
 1

User Guide of the PCIe SG DMA Engine on

Xilinx ML605 Virtex6 Development Board
V1.6

 Wenxue Gao

weng.ziti@gmail.com

 Sabatini Simone

sabatini.simone@gmail.com

10 March 2012

Revision

Date

Comment

1.0 20 Aug 2009 Created.
1.1 26 Nov 2009 Correction of some errors.
1.2 24 Aug 2011 Adapted for OpenCores.org.
1.3 14 Sep 2011 Testbench is added.
1.4 10 Feb 2012 Adapted for Virtex6 ML605

1.5 20 Feb 2012 IP Cores updated to ISE12.3 latest version

1.6 10 Mar 2012 “User Mode” and “LoopBack Mode” added

mailto:weng.ziti@gmail.com
mailto:sabatini.simone@gmail.com

1. Overview

This project for the xc6vlx240t-ff1156-1 FPGA logic fabric implement a PCIe SG DMA Engine.

It can be compiled in two separate modes by changing the value of the constant

USE_LOOPBACK_TEST in the “v6abb64Package_efifo_elink.vhd” file:

• USE_LOOPBACK_TEST = True “LoopBack Mode”

• USE_LOOPBACK_TEST = False “User Mode”

Virtex 6

Logic Fabric

BAR1:
IG BAR0: Registers

 2

“Figure 1a” is the block diagram for the PCIe SG DMA engine in the “LoopBack Mode”. DMA

engine and PIO engine are parallel established. The Memory Bridge is a module like crossbar

switch. TLP manager is to manage the virtual channels on the transaction layer of PCIe. Registers

space contains the system registers and other register related to DMA and status peeking. FIFO is

internally looped back and the Block RAM (BRAM) module emulates the RAM memory space.

PCIe gen1.0 x4

TLP Manager

PIO
engine

DMA
engine

Memory Bridge

BRam

BAR2:

FIFO

Clock Domain:

PCIe 125 MHz

 3

In the “User Mode”, “Figure 1b”, another FIFO and another BRAM are added. These copies allow

to decouple the Host2Board data flow from the Board2Host data flow. There are two clocks

domains also: the PCIe side is clocked with the 125MHz clock derived from the bus, the User side

is clocked with the 200MHz clock present on the ML605 board. The UserLogic realize a loopback

for Registers, FIFO and BRAM in the 200MHz clock domain, the schematics is reported in

Appendix. It was generated with Xilinx SystemGenerator 12.3. The source project is

“PCIe_UserLogic_00.mdl”.

In addition the TLP module provides ten user registers and three user IRQ lines. It is very simple

add others registers and IRQ lines.

The design is composed by some Xilinx IP Cores. Both the vhdl code and the CoreGen .xco file

are provided. To change or upgrade them, a valid license for the cores from Xilinx Inc. should be

available. The PCIe core is the 1.6 version. The old 1.3 version is also provided.

PCIe gen1.0 x4

TLP Manager

PIO
engine

DMA
engine

IG

Memory Bridge

BAR0: Registers
BAR1:
B2H

BRam

BAR1:
H2B

BRam

BAR2:
B2H
FIFO

BAR2:
H2B
FIFO

USER LOGIC:
(Bram LoopBack)

Virtex 6

USER LO
G

IC
:

(FIFO
 LoopBack)

Clock Domain:

UserClk 200 MHz
Logic Fabric

Clock Domain:

PCIe 125 MHz

 4

The project compile with no problem in ISE 12.3. In ISE 12.3 it is important install the “39430-

2_map_123_nt32” patch to downgrades GTX POWER_SAVE errors to warnings (see

http://www.xilinx.com/techdocs/39430.htm) and modify the “POWER_SAVE” property from

"0000100100" to "0000110100" in “gtx_wrapper_v6.vhd”.

Some problems are present in ISE 13.x. These will be solved in the future update.

Implementing the PCIe v1.6 core at 5Gb/sec (gen2.0) for 4 lines results in some timing error but

the design seems to work correctly. The same happens for PCIe v1.6 core at 2.5Gb/sec (gen1.0)

for 8 lines.

A summary of the tries attempted with several PCIe core implementations and version is in the

table:

IP Core
Version

Speed Generation Lines Result

V1.3 2.5Gb/sec Gen 1.0 X4 Success

V1.6 2.5Gb/sec Gen 1.0 X1 Success

V1.6 2.5Gb/sec Gen 1.0 X4 Success

V1.6 2.5Gb/sec Gen 1.0 X8 Compiled but with some timing error

V1.6 5Gb/sec Gen 2.0 X1 Success

V1.6 5Gb/sec Gen 2.0 X4 Compiled but with some timing error

In the HDL codes, there are some confusion naming like, DDR_*, Event_*, etc., which are only

legacy of a specific project. These will be improved in the future update.

http://www.xilinx.com/techdocs/39430.htm

2. Board Characteristics

In terms of hardware layout, the Xilinx M L 6 0 5 Virtex6 PCIE development board has
following major features,

Virtex-6 FPGA

XC6VLX240T-1FFG1156 device

Configuration

Onboard configuration circuitry (USB to JTAG)

16 MB Platform Flash XL

32 MB Parallel (BPI) Flash

System ACE™ CompactFlash (CF) controller

Communication and Networking

10/100/1000 Tri-Speed Ethernet (GMII, RGMII, SGMII, MII)

SFP transceiver connector

GTX port (TX/RX,) with four SMA connectors

USB to UART Bridge

USB host port and USB peripheral port

PCI Express® Gen1 8-lane (x8) and Gen2 4-lane (x4)

Memory

DDR3 SODIMM (512 MB)

Linear BPI Flash (32 MB) (Also available for configuration)

IIC EEPROM (8 Kb)

 5

 6

Clocking

200 MHz oscillator (differential)

66 MHz socketed oscillator (single-ended)

SMA connectors for external clock (differential)

GTX clock port with two SMA connecto

Input/Output and Expansion Ports

16x2 LCD character display

DVI output

System Monitor

User pushbuttons (5), DIP switches (8), LEDs (13)

User GPIO with two SMA connectors

Two FMC expansion ports

High Pin Count (HPC)

- Eight GTX transceivers

- 160 SelectIO™ interface signals

Low Pin Count (LPC)

- One GTX transceiver

- 68 SelectIO interface signals

Power

12V wall adapter or ATX

Voltage and

* FPGA configuration in BPI mode as well as power-up preparation are founded in
Appendix.

 7

3. Memory partition

This design holds 3 BAR’s, BAR[0], BAR[1] and BAR[2], as its memory space. Registers
are accessed via BAR[0], including the system registers, DMA channel registers and some
other control and status registers. Block RAM are assigned to BAR[1], including the 32KB
dual-port RAM and the write-only 32KB data generator table RAM. BAR[2] contains the
FIFO data port, write and read. FIFO control and status registers reside in BAR[0]. BAR[3] to
BAR[6] are reserved. All 3 applied BARs are reachable with PIO operation. DMA can only
target on BAR[1] and BAR[2].

Registers are divided into groups, as shown in table 1. BAR[0] and BAR[1] spaces are 4- byte
(DW) aligned, i.e. lowest 2 bits of addresses are taken as “00”. BAR[2] is 8-byte (QW) aligned
and its address offset is arbitrary.

Table 1 Address Assignment

Name Offset R/
W

BA
R

System section
Design ID Register (DID) 0x000

0
RO 0

Interrupt Status Register (ISR) 0x000
8

RO 0
Interrupt Enable Register (IER) 0x001

0
R +
W

0
General Error Register (GER) 0x001

8
RO 0

General Status Register (GSR) 0x002
0

RO 0
General Control Register (GCR) 0x002

8
R +
W

0

Upstream DMA channel (Channel#1 in MPRACE)
Peripheral Address high-DW 0x002

C
R 0

Peripheral Address low-DW 0x003
0

R 0
Host address high-DW 0x003

4
R 0

Host address low-DW 0x003
8

R 0
Next Buffer Descriptor Address high-DW 0x003

C
R 0

Next Buffer Descriptor Address low-DW 0x004
0

R 0
Length in bytes 0x004

4
R 0

Control 0x004
8

R 0
Status 0x004

C
RO 0

Downstream DMA channel (Channel#0 in MPRACE)
Peripheral Address high-DW 0x005

0
R 0

Peripheral Address low-DW 0x005
4

R 0
Host address high-DW 0x005

8
R 0

Host address low-DW 0x005
C

R 0
Next Buffer Descriptor Address high-DW 0x006

0
R 0

 8

Next Buffer Descriptor Address low-DW 0x006
4

R 0
Length in bytes 0x006

8
R 0

Control 0x006
C

R 0
Status 0x007

0
RO 0

PIO Path Controls
MRd channel control 0x007

4
W
O

0
PCIe transaction layer Tx module control 0x007

8
W
O

0

ICAP (reserved)
ICAP port write 0x007

C
W 0

ICAP port read 0x007
C

R 0

Interrupt Generation (See Interrupt Generator chapter)
Interrupt Generation Control (IGC) 0x008

0
R +
W

0
Interrupt Generation Latency (IGL) 0x008

4
R +
W

0
Interrupt Generation On Statistic (IGN_ON) 0x008

8
RO 0

Interrupt Generation Off Statistic (IGN_OFF) 0x008
C

RO 0

FIFO Control and Status
Control 0x009

0
W 0

Hybrid FIFO Status (Used by PCIe) 0x009
0

R 0

Host2Board FIFO Status (only in “User Mode”) 0x00
D8

R

0
Board2 Host FIFO Status (only in “User Mode”) 0x00

D9
R 0

DMA Actual Transferred
Upstream transferred byte count 0x009 RO 0
Downstream transferred byte count 0x009

8
RO 0

Large memory (1 MB)

Block RAM (32 KB)

0x0
800

0

R
+
W

1

Other regions reserved 1
Event FIFO Data Interface
Read 0x000

0
R 2

Write 0x000
0

W 2

Notes for table 1, R:
Readable.
W: Writeable.
R+W: Readable and writeable. RO:
Read-only. Write no effect. WO:
Write-only. Read as zero.

 9

3.1. Register definition –– BAR[0]

Following are some registers definition. Greyed bits are reserved, which are read as zero
and should avoid writes with non-zero values.

3.1.1 Design ID (+0x0000)

31 ~ 24 23 ~ 16 15 ~ 12 11 ~ 0

Design version Design major revision Author
Code

Design minor revision

3.1.2 Interrupt Status Register (+0x0008)
31 ~

9

8

7

6

5

4

3

2

1

0

“DLM”
User
IRQ

“CTL”
User
IRQ

“DAQ”
User
IRQ

Down
stream
Time-out

Up
stream
Time-out

Interrupt
Generator

Down
Stream
DMA
Done

Up
stream
DMA
Done

* In MPRACE library, upstream is channel #1 and downstream #0.

3.1.3 Interrupt Enable Register (+0x0010)

31 ~
9

8

7

6

5

4

3

2

1

0

“DLM”
User
IRQ

“CTL”
User
IRQ

“DAQ”
User
IRQ

Down
stream
Time-out

Up
stream
Time-out

Interrupt
Generator

Down
Stream
DMA
Done

Up
stream
DMA
Done

* In MPRACE library, upstream is channel #1 and downstream #0.

3.1.4 General Error Register (+0x0018)

31 ~ 20 20 19 18 17 ~ 0
 Event Buffer

Overflow
Event Buffer
Time-out

Tx Time-
out

3.1.5 General Status Register (+0x0020)

31 ~ 16 15 ~ 10 9 ~ 8 7~6 5 4 3 ~ 0
 PCIe Link

Width
 DCB Link

Active[1:0]
DG
Available

ICAP
Busy

* PCIe maximum link width –––

 10

'B000000 : Reserved

'B000001 : x1

'B000010 : x2

'B000100: x4

'B001000: x8

'B001100 : x12

'B010000 : x16

'B100000 : x32

3.1.6 General Control Register (+0x0028)

31 ~ 14 13 ~ 12 11 10 ~ 8 7 ~ 3 2 ~ 0
 Upstream

MWr Attr.
 Upstream

MWr TC

Msg. Routing

* It is highly recommended that no write be made to General Control Register.

3.1.7 MRd Channel Control Register (+0x0074)

31 ~ 8 7 ~ 0

Reset (0x0A)

Write with 0x0A resets Mrd channel (also clears Event Buffer overflow).

3.1.8 PCIe transaction layer Tx module Control Register (+0x0078)

31 ~ 8 7 ~ 0

Reset (0x0A)

Write with 0x0A resets PCIe transaction layer Tx module.

3.1.9 Event Buffer Control Register (+0x0090, write)

31 ~ 8 7 ~ 0

Reset (0x0A)

Write with 0x0A resets the Event Buffer (FIFO/FIFOs). During reset, the Event Buffer
Status Register is read as zero.

3.1.10 Event Buffer (FIFO) Status Register (+0x0090, read)

31 ~ 26 25 ~ 3 2 1 0

Data count in QW
Almost full

Empty

* A zero value read from this register is possible for the FIFO and means
“unavailable”, most probably it is being reset.

In “LoopBack Mode” this register is the monitor of the FIFO.

 11

In “User Mode” this is an hybrid register that monitor the FIFOs Status and is used by
PCIe interface and Linux Driver.

3.1.11 Event Buffer H2B (FIFO) Status Register (+0x00D8, read)

31 ~ 26 25 ~ 3 2 1 0

Data count in QW
Almost full

Full

* A zero value read from this register is possible for the FIFO and means
“unavailable”, most probably it is being reset.

In “LoopBack Mode” this register is empty.
In “User Mode” this register is the monitor of the Host2Board FIFO Status.

3.1.12 Event Buffer B2H (FIFO) Status Register (+0x00D9, read)

31 ~ 26 25 ~ 3 2 1 0

Data count in QW

Valid

Almost Empty

Empty

* A zero value read from this register is possible for the FIFO and means
“unavailable”, most probably it is being reset.

In “LoopBack Mode” this register is empty.
In “User Mode” this register is the monitor of the Board2Host FIFO Status.

3.1.13 User Registers (from +0x002C to +0x00D7, write / read)

31 ~ 0

User Register Value

In “LoopBack Mode” these registers are undriven.
In “User Mode” these registers are active. These registers are in the PCIe clock domain.
Be careful while routing the corresponding signals, host2board reg data and valid
(regXX_td , regXX_tv) and board2host data and valid (regXX_rd, regXX_rv) across
multiple timing domains.

 12

3.2. Block RAM –– BAR[1]

Block RAM size is 32 KB, 64-bit data bus times 4096 items. It is accessed in 32-bit DW
units. It can be used to test DMA functions targeted on conventional RAM memory, with
address incremented.

We have the Xilinx PCIe core, which manages the physical layer and the data link layer of

PCIe, so we have only to care about the transaction layer. The logic analyzes the TLPs from

the host and reacts also in TLPs, both via the transaction layer interface.

“_wr_” is write side signal to the BRAM module and “_rdc_” is the read commands to the

BRAM. Borrowing PCIe terminology, “_wr_” is posted and “_rdc_” is non-posted. For the

“_rdc_” commands, the BRAM module prepares proposed packets and writes them into a

FIFO, then the user logic can read out these packets, building them into TLP and sends back

to the host. DDR_FIFO_RdEn , DDR_FIFO_Empty , DDR_FIFO_RdQout are the read side

signals of this FIFO.

The “ports” of the interface are described below:

DDR_wr_sof -- start of frame
DDR_wr_eof -- end of frame
DDR_wr_v -- write valid
DDR_wr_FA -- deprecated, you can delete
DDR_wr_Shift -- in some cases, the 64-bit data should be re-aligned to fit in the TLP
DDR_wr_Mask -- If valid, the corresponding 32-bit should not be written into the
BRAM
DDR_wr_din -- the write data bus
DDR_wr_full -- flow control signal. If asserted, the write should be paused

DDR_rdc_sof -- read command start
DDR_rdc_eof -- read command end
DDR_rdc_v -- read command valid
DDR_rdc_FA -- deprecated.
DDR_rdc_Shift -- similar to DDR_wr_Shift, for 64-bit / 32-bit realignment
DDR_rdc_din -- read command data
DDR_rdc_full -- read command buffer is full. Flow control signal.

DDR_FIFO_RdEn -- read FIFO read-enable
DDR_FIFO_Empty -- read FIFO empty
DDR_FIFO_RdQout -- read FIFO data out

DDR_Ready -- deprecated
DDR_Blinker -- debug signal, you can ignore
DMA_ds_Start -- Downstream DMA (DMA write) start signal

 13

3.3. FIFO –– BAR[2]

The current version FIFO is built on a built-in FIFO primitive inside the FPGA, 64-bit data
bus width for 16384 elements. Externally this buffer is treated exactly as an
asynchronous dual-port FIFO. Its empty and almost full flags are connected to the Event
Buffer Status Register (+0x0090). If an empty FIFO is read, the time-out might happen.
Time-out can be cleared by a reset (+0x0A) written to the Event Buffer Control register
(+0x0090). Overwrite is monitored in GER[20] and is cleared either by an Event Buffer
reset or an MRd channel reset.

Event Buffer can be accessed with DMA or PIO. DMA size is exactly what the
descriptor defines. However, the PIO TLP (Transaction Layer Packet) payload is
always in 32-bit wide in our system, the higher 32 bits in the Event Buffer will get lost via
PIO. In this sense, PIO and DMA transactions shall not be mixed for the same section
of data transfer.

In the “User Mode” the FIFO are two of the same length as the one used in the “LoopBack
Mode” and the H2B FIFO Status register and B2H Status register are available to monitor
the each FIFO.

 14

4. DMA Functions

4.1. Scatter-Gather DMA

A DMA transfer is initiated via writing the first descriptor to corresponding DMA channel

registers. The DMA engine supports multiple descriptors, which provides flexibility to
applications in USER memory mode.

In multiple-descriptor DMA, the next descriptor (a group of parameters) is requested
according to the Next Buffer Descriptor Address in current DMA descriptor after the current
descriptor is executed. Then the DMA engine will execute that new descriptor. This process
will continue until a descriptor with the END bit asserted in the Control parameter is done.

4.2. Descriptor description

Table 2 lists the descriptor definition for a DMA channel.

Table 2 DMA channel registers / Buffer descriptor

+3 +2 +1 +0

Name

R/W

Address
Offset 3

1
3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Peri_Addr_H R+W +0x00 Higher 32-bit of DMA Peripheral address
Peri_Addr_L R+W +0x04 Lower 32-bit of DMA Peripheral address
Host_Addr_H R+W +0x08 Higher 32-bit of DMA Host address
Host_Addr_L R+W +0x0C Lower 32-bit of DMA Host address
Next_BDA_H R+W +0x10 Higher 32-bit of next descriptor address
Next_BDA_L R+W +0x14 Lower 32-bit of next descriptor address

Length R+W +0x18 DMA transaction byte count

Control

R+W

+0x1C

V

L
a
s
t

U
P
A

B
N
2

B
N
1

B
N
0

A
I
n
c

E
n
d

Rst

(read as 0)

Status

R

+0x20

T
O

 B
u
s
y

D
o
n
e

BN[2:0]: Encoded BAR Number. Default is 000.

V: Valid Control. A special bit for DMA channels. If set, the DMA engine uses this
Control word; else, the DMA engine takes the previous Control word of that
channel for current transaction. Even the reset command must also set this bit.
Default value is ‘0’. Note: for the first descriptor this bit must be asserted.

Last: If set, the current descriptor is the last one for the current DMA chain. After the
descriptor is processed, the DMA engine stops. Default value is ‘0’.

UPA: Use PA (Peripheral Address) from each descriptor, otherwise, use calculated PA.

 15

Default value is ‘0’. But for the initial descriptor, PA is always used, therefore this bit can
be of any value for the first descriptor.

AInc: Address increments. If set, the address of the endpoint side increases by four for
every double word transfer. Default value is ‘1’.

End: If set, the DMA engine is paused after this descriptor is processed. This means, the

engine can be resumed afterwards. Default value is ‘0’.

Rst: Channel can be reset by write “0x0200000A” to the corresponding Channel
Control register. These bits return always 0x0 by reading.

TO: Time-out signal. If asserted, this bit indicates that a time-out event has occurred during

the DMA operation. Default value is ‘0’.

Busy: DMA engine is running. Default value is ‘0’.

Done: DMA engine is already finished. Default value is ‘0’. Once asserted, this bit never
changes until a channel reset command comes.

4.3. DMA Commands

A write to a DMA channel control register with the valid bit asserted is a DMA
command. Bits like Last, UPA and AInc are the parameters of the command. Rst bits and
End bit are the type of the command. Concerning the bits V, End and Rst, possible types of
commands are listed in table 3.

Table 3 DMA commands

Command V End Rst[7:0] Description
Reset 1 x 0x0A Reset the DMA channel state.
Start 1 0 0 Start/Resume DMA transaction.
Stop 1 1 0 Pause the current running DMA transaction, if any.

Redo

0

x

x Repeat the last DMA command, which had the V

bit set.
x: don’t care.

4.4. DMA Status

Table 4 explains the DMA status.
Table 4 DMA statuses

State Busy Done Description

Idle

0

0 DMA channel is idle, ready to start new DMA
transaction.

Busy 1 0 DMA is running.
Done 0 1 A DMA is already finished.

Unreset

1

1 Abnormal state. A previous DMA is finished but

state is not reset before a second DMA is started.

4.5. DMA Chain

For a DMA chain consisting of multiple descriptors, subsequent descriptors are in the same
order and format as the initial one, yet resident in host memory. To do a chained DMA, the
upper-level application should get the next descriptors prepared in the host memory before it
initiates the first DMA by writing the first descriptor in the peripheral. The DMA engine goes
along the chain until the one with Last=1 is executed, after which the DMA finishes.

Figure 3 illustrates a non-loop DMA consisting of multiple descriptors and figure 4
illustrates a looped DMA consisting of multiple descriptors. If the descriptor #0 in figure
3 is labeled with Last=1, it will turn out to be a single-descriptor DMA transaction.

Descriptor #0
(In peripheral)

Descriptor #1
(In host)

Descriptor #N
(In host)

PA PA PA

HA HA HA

BDA BDA BDA

Leng

Ctrl(Last=0)

Leng

Ctrl(Last=0)

Leng

Ctrl(Last=1)

Figure 3 DMA Chain illustration – not looped

Descriptor #0
(In peripheral)

Descriptor #1
(In host)

Descriptor #N
(In host)

PA PA PA

HA HA HA

BDA BDA BDA

Leng

Ctrl(Last=0)

Leng

Ctrl(Last=0)

Leng

Ctrl(Last=0)

Figure 4 DMA Chain illustration – looped

 16

 17

5. Interrupt Generator

IGC (Interrupt Generator Control) and IGL (Interrupt Generator Latency) are used for the
moment as the Interrupt Generator control and parameter registers. The corresponding bit
in the Interrupt Status register (ISR) is bit 2.

To enable the IGC you have to compile the project with the IMP_INT_GENERATOR
constant at True in the “v6abb64Package_efifo_elink.vhd” file.

A unit in IGL register is calculated as 8 nS in ABB2 4-lane version. The value in IGL is the
delay between two interrupts generated. To start the Interrupt Generator, a non-zero value
is necessary to the IGL register. Thus, a zero written to the IGL register serves as a pause
command, which does not reset the statistics registers but makes the Interrupt Generator
stop generating interrupts. Resuming the paused interrupt issuing is done by writing a non-
zero value to the IGL register. To emulate the interrupt process service, another feature
word (“0x00F0”) is needed to be written into the IGC register, which clear one interrupt
every time.

An example procedure is given below.

*(0xED000080) = 0x0A; // Reset Interrupt Generator

*(0xED000010) = 0x0004; // Enable interrupt generation

*(0xED000084) = 0x3000; // Set Interrupt Generator Latency to 98304 ns,

// and trigger it run

// Interrupt service program

void Int_Service ()

{

int Int_Index = *(0xED000008);

if (Int_Index & 0x0004) // Interrupt(s) from the Int Generator come

{

... ... // Servicing

*(0xED000080) = 0x00F0; // Clear one interrupt

}

}

Afterwards, the number of assert interrupts and that of the deassert interrupts can be
obtained from the IGN_ON (+0x0088) and IGN_OFF (+0x008C), respectively. Their values
give information of the status of the interrupt service performance. These two statistic
registers and the Interrupt Generation register are reset by a reset word (0x0A) written to
the IGC register (+0x0080).

6. Testbench

Simulation is provided in Verilog HDL, tf64_pcie_trn.v and works only for the
“LoopBack Mode”.

In this simulation environment, 3 modules are instantiated and connected, (1) tlpControl, (2)
bram_Control and (3) FIFO_wrapper.

Figure 5 shows the connection inside the testbench.
FIFO

BAR[2]

Stimulus

PCIe Core
emulator

Transaction
generator

Transaction

checker

TLP
control
logic

BRAM
BAR[1]

Figure 5 Testbench block diagram

5 types of transactions are simulated, as listed in table 5. Actually the test
emulate the behaviour of the PCIe Core in sending and receiving TLPs. In
FIFO PIO transactions, note that only the lower 32 bits are accessible. To
SG DMA in multiple-descriptor mode, the BAR[2] DMA simulation
descriptors.

Table 5 DMA simulation coverage

 PIO DMA
BAR[0] Yes NO
BAR[1] Yes Yes
BAR[2] Yes * Yes *

Interrupt is enabled and DMA status polling is simulated. Throttling at Rx
be activated by initializing Rx_No_Flow_Control and Tx_No_Flow_Co
simulation runs about 10 µs.

The TLP sending at Rx is made in task TLP_Feed_Rx, which is mo
expansion of the testbench. Rx and Tx TLP format checking is also integ
upgrade upon the testbench brings no fatal errors.

18

Reg
BAR[0]

bench is trying to
 terms of BAR[2]
 demonstrate the
is done in two

and Tx ports can
ntrol as 0. The

dular for further
rated, so that the

 19

7. Resource report from ISE 12.3 MAP

Design Summary:
Number of errors: 0
Number of warnings: 6
Slice Logic Utilization:
 Number of Slice Registers: 9,018 out of 301,440 2%
 Number used as Flip Flops: 9,017
 Number used as Latches: 1
 Number used as Latch-thrus: 0
 Number used as AND/OR logics: 0
 Number of Slice LUTs: 9,315 out of 150,720 6%
 Number used as logic: 8,632 out of 150,720 5%
 Number using O6 output only: 5,701
 Number using O5 output only: 513
 Number using O5 and O6: 2,418
 Number used as ROM: 0
 Number used as Memory: 449 out of 58,400 1%
 Number used as Dual Port RAM: 0
 Number used as Single Port RAM: 0
 Number used as Shift Register: 449
 Number using O6 output only: 449
 Number using O5 output only: 0
 Number using O5 and O6: 0
 Number used exclusively as route-thrus: 234
 Number with same-slice register load: 197
 Number with same-slice carry load: 37
 Number with other load: 0

Slice Logic Distribution:
 Number of occupied Slices: 3,384 out of 37,680 8%
 Number of LUT Flip Flop pairs used: 11,356
 Number with an unused Flip Flop: 3,273 out of 11,356 28%
 Number with an unused LUT: 2,041 out of 11,356 17%
 Number of fully used LUT-FF pairs: 6,042 out of 11,356 53%
 Number of unique control sets: 216
 Number of slice register sites lost
 to control set restrictions: 549 out of 301,440 1%

 A LUT Flip Flop pair for this architecture represents one LUT paired with
 one Flip Flop within a slice. A control set is a unique combination of
 clock, reset, set, and enable signals for a registered element.
 The Slice Logic Distribution report is not meaningful if the design is
 over-mapped for a non-slice resource or if Placement fails.
 OVERMAPPING of BRAM resources should be ignored if the design is
 over-mapped for a non-BRAM resource or if placement fails.

 20

IO Utilization:
 Number of bonded IOBs: 10 out of 600 1%
 Number of LOCed IOBs: 10 out of 10 100%
 Number of bonded IPADs: 10
 Number of bonded OPADs: 8

Specific Feature Utilization:
 Number of RAMB36E1/FIFO36E1s: 77 out of 416 18%
 Number using RAMB36E1 only: 73
 Number using FIFO36E1 only: 4
 Number of RAMB18E1/FIFO18E1s: 0 out of 832 0%
 Number of BUFG/BUFGCTRLs: 5 out of 32 15%
 Number used as BUFGs: 5
 Number used as BUFGCTRLs: 0
 Number of ILOGICE1/ISERDESE1s: 0 out of 720 0%
 Number of OLOGICE1/OSERDESE1s: 0 out of 720 0%
 Number of BSCANs: 0 out of 4 0%
 Number of BUFHCEs: 0 out of 144 0%
 Number of BUFOs: 0 out of 36 0%
 Number of BUFIODQSs: 0 out of 72 0%
 Number of BUFRs: 0 out of 36 0%
 Number of CAPTUREs: 0 out of 1 0%
 Number of DSP48E1s: 0 out of 768 0%
 Number of EFUSE_USRs: 0 out of 1 0%
 Number of FRAME_ECCs: 0 out of 1 0%
 Number of GTXE1s: 4 out of 20 20%
 Number of LOCed GTXE1s: 4 out of 4 100%
 Number of IBUFDS_GTXE1s: 1 out of 12 8%
 Number of LOCed IBUFDS_GTXE1s: 1 out of 1 100%
 Number of ICAPs: 0 out of 2 0%
 Number of IDELAYCTRLs: 0 out of 18 0%
 Number of IODELAYE1s: 0 out of 720 0%
 Number of MMCM_ADVs: 1 out of 12 8%
 Number of LOCed MMCM_ADVs: 1 out of 1 100%
 Number of PCIE_2_0s: 1 out of 2 50%
 Number of LOCed PCIE_2_0s: 1 out of 1 100%
 Number of STARTUPs: 1 out of 1 100%
 Number of SYSMONs: 0 out of 1 0%
 Number of TEMAC_SINGLEs: 0 out of 4 0%

 21

8. Speed Result

Platform: DELL Precision T5500, Linux Debian 2.6.32 64bit.

CORE: PCIe v1.6 gen2.0 x1 No Timing Errors
Testing DMA Write performance: Testing DMA Read performance:
 4 kB : 258.305 MBps
 8 kB : 319.732 MBps
 16 kB : 365.444 MBps
 32 kB : 391.862 MBps
 64 kB : 406.587 MBps
 128 kB : 414.446 MBps
 256 kB : 418.421 MBps
 512 kB : 420.769 MBps
 1024 kB : 421.967 MBps
 2048 kB : 422.674 MBps
 4096 kB : 426.149 MBps

 4 kB : 277.967 MBps
 8 kB : 330.418 MBps
 16 kB : 366.937 MBps
 32 kB : 390.687 MBps
 64 kB : 400.945 MBps
 128 kB : 410.371 MBps
 256 kB : 413.871 MBps
 512 kB : 415.373 MBps
 1024 kB : 416.503 MBps
 2048 kB : 416.934 MBps
 4096 kB : 417.142 MBps

CORE: PCIe v1.6 gen1.0 x4 No timing Errors
Testing DMA Write performance: Testing DMA Read performance:
 4 kB : 355.568 MBps
 8 kB : 475.379 MBps
 16 kB : 633.597 MBps
 32 kB : 715.627 MBps
 64 kB : 765.788 MBps
 128 kB : 800.855 MBps
 256 kB : 818.678 MBps
 512 kB : 827.609 MBps
 1024 kB : 832.016 MBps
 2048 kB : 834.342 MBps
 4096 kB : 828.808 MBps

 4 kB : 293.596 MBps
 8 kB : 377.965 MBps
 16 kB : 436.384 MBps
 32 kB : 471.844 MBps
 64 kB : 493.319 MBps
 128 kB : 504.566 MBps
 256 kB : 510.197 MBps
 512 kB : 513.116 MBps
 1024 kB : 514.594 MBps
 2048 kB : 515.345 MBps
 4096 kB : 524.622 MBps

CORE: PCIe v1.6 gen1.0 x8 or gen2.0 x4 Timing Errors
Testing DMA Write performance: Testing DMA Read performance:
 4 kB : 528.582 MBps
 8 kB : 664.743 MBps
 16 kB : 917.387 MBps
 32 kB : 1087.32 MBps
 64 kB : 1223.95 MBps
 128 kB : 1281.89 MBps
 256 kB : 1314.02 MBps
 512 kB : 1333.11 MBps
 1024 kB : 1342.96 MBps
 2048 kB : 1347.37 MBps
 4096 kB : 1343.45 MBps

 4 kB : 508.326 MBps
 8 kB : 619.924 MBps
 16 kB : 827.973 MBps
 32 kB : 895.018 MBps
 64 kB : 981.568 MBps
 128 kB : 1007.13 MBps
 256 kB : 1032.15 MBps
 512 kB : 1039.83 MBps
 1024 kB : 1045.13 MBps
 2048 kB : 1047.17 MBps
 4096 kB : 1043.61 MBps

9. Appendix: SystemGenerator LoopBack UserLogic Schematic

200MHz UserClock Domain

 22

