fill branch and
jump delay slots and to pad out alignment sequences.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

293

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL s " d 0 NOR
000000 00000 100111
6 5 5 5 5 6
Format: NOR rd, rs, rt MIPS32

Purpose: Not Or
To do a bitwise logical NOT OR.

Description: GPR[rd] ¢ GPR[rs] nor GPRI[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:
GPR[rd] ¢ GPR[rs] nor GPR[rt]

Exceptions:

None

294 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

31 26 25 21 20 16 15 11 10
SPECIAL s d 0 OR
000000 00000 100101
6 5 5 5 6
Format: OR rd, rs, rt

Purpose: Or

To do a bitwise logical OR.

Description: GPR[rd] ¢ GPR[rs] or GPRI[rt]
The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is

placed into GPR rd.

Restrictions:

None

Operations:

GPR[rd] < GPR[rs] or GPR[rtl]

Exceptions:

None

The MIPS32® Instruction Set Manual, Revision 6.05
Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MIPS32

295

31 26 25 21 20 16 15 0
ORI . .
001101 rs rt immediate
6 5 5 16
Format: ORI rt, rs, immediate MIPS32

296

Purpose: Or Immediate

To do a bitwise logical OR with a constant.

Description: GPR[rt] < GPR[rs] or immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical OR
operation. The result is placed into GPR rt.

Restrictions:

None

Operations:

GPR[rt] ¢ GPR[rs] or zero extend(immediate)

Exceptions:

None

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

| The MIPS32® Instruction Set Manual, Revision 6.05 297

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PAUSE Wait for the LLBit to clear.

298

31 26 25 24 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 5 SLL
000000 00000 00000 00000 00101 000000
6 5 5 5 5 6
Format: PAUSE MIPS32 Release 2/MT Module

Purpose: Wait for the LLBit to clear.

Description:

Locks implemented using the LL/SC instructions are a common method of synchronization between threads of con-
trol. A lock implementation does a load-linked instruction and checks the value returned to determine whether the
software lock is set. If it is, the code branches back to retry the load-linked instruction, implementing an active busy-
wait sequence. The PAUSE instruction is intended to be placed into the busy-wait sequence to block the instruction
stream until such time as the load-linked instruction has a chance to succeed in obtaining the software lock.

The PAUSE instruction is implementation-dependent, but it usually involves descheduling the instruction stream
until the LLBit is zero.

* Inasingle-threaded processor, this may be implemented as a short-term WAIT operation which resumes at the
next instruction when the LLBit is zero or on some other external event such as an interrupt.

¢ On a multi-threaded processor, this may be implemented as a short term YIELD operation which resumes at the
next instruction when the LLBit is zero.

In either case, it is assumed that the instruction stream which gives up the software lock does so via a write to the lock
variable, which causes the processor to clear the LLBit as seen by this thread of execution.

The encoding of the instruction is such that it is backward compatible with all previous implementations of the archi-
tecture. The PAUSE instruction can therefore be placed into existing lock sequences and treated as a NOP by the pro-
cessor, even if the processor does not implement the PAUSE instruction.

Restrictions:

Pre-Release 6: The operation of the processor is UNPREDICTABLE if a PAUSE instruction is executed placed in
the delay slot of a branch or jump instruction.

Release 6: Implementations are required to signal a Reserved Instruction exception if PAUSE is encountered in the
delay slot or forbidden slot of a branch or jump instruction.

Operations:

if LLBit # 0 then
EPC <« PC + 4 /* Resume at the following instruction */
DeschedulelInstructionStream ()

endif

Exceptions:
None

Programming Notes:

The PAUSE instruction is intended to be inserted into the instruction stream after an LL instruction has set the LLBit
and found the software lock set. The program may wait forever if a PAUSE instruction is executed and there is no
possibility that the LLBit will ever be cleared.

An example use of the PAUSE instruction is shown below:

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

acquire lock:

11 t0, 0(a0) /* Read software lock, set hardware lock */
bnezc tO0, acquire lock retry: /* Branch if software lock is taken; */
| /* Release 6 branch */
addiu tO0, to, 1 /* Set the software lock */
sc t0, 0(a0) /* Try to store the software lock */
| bnezc tO0, 10f /* Branch if lock acquired successfully */
sync
acquire lock retry:
pause /* Wait for LLBIT to clear before retry */
| bc acquire lock /* and retry the operation; Release 6 branch */

10:
Critical region code

release_lock:

sync
sw zero, 0(a0) /* Release software lock, clearing LLBIT */
/* for any PAUSEd waiters */
| The MIPS32® Instruction Set Manual, Revision 6.05 299

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PLL.PS Pair Lower Lower

300

31 26 25 21 20 16 15 1 10 6 5 0
COP1 fmt PLL
010001 10110 fi fs fd 101100
6 5 5 5 5 6
Format: pLL.PS fd, fs, ft MIPS32 Release 2, removed in Release 6

Purpose: Pair Lower Lower

To merge a pair of paired single values with realignment.

Description: FPR[fd] ¢ lower (FPR[fs]) || lower (FPRI[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the lower single of FPR
ft (bits 31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions, and the FCSRcayse and FCSRE 545 fields are not
modified.
Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If the fields are not valid, the result is
UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model. It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)3; || ValueFPR(ft, PS)j3;)

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PLU.PS

Pair Lower Upper

31 26 25 21 20 16 15 1 10 6 5
COP1 fmt PLU
010001 10110 fs fd 101101
6 5 5 5 6
Format: pLU.PS fd, fs, ft MIPS32 Release 2, removed in Release 6

Purpose: Pair Lower Upper

To merge a pair of paired single values with realignment.

Description: FPR[fd] « lower (FPR[fs])

| | upper (FPR[£ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the upper single of FPR

ft (bits 63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions, and the FCSRcayse and FCSREj5¢4s fields are not

modified.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If the fields are not valid, the result is

UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model. It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS);; , || ValueFPR(ft, PS)g; 35)

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

301

PREF Prefetch

302

pre-Release 6

31 26 25 21 20 16 15 0
PREF .
110011 base hint offset
6 5 5 16
Release 6
31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 . PREF
011111 base hint offset 0 110101
6 5 5 9 1 6
Format: PREF hint,offset (base) MIPS32

Purpose: Prefetch

To move data between memory and cache.

Description: prefetch memory (GPR[base] + offset)

PREF adds the signed offset to the contents of GPR base to form an effective byte address. The hint field supplies
information about the way that the data is expected to be used.

PREF enables the processor to take some action, typically causing data to be moved to or from the cache, to improve
program performance. The action taken for a specific PREF instruction is both system and context dependent. Any
action, including doing nothing, is permitted as long as it does not change architecturally visible state or alter the
meaning of a program. Implementations are expected either to do nothing, or to take an action that increases the per-
formance of the program. The PrepareForStore function is unique in that it may modify the architecturally visible
state.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., ksegl), the programmed cacheability
and coherency attribute of a segment (e.g., the use of the KO, KU, or K23 fields in the Config register), or the per-
page cacheability and coherency attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and cacheability&coherency attribute used for the
operation are determined by the memory access type and cacheability&coherency attribute of the effective address,
just as it would be if the memory operation had been caused by a load or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREF instruction and the memory transactions which are sourced by the PREF instruction, such as cache refill or
cache writeback, obey the ordering and completion rules of the SYNC instruction.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PREF

Prefetch

Table 5.2 Values of hint Field for PREF Instruction

Value

Name

Data Use and Desired Prefetch Action

load

Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

store

Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

L1 LRU hint

Pre-Release 6: Reserved for Architecture.

Release 6: Implementation dependent. This hint code marks the line as LRU in
the L1 cache and thus preferred for next eviction. Implementations can choose
to writeback and/or invalidate as long as no architectural state is modified.

Reserved for Implementation

Pre-Release 6: Reserved for Architecture.
Release 6: Available for implementation-dependent use.

load_streamed

Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.

Action: Fetch data as if for a load and place it in the cache so that it does not
displace data prefetched as “retained.”

store_streamed

Use: Prefetched data is expected to be stored or modified but not reused exten-
sively; it “streams” through cache.

Action: Fetch data as if for a store and place it in the cache so that it does not
displace data prefetched as “retained.”

load retained

Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch data as if for a load and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

store_retained

Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch data as if for a store and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

| 8-15

L2 operation

Pre-Release 6: Reserved for Architecture.
Release 6: In the Release 6 architecture, hint codes 8 - 15 are treated the same
as hint codes 0 - 7 respectively, but operate on the L2 cache.

| 16-23

L3 operation

Pre-Release 6: Reserved for Architecture.
Release 6: In the Release 6 architecture, hint codes 16 - 23 are treated the same
as hint codes 0 - 7 respectively, but operate on the L3 cache.

Reserved for Architecture

Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.

Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

| The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

303

PREF Prefetch
Table 5.2 Values of hint Field for PREF Instruction (Continued)
Value Name Data Use and Desired Prefetch Action
25 writeback_invalidate (also Pre-Release 6:
known as “nudge”) Use—Data is no longer expected to be used.
Reserved for Architecture in | Action—For a writeback cache, schedule a writeback of any dirty data. At the
Release 6 completion of the writeback, mark the state of any cache lines written back as
invalid. If the cache line is not dirty, it is implementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cache line
is locked, no action is taken.
Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).
26-29 |Reserved for Architecture Pre-Release 6: Unassigned by the Architecture—available for implementa-

304

tion-dependent use.
Release 6: These hints are not implemented in the Release 6 architecture and
generate a Reserved Instruction exception (RI).

30 PrepareForStore Pre-Release 6:
Reserved for Architecture in | Use—Prepare the cache for writing an entire line, without the overhead
Release 6 involved in filling the line from memory.

Action—If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty vic-
tim is written back to memory, the entire line is filled with zero data, and the
state of the line is marked as valid and dirty.

Programming Note: Because the cache line is filled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
a fast bzero-type function.

Release 6: This hint is not implemented in the Release 6 architecture and gen-
erates a Reserved Instruction exception (RI).

31 Reserved for Architecture Pre-Release 6: Unassigned by the Architecture—available for implementa-
tion-dependent use.

Release 6: This hint is not implemented in the Release 6 architecture and gen-
erates a Reserved Instruction exception (RI).

Restrictions:
None

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

vAddr ¢ GPR[base] + sign extend(offset)
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:
Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:
In the Release 6 architecture, hint codes 2:3, 10:11, 18:19 behave as a NOP if not implemented. Hint codes 24:31 are

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PREF

Prefetch

not implemented (treated as reserved) and always signal a Reserved Instruction exception (RI).

As shown in the instruction drawing above, Release 6 implements a 9-bit offset, whereas all release levels lower than
Release 6 of the MIPS architecture implement a 16-bit offset.

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

The MIPS32® Instruction Set Manual, Revision 6.05 305

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PREFE Prefetch EVA

306

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 . PREFE
011111 base hint offset 0 100011
6 5 5 9 1 6
Format: PREFE hint,offset (base) MIPS32

Purpose: Prefetch EVA

To move data between user mode virtual address space memory and cache while operating in kernel mode.

Description: prefetch memory (GPR[base] + offset)

PREFE adds the 9-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
plies information about the way that the data is expected to be used.

PREFE enables the processor to take some action, causing data to be moved to or from the cache, to improve program
performance. The action taken for a specific PREFE instruction is both system and context dependent. Any action,
including doing nothing, is permitted as long as it does not change architecturally visible state or alter the meaning of
a program. Implementations are expected either to do nothing, or to take an action that increases the performance of
the program. The PrepareForStore function is unique in that it may modify the architecturally visible state.

PREFE does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREFE instruction.

PREFE neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (for example, ksegl), the programmed
cacheability and coherency attribute of a segment (for example, the use of the KO, KU, or K23 fields in the Config
register), or the per-page cacheability and coherency attribute provided by the TLB.

If PREFE results in a memory operation, the memory access type and cacheability & coherency attribute used for the
operation are determined by the memory access type and cacheability & coherency attribute of the effective address,
just as it would be if the memory operation had been caused by a load or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREFE instruction and the memory transactions which are sourced by the PREFE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

The PREFE instruction functions in exactly the same fashion as the PREF instruction, except that address translation
is performed using the user mode virtual address space mapping in the TLB when accessing an address within a
memory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access
modes are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy, field being set to one.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PREFE

Prefetch EVA

Table 5.3 Values of hint Field for PREFE Instruction

Value

Name

Data Use and Desired Prefetch Action

load

Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

store

Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

L1 LRU hint

Pre-Release 6: Reserved for Architecture.

Release 6: Implementation dependent. This hint code marks the line as LRU in
the L1 cache and thus preferred for next eviction. Implementations can choose
to writeback and/or invalidate as long as no architectural state is modified.

Reserved for Implementation

Pre-Release 6: Reserved for Architecture.
Release 6: Available for implementation-dependent use.

load_streamed

Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.

Action: Fetch data as if for a load and place it in the cache so that it does not
displace data prefetched as “retained.”

store_streamed

Use: Prefetched data is expected to be stored or modified but not reused exten-
sively; it “streams” through cache.

Action: Fetch data as if for a store and place it in the cache so that it does not
displace data prefetched as “retained.”

load retained

Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch data as if for a load and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

store_retained

Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch data as if for a store and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

8-15

L2 operation

Pre-Release 6: Reserved for Architecture.
Release 6: Hint codes 8 - 15 are treated the same as hint codes 0 - 7 respec-
tively, but operate on the L2 cache.

16-23

L3 operation

Pre-Release 6: Reserved for Architecture.
Release 6: Hint codes 16 - 23 are treated the same as hint codes 0 - 7 respec-
tively, but operate on the L3 cache.

24

Reserved for Architecture

Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.

Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

307

PREFE Prefetch EVA

308

Table 5.3 Values of hint Field for PREFE Instruction (Continued)

Value Name Data Use and Desired Prefetch Action
25 writeback_invalidate (also Pre-Release 6:
known as “nudge”) Use—Data is no longer expected to be used.
Reserved for Architecture in | Action—For a writeback cache, schedule a writeback of any dirty data. At the
Release 6 completion of the writeback, mark the state of any cache lines written back as

invalid. If the cache line is not dirty, it is implementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cache line
is locked, no action is taken.

Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

26-29 |Reserved for Architecture Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.

Release 6: These hint codes are not implemented in the Release 6 architecture
and generate a Reserved Instruction exception (RI).

30 PrepareForStore Pre-Release 6:
Reserved for Architecture in | Use—Prepare the cache for writing an entire line, without the overhead
Release 6 involved in filling the line from memory.

Action—If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty vic-
tim is written back to memory, the entire line is filled with zero data, and the
state of the line is marked as valid and dirty.

Programming Note: Because the cache line is filled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
a fast bzero-type function.

Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

31 Reserved for Architecture Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.

Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Operation:

vAddr ¢ GGPR[base] + sign extend(offset)
(pAddr, CCA) ¢ AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:
Bus Error, Cache Error, Address Error, Reserved Instruction, Coprocessor Usable

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

In the Release 6 architecture, hint codes 0:23 behave as a NOP and never signal a Reserved Instruction exception
(RI). Hint codes 24:31 are not implemented (treated as reserved) and always signal a Reserved Instruction exception
(RI).

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PREFE Prefetch EVA

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREFE instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

| The MIPS32® Instruction Set Manual, Revision 6.05 309

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PREFX Prefetch Indexed

310

31 26 25 21 20 16 15 11 10 6 5 0
COPIX base inde hint 0 PREFX
010011 x 00000 001111

6 5 5 5 5 6

Format: PREFX hint, index(base) MIPS64, MIPS32 Release 2, removed in Release 6

Purpose: Prefetch Indexed

To move data between memory and cache.

Description: prefetch memory [GPR[base] + GPR[index]]

PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte address. The hint field
supplies information about the way the data is expected to be used.

The only functional difference between the PREF and PREFX instructions is the addressing mode implemented by
the two. Refer to the PREF instruction for all other details, including the encoding of the hint field.

Restrictions:

Availability and Compatibility:

Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32 Release 1. Required by
MIPS32 Release 2 and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a
32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg4=0 or 1, Statusgg=0 or 1).

This instruction has been removed in Release 6.

Operation:

vAddr < GPR[base] + GPR[index]
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Coprocessor Unusable, Reserved Instruction, Bus Error, Cache Error

Programming Notes:

The PREFX instruction is only available on processors that implement floating point and should never by generated
by compilers in situations other than those in which the corresponding load and store indexed floating point instruc-
tions are generated.

Refer to the corresponding section in the PREF instruction description.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PUL.PS Pair Upper Lower

31 26 25 21 20 16 15 1 10 6 5 0
COP1 fmt PUL
010001 10110 ft fs fd 101110
6 5 5 5 5 6
Format: puL.Ps fd, fs, ft MIPS64, MIPS32 Release 2, removed in Release 6

Purpose: Pair Upper Lower

To merge a pair of paired single values with realignment.

Description: FPR[fd] ¢« upper (FPR[fs]) || lower (FPR[ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the lower single of
FPR ft (bits 31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions, and the FCSRcayse and FCSRE5¢4s ficlds are not
modified.
Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If the fields are not valid, the result is
UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model. It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

StoreFPR (fd, PS, ValueFPR(fs, PS)g; 35 || ValueFPR(ft, PS);3;. o)

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05 311

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PUU.PS Pair Upper Upper

312

31 26 25 21 20 16 15 1 10 6 5 0
COP1 fmt PUU
010001 10110 ft fs fd 101111
6 5 5 5 5 6
Format: puu.pPs fd, fs, ft MIPS64,MIPS32 Release 2,, removed in Release 6

Purpose: Pair Upper Upper

To merge a pair of paired single values with realignment.

Description: FPR[fd] <« upper (FPR[fs]) || upper (FPRI[ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the upper single of
FPR ft (bits 63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions, and the FCSRcayse and FCSRE5¢4s ficlds are not
modified.
Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If the fields are not valid, the result is
UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model. It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Availability and Compatibility:

This instruction has been removed in Release 6.

Operation:

StoreFPR (fd, PS, ValueFPR(fs, PS)g; 35 || ValueFPR(ft, PS)g; 35)

Exceptions:

Coprocessor Unusable, Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

RDHWR Read Hardware Register
31 26 25 21 20 16 15 11 10 6 5
SPECIAL3 0 it d 0 sel RDHWR
011111 00000 00 111011
6 5 5 5 2 3 6

Format: RDHWR rt,rd,sel

Purpose: Read Hardware Register

MIPS32 Release 2

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled by privi-

leged software.

The purpose of this instruction is to give user mode access to specific information that is otherwise only visible in

kernel mode.

In Release 6, a sel field has been added to allow a register with multiple instances to be read selectively. Specifically
it is used for PerfCtr.

Description: GPR[rt] ¢ HWR[rd]; GPR[rt] < HWR[rd, sel]

If access is allowed to the specified hardware register, the contents of the register specified by rd (optionally sel in
Release 6) is loaded into general register rt. Access control for each register is selected by the bits in the coprocessor
0 HWREna register.

The available hardware registers, and the encoding of the rd field for each, are shown in Table 5.4.

Table 5.4 RDHWR Register Numbers

Register
Number
(rd Value)

Mnemonic

Description

CPUNum

Number of the CPU on which the program is currently running. This register pro-
vides read access to the coprocessor 0 EBasecpynym field.

SYNCI_Step

Address step size to be used with the SYNCI instruction, or zero if no caches need
be synchronized. See that instruction’s description for the use of this value.

CcC

High-resolution cycle counter. This register provides read access to the coprocessor
0 Count Register.

CCRes

Resolution of the CC register. This value denotes the number of cycles between
update of the register. For example:

CCRes Value Meaning

CC register increments every CPU cycle

2 CC register increments every second CPU cycle

CC register increments every third CPU cycle

etc.

PerfCtr

Performance Counter Pair. Even sel selects the Control register, while odd sel
selects the Counter register in the pair. The value of sel corresponds to the value of
sel used by MFCO to read the COPO register.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

313

RDHWR Read Hardware Register
Table 5.4 RDHWR Register Numbers
Register
Number
(rd Value) | Mnemonic Description
XNP Indicates support for the Release 6 Paired LL/SC family of instructions. If set to 1,
the LL/SC family of instructionsis not present, otherwise, it is present in the imple-
5 mentation. In absence of hardware support for double-width or extended atomics,
user software may emulate the instruction’s behavior through other means. See
Configbyyp.
These registers numbers are reserved for future architecture use. Access results in a
6-28 . .
Reserved Instruction Exception.
ULR User Local Register. This register provides read access to the coprocessor 0
29 UserLocal register, if it is implemented. In some operating environments, the
UserLocal register is a pointer to a thread-specific storage block.
These register numbers are reserved for implementation-dependent use. If they are
30-31
not implemented, access results in a Reserved Instruction Exception.

Restrictions:

In implementations of Release 1 of the Architecture, this instruction resulted in a Reserved Instruction Exception.

Access to the specified hardware register is enabled if Coprocessor 0 is enabled, or if the corresponding bit is set in
the HWREna register. If access is not allowed or the register is not implemented, a Reserved Instruction Exception is

signaled.

In Release 6, when the 3-bit sel is undefined for use with a specific register number, then a Reserved Instruction

Exception is signaled.
Availability and Compatibility:

This instructions has been recoded for Release 6. The instruction

Operation:

if ((rs!=4) and (sel==0))
case rd
0: temp < EBasecpynum
1: temp ¢ SYNCI_StepSize()
2: temp ¢ Count
3: temp ¢ CountResolution ()
if (>=2) // #5 - Release 6
5: temp ¢ Configb5yypendif
29: temp ¢ UserLocal

endif
30: temp ¢« Implementation-Dependent-Value
31: temp ¢ Implementation-Dependent-Value

supports a sel field in Release 6.

otherwise: SignalException (ReservedInstruction)

endcase

elseif ((rs==4) and (>=2) and (sel==defined)// #4 - Release 6

temp ¢ PerfCtr([sell
else
endif
GPR[rt] <« temp

314

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:

Reserved Instruction

For a register that does not require Sel, the compiler must support an assembly syntax without sel that is ‘RDHWR rt,
rd’. Another valid syntax is for sel to be 0 to map to pre-Release 6 register numbers which do not require use of sel

that is, ‘RDHWR rt, rd, 0.

| The MIPS32® Instruction Set Manual, Revision 6.05 315
Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

RDPGPR Read GPR from Previous Shadow Set
31 26 25 21 20 16 15 11 10 0
COPO RDPGPR d 0
0100 00 01010 000 0000 0000
6 5 5 11
Format: RDPGPR rd, rt MIPS32 Release 2

316

Purpose: Read GPR from Previous Shadow Set

To move the contents of a GPR from the previous shadow set to a current GPR.

Description: GPR[rd] ¢ SGPR[SRSCtlpgg, rtl

The contents of the shadow GPR register specified by SRSCtlpgg (signifying the previous shadow set number) and rt
(specifying the register number within that set) is moved to the current GPR rd.

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction excep-

tion.

Operation:

GPR [rd]

Exceptions:

Coprocessor Unusable

Reserved Instruction

< SGPRI[SRSCtlpgg, rt]

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

RECIP.fmt Reciprocal Approximation

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 RECIP
010001 fimt 00000 fs fd 010101
6 5 5 5 5 6

Format: RECIP.fmt
RECIP.S fd, fs MIPS64,MIPS32 Release 2
RECIP.D fd, fs MIPS64,MIPS32 Release 2
Purpose: Reciprocal Approximation

To approximate the reciprocal of an FP value (quickly).

Description: FPR[fd] « 1.0 / FPR[fs]

The reciprocal of the value in FPR fs is approximated and placed into FPR fd. The operand and result are values in
format fmt.

The numeric accuracy of this operation is implementation dependent. It does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from the both the exact result and the IEEE-mandated
representation of the exact result by no more than one unit in the least-significant place (ULP).

It is implementation dependent whether the result is affected by the current rounding mode in FCSR.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Availability and Compatibility:

RECIP.S and RECIP.D: Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32
Release 1. Required in MIPS32 Release 2 and all subsequent versions of MIPS32. When required, required whenever
FPU is present, whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRpg4=0 or 1,

Statusgr=0 or 1).

Operation:

StoreFPR(fd, fmt, 1.0 / valueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

| The MIPS32® Instruction Set Manual, Revision 6.05 317

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

RINT.fmt Floating-Point Round to Integral
31 26 25 21 20 16 15 1 10 6 5 0
COP1 RINT
010001 fmt 00000 fs fd 011010
6 5 5 5 5 6
Format: RINT.fmt MIPS32 Release 6
RINT.S fd4,fs MIPS32 Release 6
RINT.D fd,fs MIPS32 Release 6
Purpose: Floating-Point Round to Integral

318

Scalar floating-point round to integral floating point value.

Description: FPR[£fd] <« round int (FPR[fs])

The scalar floating-point value in the register £s is rounded to an integral valued floating-point number in the same
format based on the rounding mode bits RM in the FPU Control and Status Register FCSR. The result is written to

fd.

The operands and results are values in floating-point data format fmt.

The RINT.fmt instruction corresponds to the roundTolntegralExact operation in the IEEE Standard for Floating-

Point Arithmetic 754T™-2008. The Inexact exception is signaled if the result does not have the same numerical value
as the input operand.

The floating point scalar instruction RINT.fmt corresponds to the MSA vector instruction FRINT.df. I.e. RINT.S cor-

responds to FRINT.W, and RINT.D corresponds to FRINT.D.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 75

2008.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation:

RINT.fmt:

if not IsCoprocessorEnabled (1)

then SignalException (CoprocessorUnusable,

if not IsFloatingPointImplemented (fmt))

then SignalException (ReservedInstruction)

fin <« ValueFPR(fs, fmt)
ftmp «RoundIntFP (fin, fmt)

if(fin # ftmp)

StoreFPR (fd, fmt,

ftmp)

function RoundIntFP (tt, n)
/* Round to integer operation, using rounding mode FCSR.RM*/
endfunction RoundIntFP

Exceptions:

Coprocessor Unusable, Reserved Instruction

SignalFPException (InExact)

4T™M_

1) endif

endif

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

| The MIPS32® Instruction Set Manual, Revision 6.05 319

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ROTR Rotate Word Right

320

31 26 25 22 21 20 16 15 11 10 6 5 0
SPECIAL R SRL
000000 0000 1 it rd sa 000010
6 4 1 5 5 5 6
Format: ROTR rd, rt, sa SmartMIPS Crypto, MIPS32 Release 2

Purpose: Rotate Word Right

To execute a logical right-rotate of a word by a fixed number of bits.

Description: GPR[rd] « GPR[rt] x(right) sa

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The bit-
rotate amount is specified by sa.

Restrictions:

Operation:
if ((ArchitectureRevision() < 2) and (Config3gy = 0)) then
UNPREDICTABLE
endif
s € sa
temp &« GPR[rtlg ;. o || GPRIrtls; ¢

GPR [rd] < temp

Exceptions:

Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ROTRV Rotate Word Right Variable

31 26 25 21 20 16 15 11 10 7 6 5 0
SPECIAL R SRLV
000000 s it rd 0000 | 000110
6 5 5 5 4 1 6
Format: ROTRV rd, rt, rs SmartMIPS Crypto, MIPS32 Release 2

Purpose: Rotate Word Right Variable

To execute a logical right-rotate of a word by a variable number of bits.

Description: GPR[rd] < GPR[rt] x(right) GPR[rs]

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The bit-
rotate amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

Operation:
if ((ArchitectureRevision() < 2) and (Config3gy = 0)) then
UNPREDICTABLE
endif
s €< GPRI[rsl,
temp &« GPR[rtlg ;. o || GPRIrtls; ¢

GPR [rd] < temp

Exceptions:

Reserved Instruction

The MIPS32® Instruction Set Manual, Revision 6.05 321

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ROUND.L.fmt Floating Point Round to Long Fixed Point

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 ROUND.L
010001 fmt 00000 fs fd 001000
6 5 5 5 5 6

Format: ROUND.L.fmt
ROUND.L.S fd, fs MIPS64,MIPS32 Release 2
ROUND.L.D fd, fs MIPS64,MIPS32 Release 2
Purpose: Floating Point Round to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding to nearest.

Description: FPR[fd] ¢ convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded to nearest/
even (rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range 263 t0 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. The Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to fd. On cores with FCSRyan2008=0, the default result is

263_1. On cores with FCSRyaN2008=1, the default result is:
e 0 when the input value is NaN
« 291 when the input value is +00 or rounds to a number larger than 2631

29_1 when the input value is —00 or rounds to a number smaller than 201

Restrictions:

The fields fs and fd must specify valid FPRs: fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model. It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation

322 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ROUND.W.fmt Floating Point Round to Word Fixed Point

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 ROUND.W
010001 fmt 00000 fs fd 001100
6 5 5 5 5 6

Format: ROUND.W.fmt
ROUND.W.S fd, fs MIPS32
ROUND.W.D fd, fs MIPS32
Purpose: Floating Point Round to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding to nearest.

Description: FPR[fd] ¢ convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format rounding to nearest/even
(rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range 23110 2311, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. The Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to fd. On cores with FCSRyan2008=0, the default result is

2311, On cores with FCSRyaN2008=1, the default result is:
e 0 when the input value is NaN

« 2°11 when the input value is +00 or rounds to a number larger than 231

« 23| when the input value is —00 or rounds to a number smaller than 23

Restrictions:

The fields fs and fd must specify valid FPRs: fs for type fmt and fd for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR (fd, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation

| The MIPS32® Instruction Set Manual, Revision 6.05 323

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

RSQRT.fmt Reciprocal Square Root Approximation

324

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 RSQRT
010001 fmt 00000 fs fd 010110
6 5 5 5 5 6

Format: RSQRT.fmt
RSQRT.S fd, fs MIPS64,MIPS32 Release 2
RSQRT.D fd, fs MIPS64,MIPS32 Release 2
Purpose: Reciprocal Square Root Approximation

To approximate the reciprocal of the square root of an FP value (quickly).

Description: FPR[fd] « 1.0 / sqrt (FPR[fs])

The reciprocal of the positive square root of the value in FPR fs is approximated and placed into FPR fd. The operand
and result are values in format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from both the exact result and the IEEE-mandated
representation of the exact result by no more than two units in the least-significant place (ULP).

The effect of the current FCSR rounding mode on the result is implementation dependent.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Availability and Compatibility:

RSQRT.S and RSQRT.D: Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32
Release 1. Required in MIPS32 Release 2 and all subsequent versions of MIPS32. When required, required whenever
FPU is present, whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRpg4=0 or 1,

Statusgr=0 or 1).

Operation:

StoreFPR (fd, fmt, 1.0 / SquareRoot (valueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SB Store Byte
31 26 25 21 20 16 15 0
SB
101000 base rt offset
6 5 5 16
Format: SB rt, offset (base) MIPS32

Purpose: Store Byte

To store a byte to memory.

Description: memory [GPR [base] + offset] ¢« GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The

16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pAddr ¢ pAddrpgrze.1. .. || (pAddr; , xor ReverseEndian?)
bytesel ¢ vAddr, , xor BigEndianCPU?

dataword ¢ GPRIrtlii_gepyteser..o || 0%V
StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

325

SBE

326

Store Byte EVA

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 SBE
011111 base it offset 0 011100
6 5 5 9 1 6
Format: SBE rt, offset (base) MIPS32

Purpose: Store Byte EVA

To store a byte to user mode virtual address space when executing in kernel mode.

Description: memory [GPR [base] + offset] ¢« GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The
9-bit signed offset is added to the contents of GPR base to form the effective address.

The SBE instruction functions the same as the SB instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g, field being set to 1.

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pAddr ¢ pAddrpgrze-1..» || (PAddr; , xor ReverseEndian?)
bytesel < vAddr; , xor BigEndianCPU?

dataword < GPR[rt]3l—8*bytesel..O || Os*bytesel
StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable,

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SC

Store Conditional Word

pre-Release 6

31 26 25 21 20 16 15 0
SC
111000 base t offset
6 5 5 16
Release 6
31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 SC
011111 base rt offset 0 100110
6 5 5 9 1 6
Format: sc rt, offset (base) MIPS32

Purpose: Store Conditional Word

To store a word to memory to complete an atomic read-modify-write

Description: if atomic update then memory [GPR[base] + offset] <« GPR[rt], GPR[rt] « 1
else GPR[rt] « O

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations on syn-
chronizable memory locations. In Release 5, the behavior of SC is modified when Config5 | g=1.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective
address. The signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

* The 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective address.
* A one, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LL and SC, the SC fails:

e A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation-dependent, but it is
at least one word and at most the minimum page size.

* A coherent store is executed between an LL and SC sequence on the same processor to the block of synchroniz-
able physical memory containing the word (if Config5; | g=1; else whether such a store causes the SC to fail is not

predictable).
* An ERET instruction is executed. (Release 5 includes ERETNC, which will not cause the SC to fail.)

Furthermore, an SC must always compare its address against that of the LL. An SC will fail if the aligned address of
the SC does not match that of the preceeding LL.

A load that executes on the processor executing the LL/SC sequence to the block of synchronizable physical memory
containing the word, will not cause the SC to fail (if Config5 | g=1; else such a load may cause the SC to fail).

If any of the events listed below occurs between the execution of LL and SC, the SC may fail where it could have suc-
ceeded, i.e., success is not predictable. Portable programs should not cause any of these events.

The MIPS32® Instruction Set Manual, Revision 6.05 327

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SC

328

Store Conditional Word

* A load or store executed on the processor executing the LL and SC that is not to the block of synchronizable
physical memory containing the word. (The load or store may cause a cache eviction between the LL and SC that
results in SC failure. The load or store does not necessarily have to occur between the LL and SC.)

* Any prefetch that is executed on the processor executing the LL and SC sequence (due to a cache eviction
between the LL and SC).

* A non-coherent store executed between an LL and SC sequence to the block of synchronizable physical memory
containing the word.

* The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

CACHE operations that are local to the processor executing the LL/SC sequence will result in unpredictable behav-
iour of the SC if executed between the LL and SC, that is, they may cause the SC to fail where it could have suc-
ceeded. Non-local CACHE operations (address-type with coherent CCA) may cause an SC to fail on either the local
processor or on the remote processor in multiprocessor or multi-threaded systems. This definition of the effects of
CACHE operations is mandated if Config5; | g=1. If Config5; | g=0, then CACHE effects are implementation-depen-

dent.

The following conditions must be true or the result of the SC is not predictable—the SC may fail or succeed (if
Config5, | g=1, then either success or failure is mandated, else the result is UNPREDICTABLE):

* Execution of SC must have been preceded by execution of an LL instruction.

* An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

» Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

* MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

* 1/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if it does not, the
result is UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Availability and Compatibility

This instruction has been recoded for Release 6.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SC Store Conditional Word

Operation:

vAddr <« sign_extend(offset) + GPR[base]
if vAddr,; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
dataword <« GPR[rt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPRI[rt] « 03! || LLbit
LLbit « 0 // if Config5;;g=1, SC always clears LLbit regardless of address match.

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

Ll:
LL T1, (TO) # load counter
ADDI T2, T1l, 1 # increment
scC T2, (T0) # try to store, checking for atomicity

BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

As shown in the instruction drawing above, Release 6 implements a 9-bit offset, whereas all release levels lower than
Release 6 of the MIPS architecture implement a 16-bit offset.

The MIPS32® Instruction Set Manual, Revision 6.05 329

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCE Store Conditional Word EVA
31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 SCE
011111 base t offset 0 011110
6 5 5 9 1 6
Format: SCE rt, offset (base) MIPS32

330

Purpose: Store Conditional Word EVA

To store a word to user mode virtual memory while operating in kernel mode to complete an atomic read-modify-
write.

Description: if atomic_update then memory [GPR[base] + offset] « GPR[rt], GPR[rt] « 1 else
GPR[rt] <« 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective
address. The 9-bit signed offset is added to the contents of GPR base to form an effective address.

The SCE completes the RMW sequence begun by the preceding LLE instruction executed on the processor. To com-
plete the RMW sequence atomically, the following occurs:

* The 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective address.
* A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LL and SC, the SC fails:

e A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation dependent, but it is
at least one word and at most the minimum page size.

« An ERET instruction is executed.

If either of the following events occurs between the execution of LLE and SCE, the SCE may succeed or it may fail;
the success or failure is not predictable. Portable programs should not cause one of these events.

* A memory access instruction (load, store, or prefetch) is executed on the processor executing the LLE/SCE.

* The instructions executed starting with the LLE and ending with the SCE do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SCE is UNPREDICTABLE:
* Execution of SCE must have been preceded by execution of an LLE instruction.

* An RMW sequence executed without intervening events that would cause the SCE to fail must use the same
address in the LLE and SCE. The address is the same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LLE/SCE semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCE Store Conditional Word EVA

* Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached non coherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

* MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

* 1/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

The SCE instruction functions the same as the SC instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to 1.

Restrictions:

The addressed location must have a memory access type of cached non coherent or cached coherent; if it does not,
the result is UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

| Providing misaligned support for Release 6 is not a requirement for this instruction.
Operation:
vAddr ¢ sign extend(offset) + GPR[base]
| if vAddr, , # 0% then
SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword < GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] « 0°! || LLbit

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

Programming Notes:

LLE and SCE are used to atomically update memory locations, as shown below.

Ll:
load counter
increment

LLE T1l, (TO) #
#
try to store, checking for atomicity
#
#

ADDI T2, T1, 1
SCE T2, (TO)
BEQ T2, 0, L1
NOP

if not atomic (0), try again
branch-delay slot

Exceptions between the LLE and SCE cause SCE to fail, so persistent exceptions must be avoided. Examples are
arithmetic operations that trap, system calls, and floating point operations that trap or require software emulation
assistance.

| The MIPS32® Instruction Set Manual, Revision 6.05 331

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLE and SCE function on a single processor for cached non coherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

332 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCWP Store Conditional Word Paired

31 26 25 21 20 16 15 11 10 7 6 5 0
SPECIAL3 0 SC
011111 base 1t rd 0000 ! 100110
6 5 5 5 4 1 6
| Format: scwp rt, rd, (base) MIPS32 Release 6

Purpose: Store Conditional Word Paired

| Conditionally store a paired word to memory to complete an atomic read-modify-write.
Description: if atomic_update then memory [GPR[basel] <« {GPR[rd],GPR[rt]l}, GPR[rt] « 1
else GPR[rt] « 0

| The LLWP and SCWP instructions provide primitives to implement a paired word atomic read-modify-write (RMW)
operation at a synchronizable memory location.

A paired word is formed from the concatenation of GPR rd and GPR rt. GPR rd is the most-significant word of the
paired word, and GPR rt is the least-significant word of the paired word. Thepaired word is conditionally stored in
memory at the location specified by the double-word aligned effective address from GPR base.

| A paired word read or write occurs as a pair of word reads or writes that is double-word atomic.
The instruction has no offset. The effective address is equal to the contents of GPR base.

| The SCWP completes the RMW sequence begun by the preceding LLWP instruction executed on the processor. To
complete the RMW sequence atomically, the following occur:

| * The paired word formed from the concatenation of GPRs rd and rt is stored to memory at the location specified
by the double-word aligned effective address.

* A one, indicating success, is written into GPR rt.
Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

Though legal programming requires LLWP to start the atomic read-modify-write sequence and SCWP to end the
same sequence, whether the SCWP completes is only dependent on the state of LLbit and LLAAdr, which are set by

| a preceding load-linked instruction of any type. Software must assume that pairing load-linked and store-conditional
instructions in an inconsistent manner causes UNPREDICTABLE behavior.

The SCWP must always compare its double-word aligned address against that of the preceding LLWP. The SCWP
will fail if the address does not match that of the preceding LLWP.

Events that occur between the execution of load-linked and store-conditional instruction types that must cause the
sequence to fail are given in the legacy SC instruction definition..

Additional events that occur between the execution of load-linked and store-conditional instruction types that may
cause success of the sequence to be UNPREDICTABLE are defined in the SC instruction definition.

A load that executes on the processor executing the LLWP/SCWP sequence to the block of synchronizable physical
memory containing the paired word, will not cause the SCWP to fail.

Effect of CACHE operations, both local and remote, on a paired word atomic operation are defined in the SC instruc-
tion definition.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location. Requirements for Uniprocessor, MP and I/O atomicity are given in the SC definition.

I The MIPS32® Instruction Set Manual, Revision 6.05 333

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCWP Store Conditional Word Paired

334

Restrictions:

Load-Linked and Store-Conditional instruction types require that the addressed location must have a memory access
type of cached noncoherent or cached coherent, that is the processor must have a cache. If it does not, the result is
UNPREDICTABLE.

The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAdAr is optional.

Providing misaligned support is not a requirement for this instruction.

Availability and Compatibility
This instruction is introduced by Release 6. It is only present if ConTig5yyp=0.

Operation:

vAddr <« GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

datadoubleword;; o < GPRI[rt]

datadoublewordg; 35 < GPR[rd]

if (LLbit && (pAddr == LLAddr))then

// PAIREDWORD: two word data-type that is double-word atomic
StoreMemory (CCA, PAIREDWORD, datadoubleword, pAddr, vAddr, DATA)
GPRI[rt] « 03! || 1'b1

else
GPR[rt] « 0°2

endif

LLbit « 0

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Reserved Instruction, Address Error, Watch

Programming Notes:

LLWP and SCWP are used to atomically update memory locations, as shown below.

Ll:

LLWP T2, T3, (TO0) # load T2 and T3

BOVC T2, 1, U32 # check whether least-significant word may overflow

ADDI T2, T2, 1 # increment lower - only

SCWP T2, T3, (TO0) # store T2 and T3

BEQC T2, 0, L1 # if not atomic (0), try again
U32:

ADDI T2, T2, 1 # increment lower

ADDI T3, T3, 1 # increment upper

SCWP T2, T3, (TO)

BEQC T2, 0, L1 # if not atomic (0), try again

Exceptions between the LLWP and SCWP cause SC to fail, so persistent exceptions must be avoided. Some examples
of these are arithmetic operations that trap, system calls, and floating point operations that trap or require software
emulation assistance.

LLWP and SCWP function on a single processor for cached noncoherent memory so that parallel programs can be
run on uniprocessor systems that do not support cached coherent memory access types.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCWPE Store Conditional Word Paired EVA

31 26 25 21 20 16 15 11 10 7 6 5 0
SPECIAL3 0 SCE
011111 base 1t rd 0000 ! 011110
6 5 5 5 4 1 6
| Format: SCwpE rt, rd, (base) MIPS32 Release 6

Purpose: Store Conditional Word Paired EVA

| Conditionally store a paired word to memory to complete an atomic read-modify-write. The store occurs in kernel
mode to user virtual address space.
Description: if atomic update then memory [GPR[basel]l« {GPR[rd],GPR[rt]}, GPRI[rt] <« 1
else GPR[rt] « 0

| The LLWPE and SCWPE instructions provide primitives to implement a paired word atomic read-modify-write
(RMW) operation at a synchronizable memory location.

A paired word is formed from the concatentation of GPR rd and GPR rt. GPR rd is the most-significant word of the
double-word, and GPR rt is the least-significant word of the double-word. Thepaired word is conditionally stored in
memory at the location specified by the double-word aligned effective address from GPR base.

A paired word read or write occurs as a pair of word reads or writes that is double-word atomic.
The instruction has no offset. The effective address is equal to the contents of GPR base.

The SCWPE completes the RMW sequence begun by the preceding LLWPE instruction executed on the processor.
To complete the RMW sequence atomically, the following occur:

| * The paired word formed from the concatenation of GPRs rd and rt is stored to memory at the location specified
by the double-word aligned effective address.

* A one, indicating success, is written into GPR rt.
Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

Though legal programming requires LLWPE to start the atomic read-modify-write sequence and SCWPE to end the
same sequence, whether the SCWPE completes is only dependent on the state of LLbit and LLAddr, which are set

| by a preceding load-linked instruction of any type. Software must assume that pairing load-linked and store-condi-
tional instructions in an inconsistent manner causes UNPREDICTABLE behavior.

The SCWPE must always compare its double-word aligned address against that of the preceding LLWPE. The
SCWPE will fail if the address does not match that of the preceding LLWPE.

The SCWPE instruction functions the same as the SCWP instruction, except that address translation is performed
using the user mode virtual address space mapping in the TLB when accessing an address within a memory segment
configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also acces-
sible. Refer to Volume III, Segmentation Control for additional information.

Events that occur between the execution of load-linked and store-conditional instruction types that must cause the
sequence to fail are given in the legacy SC instruction definition..

Additional events that occur between the execution of load-linked and store-conditional instruction types that may
cause success of the sequence to be UNPREDICTABLE are defined in the SC instruction definition.

A load that executes on the processor executing the LLWPE/SCWPE sequence to the block of synchronizable physi-
| cal memory containing the paired word, will not cause the SCWPE to fail.

I The MIPS32® Instruction Set Manual, Revision 6.05 335

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCWPE Store Conditional Word Paired EVA

336

Effect of CACHE operations, both local and remote, on a paired word atomic operation are defined in the SC instruc-
tion definition.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location. Requirements for Uniprocessor, MP and I/O atomicity are given in the SC definition.

Restrictions:

Load-Linked and Store-Conditional instruction types require that the addressed location must have a memory access
type of cached noncoherent or cached coherent, that is the processor must have a cache. If it does not, the result is
UNPREDICTABLE.

The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAddr is optional.

Providing misaligned support is not a requirement for this instruction.

Availability and Compatibility
This instruction is introduced by Release 6. It is only present if ConTig5y\p=0 and ConTig5gyp=1.

Operation:

vAddr < GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

datadoubleword,;; o < GPR[rt]

datadoublewordg; 3, < GPR[rd]

if (LLbit && (pAddr == LLAddr))then
// PAIREDWORD: two word data-type that is double-word atomic
StoreMemory (CCA, PAIREDWORD, datadoubleword, pAddr, vAddr, DATA)
GPR[rt] « 0! || 17Db1

else
GPRI[rt] « 032

endif

LLbit « 0

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Reserved Instruction, Address Error, Watch, Coprocessor Unusable.

Programming Notes:

LLWPE and SCWPE are used to atomically update memory locations, as shown below.

Ll:

LLWPE T2, T3, (TO) # load T2 and T3

BOVC T2, 1, U32 # check whether least-significant word may overflow

ADDI T2, T2, 1 # increment lower - only

SCWPE T2, T3, (TO0) # store T2 and T3

BEQC T2, 0, Ll # if not atomic (0), try again
U32:

ADDI T2, T2, 1 # increment lower

ADDI T3, T3, 1 # increment upper

SCWPE T2, T3, (TO)

BEQC T2, 0, Ll # if not atomic (0), try again

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCWPE Store Conditional Word Paired EVA

Exceptions between the LLWPE and SCWPE cause SC to fail, so persistent exceptions must be avoided. Some exam-
ples of these are arithmetic operations that trap, system calls, and floating point operations that trap or require soft-
ware emulation assistance.

LLWPE and SCWPE function on a single processor for cached noncoherent memory so that parallel programs can be
run on uniprocessor systems that do not support cached coherent memory access types.

I The MIPS32® Instruction Set Manual, Revision 6.05 337

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SDBBP

338

pre-Release 6

Software Debug Breakpoint

31 26 25 6 5 0
SPECIAL2 code - use svecall SDBBP
011100 T use sy 11111
6 20 6
Release 6
31 26 25 6 5 0
SPECIAL . Al SDBBP
000000 code - use syse 001110
6 20 6
Format: SDBBP code EJTAG

Purpose: Software Debug Breakpoint

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the Debugpgyccode field to the value 0x9 (Bp). The code field can be used for passing information to the debug

exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

if Config5.SBRI=1 then /* SBRI is a MIPS Release 6 feature */

SignalException (ReservedInstruction)

endif

If Debugpy = 1 then SignalDebugModeBreakpointException() endif // nested
SignalDebugBreakpointException() // normal

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

Programming Notes:

Release 6 changes the instruction encoding. The primary opcode changes from SPECIAL2 to SPECIAL. Also it
defines a different function field value for SDBBP.

The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SDC1 Store Doubleword from Floating Point
31 26 25 21 20 16 15 0
SDC1
111101 base ft offset
6 5 5 16
Format: spci ft, offset (base) MIPS32

Purpose: Store Doubleword from Floating Point

To store a doubleword from an FPR to memory.

Description: memory [GPR [base] + offset] < FPR[ft]

The 64-bit doubleword in FPR ft is stored in memory