
OpenCores Hyper Pipelined OR1200 Core 10/22/10

Hyper Pipelined OR1200
Core Specification

Author: Tobias Strauch
tobias@EDAptability.com

Rev. 0.1
October 22nd, 2010

Preliminary Draft

www.opencores.org Rev 0.1 Preliminary 1 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

Revision History

Rev. Date Author Description
0.1 10/22/10Tobias Strauch First Draft

www.opencores.org Rev 0.1 Preliminary 2 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

Table of Contents
Author: Tobias Strauch..1

Preliminary Draft...1
Table of Contents...3
Table of Figures and Tables...4
1 Introduction...5
2 Theory of Hyper Pipelining..6
3 Hyper Pipelined OR1200 Core...9

3.1 New Core Inputs..9
3.2 Memory Handling..9
3.3 Verification of Hyper Pipelining Modifications..10
3.4 Xilinx Area Results..11
3.5 ASIC Area Estimations..13
3.6 Possible Enhancements..14

4 Simulation...15
5 Directory Structure...17
6 Reference..19

www.opencores.org Rev 0.1 Preliminary 3 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

Table of Figures and
Tables

Figure 1. Simple Sequential Logic..6
Figure 2. Sequential Logic with Intermediate Register Clocked by clk2...........................6
Figure 3. Two Functional Independent Designs...6
Figure 4. Hyper Pipelined Sequential Logic with Distributed Logic.................................7
Figure 5. Hyper Pipelined Core with CMF = 4..7
Figure 6. STA Histogram of Timing Optimization..7
Figure 7. New CMLS Input and Clock Inputs..9
Figure 8. Hyper Pipelined OR1200 Simulation with CMF = 3...15
Figure 9. Switching Off ad On Cores and Restart...16
Figure 10. Directory Structure of Hyper Pipelined OR1200 Project.................................17

Table 1. Valid and Invalid Paths for CMF == 4..10
Table 2. Area and Timing of Spartan3 Device..11
Table 3. Relative Area and Performance of Spartan3 Device...12
Table 4. Area and Timing of Virtex5 Device..13
Table 5. Relative Area and Performance of Virtex5 Device...12
Talbe 6. Area Ratio for ASICs...12

www.opencores.org Rev 0.1 Preliminary 4 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

1 Introduction
Purpose of this document is to guide the user through the “Hyper Pipelined OR1200

Core” project. The project is based on OpenCores' OR1200 project. The RTL code is
taken from there and run through an automatic hyper pipelining tool. The modifications
are done on RTL.

This document gives a basic overview of the theory of hyper pipelining (“2. Theory of
Hyper Pipelining”). The OR1200 core results (“3. Hyper Pipelined OR1200 Core”) and
its testbench and random code generator (“4. Simulation”) are explained. It finishes with
an overview of the directory structure (“5. Directory Structure”) and a list of references
(“6. References”).

www.opencores.org Rev 0.1 Preliminary 5 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

2 Theory of Hyper
Pipelining

This chapter gives an overview of the
theory of hyper pipelining. Figure 1 shows
the basic structure of a simple sequential
logic. Inputs and sequential elements
clocked by clk1 drive the combinatorial
logic. The combinatorial logic drives the
outputs and the data inputs of the registers.

Figure 1. Simplified Sequential Logic

In Figure 2 each sequential element is
duplicated with an intermediate register
clocked by a second clock clk2. If clk2 is
synchronous to clk1 but not edge aligned
and the timing is right (no setup or hold time
violation between clk1 and clk2 registers)
the functional behavior of the sequential
logic doesn't change.

Figure 2. Sequential Logic with Inter-
mediate Register Clocked by clk2

Assuming clk1 and clk2 of Figure 2 are
now identical (clk). This results in 2
functional independent designs in a time
sliced fashion. Figure 3 displays how the
combinatorial logic is used for one design
during T1 and for the second design during
T2. The inputs and outputs are valid at the
active time slice (T1 or T2). The
implemented register set (formally driven by
clk2) is called “pipeline stage register” PSR. Figure 3. Two Functional Independent

Designs

www.opencores.org Rev 0.1 Preliminary 6 of 19

logic

clk1

logic

clk1clk2

logic

clkclk

logic

clkclk

T1:

T2:

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

The next step is to distribute the
combinatorial logic between the registers
without modifying the functionality of the
designs. Figure 4 shows one basic rule of
hyper pipelining. There are only paths from
the PSR to the original register set and from
the register to the PSR.

Figure 4. Hyper Pipelined Sequential
Logic with Distributed Logic

The number of pipes can be increased as shown in Figure 5. The resulting number of
independent designs is identical to its multiplication factor, called “core multiplication
factor”, CMF.

Figure 5. Hyper Pipelined Core with CMF = 4

This hyper pipelining is different to the pipelining of instruction decoding known from
RISC processors. The point is, that you can use hyper pipelining on top of any functional
core, for example a RISC processor, independent of its underlying functionality. The
functional pipelined RISC processor can be hyper pipelined to generate CMF individual
RISC processors. For more information see the documentation of the C252 semester
project of the University of Berkeley [1].

The main benefit is the multiplication of the core's functionality by only implementing
registers. This leads to a reduced size compared to the individual instantiation of the
cores. This is a great advantage for ASICs but obviously very attractive for FPGAs with
their already existing registers.

Figure 6. STA Histogram of Timing Optimization

www.opencores.org Rev 0.1 Preliminary 7 of 19

logic
logic

clkclk

logic

clk

logic

clk

logic
logic

clkclk

Progress

Paths

Timing

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

Another issue is the performance of the resulting hyper pipelined design. Assuming
the formally critical path is now “partitioned” into equal parts, the hyper pipelined design
can run theoretically as many times faster as the number of the resulting segments
reduced by the additional setup and hold time for each PSR on the critical path. This
results in the same performance as their individual instantiations, if the critical path is
relatively slow compared to the timing arcs of the registers. If the critical path is only 4
LUT or 4 gates (which is an extreme example), the timing arc of the PSR dominate the
critical path and a CMF-times performance cannot be reached.

In order to achieve the CMF-times faster clock speed, the PSR must be introduced at
the right places in the design. For that a simple algorithm can be used. It starts with
placing the PSR (pipeline stage register) at the inputs of each original register (Figure 2).
The PSR are then moved through the combinatorial logic until the critical path is
partitioned into equal elements. The passing must follow certain rules, so that the overall
functionality of the hyper pipelined core is not broken. Figure 6 shows the individual
STA histograms which are taken from the optimization process of the OR1200 core with
CMF = 2. It starts with the original STA results in the back and shows how the STA
results change by passing the critical PSR through the combinatorial logic.

It can be seen in Figure 6, that there are some paths, that cannot be optimized any
further. This is the 32x32 multiplier, which is represented by a single line in the RTL
code and cannot be modified automatically. There are two ways to get around it. Either
the RTL line is modified by the designer (introducing manually intermediate signals) to
allow the automatic pipelining of the multiplier, or the place and route tool does it
automatically. This is the case in ISE. ISE automatically pushes the registers into the
multiplier DSP slice and the timing of the 32x32 multiplier is not an issue in the OR1200
hyper pipelining project.

The used tool does the modifications automatically within seconds, because all
estimations and modifications are done on RTL. If the timing needs further optimizations
it accepts “real” ASIC or FPGA STA results to squeeze out the last picoseconds for a
particular implementation. The main benefit of doing the modification (PSR insertion) on
RTL is next to the short tool runtime of a few seconds the fact, that the new hyper
pipelined core must be used in the testbench of the modified project. Although CMF-
times individual cores exist as before, the surrounding logic must be adapted to the new
core and the complete verification can/must be done on RTL.

www.opencores.org Rev 0.1 Preliminary 8 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

3 Hyper Pipelined
OR1200 Core

This section describes the hyper pipelining of the OR1200 core. The original code is
taken from OpenCores' OR1200 project. Please refer to the documentation there and on
the web regarding the OR1200 core in general. This project only verifies the hyper
pipelining aspects. If there are problems with the original source code, they are also
reflected (and most likely not detected) in this project.

3.1 New Core Inputs
After running an RTL modifier tool on

the original source code, the resulting hyper
pipelined OR1200 core has the same inputs
and outputs plus the new clk_i_cml_*
clocks, whereas “clk_i” is the original clock
name. The timing is explained in the next
chapter. Additionally, the CMLS (core
multiplier level selector) signal is routed to
the memories. Figure 7. CMLS Input and New Clocks

3.2 Memory Handling
Memories are not multiplied automatically, but the cmls (core multiplier level

selector) signal is routed to their instantiations instead. It is up to the user how the new
memories are instantiated. Usually the memory remains one block and only the size is
multiplied. For that the new memory can simply be connected by modifying the address
line:

verilog: .addr({cmls, addr}),

The user can also use multiple individual instantiations and must then multiplex the
inputs and outputs. “cmls” must continuously count and can be driven by a simple
counter design. Please refer to “3.6 Possible Enhancements” for different memory (I$,
D$) sizes.

www.opencores.org Rev 0.1 Preliminary 9 of 19

all_inputs

cmls
clk_i_cml_1

all_outputs
Hyper
Pipelined
OR1200
Coreclk_i_cml_2

clk_i_cml_3

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

3.3 Verification of Hyper Pipelining Modifications
A hyper pipelined core is very hard to debug even by its creator, when intermediate

signals must be looked at. Fortunately there is a trick to verify the correctness. If all paths
from and to each existing clock are constraint, the STA indicates if paths between the
individual clock domains exist or not. Table 1 shows, that in a hyper pipelined core, there
must only exist valid paths from one clock to the “succeeding” clock, or from the last
clock index to the original clock. All other paths (e.g. path from one clock domain to
itself or “trailing” clocks) are invalid and should not exist.

Table 1: Valid and Invalid Paths for CMF == 4

from\to orig. clock clk_i clk_i_cml_1 cp3_cml_2 clk_i_cml_3
orig. clock clk_i invalid valid invalid invalid
clk_i_cml_1 invalid invalid valid invalid
clk_i_cml_2 invalid invalid invalid valid
clk_i_cml_3 valid invalid invalid invalid

This is one of the reasons, why all introduced PSR get an individual clock. The hyper
pipelined core with all clocks are synthesized and with the right constraint files (e.g.
.ucf), the STA can reflect potential RTL modification bugs. If no false path is reported,
the individual clocks can be merged with the original clock when the hyper pipelined
OR1200 core is instantiated. For that an OR1200_core_cm[CMF]_top.vhd file is
delivered. Using this file as top level, the timing of this single clock indicates the
performance of the hyper pipelined OR1200 core. The OR1200_core_cm[CMF]_top.v
file is not used for simulation.

Another trick to easily verify the correctness of the hyper pipelined modifications is to
run CMF equal programs. All individual cores must then behave equal and a potential
bug resulting from the modifications will result in a misbehavior, which can be easily
detected.

For simplification, the wishbone clock inputs are merged with the processor clock
input “clk_i”.

www.opencores.org Rev 0.1 Preliminary 10 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

3.4 Xilinx Area Results
The next tables show the area and timing results for a Virtex5 device from Xilinx. In

general, ISE 11.1 with the place and route effort option “standard” is used. The Xilinx
environment variable XIL_TIMING_ALLOW_IMPOSSIBLE must be set to achieve a
better timing. This is done to allow the pushing of registers into the 32x32-bit multiplier
(DSP). Memories are regenerated with the multiplied size by Xilinx's Core Generator.

The following results are based on a Virtex5 device (xc5vlx50-1ff676, package
FF676, speed grade -1). One implemented OR1200 core reaches 13.853ns (72.2MHz) on
this device. The “Achieved Timing” number is the “Data Path Delay” number taken from
the first report of the timing report (.twr). The “Theoretical Timing” considers the
additional delays introduced by the PSR. The sum of setup time (Tdick) and the hold
time (Tcko) is 0.400ns. The theoretical achievable timing is:

CMF == 2: (13.853ns + 0.400ns) / 2 = 7.126ns (140MHz = 193% of 72.2MHz)
CMF == 3: (13.853ns + 0.800ns) / 3 = 4.884ns (204MHz = 282% of 72.2MHz)
CMF == 4: (13.853ns + 1.200ns) / 4 = 3.763ns (265MHz = 367% of 72.2MHz)

Table 2 shows the area and timing results of the implemented hyper pipelined OR1200
core.

Table 2. Area and Timing of Virtex5 Device

CMF FF Slice LUTs Occupied
Slices

Theoretical
Timing

Constraint Achieved
Timing

LUT
levels

1
(Orig.)

1.239 3.663 (12%) 1.131 (15%) n/a 13.5ns
(125MHz)

13.853ns
(72.2MHz)

12

2 3.048 4.535 (15%) 1.414 (19%) 7.126ns
(140MHz)

7.120ns
(140MHz)

7.327ns
(136MHz)

7

3 4.153 5.602 (19%) 1.594 (22%) 4.884ns
(204MHz)

4.880ns
(204MHz)

5.398ns
(185MHz)

R-Out
+ 3

4 4.777 6.286 (21%) 1.773 (24%) 3.763ns
265MHz

3.763ns
(265MHz)

4.902ns
(203MHz)

R-Out
+ 1

R-Out in Table 2 indicates a RAM output. The number of used DSP48Es for the
32x32-bit multiplier remains 4.

www.opencores.org Rev 0.1 Preliminary 11 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

Table 3. Relative Area and Performance of Virtex5 Device

CMF Slice
LUTs

Occupied
Slices

Relative
Performance

Theoretical vs
Achieved Timing

Performance per
Slice [kHz]

1 (Orig.) 1 1 1 n/a 63.8
2 1.23 1.25 1.88 0.97 96.1
3 1.52 1.40 2.56 0.90 116
4 1.71 1.56 2.82 0.76 114

Table 3 can be read as follows. With CMF = 2, the number of slice LUT rises by 23%
and the number of occupied slices by 25%. The performance increases by 88%, which is
97% of the theoretical achievable timing. The performance per slice is 96.1kHz.

The average delay of a Virtex5 LUT and a net is assumed to be around 1.3ns (after
having looked at tons of timing reports). The difference between theoretical timing and
achieved timing is always within this granularity of 1.3ns for CMF = 2, 3. The increased
area of up to 56% has also an impact on the achieved timing.

The device is relative underutilized (15%). Other examples with higher utilization
show, that the hyper pipelined core can be better packed (less increase of occupied slices
for the hyper pipelined core).

www.opencores.org Rev 0.1 Preliminary 12 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

3.5 ASIC Area Estimations
If the hyper pipelined OR1200 core is implemented on an ASIC, the size of the

combinatorial logic (gates) remains almost the same, only the number of registers
increases. This number should not be simply multiplied, because the registers of the new
implemented PSR are located at internal signals. A m+n-adder adds m+n registers, if the
registers are placed at the inputs, but only max(m, n)+1, if they are placed at the outputs
of the adder logic. Table 4 shows the number of registers implemented on the OR1200
core without the FPGA specific timing optimizations.

Table 4. Area Ratio for ASICs

CMF Registers Area Ratio with 42/58 Ratio
1 (Orig.) 1239 1
2 2995 1.59
3 3769 1.85
4 4244 2.01

If the ratio of register area and combinatorial logic is set to 42/58 (42% register area
and 58% combinatorial logic), which is based on a synthesis report using the lsi_10k
library, the area increases by 59%, 85% or 101% of the original area. For ASICs, the
performance is much closer to the theoretical timing, because the place and route as well
as the timing optimization algorithms can achieve relatively better results in general
compared to FPGAs, due to the higher routing capabilities of ASICs.

The hyper pipelined core includes a huge number of shift registers. If an area
optimized shift register cell is use, the overall area can be reduced even further. The logic
cones of the hyper pipelined core are also fundamentally smaller, which leads to a
reduced size of test pattern and test time.

www.opencores.org Rev 0.1 Preliminary 13 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

3.6 Possible Enhancements
The hyper pipelining is based on automatic RTL modifications. This allows further

manual modifications by the designer after the automatic hyper pipelining task as well.
The hyper pipelined OR1200 core can be enhanced in a way, that the individual
functional cores share the same instruction cache (I$) or even more useful the same data
cache (D$). This can lead to a performance enhancement of the overall system due to
data-sharing in the D$. For that the designer might only need to change a few lines in the
RTL, where the D$ is instantiated and adopt the software for the access definition. It is
also not always necessary, that all processors in a hyper pipelined core have the same I$
or D$ sizes. Some or all even do not need to be implemented at all. Each processor
knows its processor index in the hyper pipelined scenario, so that an individual (or even
dynamic, on the fly re-) configuration of I$ and D$ is possible, if the RTL code is
manually enhanced by the designer. This would also certainly improve the performance
of the multicore scenario.

Another idea is to add special function registers (SFR) for mail-boxing, etc. to the
original RTL code. After the hyper pipelining process, these processors could possibly be
read and written by all other cores, so that a single cycle communication could be
possible.

www.opencores.org Rev 0.1 Preliminary 14 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

4 Simulation
In this section the simulation of a hyper pipelined OR1200 is shown. For the

simulation, a random instruction code generator is used, which generates standard
register file modification instructions, set flag instructions and conditional forward
branches (by a few lines). Once a certain address border is reached, the code generator
adds a jump to the content of R0. The advantage is, that if the read address of the
instruction fetch cycle is displayed in an analog format, the waveform looks like a
chainsaw profile. Since in this case, little forward branches based on calculation with
random variables are added, it is more or less the profile of a used chainsaw.

Figure 8. Hyper Pipelined OR1200 Simulation with CMF = 3

The first three lines of Figure 8 show the instruction read address of the three
independent OR1200 cores. All three programs run at the same speed, the OR1200 with a
higher index in the first line simply has a higher address border to jump back to the
content of R0, so it appears in the waveform window to be slower. All signals are saved
at the relevant time slice for debugging purpose only, the real instruction read address
bus behavior is shown in the fourth line. It can be seen, how the bus signals switch
between the three independent OR1200.

www.opencores.org Rev 0.1 Preliminary 15 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

Figure 9. Switching Off and On Cores and Restart

Figure 9 shows, that individual cores can be switched off by disabling the relevant
clock at the relevant time slot. This reduces the activity of the design, because the
switched off core behaves then exactly as its predecessor (and its outputs should be
treated as invalid at the relevant timeslot). By applying a reset impulse at the right
timeslot, the core can be individually restarted and continues with the reset sequence (in
case of a processor). There is no particular rule in which order the cores can be switched
on and off. The other cores are completely unaffected by this and continue to run at the
given speed.

It is important to notice, that the individual core does not store its values when
switched off. It always restarts with the reset values, respectively the reset sequence if the
core is a processor. If a core is switched off, the clocks can also be gated to reduce
activity on the clock line. This is the another reason, why the PSR get their individual
clock trees.

Another interesting aspect is, that if no individual reset cycle is added, but the clock is
switched on again, a copied version of the preceding processor continues and will behave
different, if the inputs change compare to its predecessor at the relevant timeslot.

www.opencores.org Rev 0.1 Preliminary 16 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

5 Directory
Structure

The next Figure 10 gives an overview of the directory structure of this Hyper
Pipelined OR1200 project.

/OR1200_hp

/bench // testbench files
/rtl_orig // random pattern generator for original code
/rtl_cm2 // random pattern generator for code with CMF = 2
/...

/doc // contains this document

/ise
/*.v // define.v and timescale.v file for simulation
/ise_orig // Virtex 5 results, etc. of original code
/ise_cm2 // constrain file (.ucf) for invalid paths detection
/...
/ise_cm2_top // Virtex 5 results, etc. of code with CMF = 2
/...

. /rtl
/rtl_orig // copied original code of OR1200 source code with

// minor modifications
/rtl_cm2 // modified RTL code for Virtex5 with CMF = 2
/...
/rtl_virtex_cm2 // Virtex5 RTL models and ISE instantiations
/...

/syneda // SynEDA CoreMultiplier project file

Figure 10. Directory Structure of Hyper Pipelined OR1200 Project

www.opencores.org Rev 0.1 Preliminary 17 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

Further comments need to be made:

The or1200_top_cm[CMF]_top.vhd files in the “rtl” sub-directories are not used for
simulation. The are only use to merge the clocks clk_i and clk_i_cml_[CMF] to check the
timing with ISE.

The files or1200_gmultp2_32x32.v in the individual RTL sub-directories are used to
verify the hyper pipelining modifications (invalid paths). The manually modified file
or1200_gmultp2_32x32_cm[CMF]_pipe.v are used for ISE to enable automatic
pipelining of the 32x32-bit multiplier DSP. It looks, as if the clock names must be
identical, so that the registers can be pushed in the DSP automatically.

With CMF = 4, the D$ ram outputs have registered outputs, automatically introduced
by Xilinx's Core Generator. The verification trick described in “3.3 Verification of Hyper
Pipelining Modifications” therefore shows the path from the D$ clock “clk_i” to
“clk_i_cml_2”.

www.opencores.org Rev 0.1 Preliminary 18 of 19

http://www.opencores.org/

OpenCores Hyper Pipelined OR1200 Core 10/22/10

6 Reference
References:

[1] Y. Markovskiy, Y. Patel, “C-slow Retiming of a Microprocessor Core”, UC Berkeley,
CA, CS252, Semester Project, http:// www.cs.berkeley.edu/~yatish/cs252/252slides.ppt

Tools used:

Simulator: Modelsim XE, Mentor Graphics, CA, USA
http://www.xilinx.com/tools/mxe.htm

FPGA Compiler: ISE 11.1, Xilinx, CA, USA
http://www.xilinx.com/tools/webpack.htm

CoreMultiplier: SynEDA CoreMultiplier, EDAptability, Munich, Germany
http://www.edaptability.com/coremultiplier.htm

www.opencores.org Rev 0.1 Preliminary 19 of 19

http://www.cs.berkeley.edu/~yatish/cs252/252slides.ppt
http://www.opencores.org/
http://www.edaptability.com/coremultiplier.htm
http://www.xilinx.com/tools/webpack.htm
http://www.xilinx.com/tools/mxe.htm

	Author: Tobias Strauch
	Preliminary Draft

	Table of Contents
	Table of Figures and Tables
	1 Introduction
	2 Theory of Hyper Pipelining
	3 Hyper Pipelined OR1200 Core
	3.1 New Core Inputs
	3.2 Memory Handling
	3.3 Verification of Hyper Pipelining Modifications
	3.4 Xilinx Area Results
	3.5 ASIC Area Estimations
	3.6 Possible Enhancements

	4 Simulation
	5 Directory Structure
	6 Reference

