
ORSoC Graphics accelerator Specification

Per Lenander, Anton Fosselius

March 23, 2012

1

Revision history

Rev. Date Author Description

0.1.0 23/3/2012 Per Lenander Initial draft

2

Contents

1 Introduction 5
1.1 Features . 5
1.2 IP Core directory structure . 5

2 Architecture 5
2.1 Overview . 5
2.2 Concepts . 7
2.3 Instruction fifo . 8
2.4 Pipeline . 8
2.5 Description of core modules . 8

2.5.1 Wishbone slave . 8
2.5.2 Vector processor . 9
2.5.3 Rasterizer . 9
2.5.4 Fragment processor . 9
2.5.5 Blender . 9
2.5.6 Wishbone arbiter . 9
2.5.7 Wishbone master read . 10
2.5.8 Renderer . 10
2.5.9 Wishbone master write 10

3 IO Ports 10

4 Registers 10
4.1 Control Register (CTRL REG) 11
4.2 Status Register (STATUS REG) 11
4.3 Source Pixel position 0 Register (SRC P0) 11
4.4 Source Pixel position 1 Register (SRC P1) 11
4.5 Destination Pixel position 0 Register (DEST P0) 11
4.6 Destination Pixel position 1 Register (DEST P1) 12
4.7 Clip Pixel position 0 Register (CLIP P0) 12
4.8 Clip Pixel position 1 Register (CLIP P1) 12
4.9 Color Register (color) . 12
4.10 Target addr Register (TADR REG) 12
4.11 Target size Register (TSZE REG) 13
4.12 Tex0 Base . 13
4.13 Tex0 Size . 13
4.14 Alpha . 13
4.15 Colorkey . 13

5 Operation 13
5.1 Draw pixel . 14
5.2 Fill rect . 14
5.3 Line . 14
5.4 Vector operations... 14

6 Clocks 14

3

7 Driver interface 14
7.1 newlib . 14

7.1.1 oc gfx init . 15
7.1.2 oc vga set videomode . 15
7.1.3 oc vga set vbara . 15
7.1.4 oc vga set vbarb . 15
7.1.5 oc vga bank switch . 15
7.1.6 oc gfx init surface . 15
7.1.7 oc gfx bind rendertarget 16
7.1.8 oc gfx cliprect . 16
7.1.9 oc gfx srcrect . 16
7.1.10 oc gfx set pixel . 16
7.1.11 oc gfx memcpy . 16
7.1.12 oc gfx set color . 16
7.1.13 oc gfx rect . 17
7.1.14 oc gfx line . 17
7.1.15 oc gfx enable tex0 . 17
7.1.16 oc gfx bind tex0 . 17
7.1.17 oc gfx enable alpha . 17
7.1.18 oc gfx set alpha . 17
7.1.19 oc gfx enable colorkey . 17
7.1.20 oc gfx set colorkey . 18

7.2 Extended newlib . 18
7.2.1 oc gfxplus init . 18
7.2.2 oc gfxplus init surface . 18
7.2.3 oc gfxplus bind rendertarget 18
7.2.4 oc gfxplus flip . 18
7.2.5 oc gfxplus clip . 19
7.2.6 oc gfxplus fill . 19
7.2.7 oc gfxplus line . 19
7.2.8 oc gfxplus draw surface 19
7.2.9 oc gfxplus draw surface section 19
7.2.10 oc gfxplus colorkey . 20
7.2.11 oc gfxplus alpha . 20

7.3 Linux . 20
7.4 Utilities . 20

7.4.1 Sprite Maker . 20

8 Programming examples 20

4

1 Introduction

The ORSoC Graphics accelerator allows the user to do advanced vector ren-
dering and 2D blitting to a memory area. The core supports simple operations
such as drawing textures, lines and filling rectangular areas with color.

This IP Core is designed to integrate with the OpenRISC processor through
a Wishbone bus interface. The core itself has no means of displaying the infor-
mation rendered, for this purpose it should work alongside a display component,
such as the enhanced VGA/LCD IP core found on OpenCores.

1.1 Features

• 32-bit Wishbone bus interface

• Integrates with enhanced VGA/LCD IP core

• Support for 8, 16 and 32 bit color depth modes

• Support for variable resolution

• Acceleration of simple fill and line operations

• Acceleration of memory copy operations

• Textures can be saved to video memory

• Vector transformation and rasterization

• Clipping/Scissoring

• Alpha blending and colorkeying

• Requires 1800 Slice LUTs (Xilinx ISE 13.4)

1.2 IP Core directory structure

A basic overview of the contents of the IP core source folder can be found in
figure 1. The rtl folder also contains files for implementing the component in
ORPSoCv2.

2 Architecture

2.1 Overview

A basic topology of how the orgfx is connected to the VGA driver and OpenRisc
core is shown in figure 2. The orgfx has three wishbone interfaces: one read-
/write port that is used to communicate with the host CPU. One read port that
reads texture/alpha blending information from the RAM and one write port to
write pixel information to the RAM.

5

Figure 1: Directory structure of the ORSoC graphics accelerator.

6

Figure 2: Overview of the ORPSoCv2’s wishbone interconnection.

2.2 Concepts

This section describes a few basic terms used in this document.
Video memory – The orgfx component writes pixels one by one to an

external memory, usually a SDRAM or DDR RAM chip. The CPU should also
have access to this memory space to be able to write pixels directly (the easiest
way to load textures).

Render target – The render target, defined by the target base and size
registers, describes the area to which all operations render pixels. It is possible
to change the base address and size, enabling render-to-texture and double
buffering.

Surface/Texture – Any memory area that can be rendered to, including
the render target, is considered a surface. A surface is defined by it’s base
address and size. There are two main surfaces that the orgfx device handles:
the render target and the currently active texture. Swapping between different
textures has to be done in software. The operation of setting the current render
target or texture is referred to as binding.

Source, Destination and Clip rectangles – There are three sets of rect-
angles that affect rendering, each described by two points. The first point sets
the beginning of the rectangle, while the second point sets the pixel after the
end of the rectangle. This way, a rectangle exactly filling the screen would be
(0,0,640,480) at 640x480 resolution. See figure 3;

Source rectangle – The source rectangle defines what pixels should be
read from a texture during textured operations. The points are defined in the
coordinates of the currently bound texture. This way sections of a texture can
be drawn (good for tile maps or bitmap fonts).

Destination rectangle – The destination rectangle defines where opera-
tions such as draw pixel and draw line will draw pixels, in the coordinates of
the render target.

Clip rectangle – The clip rectangle defines an area within the current
render target which is valid to draw to. Any pixels outside this rectangle are
discarded in the rasterization step. Pixels outside of the render target are au-
tomatically discarded.

7

Figure 3: 1. Texture, 2. Source, 3. Render target, 4. Clip, 5. Destination

2.3 Instruction fifo

All wishbone writes sent to the slave interface will pass through an instruction
fifo. If the device is in the busy state (when the pipeline is active) the instruction
will be queued instead of being set immediately. This is important to take into
account when reading from registers, since an operation that changes the register
being read might be queued. To find out if the device is busy, poll the status
register and check if the busy bit is high.

2.4 Pipeline

Currently the pipeline begins with the rasterizer, its purpose is to convert
points into pixels. When there are a request to write a rectangle, the rasterizer
receives two points and outputs all the pixels between those points. The pixels
generated by the rasterizer in recieved by the fragment processor. In the
fragment processor the pixel gets a color either by a pre-set color or from
a texture (via the wishbone read from the memory). The colored pixel is
then sent to the blender which handles alpha blending. If alpha is enabled, the
blender will read from the address in the memory where the pixel is going to
be drawn. Then the new color is calculated based on the pixel color and the
alpha value. The pixel is then passed on to the renderer which calculates the
address in the memory where the pixel is going to be written. The pixel is then
passed on to the wishbone write interface and finally to the render target in
the memory.

2.5 Description of core modules

2.5.1 Wishbone slave

The wishbone slave handles all communication from the main OpenRISC pro-
cessor (or other master cpu). This component holds all the registers, and the
instruction fifo that sets them. This component can be in one of two states:

8

Figure 4: Picture of the orgfx pipeline

busy or wait. It enters the busy state when a pipeline operation is initialized,
and returns to the wait state when the operation is finished.

2.5.2 Vector processor

This module is a stub for future releases.

2.5.3 Rasterizer

This module generates pixel coordinates for several different operations.

2.5.4 Fragment processor

The fragment processor adds color to the pixel generated by the rasterizer. If
texturing is disabled, a color supplied from the color register is used. If texturing
is enabled on the other hand, the u v coordinates supplied by the rasterizer are
used to fetch a pixel from the active texture. If colorkeying is enabled and the
fetched color matches the color key, the current pixel is discarded.

2.5.5 Blender

The blender module performs alpha blending if this is enabled. The module
fetches the color of the pixel that the current operation will write to, and the
mixes the value of the target color and the color from the fragment processor
using the following algorithm:

colorout = colorin ∗ alpha + colortarget ∗ (1− alpha)

Where alpha is a value between 0 (transparent) and 1 (opaque). If alpha
blending is disabled the pixel is passed on unmodified.

2.5.6 Wishbone arbiter

Since two parts of the pipeline (fragment and blender) needs to access video
memory, the arbiter makes certain only one of them can access the reader at
once. The blender has the highest priority.

9

2.5.7 Wishbone master read

The wishbone reader handles all reads from video memory.

2.5.8 Renderer

The renderer calculates the memory address of the target pixel.

2.5.9 Wishbone master write

The wishbone master handles all writes to the video memory.

3 IO Ports

The Core has three wishbone interfaces:

• Wishbone slave – connects to the data bus of the OpenRISC processor.
In the case of ORPSoC, this bus is connected through an arbiter.

• Wishbone master read-only – connects to a video memory port with read
access. Used for fetching textures and during blending.

• Wishbone master write-only – connects to a video memory port with write
access. Used for rendering pixels to the framebuffer.

There is an interrupt enabled that can be connected to the interrupt pins on
the or1200 CPU (in the supplied orpsoc top it is connected to or1200 pic ints[9]).
For this interrupt to trigger, the correct bits in the control register has to be
set.

4 Registers

Name Addr Width Access Description

Control 0x00 32 RW Control register
Status 0x04 32 R Status register
Src Pixel0 0x08 32 RW Source pixel0 register
Src Pixel1 0x0c 32 RW Source pixel1 register
Dest Pixel0 0x10 32 RW Destination pixel0 register
Dest Pixel1 0x14 32 RW Destination pixel1 register
Clip Pixel0 0x18 32 RW Clip pixel0 register
Clip Pixel1 0x1c 32 RW Clip pixel1 register
Color 0x20 32 RW Color register
Target Base 0x24 32 RW Render target base address
Target Size 0x28 32 RW Render target width/height register
Tex0 Base 0x2C 32 RW Texture0 base
Tex0 Size 0x30 32 RW Texture0 size
Alpha 0x34 32 RW Global alpha register
Colorkey 0x38 32 RW Colorkey register

Each register is described in detail in the following sections, with information
about what the purpose of each bit in the register is. The default value provided
for each register is set when the device receives a reset signal.

10

4.1 Control Register (CTRL REG)

Bit # Access Description

[31:10] - Reserved
[9] RW Line write
[8] RW Rect write
[7:5] - Reserved
[4] RW Colorkey enable
[3] RW Blending enable
[2] RW Texture0 enable
[1:0] RW Color depth

Default value: 0x00
Color depth is defined as follows:
Mode Color depth

00 8 bit
01 16 bit
10 24 bit (not supported)
11 32 bit

4.2 Status Register (STATUS REG)

Bit # Access Description

[31:1] R Reserved
[0] R Busy pin (high when busy)

Default value: 0x00

4.3 Source Pixel position 0 Register (SRC P0)

Bit # Access Description

[31:16] RW x
[15:0] RW y

Default value: 0x00
The source pixels are used to define a specific area in a texture to draw.

4.4 Source Pixel position 1 Register (SRC P1)

Bit # Access Description

[31:16] RW x
[15:0] RW y

Default value: 0x00

4.5 Destination Pixel position 0 Register (DEST P0)

Bit # Access Description

[31:16] RW x
[15:0] RW y

11

Default value: 0x00

4.6 Destination Pixel position 1 Register (DEST P1)

Bit # Access Description

[31:16] RW x
[15:0] RW y

Default value: 0x00

4.7 Clip Pixel position 0 Register (CLIP P0)

Bit # Access Description

[31:16] RW x
[15:0] RW y

Default value: 0x00

4.8 Clip Pixel position 1 Register (CLIP P1)

Bit # Access Description

[31:16] RW x
[15:0] RW y

Default value: 0x00

4.9 Color Register (color)

Bit # Access Description

[31:0] RW Color bits

Default value: 0x00
There are several color modes available (set in video mode register):
Mode Format

32bpp [31:24] is alpha channel. [23:16] is R, [15:8] is G and [7:0] is B
16bpp [15:11] is R, [10:5] is B and [4:0] is G
8bpp gray [7:0] sets both R, G and B values
8bpp palette [7:0] sets the color index in the palette

4.10 Target addr Register (TADR REG)

Bit # Access Description

[31:2] RW Video Memory Address
[1:0] - Nothing

Default value: 0x00

12

4.11 Target size Register (TSZE REG)

Bit # Access Description

[31:16] RW Width
[15:0] RW Height

Default value: 0x00

4.12 Tex0 Base

Bit # Access Description

[31:2] RW Video Memory Address
[1:0] - Nothing

Default value: 0x00

4.13 Tex0 Size

Bit # Access Description

[31:16] RW Width
[15:0] RW Height

Default value: 0x00

4.14 Alpha

Bit # Access Description

[31:8] - Reserved
[7:0] RW Global alpha

Default value: 0xff
The global alpha value is used in all rendering when alpha blending is en-

abled. 0xff is full opacity, while 0x00 is full transparency (nothing rendered).

4.15 Colorkey

Bit # Access Description

[31:0] RW Colorkey

Default value: 0x00
By setting a colorkey certain pixels in a texture can be discarded in the

fragment stage, providing a hard transparency. Depending on the color depth,
a mask is applied to the color. Using 8 bit color, only the 8 least significant bits
in the colorkey will be compared with the texture color during the check. The
colorkey enable bit in the control register must be set to enable this functionality.

5 Operation

All hardware accelerated operations draw pixels to the currently active surface
(defined by TADR REG and TSZE REG). These operations are all affected by
clip p0 and clip p1. No pixels that fall outside the clipping rectangle will be
rasterized.

13

5.1 Draw pixel

Input needed: dest p0, color
Orgfx have no hardware-support for writing a single pixel to the video memory.
However the software API makes this operation possible by writing directly to
the memory. Since the video memory can point to both the framebuffer and
to textures, the same operation can be used to draw an arbitrary pixel to the
screen and to load a texture into video memory.

5.2 Fill rect

Input needed: ctrl, dest p0, dest p1, color, [src p0, src p1]
Fill rect will fill the area of a rectangle created between the pixel dest p0 and
dest p1 with color. If texturing is enabled, color will be taken from the active
texture in the area between src p0 and src p1. This operation is hardware
accelerated, and is activated by setting the Rect write bit in the control register.

5.3 Line

Input needed: dest p0, dest p1, color
Line will draw a line between the pixels dest p0 and dest p1 with color. This
operation is hardware accelerated.

5.4 Vector operations...

6 Clocks

The wishbone slave uses the system wishbone bus clock at 50 Mhz, while the
rest of the pipeline and the wishbone interfaces to the memory runs at 100Mhz.

7 Driver interface

The ORSoC graphics accelerator offers three different APIs to code against, two
for bare metal when coding directly against the processor, and a Linux kernel
module. The extended bare metal interface is a wrapper around the basic bare
metal API, and makes coding easier by reducing the number of calls. The
drawback is lesser control over the graphics card.

7.1 newlib

The basic library is provided in oc gfx.h and oc gfx.c.
The bare metal library declares a structure that can hold surfaces (both

framebuffers and textures). Many functions take a pointer to one of these struc-
tures.

s t r u c t o c g f x s u r f a c e
{

unsigned i n t addr ;
unsigned i n t w;
unsigned i n t h ;

14

} ;

7.1.1 oc gfx init

Description: The oc gfx init must be called first to get other oc gfx commands
to work properly.

void o c g f x i n i t (unsigned i n t memoryArea) ;

7.1.2 oc vga set videomode

Description: Sets the video mode, width, height, bpp.

void oc g fx s e t v ideomode (unsigned i n t width ,
unsigned i n t height ,
unsigned char bpp) ;

7.1.3 oc vga set vbara

Description: Assign a memory address to ”Video Base Address Register A”.

void oc vga s e t vba ra (unsigned i n t addr) ;

7.1.4 oc vga set vbarb

Description: Assign a memory address to ”Video Base Address Register B”.

void oc vga s e t vba rb (unsigned i n t addr) ;

7.1.5 oc vga bank switch

Description: Switches the framebuffer.

void oc vga bank switch () ;

7.1.6 oc gfx init surface

Description: Initialize a surface and return a control structure for it. This
function increments an internal video memory stack pointer, so each surface
will be allocated after the previous one in memory (starting at memoryArea set
by oc gfx init). There is currently no memory management in place to recycle
surface memory once it is no longer in use. The first surface initialized will
point to the same memory that the video controller reads from, so it should be
initialized with the width and height of the screen.

s t r u c t o c g f x s u r f a c e
o c g f x i n i t s u r f a c e (unsigned i n t width ,

unsigned i n t he ight) ;

15

7.1.7 oc gfx bind rendertarget

Description: Binds a surface as the active render target. This function must
be called before any drawing operations can be performed.

void o c g f x b i n d r e n d e r t a r g e t (s t r u c t o c g f x s u r f a c e ∗ s u r f a c e) ;

7.1.8 oc gfx cliprect

Description: Sets the clipping rect. No pixels will be drawn outside of this rect
(useful for restricting draws to a specific area of the render target). oc gfx bind rendertarget
will reset the clipping rect to the size of the surface.

i n l i n e void o c g f x c l i p r e c t (unsigned i n t x0 ,
unsigned i n t y0 ,
unsigned i n t x1 ,
unsigned i n t y1) ;

7.1.9 oc gfx srcrect

Description: Sets the source rectangle that will be used by texturing opera-
tions. This allows for only drawing a small part of a texture. oc gfx bind tex0
will reset this to the size of the texture.

i n l i n e void o c g f x s r c r e c t (unsigned i n t x0 ,
unsigned i n t y0 ,
unsigned i n t x1 ,
unsigned i n t y1) ;

7.1.10 oc gfx set pixel

Description: Set a pixel on coordinate x,y to color. This is done in software
by direct memory writes. This operation is not affected by the clipping rect!

i n l i n e void o c g f x s e t p i x e l (unsigned i n t x ,
unsigned i n t y ,
unsigned i n t c o l o r) ;

7.1.11 oc gfx memcpy

Description: Copies memory from the processor to the video memory. Size
is in 32-bit words. This function is intended to work with the output array of
the sprite converter utility to load images into memory. Remember to bind a
texture as the render target first!

void oc gfx memcpy (unsigned i n t mem[] ,
unsigned i n t s i z e) ;

7.1.12 oc gfx set color

Description: Sets the current drawing color.

i n l i n e void o c g f x s e t c o l o r (unsigned i n t c o l o r) ;

16

7.1.13 oc gfx rect

Description: Draws a rect from x0,y0 to x1,y1 and fills it with the current
drawing color. If texturing is enabled, the current texture will be drawn instead.

i n l i n e void o c g f x r e c t (unsigned i n t x0 ,
unsigned i n t y0 ,
unsigned i n t x1 ,
unsigned i n t y1) ;

7.1.14 oc gfx line

Description: Draws a line from x0,y0 to x1,y1 with the current drawing color.
If texturing is enabled, the first pixel of the current texture will be drawn instead.

i n l i n e void o c g f x l i n e (unsigned i n t x0 ,
unsigned i n t y0 ,
unsigned i n t x1 ,
unsigned i n t y1) ;

7.1.15 oc gfx enable tex0

Description: Enables or disables texturing.

void o c g f x e n a b l e t e x 0 (unsigned i n t enable) ;

7.1.16 oc gfx bind tex0

Description: Binds a surface as the current texture. Will reset the source rect.

void o c g f x b i n d t e x 0 (s t r u c t o c g f x s u r f a c e ∗ s u r f a c e) ;

7.1.17 oc gfx enable alpha

Description: Enables or disables alpha blending.

void o c g f x e n a b l e a l p h a (unsigned i n t enable) ;

7.1.18 oc gfx set alpha

Description: Sets the alpha blending value.

void o c g f x s e t a l p h a (unsigned i n t alpha) ;

7.1.19 oc gfx enable colorkey

Description: Enables or disables colorkey.

void o c g f x e n a b l e c o l o r k e y (unsigned i n t enable) ;

17

7.1.20 oc gfx set colorkey

Description: Sets the colorkey color.

void o c g f x s e t c o l o r k e y (unsigned i n t co lo rkey) ;

7.2 Extended newlib

The extended library is provided in oc gfx plus.h and oc gfx plus.c, but
oc gfx.c also has to be compiled for it to work.

Instead of using surface structs directly, the extended API hides surface
management by returning id tags for each surface. The screen surface (defined
by id -1) is handled as a single surface, even when double buffering is enabled.

The driver defines the number of available surfaces (not counting the screen)
with a static define. Change this if the default value is too low for your appli-
cation.

7.2.1 oc gfxplus init

Description: Initializes the screen with the supplied video mode and returns
an id for the screen.

i n t o c g f x p l u s i n i t (unsigned i n t width ,
unsigned i n t height ,
unsigned char bpp ,
unsigned char doub l eBuf f e r ing) ;

7.2.2 oc gfxplus init surface

Description: Unlike the basic API, this function both initializes a surface and
loads a prepared image to it in one function call. The return value is an id that
can be used to bind the surface. It changes render target during operation, but
switches back to the last render target on completion. Since the screen(s) are
already initialized by a call to init, they do not need to be loaded using this
function.

i n t o c g f x p l u s i n i t s u r f a c e (unsigned i n t width ,
unsigned i n t height ,
unsigned i n t mem []) ;

7.2.3 oc gfxplus bind rendertarget

Description: Binds a surface as the current render target.

void o c g f x p l u s b i n d r e n d e r t a r g e t (i n t s u r f a c e) ;

7.2.4 oc gfxplus flip

Description: Swaps which buffer to draw on when using double buffering.
Needs to be called once before anything shows up on screen!

void o c g f x p l u s f l i p () ;

18

7.2.5 oc gfxplus clip

Description: Sets the current clipping rect. This is reset to the size of the new
render target when oc gfxplus bind rendertarget is called.

i n l i n e void o c g f x p l u s c l i p (unsigned i n t x0 ,
unsigned i n t y0 ,
unsigned i n t x1 ,
unsigned i n t y1) ;

7.2.6 oc gfxplus fill

Description: Draws a rectangle to the current render target with a flat color.

void o c g f x p l u s f i l l (unsigned i n t x0 ,
unsigned i n t y0 ,
unsigned i n t x1 ,
unsigned i n t y1 ,
unsigned i n t c o l o r) ;

7.2.7 oc gfxplus line

Description: Draws a line from x0,y0 to x1,y1 to the current render target
with a flat color.

void o c g f x p l u s l i n e (unsigned i n t x0 ,
unsigned i n t y0 ,
unsigned i n t x1 ,
unsigned i n t y1 ,
unsigned i n t c o l o r) ;

7.2.8 oc gfxplus draw surface

Description: Draws a texture to the current render target.

void o c g f x p l u s d r a w s u r f a c e (unsigned i n t x0 ,
unsigned i n t y0 ,
unsigned i n t s u r f a c e) ;

7.2.9 oc gfxplus draw surface section

Description: Draws a section of a texture defined by src0, src1 to the current
render target.

void o c g f x p l u s d r a w s u r f a c e s e c t i o n (unsigned i n t x0 ,
unsigned i n t y0 ,
unsigned i n t srcx0 ,
unsigned i n t srcy0 ,
unsigned i n t srcx1 ,
unsigned i n t srcy1 ,
unsigned i n t s u r f a c e) ;

19

7.2.10 oc gfxplus colorkey

Description: Sets the colorkey color and enables or disables the use of the
colorkey.

void o c g f x p l u s c o l o r k e y (unsigned i n t co lorkey ,
unsigned i n t enable) ;

7.2.11 oc gfxplus alpha

Description: Sets the alpha value and enables or disables the use of the alpha
blending.

void o c g f x p l u s a l p h a (unsigned i n t alpha ,
unsigned i n t enable) ;

7.3 Linux

The current version of the core does not have a Linux driver.

7.4 Utilities

7.4.1 Sprite Maker

Since there is no libraries for loading images in the bare metal driver, a utility
program is provided that converts an image into a format that can be loaded to
the graphics accelerator. The Sprite Maker utility uses SDL and SDL image to
load images, and supports loading several basic formats, such as bmp, jpg, png,
gif etc. The utility supports writing to 8-, 16-, 24- and 32-bits-per-pixel (must
match the format set by oc gfx set videomode). The width of the loaded image
must be a multiple of 4 pixels (8 bpp), 2 pixels (16 bpp) or 1 bpp (24, 32 bpp)
respectively.

The resulting output of the utility is a header file that can be included into
your program. This header declares an array, which can be copied to memory
and be used as a texture.

This is sample shows how the converter utility can be used:

. / spr i temaker image . png [bpp]

If bpp is not provided, the utility uses 8 bits-per-pixel. For an example of
how to use the output of the converter, see section 8.

8 Programming examples

The following piece of code shows how to use the extended interface for a bare
metal implementation on the ORPSoCv2 platform. Bahamut cc.png.h is a 186
by 248 pixel image with a pinkish background (rgb code ff00ff, or f81f in 16 bit).
The header file is generated by the sprite maker utility at 16 bit color depth.

#inc lude ” o c g f x p l u s . h”

#inc lude ”Bahamut cc . png . h”

20

i n t main (void)
{

i n t i ;

// I n i t i a l i z e s c r e en to 640x480−16@60
// No double b u f f e r i n g
i n t s c r e en = o c g f x p l u s i n i t (640 , 480 , 16 , 0) ;

// I n i t i a l i z e dragon s p r i t e
i n t bahamut spr i te =

o c g f x p l u s i n i t s u r f a c e (186 , 248 , Bahamut cc) ;

// Act ivate co l o rkey ing
o c g f x p l u s c o l o r k e y (0 x f81 f , 1) ;

// Clear screen , white c o l o r
o c g f x p l u s f i l l (0 ,0 ,640 ,480 ,0 x f f f f) ;
// Draw a few l i n e s with d i f f e r e n t c o l o r s
o c g f x p l u s l i n e (200 ,100 ,10 ,10 ,0 xf000) ;
o c g f x p l u s l i n e (200 ,100 ,351 ,31 ,0 x 0 f f 0) ;
o c g f x p l u s l i n e (200 ,100 ,121 ,231 ,0 x00f0) ;
o c g f x p l u s l i n e (200 ,100 ,321 ,231 ,0 x f 0 0 f) ;

// Draw the dragon at d i f f e r e n t alpha s e t t i n g s
o c g f x p l u s a l p h a (6 4 , 1) ;
o c g f x p l u s d r a w s u r f a c e (100 , 100 , bahamut spr i te) ;
o c g f x p l u s a l p h a (1 2 8 , 1) ;
o c g f x p l u s d r a w s u r f a c e (120 , 102 , bahamut spr i te) ;
o c g f x p l u s a l p h a (2 5 5 , 1) ;
o c g f x p l u s d r a w s u r f a c e (140 , 104 , bahamut spr i te) ;

whi l e (1) ;
}

References

21

	Introduction
	Features
	IP Core directory structure

	Architecture
	Overview
	Concepts
	Instruction fifo
	Pipeline
	Description of core modules
	Wishbone slave
	Vector processor
	Rasterizer
	Fragment processor
	Blender
	Wishbone arbiter
	Wishbone master read
	Renderer
	Wishbone master write

	IO Ports
	Registers
	Control Register (CTRL_REG)
	Status Register (STATUS_REG)
	Source Pixel position 0 Register (SRC_P0)
	Source Pixel position 1 Register (SRC_P1)
	Destination Pixel position 0 Register (DEST_P0)
	Destination Pixel position 1 Register (DEST_P1)
	Clip Pixel position 0 Register (CLIP_P0)
	Clip Pixel position 1 Register (CLIP_P1)
	Color Register (color)
	Target addr Register (TADR_REG)
	Target size Register (TSZE_REG)
	Tex0 Base
	Tex0 Size
	Alpha
	Colorkey

	Operation
	Draw pixel
	Fill rect
	Line
	Vector operations...

	Clocks
	Driver interface
	newlib
	oc_gfx_init
	oc_vga_set_videomode
	oc_vga_set_vbara
	oc_vga_set_vbarb
	oc_vga_bank_switch
	oc_gfx_init_surface
	oc_gfx_bind_rendertarget
	oc_gfx_cliprect
	oc_gfx_srcrect
	oc_gfx_set_pixel
	oc_gfx_memcpy
	oc_gfx_set_color
	oc_gfx_rect
	oc_gfx_line
	oc_gfx_enable_tex0
	oc_gfx_bind_tex0
	oc_gfx_enable_alpha
	oc_gfx_set_alpha
	oc_gfx_enable_colorkey
	oc_gfx_set_colorkey

	Extended newlib
	oc_gfxplus_init
	oc_gfxplus_init_surface
	oc_gfxplus_bind_rendertarget
	oc_gfxplus_flip
	oc_gfxplus_clip
	oc_gfxplus_fill
	oc_gfxplus_line
	oc_gfxplus_draw_surface
	oc_gfxplus_draw_surface_section
	oc_gfxplus_colorkey
	oc_gfxplus_alpha

	Linux
	Utilities
	Sprite Maker

	Programming examples

