
1 
 

rfSpriteController 

(c) 2022 Robert Finch 

Table of Contents 
Overview ....................................................................................................................................................... 3 

Register Set ................................................................................................................................................... 3 

Definitions ..................................................................................................................................................... 5 

Image Cache .............................................................................................................................................. 5 

Register Descriptions .................................................................................................................................... 5 

Position Registers ...................................................................................................................................... 5 

Horizontal Position (n0) ............................................................................................................................ 5 

Vertical Position (n2) ................................................................................................................................. 5 

Sprite Width .............................................................................................................................................. 6 

Sprite Height ............................................................................................................................................. 6 

Output Plane ............................................................................................................................................. 6 

Color Depth ............................................................................................................................................... 6 

Pixel Size .................................................................................................................................................... 6 

Image Offset .............................................................................................................................................. 7 

Transparent Color ..................................................................................................................................... 7 

Color Representation ................................................................................................................................ 7 

Alpha Blending .......................................................................................................................................... 7 

DMA Access ................................................................................................................................................... 9 

DMA address ............................................................................................................................................. 9 

DMA Burst Start and End .......................................................................................................................... 9 

DMA Trigger .............................................................................................................................................. 9 

DMA Vertical Sync Triggered .................................................................................................................... 9 

DMA Operation ......................................................................................................................................... 9 

Global Registers .......................................................................................................................................... 11 

Sprite Enable ........................................................................................................................................... 11 

Sprite Interrupt Enable ........................................................................................................................... 11 



2 
 

Sprite Collisions ....................................................................................................................................... 11 

Background Collision ............................................................................................................................... 11 

Sprite-Sprite Collision .............................................................................................................................. 11 

Clocks .......................................................................................................................................................... 12 

Ports ............................................................................................................................................................ 12 

Parameters .................................................................................................................................................. 14 

Program Examples: ..................................................................................................................................... 15 

WISHBONE Compatibility Datasheet.................................................................................................... 16 

 

 

  



3 
 

Overview 
This core provides support for moveable graphical images commonly known as sprites (or 

hardware cursors). 

The core is parameterized to allow 1,2,4,6,8,14, or 32 sprites. The size of the core depends on 

the number of sprites selected. 

The core is capable of simple animation of sprites without CPU intervention. 

The core has two interfaces to the system, a 32-bit slave interface to update the registers, and a 

64-bit DMA master interface for loading sprite image data. 

Register Set 
Note that the sprite registers are 8, 16, or 32 bit addressable. For instance the vertical position 

may be updated by writing a 16 bit value to register $02. 

Unused bits in the registers should be set to zero. 

Register Bits Function   

00 [11:0]  Horizontal position Position  

 [27:16] Vertical position   

04 [7:0] Width of sprite in pixels Size   

 [15:8] Height of sprite in vertical pixels   

 [19:16] Horizontal size of pixel in video clock cycles   

 [23:20] Vertical size of pixels in scanlines   

 [27:24] output plane   

 [31:30] color depth 1=8 bits,2=16-bit ARGB1555, 3=32-bit ARGB8888  

08 [11:0] Sprite image offset in image cache Address  

 [31:12] Sprite image system memory address 
Bits 12 to 31 

DMA address low  

0C [23:0] Transparent color   

10-1FC  These are registers reserved for up to 31 more sprites same format as above 
four registers 

200 [8:0] Sprite #0 Burst start – address bits 3 to 11 

 [24:16] Sprite #0 Burst end – address bits 3 to 11 

204 to 
27C 

 Burst start/end for 31 more sprites 

Animation Registers 

280 [7:0] Frame size, bits 4 to 11 

 [15:8] Frame count, number of frames in animation 

 [25:16] Animation rate – number of vertical sync pulses between frames 

 [29:26] Frame size, bits 0 to 3 

 [30] Auto-repeat, 1=repeat animation 

 [31] Animation enable, 1 = enabled 



4 
 

284 to 
2FC 

 Animation registers for 31 more sprites 

Global Registers 

3C0 [31:0] Sprite enable   

3C4 [0] Sprite-sprite collision interrupt enable Interrupt Enable / Status  

 [1] Sprite-background collision interrupt enable  

3C8 [31:0] Sprite-sprite collision record   

3CC [31:0] Sprite-background collision record   

3D0 [31:0] DMA trigger on   

3D4 [31:0] DMA trigger off   

3D8 [31:0]  Vertical Sync DMA trigger   

3FC [31:0] DMA address bits 63 to 32 currently unimplemented  

 

  



5 
 

Definitions 

Image Cache 

The image cache is a block of memory containing the sprite image data that is 4096 bytes in size.  

Each sprite has its own image cache which may be used to store multiple images. The sprite 

image cache is loaded automatically under DMA control and is not visible to the system. The 

product of the horizontal and vertical resolution for the sprite combined with the sprite’s color 

pixel depth should not exceed 4096 bytes. 

 

Register Descriptions 

Position Registers 

The sprites position is relative to the positive edge of the externally supplied horizontal sync and 

vertical sync signals. The (zero, zero) point coincides with the horizontal sync and vertical sync 

signals and hence is not at the top left of the display. There is an offset from synchronization 

signals, required before the top left co-ordinate of the display. The top left of the visible display 

is approximately sprite co-ordinates (280, 50). Note that it is possible to position the sprite “off-

screen” so that it doesn’t display. 

The sprite extends to the right and downwards from the setting in the position register. 

Horizontal Position (n0) 

This register specifies the horizontal position of the sprite with respect to the horizontal sync 

signal. There are only 12 significant bits. 

15       12 11                                          0 

~4 HPOS12 

 

Vertical Position (n2) 

This register specifies the vertical position of the sprite with respect to the vertical sync signal. 

There are only 12 significant bits. 

15       12 11                                          0 

~4 VPOS12 

 

  



6 
 

Sprite Width 

The width of the sprite is controlled by this register. The width may vary from 1 to 256 pixels. 

The default width is 56 pixels. The value in this register is one less than the width. Note that the 

product of width, height and color depth cannot exceed 4096 bytes. 

Sprite Height 

The height of the sprite is controlled by this register. The height may vary from 1 to 256 pixels. 

The default height is 36 pixels. 

Output Plane 

This register controls which plane the sprite is in relative to the external bitmap graphic input. 

The output plane and the external input plane work together to control the display. If the 

external input plane is numerically higher than the sprite’s output plane then the external input 

will appear in front of the sprite, otherwise it will appear behind the sprite. 

Color Depth 

The sprite color depth register controls the number of bits used to represent color for the sprite. 

One of three depths are possible, eight-bit color, sixteen-bit color and thirty-two-bit color 

depths are available. Note that bigger color depths require the sprite dimensions to be smaller 

as the amount of memory for the sprite image is limited. 

Eight-bit color does not allow alpha blending. Sixteen-bit color has limited alpha-blending 

towards white or black. Thirty-two-bit color may blend input and sprite colors using an eight-bit 

alpha channel. 

Eight-bit Color 

7    5 4    2 1  0 

R3 G3 B2 

Sixteen-bit Color 

15 14             10 9             5 4             0 

A1 R5 G5 B5 

Thirty-two-bit Color 

31                   24 23                   16 15                   8 7                   0 

A8 R8 G8 B8 

 

Pixel Size 

The size of the pixels used to display the sprite may be controlled. Increasing the size of the 

pixels has the effect of increasing the size of the sprite. Sprites may be effectively 1024 pixels in 

extent when the pixel size is increased to the maximum. Pixel size may be varied from one to 

sixteen clock cycles or scan lines. 



7 
 

 

Image Offset 

The sprite uses a block RAM as an image cache. The amount of RAM available per sprite is 4kB. 

Since the amount of RAM available is fairly large, multiple sprite images may be cached in a 

single buffer. The image offset is the offset into the cache buffer for the currently displayed 

sprite. Only one image at a time may be displayed from the image cache. Fortunately there is a 

separate image cache for each sprite. 

Sprites may sized such that the product of the width and height is less than 4096 for eight bit 

color or 2048 for sixteen bit color. In this case the sprite image cache may hold multiple images. 

For example, if 16x16 sprites are used, sixteen separate images would be able to fit into a single 

image cache. Setting the sprite size to 8x8 would allow 64 different images to fit into the image 

cache. By cycling through the images different graphics effects can be created, For instance a 

rotating ball, or a flying bird. 

 

Transparent Color 

The transparent color register defines which of 256/32k colors are transparent. If the color of 

the sprite pixel is equal to the transparent color, then the image underneath the sprite is visible. 

This has the effect of making portions of the sprite “transparent”. The number of bits used to 

match the transparent color depends on the color depth for the sprite. For example, for eight-

bit color depth only the low order eight bits of the transparent color register are tested. 

 

Color Representation 

The core may be configured at run time to use either 8 bits, 16 bits, or 32 bits per pixel to 
represent color. In the sixteen bits per pixel mode, 1 bit is reserved to indicate alpha blending. 
Colors are (3,3,2) for (R,G,B) in eight bit mode or (1,5,5,5) for (A,R,G,B) in sixteen bit color mode. 
For thirty-two-bit color depth ARGB (8,8,8,8) is used. 

Alpha Blending 

Color alpha blending functionality is available when the core is configured for 16 bit (or higher) 

color representations. The alpha blending factor may be used to create a shadow effect under 

the sprite. The alpha blending for 16-bit color is indicated by the most significant bit of the color. 

If the MSB is set to a one, then the lower eight bits of the color represent an alpha blending 

factor. The alpha blending blends towards black or white. A fixed-point arithmetic multiply is 

used for blending. 

The alpha is eight bits ranging between 0 and 1.999... 

1 bit whole, 7 bits fraction 



8 
 

Thirty-two-bit colors have the capability of blending the input image color and the sprite image 
color according to an eight-bit alpha value which is 1 bit whole, 7 bits fraction. 

 

 

  



9 
 

DMA Access 

DMA address 

Sprite image caches are loaded from memory using an internal DMA controller. The DMA 

address is formed from the global DMA address register coupled with the sprite DMA address 

register bits. The low order 12 bits of the DMA address are automatically generated by the DMA 

controller. The image memory must be aligned on a 4kB boundary. Note that a 64-bit address is 

supported. However, all sprite images must be within the same 4GB memory range. 

DMA Burst Start and End 

The DMA burst start and end registers allow a subset of the total cache to be loaded. For 

instance, if images use only 1kB of memory then the burst start may be set to 0 and the end set 

to 127. This will load 128 consecutive 8-byte pieces of the sprite image into the cache. 

DMA Trigger 

DMA begins when the DMA trigger register bit for a sprite is set. 

DMA Vertical Sync Triggered 

DMA operations may also be triggered by the vertical sync pulse. 

DMA Operation 

The DMA controller uses 64-bit memory accesses to load the sprite image caches. 512, 64-bit 

memory accesses are required to load each sprite memory. 

Animation Registers 
The sprite controller is capable of simple low-overhead animations by using the image cache to 

store multiple frames of the animation. The controller may be setup to cycle between the 

frames stored in the image cache without CPU intervention. Because the cache is being accessed 

no external memory cycles are required. 

Frame Size 

This register is split in two parts in the animation register for the sprite. Updating bits 4 to 11, 

the low order eight bits of the animation register automatically zeros out bits 0 to 3 of the frame 

size. Bits 0 to 3 of the frame size may be subsequently specified. 

Frame Count 

This register specifies the number of frames in the animation. This allows only the portion of the 

image cache that is needed for animation to be used. There may be up to 256 frames in the 

animation, however, the size of the frame and number of frames cannot exceed 4096 bytes. The 

first frame of the animation begins at the value of the image offset register. Frames are relative 

to the image offset register. Multiple animation sequences may be cached and used by varying 

the image offset register. 



10 
 

Auto-Repeat 

This bit, when set, causes the animation to repeat automatically after the last frame has been 

displayed. If this bit is clear then the animation will halt after the last frame and the animation 

enable bit will be cleared. 

Animation Rate 

This register controls the interval between successive frames of the animation. It is in terms of 

vertical sync pulses, usually close to 60Hz, but it may differ depending on the video mode. 

 

  



11 
 

Global Registers 

Sprite Enable 

The sprite enable register acts as on/off switches for the sprite display. Sprites will not display 

unless enabled. 

Sprite Interrupt Enable 

This register controls which sprites are capable of causing interrupts due to a collision with 

another sprite or a background object. 

Sprite Collisions 

If the display of two sprites overlap, a sprite-sprite collision is signalled and recorded in the 
sprite-collision register. Note that the transparent color does not cause a collision. Sprite regions 
may overlap without a collision as long as a transparent color is being displayed. The transparent 
color allows irregularly shaped collision regions. 

 

Background Collision 

A sprite-background collision is signalled when the sprite is in a display region that contains 
graphics on the same plane as the sprite’s plane. 

 

Sprite-Sprite Collision 

This register indicates which sprites are colliding. 

 

  



12 
 

Clocks 

The sprite controller uses separate system bus and video pixel clocks which do not have to be related  

Ports 
Bus master and slave ports use structured variable types that encapsulate the Wishbone bus. These are 

divided into request and response busses. The components of the request and response busses are 

outlined in the table below. 

Port Size Description  

Rst_i 1 This signal reset the core  

Clk_i 1 (slave) Bus clock  

s_cs_reg_i 1 register set circuit select  

Wbs_req    

S_cyc_i 1 Slave bus cycle is active  

S_stb_i 1 Slave data transfer is taking place  

S_ack_o 1 Data transfer acknowledge, generated by the controller  

S_we_i 1 Indicates a write to the controller is taking place  

S_sel_i 4 Byte lane select, only byte lanes identified by this signal 
will be written. 

 

S_adr_i 32 Slave address input, used to address the sprite registers 
and image caches. 

 

S_dat_i 32 Data input to the core  

S_dat_o 32 Data output from the core  

    

M_bte_o 2 This signal indicate the burst type, only type 0 is 
supported 

 

M_cti_o 3 This signal indicates that burst access is taking place. 
currently only normal cycles (000) are supported 

 

M_bl_o 6 This signal indicates the burst length. It outputs 63 for a 
burst length of 64 words. 

 

M_cyc_o 1 This signal indicates that a DMA burst cycle is active  

M_stb_o 1 This signal indicates when a data transfer is taking place  

M_ack_i 1 Data transfer acknowledge from memory  

M_we_o 1 Not used, always zero  

M_sel_o 4 Will be hF when a DMA is taking place  

M_adr_o 32 System address for DMA transfer  

M_dat_i 64 Data input to the core  

M_dat_o 64 Not used. Always zero  

    

vclk 1 Video pixel clock  

hSync 1 Horizontal sync input to the core  

vSync 1 Vertical sync input to the core  

blank 1 Blanking signal input to the core  

Zrgb_i 40 External image input.  



13 
 

Zrgb_o 40 Video output from core  

    

irq 1 Interrupt request line  

    

 

  



14 
 

Parameters 
 

pnSpr – controls the maximum number of sprites, values 1,2,4,6,8, 14, or 32 

  



15 
 

Program Examples: 
 

The following code written in 68000 assembler language randomizes the sprite memory. It causes the 

sprites to display as a block of randomly colored pixels. 

 

 

RANDOM EQU  0xFFDC0C00 

SPRITERAM EQU  0x00080000 

 move.l #0x80000,d1  ; set sprite #0 image data address 

 move.l d1,SPRCTRL+8 

; randomize sprite memory 

 move.l #32768,d1 

 lea  SPRITERAM,a0 

main6: 

 move.l RANDOM,d0  ; load from hardware random # generator 

 move.w d0,(a0)+ 

 subi.l #1,d1 

 bne  main6 

 move.l #1,SPRCTRL+0x3D0 ; trigger sprite DMA to load cache 

 

 

  



16 
 

WISHBONE Compatibility Datasheet 

The rtfSpriteController core may be directly interfaced to a WISHBONE compatible bus. 

  

WISHBONE Datasheet 

WISHBONE SoC Architecture Specification, Revision B.3 

    

Description: Specifications: 

General Description: Hardware cursor / sprite controller 

Supported Cycles: 

SLAVE, READ / WRITE 

SLAVE, BLOCK READ / WRITE 

SLAVE, RMW 

Data port, size: 

Data port, granularity: 

Data port, maximum 

operand size: 

Data transfer ordering: 

Data transfer sequencing 

32 bit 

8 bit 

32 bit 

Little Endian 

any (undefined) 

Clock frequency 

constraints: 
  

Supported signal list and 

cross reference to 

equivalent WISHBONE 

signals 

Signal Name: 

S_ack_o 

S_adr_i(23:0) 

S_clk_i 

S_dat_i(31:0) 

S_dat_o(31:0) 

S_cyc_i 

WISHBONE Equiv. 

ACK_O 

ADR_I() 

CLK_I 

DAT_I() 

DAT_O() 

CYC_I 



17 
 

S_stb_i 

S_we_i 

M_ack_i 

M_adr_o(31:0) 

M_clk_i 

m_dat_i(63:0) 

m_dat_o(63:0) 

m_cyc_o 

m_stb_o 

m_we_o 

STB_I 

WE_I 

 ACK_I 

ADR_O() 

CLK_I 

DAT_I() 

DAT_O() 

CYC_O 

STB_O 

WE_O 
 

Special Requirements:  

  

 


