June 2007 ‘vt

Politecnico of Torino \ae-gj;w

BRIDGE PIF / WISHBONE

Specification

Authors:
Edoardo Paone
Paolo Motto
Sergio Tota

Mario Casu

Table of Contents BRIDGE PIF / WB May 2007
Table Of Contents

Table of Figures BRIDGE PIF / WB May 2007

Table Of Figures

Figure 1 — Bridge PIF / WISHBONE core -13
Figure 2 — Bridge PIF / WISHBONE Architecture -14 -
Figure 3 — PIF to WISHBONE -15
Figure 4 — WISHBONE to PIF -15-
Figure 5 — Bridge I/0O Signals -16 -

Figure 6 — PIF to WISHBONE FSM -21-

Figure 7 — WISHBONE to PIF FSM -22 -
Figure 8 — WISHBONE to PIF single write cycle -25-
Figure 9 — WISHBONE to PIF block write cycle -26 -
Figure 10 — PIF to WISHBONE - single read cycle - 27 -
Figure 11 — PIF to WISHBONE — block read cycle - 28 -
Figure 12 — Bridge RTL schematic -31-
Figure 13 — PIF to WISHBONE RTL schematic -32-
Figure 14 — WISHBONE to PIF RTL schematic -32 -
Introduction BRIDGE PIF / WB May 2007

Introduction

The BRIDGE PIF / WISHBONE provides translation capabilities between two
different System-on-Chip (SoC) interconnect protocols, the WISHBONE
standard and the PIF protocol, so it is very useful when you have to
interconnect different components in an integrated circuit.

The main difference between the two protocols is that, while the WISHBONE
is in the public domain, the PIF is distributed by Tensilica with Xtensa
processors and is copyrighted: so there is a large number of IP cores realized
according to WISHBONE specifications, freely copied and distributed, but
they can’t directly communicate with PIF cores. The bridge allows to get
through these limitations and connect on the same architecture components
with different interfaces.

We decided to realize this device during the development of a multiprocessor
architecture in Politecnico of Torino at the VLSI Lab (Electronic
Departement); the processors used in the circuit design were Tensilica
Xtensa microprocessors and they used the PIF protocol, so it was impossible
to connect them to devices with WISHBONE interfaces, for example a
WISHBONE Ethernet controller: from here the idea of a bridge in order to
allow data transfers between PIF and WISHBONE devices, in a transparent
way, fully compliant with the two protocols in both directions.

In the next chapter PIF and WISHBONE standards will be explained more
exhaustively.

I. Protocols Description BRIDGE PIF / WB May 2007

. PROTOCOLS DESCRIPTION

I. Protocols Description BRIDGE PIF / WB May 2007

1.1 WISHBONE

1.1.1 Overview

The WISHBONE System-on-Chip (SoC) Interconnect Architecture for
Portable IP Cores is a portable interface for use with semiconductor IP cores.
lts purpose is to foster design reuse by alleviating system-on-a-chip
integration problems. This is accomplished by creating a common, logical
interface between IP cores. This improves the portability and reliability of the
system, and results in faster time-to-market for the end user. WISHBONE
itself is not an IP core, it is a specification for creating IP cores.

The WISHBONE standard is not copyrighted, and is in the public domain. It
may be freely copied and distributed by any means. Furthermore, it may be
used for the design and production of integrated circuit components without
royalties or other financial obligations.

1.1.2 Signals Description

The WISHBONE interface of the bridge uses the following signals.

1.1.2.1 Signals Common to MASTER and SLAVE Interfaces

Name (configured Direc Description

width) tion

CLK_I Input | The clock input [CLK_I] coordinates all activities for the internal logic within the WISHBONE
interconnect. All WISHBONE output signals are registered at the rising edge of [CLK_I]. All
WISHBONE input signals are stable before the rising edge of [CLK_I].

DAT_I Input | The data input array [DAT_I()] is used to pass binary data. The array boundaries are determined by the
port size, with a maximum port size of 64-bits (e.g. [DAT_I(63..0)]).

DAT_O Outp | The data output array [DAT_O()] is used to pass binary data. The array boundaries are determined by

ut the port size, with a maximum port size of 64-bits (e.g. [DAT 1(63..0)]).
RST_I Input | The reset input [RST_I] forces the WISHBONE interface to restart. Furthermore, all internal self-

starting state machines will be forced into an initial state. This signal only resets the WISHBONE
interface.

I. Protocols Description BRIDGE PIF / WB May 2007
1.1.2.2 MASTER signals
Name (configured Direction Description
width)
ACK_I Input The acknowledge input [ACK_l], when asserted, indicates the normal termination of a bus
cycle.

ADR_O()

Output

The address output array [ADR_O()] is used to pass a binary address. The higher array
boundary is specific to the address width of the core, and the lower array boundary is
determined by the data port size and granularity. For example the array size on a 32-bit data
port with BYTE granularity is [ADR_O(n..2)]. In some cases (such as FIFO interfaces) the
array may not be present on the interface.

CYC_O

Output

The cycle output [CYC_Q], when asserted, indicates that a valid bus cycle is in progress. The
signal is asserted for the duration of all bus cycles. For example, during a BLOCK transfer
cycle there can be multiple data transfers. The [CYC_O] signal is asserted during the first data
transfer, and remains asserted until the last data transfer.

ERR |

Input

The error input [ERR_I] indicates an abnormal cycle termination. The source of the error, and
the response generated by the MASTER is defined by the IP core supplier

SEL_O()

Output

The select output array [SEL_O()] indicates where valid data is expected on the [DAT_I()]
signal array during READ cycles, and where it is placed on the [DAT_O()] signal array during
WRITE cycles. The array boundaries are determined by the granularity of a port. For example,
if 8-bit granularity is used on a 64-bit port, then there would be an array of eight select signals
with boundaries of [SEL_O(7..0)]. Each individual select signal correlates to one of eight
active bytes on the 64-bit data port.

STB_O

Output

The strobe output [STB_Q] indicates a valid data transfer cycle. It is used to qualify various
other signals on the interface such as [SEL_O()]. The SLAVE asserts either the [ACK_]],
[ERR_I] or [RTY_I] signals in response to every assertion of the [STB_Q] signal.

WE_O

Output

The write enable output [WE_O] indicates whether the current local bus cycle is a READ or
WRITE cycle. The signal is negated during READ cycles, and is asserted during WRITE
cycles.

CTILLO

Output

The Cycle Type Idenfier [CTI_IO()] Address Tag provides additional information about the
current cycle. The MASTER sends this information to the SLAVE.

BTE_O

Output

The Burst Type Extension [BTE_O()] Address Tag is send by the MASTER to the SLAVE to
provides additional information about the current burst.

1.1.2.3 SLAVE signals

Name (configured
width)

Direction

Description

ACK_O

Output

The acknowledge output [ACK_O], when asserted, indicates the termination of a normal bus
cycle.

ADR_I()

Input

The address input array [ADR_I()] is used to pass a binary address. The higher array
boundary is specific to the address width of the core, and the lower array boundary is
determined by the data port size. For example the array size on a 32-bit data port with BYTE
granularity is [ADR_O(n..2)]. In some cases (such as FIFO interfaces) the array may not be
present on the interface.

CYC_I

Input

The cycle input [CYC_I], when asserted, indicates that a valid bus cycle is in progress. The
signal is asserted for the duration of all bus cycles. For example, during a BLOCK transfer
cycle there can be multiple data transfers. The [CYC_I] signal is asserted during the first data
transfer, and remains asserted until the last data transfer.

ERR_O

Output

The error output [ERR_Q] indicates an abnormal cycle termination. The source of the error,
and the response generated by the MASTER is defined by the IP core supplier.

SEL_I()

Input

The select input array [SEL_I()] indicates where valid data is placed on the [DAT_I()] signal
array during WRITE cycles, and where it should be present on the [DAT_O()] signal array
during READ cycles. The array boundaries are determined by the granularity of a port. For
example, if 8-bit granularity is used on a 64-bit port, then there would be an array of eight
select signals with boundaries of [SEL_I(7..0)]. Each individual select signal correlates to one
of eight active bytes on the 64-bit data port.

STB_|

Input

The strobe input [STB_I], when asserted, indicates that the SLAVE is selected. A SLAVE shall
respond to other WISHBONE signals only when this [STB_I] is asserted (except for the
[RST_I] signal which should always be responded to). The SLAVE asserts either the
[ACK_O], [ERR_O] or [RTY_O] signals in response to every assertion of the [STB_I] signal.

I. Protocols Description

BRIDGE PIF / WB May 2007

8

WE_I Input The write enable input [WE_I] indicates whether the current local bus cycle is a READ or
WRITE cycle. The signal is negated during READ cycles, and is asserted during WRITE
cycles.

CTLI Input The Cycle Type Idenfier [CTI_IO()] Address Tag provides additional information about the
current cycle. The SLAVE can use this information to prepare the response for the next cycle.

BTE_|I Input The Burst Type Extension [BTE_O()] Address Tag is send by the MASTER to the SLAVE to

provides additional information about the current burst.

1.1.3 Bus Cycles

The WISHBONE standard uses the CTIl_IO(), BTE_IO() and WE_IO signals
to communicate the type of transfer. Below you will find all cycle types
supported by the protocol:

Read / Write Operations
WE Cycle type
0 Read cycle
1 Write cycle
Cycle Type Identifiers
CTI_0(2:0) Description
‘000’ Classic cycle
‘001’ Constant address burst cycle
‘010’ Incrementing burst cycle
‘111 End-of-Burst

Burst Type Extension for Incrementing and Decrementing

bursts
BTE_IO(1:0) Description
‘00’ Linear burst
‘01’ 4-beat wrap burst
‘10° 8-beat wrap burst
‘11 16-beat wrap burst

Now you will find a list of all cycles types provided by the WISHBONE

standard:

= Classic cycle, which can support four transaction types, according to
the value of WE, STB and CYC signals:

a) SINGLE READ / WRITE cycles: they perform one data transfer at a
time; these are the basic cycles used to perform data transfers on
the WISHBONE interconnect.

b) BLOCK READ / WRITE cycles: during BLOCK cycles, the interface
basically performs SINGLE READ/WRITE cycles (called phases)
which are combined together to form a single BLOCK cycle; the
[CYC_Q] signal is asserted for the duration of a BLOCK cycle: this
signal can be used to request permission to access a shared

resource from a local arbiter.
I. Protocols Description BRIDGE PIF / WB May 2007

» Constant address burst cycle: is defined as a single cycle with multiple
accesses to the same address (example: a MASTER reading a stream
from a FIFO).

» Incrementing burst cycle: an incrementing burst is defined as multiple
accesses to consecutive addresses; each transfer the address is
incremented and the increment is dependent on the data array size: for
an 8bit data array the increment is 1, for a 16bit data array the
increment is 2, for a 32bit data array the increment is 4, etc. Increments
can be linear or wrapped, depending on the value of BTE_IO() signal.

= End-Of-Burst: it indicates that the current cycle is the last of the current
burst. The MASTER signals the slave that the burst ends after this
transfer.

Some of these functions are not supported by the bridge because there is
not an equivalent transfer type in the PIF protocol. These limitations will be

explained in the chapter about the bridge architecture and functions.

For additional information about the WISHBONE protocol see [1].

.2 PIF Protocol

.2.1 Overview

The PIF protocol has evolved from the Xtensa Processor Interface description
to encompass the larger scope of a system interconnect definition. Therefore,
the terminology PIF (Processor Interface) keeps its literal meaning only in the
historical sense. In the current context of PIF protocol definition, PIF denotes
the I/O signals of any component that implements the protocol. A PIF
component can be any device on the PIF interconnect network that performs
in a master or slave capacity.

I. Protocols Description

BRIDGE PIF / WB May 2007

1.2.2 Signals Description

The PIF interface of the bridge uses the following signals (pw=configured PIF width).

1.2.2.2 MASTER signals

Name (configured Direction Description
width)

POReqVALID Output Indicates that there is a valid request; all other signals prefixed with POReq are qualified by a
POReqVALID assertion. It is sampled every cycle with PIReqRDY: the transfer completes when
both signals are asserted.

POReqCNTL[7:0] Output Encodes the type, size and last transfer information for requests.

POReqgADRS[31:0] Output Request address. During block transactions, address points to the first requested word within
the block and is held stable through the transaction.

PORegDATA[pw-1:0] Output Data used by requests that require data during the request phase (single write and block write).

PORegDataBE[PW/8- Output Indicates valid bytes lanes of PORegData during requests that use POReqgData, or byte lanes of

1

1:0] PIRespData that are expected to be valid during responses that use PIRespData.

PIRegRDY Input Indicates that the slave is ready to accept requests. A request transfer completes if PIRegRDY
and POReqVALID are both asserted in the same cycle.

PIRespVALID Input Indicates that there is a valid response. All other signals prefixed with PIResp are qualified by a
PIRespVALID assertion.

PIRespCNTL[7:0] Input Encodes the response type and any error status.

PIRespDATA[pw-1:0] Input Response data; The data bus width must be equal in width to the request data bus.

PORespRDY Output Indicates that the master is ready to accept responses. A response transfer completes when
PIRespVALID and PORespRDY are asserted in the same cycle.

1.2.2.3 SLAVE signals

Name (configured Direction Description
width)

PIReqVALID Input Indicates that there is a valid request; all other signals prefixed with PIReq are qualified by a
PIReqVALID assertion. It is sampled every cycle with POReqRDY: the transfer completes when
both signals are asserted.

PIReqCNTL[7:0] Input Encodes the type, size and last transfer information for requests.

PIReqADRSI[31:0] Input Request address. During block transactions, address points to the first requested word within the
block and is held stable through the transaction.

PIRegDATA[pw-1:0] Input Data used by requests that require data during the request phase (single write and block write).

PIRegDataBE[PW/8- Input Indicates valid bytes lanes of PIReqData during requests that use PIReqData, or byte lanes of

1:0] PORespData that are expected to be valid during responses that use PORespData.

PORegRDY Output Indicates that the slave is ready to accept requests. A request transfer completes if POReqRDY
and PIReqVALID are both asserted in the same cycle.

PORespVALID Output Indicates that there is a valid response. All other signals prefixed with POResp are qualified by a
PORespVALID assertion.

PORespCNTL[7:0] Output Encodes the response type and any error status.

PORespDATA[pw-1:0] | Output Response data; The data bus width must be equal in width to the request data bus.

PIRespRDY Input Indicates that the master is ready to accept responses. A response transfer completes when
PORespVALID and PIRespRDY are asserted in the same cycle.

1.2.3 Bus Cycles

A PIF transaction is composed of one or more distinct transfers, each of
which has a hand shake and flow control mechanism, through a ReqVALID
and ReqRDY or RespVALID and RespRDY signal. A PIF request transfer is
considered complete when ReqVALID and RegRDY are asserted in the same
cycle; a PIF response transfer is considered complete when RespVALID and
RespRDY are asserted in the same cycle.

I. Protocols Description

BRIDGE PIF / WB May 2007

The PIF protocol defines five request types:

= Single-data read request

» Single-data write request

» Block-read request (equivalent to the incremental-burst read transfer in
WISHBONE protocol)

= Block-write request (equivalent to the incremental-burst write transfer in
WISHBONE protocol)

» Read-conditional-write request

The bridge, as it will be explained in the following chapters, does not support
the read-conditional-write transfer because this type is not present in the
WISHBONE standard.

To perform the request and specify the type of transfer, the PIF protocol uses
the ReqCNTL signal; below it’s explained the meaning of the different bits:

CNTL[7:0] Signal
BIT 76543 |2|1]0
ojojojo|X|[X|Xx]1 SINGLE-READ TRANSFER
1]ofo|o|X|X]|X]1 SINGLE-WRITE TRANSFER
ReqCNTL |0 |0 |O|[1|X|A|B]|1 BURST-READ TRANSFER
110]0|1|X|A]|B]| 0| BURST-WRITE — NOT LAST TRANSFER
1]0fo|1]|X]|A|B]1 BURST-WRITE — LAST TRANSFER
olo|X|X|[Xx[o]|]o]o]| RESPONSE-NOTLAST TRANSFER
ojJo|X|X|X|o]|o]H1 RESPONSE — LAST TRANSFER
RespCNTLI | 0 |0 [X | X | X |0 [1|1 ADDRESS ERROR
oo x| x|x|1]1]1 DATA AND BUS ERROR
olo0|[X|X]X]|1]0]| 0| DATAERROR—NOT LAST TRANSFER
oo X|x|x|1]o0]1 DATA ERROR — LAST TRANSFER

Table 1 — Information encoded in CNTL signal

The bits ReqCNTL[2:1] during requests are used to specify the block length,
that is the number of bursts:

ReqCNTL[2:1] | Number of burst
0 0 2
0 1 4
1 0 8
1 1 16

Table 2 — Codification of the number of bursts

In this way when a PIF master sends a request to a slave, it uses the
POReqCNTL signal to indicate the cycle type and, in case of block transfer,
the number of bursts. During responses, the PIF slave can use the
PORespCNTL signal to encode the error status: the bridge supports the error
communication between the two interfaces but can’t make difference between
data and address bus errors, so it uses only the values RespCNTL[2:1]="11".
For more details about PIF protocol see [2].

II. Architecture BRIDGE PIF / WB May 2007

Il. ARCHITECTURE

II. Architecture BRIDGE PIF / WB May 2007

I.1 OVERVIEW

Figure 1 below shows general architecture of PIF / WISHBONE BRIDGE
core. It consists of two main building blocks:

» PIF to WISHBONE Bridge: it has a SLAVE PIF interface on one side
and MASTER WISHBONE interface on the other one, so it is used to
translate the PIF MASTER requests and send them to the WISHBONE
SLAVE, then to communicate the response in the other direction.

» WISHBONE to PIF Bridge: it has a SLAVE WISHBONE interface on
one side and MASTER PIF interface on the other one, so it can realize

transfers between a WISHBONE MASTER device and a PIF slave,
translating requests and responses from one protocol to the other one.

There is an other little block, the counter, used by the PIF to WISHBONE
Bridge to increment the address in burst-transfers.

Il. Architecture

PIF

)
Y d

BRIDGE
PIF | WISHBONE

WISHBONE

Figure 1 — Bridge PIF / WISHBONE core

BRIDGE PIF / WB

May 2007

/ N
7
PIF MASTER PIF SLAVE WISHBONE WISHBONE
MASTER SLAVE
& 7 P
/
W 7
BRIDGE PIF -> WISHBONE
g5
A 77
WISHBONE
WISHBONE
MASTER
SLAVE MASTER PIF PIF SLAVE
/ &z | 3
N * <17
BRIDGE WISHBONE -> PIF

Figure 2 — Bridge PIF / WISHBONE Architecture

.2 THE I/ O PORTS

The signals used by the two protocols and described in chapter | represent
the input and output ports of the bridge, because it must be able to connect
master and slave devices, with both PIF or WISHBONE interfaces. The
figures 3 and 4 show the different signals which represent inputs and outputs
of each block. There are three signals which are common to both blocks: the
clock signal (CLK), the synchronous reset signal (RST) and the asynchronous
reset signal (RST_PWR), used for example on start-up of the circuit.

Note that the first letter of signals name can be an ‘M’ or ‘S’ to indicate that
the signal belongs respectively to the MASTER or SLAVE interface of the
bridge: this type of notation can help the user to simply and correctly connect

the device.
1. Architecture BRIDGE PIF / WB May 2007

\LCLK \LRST \I/RST_PWR
ACK_I
PIRegVALID s
T
PIReqCNTL " , DAT_|
Y 7
PIReqADRS ' " ERR_I
—— M |S
PIReqDATA A , ADR_O
S S 7 7
PIReqDATABE L T DAT_O
Y
A E 7
POReqRDY v R cYCc_o
E 5
Fé
PORespVALID W SEL_O
; 3
PORespCNTL P S
STB_O
——|1 H S
F e -
PORespDATA
e 2 P (WE_O
~ rd N Fd
PIRespRDY E " BTE_O
% Cd 7
CTI_O
) M
& -

Figure 3 — PIF to WISHBONE

Il. Architecture

CLK RST RST_PWR
ACK_O PDquVALID
— Zi
ADR_| POReqCNTL
—_—t
DAT | I POEquDRS
) . & = >,
ERR_O L M POREqDATA
_ A A .4 i
DAT_O POReqDATABE
= v s y N
H‘— E T 7 rd
CYC_| E PIRegRDY
i
W RIS
STB_| | PIRespVALID
> S p | €&————
SEL_| H | PIRespCNTL
'ﬁ% B F
o
WE_I PIRespDATA
> N -— "
CTLI R PO;&spR_DY

Figure 4 —- WISHBONE to PIF

BRIDGE PIF / WB

May 2007

CLK RST

RST_

FWR

M_ACK_|
S_PIReqVALID " <
M_DAT_|
S_PIReqCNTL / _DAT_
S_PIReqADRS 5 M_ERR_|
—_— T M |S
S_PIRegDATA & M_ADR_O
5ol | } S S 74 7
S_PIReqDATABE & L T P Q’I_DAT_O
7~ —7 | A E 7 rd
$_POReqRDY V R M_CYC_0
< E }
S_PORespVALID W M_SEL_O
— e | 2,
S_PORespCNTL P S M STE O
- = | H e
| E B oy
S_PORespDATA M_WE_O
z) o N\
b - N I
M_BTE_O
S_PIRespRDY E P A ET e
e £
s
M_CTI_O
i e VY
4 4
M_POReqVALID
S_ACK_O 5
- S 7
M_POReqCNTL
S_ADR_| : " St 3
S DAT | 1 8 M_POReqgADRS
% L II
S_ERR_O A M M_POReqDATA
- —— .|V A - =
S_DAT_O E < , M_POReqDATABE
Ao e T rd 7
E
s_cyc_| m” ":“ R M_PIReqRDY
S_STB_| S
-=1E- S w P _ M_PIRespVALID
1 .
B | <
SLSEL e F M_PIRespCNTL
7 ?l N S
S_WE._| E _ M_PIRespDATA
> -<—
S CTI M_P\ORespRDY

1. Architecture

Fd

Figure 5 — Bridge I/O Signals

BRIDGE PIF / WB

May 2007

About the I/O signals, the two protocols allow to have signals with different
length: for example the data size can have some fixed values and the same is
for the address. So, to make the bridge more compliant with different IP
cores, at the beginning of each VHDL source file are defined some constants
which represent the bus length, the most and least significant bit and so on.
Below you will find a list of these constants:

>

Y VY

DATA_SIZE: represents the data bus width and can assume the
following values: 8, 16, 32 and 64 bits (not 128 because at the moment
is not supported by WISHBONE protocol);

ADRS_SIZE: it is the address bus width and there are not particular
restrictions, depending on the memory size;

MSB: it represents the position of the most significant bit, useful to
encode information between big-endian and little-endian data
representations;

LSB: like the previous constant, it indicates the least significant bit;
PIF_CNTL.: it is the length of ReqCNTL and RespCNTL signals, fixed by
the PIF protocol.

Il. Architecture BRIDGE PIF / WB May 2007

1.3 FEATURES

As explained previously, the function of this core is to allow to interconnect
two devices with different interfaces (signals and protocols used): to do this
the bridge must translate the signals which it receives on one side to the
equivalent ones in the other protocol. In fact the PIF and WISHBONE have
some characteristics in common:

1. first of all, they are both based on a full handshake protocol:

o a PIF master begins a transaction by issuing a valid request assertion and a
PIF slave indicates that is ready to accept requests by asserting a request
ready signal. A request transfer completes when valid request and request-
ready signals are both asserted during the same cycle. The flow of each
transfer within a block transaction can be controlled with this handshake
mechanism.

o In WISHBONE protocol, the MASTER asserts [STB_O] when it is ready to
transfer data. [STB_Q] remains asserted until the SLAVE asserts one of the
cycle terminating signals [ACK_I], [ERR_I] or [RTY_I]. At every rising edge
of [CLK_I] the terminating signal is sampled. If it is asserted, then [STB_O]
is negated. This gives both MASTER and SLAVE interfaces the possibility to
control the rate at which data is transferred.

2. the most cycle types are provided by both the protocols; these transfer

cycles in common are supported by the bridge and they are:

o Single transfers, which can be read or write operations: read or write
transactions smaller than or equal to the data-bus width that require only
one data-transfer cycle are called single data transactions. Byte enables
(PIReqDATABE and SEL_I) indicate which bytes should be read or written.

o Block transfers — read or write - with incremental address: they allow block
data transfers that use multiple full-width transaction cycles; so block sizes
are a multiple of the bus width.

Below are reported the main differences:

1.

in WISHBONE protocol there is a cycle type called block-transfer which
is a little different from the block-transfer of the PIF. In fact the
WISHBONE permits to do a sequence of requests, each after the other,
and specify, in each transfer, the address where you want to do the
read/write operation: the BLOCK cycles are modified somewhat so that
these individual cycles (called phases) are combined together to form a
single BLOCK cycle and the [CYC_QO] signal is asserted for the duration
of the BLOCK cycle. Instead during the PIF block transfer, the starting

Il. Architecture BRIDGE PIF / WB May 2007

address of the block transaction does not change throughout the
transaction: the destination component is responsible for incrementing
the address for all the words in the block: this seems to be nearer to
incrementing burst cycle provided by WISHBONE standard.

. An other difference is in the block length: the PIF protocol require that

the length must be specified together with the first burst in the
PIReqCNTL signal, as shown in table 2, and must have only some fixed
number of bursts: 2, 4, 8 or 16; on the contrary, in WISHBONE there is
not this constraint, that is to say that the length of transfer is not

specified by the master at beginning of the cycle and it can assume any
value.

. The error codification is very simple in PIF protocol, while the
WISHBONE standard, to do that, requires some additional and optional
signals that are not present in all IP cores.

. In PIF protocol the data size can be 8, 16, 32, 64 or 128 bits, while in
the WISHBONE the maximum size is 64 bits.

Due to these differences between the two protocols, the bridge presents
some limitations in compatibility, which must be kept into account when you
choose to use this bridge to interconnect two devices, otherwise the
behaviour will not be that expected! So remember that:

The bridge supports block-transfers only with incrementing address,
starting from an initial address specified during requests; the classic
block-transfer of WISHBONE standard is not supported and must be
divided in multiple single transfers.

. The block length in WISHBONE to PIF direction must be fixed (8, 16, 32,

64 or 128), to do that there is a constant signal which can be modified
before compiling the VHDL source code: in fact the length of the block
must be communicate at the begging of the cycle in PIF standard, while
this information is not required in WISHBONE; so the solution adopted is
to use a constant length, equal to the most used value (statistically it is 4
or 8 bursts par block).

Only the presence of errors is signalized, with no error codification
because this feature is not directly supported by the WISHBONE
standard.

Il. Architecture BRIDGE PIF / WB May 2007

In despite of these limitations, the bridge has good performance and very
simple utilisation. There would have been a solution to the first problem, with
a queue buffer: this solution was inefficient because of retard times and could
have presented problems because of memory size and loss of data bursts.

1.4 OPERATION

The problem about translating one protocol into the other was essentially in
synchronizing the handshake signals, in particular during block transfers. |
decided to implement these functions with a Finite State Machine (FSM):

a) | found the main states, corresponding to different phases of the
transfer cycles;

b) for each state | selected the activation signals, used to decide how to
go from one state to another;

c) each state corresponds to a certain phase, so it is characterized by
certain values of output signals.

As shown in Figure 5, the architecture of the bridge has two main blocks,
each one corresponding to a FSM. In the following pages the operation will
be explained with a state diagram.

Il. Architecture BRIDGE PIF / WB May 2007

ACK =1 ACK =1

PIReqCNTL (7) ="1'
&&
PIReqCNTL (4) = ‘0’

PIReqCNTL (7) =0’
8&
PIReqCNTL (4) = ‘0’

PIReqCNTL (7) = '1'
3&
PIReqCNTL (4) = ‘1’

PIReqCNTL (7) = '0'
&
PIReqCNTL (4) = 1’

ACK =0’ ACK =0’
&& &&
N=TOT N=TOT
ACK =1’ ACK =1
State :
IDLE
SR : Single Read
SW : Single Write
BR : Block Read
BW : Block Write
R_ACK : Response to ACK in Block Read
W_ACK: Response to ACK in Block Write
Signals :
N : Current Number of Trasfers
TOT : Total Number of Transfers
ACK : Wishbone Acknowledge
PIReqCNTL : PIF Request Control
Figure 6 — PIF to WISHBONE FSM
Il. Architecture BRIDGE PIF / WB May 2007

HIAENYHL 101 = HIASHHL N

T
100, =111 0 = AQehayld
b= ACHbBI b=l 3
=10k
=18l
da N
4SNVHL LM LYHLS
()).
HIISNYHL 101 » HI4ENFHL N LM p 370A0 ON

Ty

N

(4) 00, =110
. = Agdbedd
dvay 4

(2)
JSNYML Y3y LMYLS

s

b= [0k

0 = QTwAtseyld =818

000, =111
= AQHbaHI 0= A0ybayd

./___ = (vAdseyd

HIAENYHL L0L = H345NYAEL N

b= 154

0=1342

7 — WISHBONE to PIF FSM

igure

F

Il. Architecture BRIDGE PIF / WB May 2007

To realize the design of the two FSM, | studied the two protocols to
understand the operation of each one and to find out a way to translate the
different cycle types from one side to the other. In each state the bridge
controls the output signals, the main difficult was in synchronising the
transitions from one state to the following — note that in general there is more
than one possible choice, depending on activation input signals. The VHDL
description uses three main processes:

1. State_Register: this is a sequential process which, on the clock
rise edge, assigns the new value to signal state, essentially
next_state if RST=0" otherwise it puts the bridge into the initial
state, that is state A.

2. Next_State_Function: it's a combinational process; depending on
the current state and the activation signals, it assigns the correct value
to next_state, so it decides what the bridge would do the next clock
period.

3. Qutput_Function: it's a combinational process which controls
almost all output signals depending on inputs and current state.

After that | described in VHDL the FSM corresponding to the bridge, | used
Xilinx ModelSIM to compile the source code and test it. In particular, it was
very useful the waveform simulation tool, because | could compare the
behaviour of signals of the bridge with that expected, which is described in
the diagrams in the next chapter. To do this simulation, | wrote a testbench in
VHDL which is reported in chapter V.

IIl. Diagrams BRIDGE PIF / WB May 2007

lll. DIAGRAMS

Ill. Diagrams BRIDGE PIF / WB May 2007

l1l.1 WISHBONE to PIF — Single Write Cycle

5TH_T

ADE T

I [+ Syl [——

PORagADRS

oL

—_ e —— -

DIRagRiY

IPORaegqitATA

el Lt bl el iy T Gar] B WA UL) Pk T) i

Figure 8 —- WISHBONE to PIF single write cycle

May 2007

BRIDGE PIF / WB

Ill. Diagrams

1.2 WISHBONE to PIF — Block Write Cycle

101310

FPORaqCNTL

Figure 9 — WISHBONE to PIF block write cycle

May 2007

BRIDGE PIF / WB

Ill. Diagrams

lI1.3 PIF to WISHBONE - Single Read Cycle

CLE

ES5T

FCORaqRDY

oDAT T

PoRaapltATA

00a0oool

DORsap CNTL

Figure 10 — PIF to WISHBONE - single read cycle

May 2007

BRIDGE PIF / WB

Ill. Diagrams

lll.4 PIF to WISHBONE - Block Read Cycle

CLK

ALFE. O

PORsaplATA

oooooool

noaooano

PIRaapROY

Figure 11 — PIF to WISHBONE - block read cycle
IV. FPGA Implementation BRIDGE PIF / WB May 2007

IV. FPGA IMPLEMENTATION

IV. FPGA Implementation BRIDGE PIF / WB May 2007

IV.1 SYNTHESIS

After describing the bridge in VHDL, the second step was the synthesis and
implementation of the design on an FPGA: to do this work | used the Xilinx
Integrated Software Environment (ISE). | loaded my project into this program
and | proceed with the synthesis on a Xilinx Virtex4 FPGA: the result of this
operation was a RTL schematic of the bridge and other information about the
utilisation of logic components, reported below.

DAT_I{a1:0) ADR_O{11:0)

PiRegADRS(I10) HTE Of1:0)

PIRsgCNTL{7 1) CT_of21)

PlReqlATA1:0)

m—-
PIFeqVALID

1 PlRespADY

CTI_l{20)

SEL |30)
aK
oYG |
PIReqRDY

—|PIRespVALID EAA O
POReVALID

PORespRDY

Figure 12 — Bridge RTL schematic

IV. FPGA Implementation BRIDGE PIF / WB May 2007

S EIEE

Figure 13 — PIF to WISHBONE RTL schematic

bg v 0

0006 4mdad

CECOTCOT T O 00060

Figure 14 — WISHBONE to PIF RTL schematic
IV. FPGA Implementation BRIDGE PIF / WB May 2007

3

Below you find the design summary reported by Xilinx ISE after synthesis on
Virtex4 FPGA:

Device Utilization Summary

Logic Utilization Used Available Utilization
Total Number Slice Registers 72 178,176 1%
Number used as Flip Flops 56
Number used as Latches 16
Number of 4 input LUTs 274 178,176 1%
Logic Distribution
Number of occupied Slices 156 89,088 1%
Number of Slices containing only related logic 156 156 100%
Number of Slices containing unrelated logic 0 156 0%
Total Number of 4 input LUTs 303 178,176 1%
Number used as logic 274
Number used as a route-thru 29
Number of bonded IOBs 451 960 46%
Number of BUFG/BUFGCTRLs 8 32 25%
Number used as BUFGs 8
Number used as BUFGCTRLs 0
Total equivalent gate count for design 3,250
Additional JTAG gate count for IOBs 21,648

IV.2 IMPLEMENTATION

After implementation, | used both Xilin ModelSIM and Xilinx ISE to do post-
map and post-route simulation. | found some timing errors and | had to modify
the VHDL description in order to take into consideration delays introduced by

file:///home/phd-students/sergio.tota/Tensilica/PIF2WB/v2//C:/Documents and Settings/Edoardo/Documenti/Scuola/Monografia/Relazione/FPGA Report/BRIDGE_map.mrp%253F&DataKey=IOBProperties

the physical layer. After that, | did the simulation using the same testbench
and the result was satisfying.

File Edit Refactor

| 3~ B %
| €1+ Bl s e

0E C/C++ Projects &2

Nay

&5 burst

= ethemet
Zethray

1= fake

5 HelloWorld
=% ray_dualcore
= raytracer
 testcond

S testnocmaster

v v v v v v v W v W

T testnocslave

o System Overview &2

I = Configurations
I = TIE Source

¥ ZGlobal Settings

Toolchain and Target

& Applications Places Desktop %@@@@

@ Tue 17, 2z Pm &

E P %[5

» = HelloWorld
= burst
b ethemet [Release | V] IManage Targets - 3 =5
b ethray Affecting HelloWorld and all of its children. a 5 -
I Efake G
I Tacray_dualcare M ‘Optimization ‘ Warnings 1 Language I Assemﬂerl Unker} MAIN =
b Eraytracer ‘Optimization Level: stdibh
b & testcond math.h
b S testnocmaster Optimize for: (O Speed @ Size th
I testnocslave Enable interprocedural optimization ~ [] Enable automatic vectorization workpool.h
O prt.h
[J Enable profile-directed compilation Profile counter size: O 32 bits © 64 bits wp
[[] Enable hardware feedback generation Include debug information NumSubRays
[[] Keep intermediate compilation files [4]:Don't serialize volatile memory accessesé Enable this option z:lstats
] Enable long calls [Put literals in text section Display
‘Compiler Flags AntiAlias =
[-OZ -g -Os -ipa -mno-sernialize-volatile View
TraversalType
world_level_grid
NumPaths
AntiAlias_uniform
lights
ModelNorm
nlights
ModelTransform
bundlex
bundley
-“ blockx _
e 2 D)
[El Problems &3 Cansa\e‘ Properties ‘ TIE Compile \og‘ XPG View‘ Estimation view - burst‘ Prof\le|Search| F ¥ =0
0 errors, 1 warning, 64 infos
| ‘ Description =
& no newline at end of file L
i File not indexed because it was not built
i File not indexed because it was not built
i File not indexed because it was not built =
[« | [+]

-

Writable Smart Insert 1:1

[[vhel - File Browser

| [[PIF2WB.vhd (~/pif2wsbisea... | B¥] C/C++ - main.c - Xtensa Xplor... |

Figure 15 — Compile Flags for Block read / write

& Applications Places Desktop %@Q@@

@ rue Ju17, 2aapm &

= wave - default

File Edit ¥iew Insert Format Tools Window

sHEE | L RBA

o || EF IELEDER B

L K e

L]

TR G0 O OO O 0 ':'I‘IEI:"I:I"T'I':'I'I'I'I‘I‘D:-Z'I'EI'— 9 O T
e m = i

T N 5 T A N 1 5 51

A

Cursar 1 | 265300 ps

23031100 ps to 33563600 ps Mow: 2,616,711 ns Delta: &

o e o o o o AR o o o o o o o o e

G I | 6 A T

[

=3 I 2 [Terminal] IE [Seamless CV. I =] ["Logic Simulat ”Ei [ModelSim SE II:l ["Software for

O wave - default =

[Desktop - File.

|

& Applications Places Desktop %@Q@@

@ rue Ju17, 24spm &

= wave - default
File Edit ¥iew Insert Format Tools Window
BHESE| | BN % | EFIELEDERE Ly B e o

AR RORC WL Y 1o

Cursar 1 | 265300 ps

23755600 ps to 30163600 ps Mow: 2,616,711 ns Delta: &

J=)Ed

of

=3 I 2 [Terminal] IE [Seamless CV. I =] ["Logic Simulat ”Ei [ModelSim SE II:l ["Software for

[wave - default I [Desktap - File |

Figure 16 and 17 — Seamless Hardware & Software Co — simulation

& Applications Places Desktop %@Q@@ 0 Tue Jul 17, 2:43 PM (L

wave - default

File Edit ¥iew Insert Format Tools Window

SHEE | rBREdn i || EREL Bl Bk B8 B e o of

N A Y RS TN (EEENENE B EENI AR | REREE B R ERRENN] | ENIRERE] i
Gt Teoootooo [Teoooniot T lenooot Neoo Josoat Neomomsoz — 1+ T T 1 |

uuuy 0000 At N KK M KRR Nl 0 |

|

{010 117 010 o1, /111 {000 1

1

Jitle oo X b lille o oe OO I T Db Ol o i 1
10010 I T i] T

{000 310 fooo [B J15%4 [00Z

i ENEL]

Cursar 1 | 934734 ps

O ps to 2100 ns Mow: 2 us Delta: 2

=3 = [pif2wsb - File Bro. IE [Terminal] | [Xilinx - ISE - fho. ”Ei [ModelSim SE PL [wave - default * [testbench.bmp] | & [pif2wb.zip | I

Figure 18 — Testbench output waveform

Bibliography BRIDGE PIF / WB May 2007

Bibliography

[1] WISHBONE Specification Revision B.3, see the OpenCores website
http://www.opencores.org/projects.cgi/web/wishbone/wbspec b3.pdf

[2] Xtensa Processor Interface Protocol (PIF), see the Tensilica website
http://www.tensilica.com

http://www.tensilica.com/
http://www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf

