FizZim — an open-source FSM design environment

Paul Zimmer
Zimmer Design Services

Michael Zimmer
Zimmer Design Services
(and University of California, Santa Barbara)

Brian Zimmer
Zimmer Design Services
(and University of California, Davis)

Zimmer Design Services
1375 Sun Tree Drive
Roseville, CA 95661

paulzimmer@zimmerdesignservices.com

website: www.zimmerdesignservices.com

29 August, 2011

ABSTRACT

Finite State Machine design is a common task folCA8esigner engineers. Many designers
would prefer to design FSM’s in a gui-based enviment, but for various reasons no commercial
tool for this task has really achieved wide-spraadeptance. The authors have written such a
graphical FSM design tool, and offer it to the emegiring community for free under the GNU
public license. The gui is written in Java for tadility, while the back-end code generation is
written in Perl to allow for easy modification. h& paper will describe the basic operation of the
tool and the format of the Verilog it produces,riigd on to describe some of the more advanced
features and how they affect the Verilog output.

<2 HZLIM

The FSM Design Tool

Free!

Fizzim 2 Fizzim

Table of contents

1 Introduction - What IS fIZZIM?eeeiieiii e 5
A - 1 11T I {17474 | o PRSPPI 6
2.0 WINOOWS ...ttt ommemme 4ottt e 44ttt £ 4442kttt 4444 a Rt 444 4Rk b et e e o4 4R bttt e e e e st et e e e e e nmnneee e e annnnes 6
P I U G PO PP PPPTOTPPPPPRON 6
I €10 I o - L o TP PPPPPPPPPPPPPPTP 7
A ATIIDULES ...ttt et e e e e e e e e e e s s e na e 8
S =l o[0T [0o 1= TSRS 9

5.1 Highly Encoded with Registered Outputs as BHEHEHEROS) ..o 9
LT @ 1IN o [PP PO PO TP 9
B ClIF'S ClASSIC .. .eveeeieiiiieeee e emmmm ettt n e e e e e e e e e e e e 10
6.1 Creating the STALES ittt e e e e e e e e e e e e e e e bbb et e et e e eeeaaaaaaeeeaaeaannnnes 11
6.2 Creating the traNSILIONS ettt et e e e e e e e e e e e e e e e bbbt e e e e e e e e eeaaaaaaaaaan 13
6.3 FilliNG IN the ELAIIS ... et e e e e e e e e e e e ettt e e e et e e eaaaaeeeaaeaannnnnes 16
6.3.1 GlODAI ALITDULES ...t e et e e s et e e e et e e e 16
6.3.2 Individual State ALIDULESooiiiiiiiieii e e s 23
6.3.3 Individual Transition AHDULESei e 25
6.4 OULPUL USING NEIOSeeeeiiiiiiiei e ettt et e e e e e e e oo e oo oo oo b e ettt e e e e e eeaaeaaaaeasaa e e nnnsatbesbaeneeeeaaaaaaasaans 26
6.5 OULPUL USING ONERNOLottt e e et e e e e e e e e e e s e s s e e e nneeeb bbb e e e eeeeeaeaaaaaeaaaas 30
6.5.1 Output using onehot when “implied_100pback” IS SBL...........uuuiiiiiiiiiiiiiiiee e 30
6.5.2 Onehot output when “default_state IS X" IS SELoooc....uuiiiiiiiiiiiiiiie e 33
6.6 ASCIi STALE NAIMEeiiiiiiiiii et reeeer ettt e e ettt e e e ekttt e e e s aare et e e e s st b e et e e e e s ek b be e e e e e e aabbbeeeeeesanrneeeeeaan 35
6.7 (Un)Displaying the attributes table ... oo a e e e 36
T MEAIY OULPULS ...ttt st et e e e e e e e e ettt e ettt bbb seeeea s s e e e e e e e e eeeeaeeeeeeennneen 37
7.1 Mealy outputs @SSIGNEA IN SLALES ... ceeee ettt e e e e e e e e e e s e e e bbb s e e e e e eeaaaaaaaaaeas 37
7.2 Mealy outputs assigned 0N trANSITIONS ..o e e e e e e e e e e e aaaaaaaaeaaas 40.
7.3 MiXING the SEYIES ...ttt e e e e e e e e e e e e s e e bbb et b e et e e et eaeaaaaeaeaaaaannnnns 43
R B T= L =Y o = 11 g 0T U1 o 11 | £ UPRP 46
9 Flags (NeW With VEISION 4.0)uuuuiiieceeeeeiiee ettt e e 53
9.1 Basic Example (flag Set ONlY ON SEALES)eeiiiiiiiiiiiee ettt e e e 53.
9.2 Flags SEt ON TrANSITIONSee ettt ettt e e e e e e e e oo ettt et e et e e aaaaaaaaeaeeaaaaannnnbesneeeeeeas 57
9.3 Capturing incoming data on an arc uSing flagSuuueieiiiii e 61
O =T o K71 o I o [Y PPPRRT 65
O 2 - TS (o = T o]) O PUUPPRTT 65
10.2 The special case of equation eqUAal 10 “ Lo it eeeeeeeeas 7.6
11 AdAING Gray COUES. ... ittt e et e e e e et e e s a e e e e e e e e aeeees 72
12 Mapping states to ValuES IN NEIOS ... 76
13 U S .. e ————a e e et e e e e a i aaaan 77
14 Bringing out internal SIgNAIScooo oo 80
14.1 Renaming internal SIGNAIS ..o oottt e e e e e e e e e e e e e eee e 80
14.2 Bringing QUL iNErNal SIGNAUS ettt ettt e et e e e e e e e e e e e e e e s e e s s e nnnnbebbeeeees 80
15 USINQG PATAIMELEIS. . .uuuuiiiiieee e e e e e e e e e e s e s e e e e e e e e e e e e e eeeeeeebsbbsa s a e e e e e e e eeaaeeees 84
16 Inserting random bits of code at strategiC PlaCesS........cccovvveiiiiiiiiiiiiiiiiiieee 86
17 INSErtiNG COMMENES ...ttt e e e e e e e e e e e et e e eeeeeneeeesseebnnnn s 87
18 USING MUILIPIE PAGES....coiieiiiiiiiiiiiiii e ettt e e e e e e et et e e e e eeee e e e reennnn s 88
19 include and "defiNeoueiiiiiii e e 93
20 FOICING the STALE VECTONceevivivittet s e e e e e e e e e e e e e et et eeeaetbbase s e e e e e e e e e e e 96

Fizzim 3 Fizzim

20.1 With registered outputs as datapath DitS.........cccuuiieiiiiii e 96.

20.2 With registered outputs assigned to state.hDitS.............ooo i 97
21 Suppressing outputs in the module POrtlist............cccceiiiiiiiiiiiiii e 101
22 Splitting lines in free text and eqUALIONSveiiiiiii e 102
23 UNKNOWN STALESottt e e e e e e et e e et e e e teeeeneeeesssbbnnnn s 103

23.1 Case 1 — sparse state space and unknownsagaetasting Stateccooeiiiiiiimeeeeen e 103

23.2 Case 2 — full state space and unknowns g EXIBtING StALE............couiiiiiiiiiiiieeere e 106

23.3 Case 3 — sparse state space and UNKNOWNSGTEIB STALEoooiiiiiiiiiiiiiitceeeem e 107

23.4 Case 4 — full state space and UNKNOWNS GOBWESTALEocuriiieieiiiiiiiee e et e e s eee e 109
24 Controlling and suppressing Warning MESSAJES e« ceeeeeeereerrreemermmmrnnnnnnnssaaans 112
25 Printing and exporting the state diagram ... 113
26 Specifying the fizzim.pl OPLIONSvviiiiiieiee e e eeeeeeees 114
27 Requiring a minimum revision of fiZzim.pl.... .o 115
28 Group Select and MOVE..........ouuiiiiiiiiiieeee et e e e e e e e e e e e e eeeeeeeeeeeennne 116
29 —terse (-SUNDUISE) OPLIONcooiiiiiiee ettt e e e e e e e e e e e e eeeeaeebennnneseeenennnnes 119
30 SySteMVErilOg OULPULcceeieiiiiiiiiieie s e eeeeeettbbtiiee s s e e e e e e e e e e e eeeeeeeeeeeeeeeeesnennnnns 123
31 Future direCtions / WISHIISt..........uuuuiee e 127
32 ACKNOWIEAGEMENTSuiiiiii ettt e e e e e e e e e e e e e e e eeeeeeeeeeennnne 128
G B o1 (=] (=T 1ol TR 129

Fizzim 4 Fizzim

1 Introduction - What is fizzim?

Finite State Machines come up frequently in digilesign. Sometimes designers code them
directly in Verilog, but many designers prefer &smn their FSMs as a state diagram (“bubbles
and arrows”) and then manually translate this diaginto Verilog.

For these designers, it would certainly be handyetsign the FSM directly in a graphical tool
and allow the software to generate the Verilog cofleere have been several attempts by
various EDA companies, large and small, to progueh a tool, but nothing has really gotten
much traction.

This may be because the tool is in a strange nitths.really too small to support business on an
EDA scale, but it is too large for a “G-job”. Alsthe graphical part of the G-job is outside the
usual experience of hardware designers.

So, it seems a good candidate for an open souopecprprovidedsomeones willing to tackle
that nasty graphical part.

Someone has! Paul Zimmer and his young inter@gainer Design Services, Mike Zimmer
and Brian Zimmer, are proud to present fizzim -epan-source, graphical FSM design
environment.

Throughout this tutorial, it is assumed that theedes is familiar with FSM’s and common FSM-
related terms (such as Moore and Mealy). If tlaglee is unfamiliar with some of this material,
just read through some of the papers in the “ref@g’ section.

Note on the current state of the documentation:

The format of the pages changed a little bit wigéhsion 4.0. Older sections of the document
have not been update yet. Usage is unchanged.

Fizzim 5 Fizzim

2 Starting fizzim

The fizzim gui is written in java. It is distribed as a “.jar” (Java archive) file. We run it ugin
Sun Java Runtime Environment. Odds are that yeady have this loaded for your browser,
but if not you can download it from java.sun.com.

2.1 Windows

On most Windows machine, Java Runtime Environmelhtilweady be registered as the correct
app for “.jar” files, so just double-clicking ongtiile should start it. If that doesn’t work, you
can start a terminal window and use the commareddpproach as in Linux below.

2.2 Linux

On linux, try right-clicking the file and selectgen using”. If java runtime is listed, you're in
business. You can also run from the command laiegu

java —jar fizzim_v10.02.26.jar
Starting with version 4.0, you can also add theifizfile on the command line:

java -jar fizzim_v11.03.02.jar myfsm.fzm

Fizzim 6 Fizzim

3 GUI basics

The gui is pretty intuitive. Right-click in opepace gives you a menu to create new states and
transitions. Right-click on an object gives yomeanu to edit the object. Double (left) click on
an object will bring up the properties menu forttblgject.

Edit>undo or ctl-Z will undo, Edit>redo or ctl-Y Wredo. Undo/redo is unlimited.

Fizzim 7 Fizzim

4 Attributes

It is our belief that few hardware engineers widiwto touch the gui, but many will want to
modify the Verilog output. In recognition of thisyery attempt has been made to try to keep the
gui as independent of the Verilog generation asiptes

To accomplish this, virtually everything is implented as “attributes”. This should allow new
backend (Verilog-generation) features to be addéubwt touching the gui. Also, while the gui
is written in Java, the backend is in the linguita of EDA — perl.

There are only 3 types of objects to the gui —stlage machine itself, states, and transitions.
Each of these can have attributes assigned Buit.state and transition object attributes have to
be defined first in the global “states” and “trdimgis” attribute menus before they will be
available in individual states and transitions.e Qui knows about a few special attributes, but
only those that require that the display be modifi&xamples include transition equations (drop
the “equation =" on the visible text) and outputdyg (use “=" for combinational and “<=" for
registered).

Inputs and outputs are just attributes. The naebé i the name of the input or output signal.

Each attribute has 5 fields:
e Attribute Name — this is the name of the input otpoit, or the name of the special
attribute.

e Default Value — Default value of the attribute. IMde used if no value is assigned in a
state/transition.

e Visibility — Turns on/off visibility on the display“Only non-default” means to only
show the attribute if its value doesn’t match “Défa/alue”.

e Type — Information about the attribute. Inputsrently have no defined type, outputs can
be “reg”, “regdp”, or “comb”. Others are attribtgpecific.

e Comment — An optional comment that will show uptloa diagram, in the Verilog, both,
or neither (see the section on comments).

e Color — Text color.

e (new with version 4.0) UserAtts - a per-item listattributes for use by the backend
processor.

Fizzim 8 Fizzim

5 Encodings

There are two primary types of state encodings t@e8SM design. Highly encoded FSM'’s use
a dense binary code and few flops but can sometiaes very complex combinational logic.
One-hot FSM encodings, on the other hand, useraespade and many flops, but usually have
much simpler combinational logic. There are maaygrs on the advantages and disadvantages
of each (reference [2] is one example).

The backend perl script (fizzim.pl) supports bothhese encodings.

5.1 Highly Encoded with Registered Outputs as StatebittHEROS)

Heros is an encoding that uses a dense binary odsl¢he name implies, registered outputs will
be encoded into the states to minimize flop codititere are mechanisms (discussed below) to

allow particular outputs to be excluded from theestvector. The actual Verilog format is based
on recommendations from Cliff Cummings’ paper (refiee [3]).

5.20ne Hot

One-hot encoding is also supported. The Verilogéd is based on Steve Golson’s paper
(reference [2]). Some features, such as gray ctrdaditions, are not available with one-hot
encoding.

Fizzim 9 Fizzim

6 Cliff's Classic

Let’s jump right in with an example. In [3], Cli@ummings introduced the following basic state
machine:

Here’s how we would create this in fizzim (Exampikff classic.fzm).

Fizzim 10 Fizzim

6.1 Creating the states
Right-clicking in open space gives the followingnue

File Edit Global Attributes Help

Quick New State
New State
New State Transition

New Loopback Transition
New Free Text

We select “New State” and get this:

Edit State Properties [E|

Edit the properties of the selected state:
Aftribute Mame Yalue Wisibility Type Camment Caolor
harrne stated e def_typhe
Width: |130 |
Height: |130 |
OK Cancel

Fizzim 11 Fizzim

Change the state name to “IDLE” and hit “OK”.

Repeat this to add the other three states. liek-and drag to move the states around.

STATE MACHINE

name def_name

clock clk posedge
TRANSITIONS

eguation 1 def_type

Fizzim 12 Fizzim

6.2 Creating the transitions

To create the state transitions, we can eithet-glitk in open space and select “New State
Transition” and get the full menu:

Edit State Transition Properties

Edit the properties of the selected state transition:
Aftribute Mame Yallue Wigibility Type Camment Caolar
narme transi [0 def_type
eguation 1 TBS def_type
Start State: |DLY |w [] Stub?
End State: DONE |+ oK cancel

Fizzim 13 Fizzim

Or we can right-click on the start state and séladd State Transition to”:

DLY

Add Loopback Transition

Add State Transition to... *| IDLE
Edit State Properties READ
Mowve to Page... ¥ DONE

We repeat this to add all the transitions. Doargét to add the loopback transition. We’'ll see
why this matters in a moment.

Notice that when we add the transition from DLY & READ, we get something like this:

Fizzim 14 Fizzim

STATE MACHINE

name def_name

clock clk posedge
TRANSITIONS

eguation 4 def_type

That doesn’t look so great, so we need to moveobtige transitions. To do this, left-click to
select it. Endpoints and anchorpoints appear:

Fizzim 15 Fizzim

Drag the endpoints to a new location, then dragtiaorpoints to reshape the curve. The
anchorpoints on the ends of the arc control whezeatc intersects the state bubble. The other
two control the shape of the curve.

If you move a state bubble, the attached arcsmoNe with it. As long as the move isn’'t too
drastic, the anchorpoint modifications you made el retained. If you move the state a lot, the
anchorpoints may get reset. This works better theounds. Mostly your anchorpoints are
retained when it makes sense.

All text, including the transition equation (the"*dbove), output values in states, state names,
and free text, can be moved by just selectingdtrmoving it.

Don’t forget to add the loopback transition. We#le why this matters in a moment.

6.3 Filling in the details

6.3.1 Global Attributes

Recall that everything is stored as attributegheeiattributes on the FSM itself or attributes on
individual states and transitions. So, adding fapoutputs, transition equations, etc is a matter
of editing attributes.

Let’s start with the global FSM attributes. linscessary to start here, because the individual
state and transition attributes won’t appear uhél are entered as global attributes.

Fizzim 16 Fizzim

Select “Global Attributes > State Machine” from tlo@ menu:

cliff_classic_juststatesandtransitions.fzm
File Edit ||

STATE| St8

name Inputs
clock osedge
TRang| Outputs

equst grates ef_type 1
Transitions

Create New Page Page1 X

Fizzim 17 Fizzim

And you get this:

Edit Global Properties

l/ State Machine |/ Inputs |/ Outputs |/ States |/Transitinn5

Here you can change the global attributes of all ohjects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to "Edit Properties.’

Attribute Mame | Defaultalue Wisibility Type Comment Colar
narme def_name Mo
clock clk Mo posedge

Delete User Reset

OK Cancel

Edit the fields to fill in the module name “cliffthe clock name “clk”, and make it a posedge clk.

Click the “Reset” button, and two more attributpp@ar. One is “reset_signal”. Change this to
“rst_n”, negedge. Set “reset_state” to IDLE via pull-down menu and set its type to
“anyvalue” (“allzeros” and “allones” will force theeset state to be all zeros or all ones, but this
isn’'t compatible with onehot encoding, so we warse it on this example).

Fizzim 18 Fizzim

Edit Global Properties

l/ State Machine |/ Inputs |/ Outputs |/ States |/Transitinns

Here you can change the global attributes of all ohjects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to "Edit Properties.’

]

Attribute Mame | Default®alue Wisibility Type Comment Colar
narme cliff Mo
clock clk Mo posedge
reset_signal rst_n Mo negedge
reset_state IDLE [+o ammalue
Delete User Reset
OK Cancel

Hit OK. Notice that IDLE now has a double ringimalicate it is the reset state.

Now select “Global Attributes > Inputs” from theptanenu.

Fizzim

19

Use the “Input” button to add the inputs:

Edit Global Properties [z|
Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.'
|/ State Machine |T Inputs r Outputs |/ States |/Transitiuns

Aftribute Mame | Default Yalue Yisibility Tvpe Comment Colar
clk [
rst_n [
(s [u] [
WS [
Delete User Input Multibit Inpurt
OK Cancel

Note that “type” doesn’t matter for inputs. We lmbalick OK, then reselect “Global Attributes
> QOutputs” from the top menu, or we can just switckhe “Outputs” tab without exiting the
menu.

Click “Output” twice to add the two outputs, “rdhd “ds”. Their type field should be “reg”.
Set “Default Value” to 0, and visibility “Yes”.

Fizzim 20 Fizzim

Edit Global Properties

(State Machine r Inputs |T Outputs r States |/Transitiuns

3

Here you can change the global attributes of all objects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

Aftribiute Mame Default Walue Wigibility Type Comment Caolar
rd I} eS req
s I} eS req
Delete User Output Muktibit Output
0K Cancel

This will become clearer later, but type “reg” medhat they are registered outputs (Moore) and

that they should be encoded as state bits.

Now flip over to the “States” tab. “rd” and “dsbw appear as state attributes. This means you

will be able to assign particular values to therpanticular states.

Fizzim

21

Fizzim

%]

Edit Global Properties

Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’
(State Machine r Inputs r Outputs |T States rTransitiuns |
Aftribiute Mame Default Walue Wigibilit Type Comment Caolar
narme def_name eS def_type
rd I} eS output
s I} eS output
Delete User
OK Cancel

Flip over to the “Transitions” tab. “rd” and “dglbo NOT appear here, because it makes no sense
to define registered outputs on a transition. Jtaa@dard attribute “equation” DOES appear here,
with the default value of “1”. Leave it alone. Bwu can change the “Visibility” field to “Only
non-default” to make the “1” equations not showomthe diagram.

Fizzim 22 Fizzim

Edit Global Properties

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.'

|/ State Machine |/ Inputs |/ Outputs r States |/Tran5itinns

Aftribute Mame| Default Yalue Yisibility Type Comment Colar
narne def_name (] del_tvpe

equation 1 Cnly non-def... |def_type

|
Delete User Graycode Outpurt Priority
OK Cancel

6.3.2 Individual State Attributes

Now we can enter the output values into the stat&gice that the outputs now appear on the
states with a “<=" after them. This indicates stgied outputs (“=" means combinational).

Fizzim 23 Fizzim

STATE MACZHINE
name cliff
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalus

INPUTS
clk
rst_n
go
WS
QUTPUTS
rd 1] reg
ds o reg
STATES
rd o output
ds 1] outpLt
TRANSITIONS
equation 1 def_type

Now we need to enter the non-default values fand ds. Right-click on the READ state and
select “Edit State Properties” to bring up the me@u just double-click the READ state bubble.
Change the value of rd to “1”.

Edit State Properties [3__(|
Edit the properties of the selected state:
Aftribute Mame Yalue Yigikility Type Comment Color
narne READ Nk def_type
rol 1 e autput
ds 1] Nk autput
Width: |130 |
Height: |130 |
OK Cancel

Fizzim 24 Fizzim

Do this for the other states to add appropriatpututalues (rd = 1 in DLY, ds =1 in DONE).
6.3.3 Individual Transition Attributes

Double-click on the IDLE to READ transition to bgrup the transition menu. Change the
equation to “go”.

Edit 5tate Transition Properties [Z|
Edit the properties of the selected state transition:
Attribiute Mame Wallue Wigibilit Type Comment Caolar
narme frans1 [0 def_type
equation oo Cnly non-default| def_type
Start State: |IDLE |« [] stub?
End State: READ |+ oK cancel

Hit “OK”. Now click on the “go” text and move it:

Repeat this for the state transition from DLY b#&zlREAD that has an equation of “ws”.

Our final state diagram looks like this.

Fizzim 25 Fizzim

STATE MACZHINE
name cliff
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalus
INPUTS
clk

rst_n

go

WS
QUTPUTS

rd 1] reg

ds o reg
STATES

rd o output

ds 1] outpLt
TRANSITIONS

equation 1 def_type

You might have noticed that | did not put an expligo” on the IDLE loopback transition, nor
an explicit “lws” on the DLY to DONE transition. hit is because fizzim understands that a
transition with an equation of “1” is the defaddiywest priority, transition. This will be
explained in the section on transition prioritié&u canadd the explicit equations, but you
don’t have to.

6.4 Output using heros

Now we can run the backend and generate code:

fizzim.pl < cliff.fzm > cliff.v

The default encoding is heros. Take a look abtitput.

It is structured as two “always” blocks per [2]h€lfirst one is combinational and does the next
state determination, and the second is sequentigjust infers the flops. See [2] for an

explanation of why this is the preferred impleménta

Let’s look at the output code in detalil.

Fizzim 26 Fizzim

First, the module statement:

module cliff

(

output wire ds ,
output wire rd ,

input wire
input wire
input wire
input wire

clk

go ,
rst_n
ws);

Nothing special there, except that it uses theld@2001 format.

Now look at the state encoding:

/I state bits
parameter
IDLE
DLY

3'b000 , /Il extra=0 rd=0 ds=0
3'b010 , [/l extra=0 rd=1 ds=0
3'b001 , [/l extra=0 rd=0 ds=1

READ = 3'b110 ; // extra=1 rd=1 ds=0

reg [2:0] state
reg [2:0] nextstate

Recall that the heros format uses registered asigmistate bits. Fizzim.pl has assigned state bit
0 to “ds”, and state bit 1 to ‘rd”. There are ofdyr states, but DLY and READ both have
state[1:0] equal to 01, because they have identadaks of “ds” and “rd”. fizzim.pl recognizes
this, and adds an “extra” bit to distinguish thets#es. Thus, we end up with 3 state bits to cover
4 states, but since the registered outputs arededda the states, we still have fewer flops
overall. Itis possible to force fizzim.pl to pthe output bits out of the state vector by chaggi
their type to “regdp”. See the section on datapatiputs below.

Also note that the IDLE state ended up as all zehoshe absence of a requirement that would
prevent this, fizzim.pl heros encoding will favbetreset state as all zeros.

Fizzim

27 Fizzim

Next comes the combinational always block:

/l comb always block
always @* begin
/I Warning 12: Neither implied_loopback nor default _state_is_x attribute
is set on state machine - defaulting to implied_loo pback to avoid latches
being inferred
nextstate =state ; // defaultto hold value because implied_loopback i S
set
case (state)
IDLE: begin
if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
DONE begin
begin
nextstate = IDLE;
end
end
READ begin
begin
nextstate = DLY,
end
end
endcase
end

Pretty straightforward, and just what you wouldlgably write if you were coding this by hand.
There’s a big case statement on “state”, and getsn(go and ws) determine “nextstate”. But
notice the warning message.

/I Warning 12: Neither implied_loopback nor default _state_is_x attribute is
set on state machine - defaulting to implied_loopba ck to avoid latches being
inferred

We have come to a philosophical fork in the road.

Some people, including Cliff Cummings, like to madke default value of the nextstate vector
equal to “X” before executing the “case” statemenhiis ensures that bad things will happen in
simulation if the case statement is wrong, bulsib aneans that all loopback conditions need to
be entered explicitly.

Fizzim 28 Fizzim

Other people prefer to make nextstate equal tentigtate before executing the case statement.
This means that the default action is loopbacksexplicit loopbacks are required.

Fizzim.pl is philosophically neutral on this (an@$hother such issues), so you can choose
which way you want it. This is done by settingadinibute on the FSM — either
“default_state is_x" or “implied_loopback”. But &void problems for new users (who don’t
read the documentation first...), as of version &sirfin.pl will default to implied_loopback if
neither attribute is set.

Since this is Cliff's state machine, we’ll do itif€k way. Select “Global Attributes > State
Machine” and click the “User” button. Enter thé&riilute name “default_state is_x” and give it
a value of “1”:

Edit Global Properties [g|
Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.”

f State Machine r Inputs r Outputs r States r Transitions

Aftribute Mame | DefaultYalue Wisikility Type Comment Calor

narme cliff e [u]

clock clk e [u] posedge

reset_signal rst_n e [u] negedge

reset_state IDLE e [u] ampalue

default_state_i.. [1] Ma

Delete User Reset
OK Cancel

Save the file and re-run fizzim.pl. The warningssege goes away and the combinational block
starts like this:

/I comb always block
always @* begin

nextstate = 3'bxxx ; [l default to x because default_state is x is set
case (state)
IDLE: begin

By the way, if we had used “implied_loopback” (deeattribute “implied_loopback” and set it to
1), the output would have looked like this:

Fizzim 29 Fizzim

/I comb always block
always @* begin
nextstate = state ; // defaultto hold value because implied_loopback i S
set
case (state)
IDLE: begin

Continuing with our tour of the heros output, watigave the code that assigns the outputs to
state bits:

/I Assign reg'd outputs to state bits
assign ds =state |[O0];
assign rd =state |[1];

Then the sequential always block. Recall that etdle “reset_signal” attribute to “rst_n” and
it's type as “negedge”. The “reset_state” wasGéElDLE":

/I sequential always block
always @(@osedge clk or negedge rst n) begin
it (!rstn)

state <= IDLE;
else
state <= nextstate
end

If we had instead chosen the type as “negative’waeld have gotten an active-low
synchronouseset:

/I sequential always block
always @(osedge clk) begin
it (!rst.n)

state <= IDLE;
else
state <= nextstate
end

The final bit of code is for simulation purposesl avill be explained in “Ascii state name”
below.

6.5 Output using onehot

6.5.1 Output using onehot when “implied_loopback” is set.

The default onehot encoding is based on Steve @algaper [2]. This technique doesn’t really
allow for the “default_state is_x" behavior, so theput looks rather different when this
attribute is set (see below). The following dissas assumes implied_loopback is set (setting
neither flag is not recommended as it can resuliferred latches)

Fizzim 30 Fizzim

fizzim.pl —enc onehot < cliff.fzm > cliff.v

Skipping over the module statement, here’s what'state encoding” looks like:

/I state bits

parameter
IDLE = O,
DLY = 2,
DONE= 1,
READ = 3;

’

reg [3:0] state ;
reg [3:0] nextstate ;

Recall that onehot encoding uses one bit for etath.sSo, 4 states means 4 bits. The parameter
refers to the bit position in the vector. So, wites FSM is in state DONE, for example, only bit
1 will be set (the state vector will be 0010).

The combinational always block looks equally biearr

/I comb always block
always @* begin

nextstate = 4’0000 ;
case (1'bl) // synopsys parallel_case full_case
state [IDLE]: begin
if (go) begin
nextstate [READ = 1b1 ;
end
else begin
nextstate [IDLE] = 1'b1 ; /I Added because implied_loopback is true
end
end
state [DLY] : begin
if (ws) begin
nextstate [READ = 1b1 ;
end
else begin
nextstate [DONE = 1b1 ;
end
end
state [DONE begin
begin
nextstate [IDLE] = 1b1 ;
end
end
state [READ: begin
begin
nextstate [DLY] = 1'b1 ;
end
end
endcase
end

Fizzim 31 Fizzim

The “case (1)... state[IDLE]" gets translated to m&ahen the IDLE bit of the state vector (0)
is a 1”. The nextstate is calculated by firstiegttt to all zeros, then turning on the bit that
represents the next state.

Note that, because of the way it is coded (sell treeos, then set the bit), the issue of defagltin
the value doesn’t not arise for onehot. If sonmgglgoes wrong, you get an illegal all-zeros state
which you never get out of. Since implied_loopbagas set on this example, fizzim.pl added
the “hold state” path (where the comment about i@aplloopback is in the code above).

Note the use of “//synopsys parallel_case full ta3éis tells DesignCompiler that it doesn’t
have to build logic to cover the illegal statedl(fcase), and it doesn’'t have to build priorityant
the case (parallel_case). This results in draml@tibetter synthesis results, but may require
special handling in formal verification.

The use of “//synopsys parallel_case full_casethis case statement (onehot combinational
block) and in the regdp block described below isticiled by the state machine attribute
“onehot_pragma”. If this attribute is NOT set, Yibget the code shown. If it IS set, fizzim.pl
will use the value string of this attribute in paaf “synopsys parallel_case full_case”. This can
be used to add a pragma, delete one, or overnsi®¢havior entirely (by setting the attribute to
a null string). If you set it to a null string, @ct significantly worse synthesis results!

The use of onehot_pragma causes fizzim.pl to iss&uaing O12 (this can be suppressed as
discussed later).

The sequential always block looks like this:

/I sequential always block
always @(osedge clk or negedge rst n) begin
it (!rst.n)

state <= 4'h0001 << IDLE;
else

state <= nextstate

end

It seems simpler to just set state to zero, thestage[IDLE] to one, but this format was used to
stay as close as possible to Steve Golson’s co.irHis “1 << IDLE” got changed to have the
full vector size to work around a bug in one of Yexilog simulators.

Note that there is nowthird always block. It is a sequential always block] areates the
registered outputs. This is necessary becaus&gurdros encoding, there is no way to use the
state bits for registered outputs. The block loatkthe value of “nextstate” and sets ds and rd
accordingly:

/I datapath sequential always block

always @(@osedge clk or negedge rst n) begin
if (!rst.n) begin

ds <= 0;

rd <= 0;

Fizzim 32 Fizzim

end

else begin
ds <= 0; /I default
rd <= 0; /I default
case (1'bl) // synopsys parallel_case full_case
nextstate [DLY] : begin
rd <= 1;
end
nextstate [DONE begin
ds <= 1;
end
nextstate [READ: begin
rd <= 1;
end
endcase
end
end

Note that this structure changed with fizzim.plsien 2.0. Older versions will look different
from code show above.

This structure is also used for registered dataf¥eegdp”) outputs (coming soon).
6.5.2 Onehot output when “default_state_is_x” is set

Golson’s code structure used above sets the nextstator to all zeros, then sets the single bit
according to the nextstate logic. This technigaenot be used when the default_state_is_x
behavior is required.

The handling of this case has changed with fizZimegsion 3.0. It now uses a format similar to
that used for SystemVerilog (see the section oteBygerilog output). The state bits block
looks like this:

/I state bits
parameter
IDLE_BIT =0
DLY_BIT = 1,
DONE_BIT = 2,
READ_BIT = 3

parameter

IDLE 4'bl <<IDLE_BIT ,
DLY 4'hl <<DLY_BIT,
DONE= 4'bl <<DONE_BIT,
READ = 4'bl <<READ_BIT,
XXX 4'bx ;

reg [3:0] state ;
reg [3:0] nextstate ;

What's new here is the creation of parameter vdioethe various states, and for the all-ex state.

These new parameter values are still based onttbedition parameters, but give a handy
shorthand that makes the nextstate code a ligknelr:

Fizzim 33 Fizzim

/l comb always block
always @* begin

nextstate = XXX [/l default to x because default_state is_x is set
case (1'bl) // synopsys parallel_case full_case
state [IDLE_BIT]: begin
if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end
end
state [DLY_BIT]: begin
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
state [DONE_BIT]: begin
begin
nextstate = IDLE;
end
end
state [READ_BIT]: begin
begin
nextstate = DLY,
end
end
endcase
end

The sequential always block and the datapath ségualways block are unchanged from the
implied_loopback case described above.

Fizzim 34 Fizzim

6.6 Ascii state name

Notice that both heros and onehot had some extralaiion code at the end. The code for
onehot looks like this:

/I This code allows you to see state names in simul ation
“ifndef SYNTHESIS
reg [31:0] statename ;
always @* begin
case (1)
state [IDLE]:
statename = "IDLE" ;
state [DLY]:
statename
state [DONE
statename = "DONE";
state [READ:
statename = "READ";
default
statename = "XXXX";
endcase
end
“endif

"DLY" :

This code allows the designer to see the asce st@te in simulation (set the data type to ascii
in your waveform viewer), but does not affect sysik. The “ifndef SYNTHESIS/ endif’
replaces the old “//synopsys translate on/off” ayrfor making this simulation-specific (thanks
to Cliff Cummings for pointing this out).

Equivalent code is generated for heros.

/I This code allows you to see state names in simul ation
“ifndef SYNTHESIS
reg [31:0] statename ;
always @* begin
case (state)

IDLE:
statename = "IDLE" ;
DLY:
statename = "DLY";
DONE
statename = "DONE";
READ
statename = "READ";
default
statename = "XXXX":
endcase
end
“endif

Here’s an example of what this looks like:

Fizzim 35 Fizzim

Signals Waves
1 22100 ps 44200 ps 66
test.clk | | | | | | | | |
test.rst_n
test.qo |

test.ws | |

Tirne

test.rd |
test.ds |
[

"IDLE" | "READ" | DLy " | "READ" | "OLY"

test.cliff classic statename[31:0

This can be turned off by specifying the “-nosimebdption on fizzim.pl.

This is automatically suppressed when SystemVerd@glected, since the use of enumerated
types in SystemVerilog output makes special codeeaessary. You can force it back on by
using the “-simcode” option to fizzim.pl.

6.7 (Un)Displaying the attributes table

Notice that most of the examples so far have hadttiibutes table to the left of the state
machine. This is a handy feature, but you donvehta use it. To turn it off, do “File >
Preferences” and uncheck the “Table Visible” box.

Alternatively, you can move the table to anotherit®own) page. See the section on multiple
pages.

Fizzim 36 Fizzim

7 Mealy outputs

Combinational outputs (Mealy outputs) are also suj@ol. They are distinguished from
sequential outputs by setting the type field toitd.

A Mealy output is defined as an output which isetegent on both the state and the inputs.
There are two ways to describe a Mealy outputne ®ay, which derives directly from the
definition, is to specify the combinational equatibat describes the outgor each state The
other way is to specify the combinational equathmat describes the outpoih each transition
Fizzim supports either style.

Let's add a Mealy output to Cliff's state machirsgng the on-states method.
7.1 Mealy outputs assigned in states
Supposed we wanted to create an output that woglgld if “go” was asserted during state

“DLY"? This is just a comb output whose equatisrfgo” during the DLY state, and 0O at all
other times.

Back to Cliff Classic. Start by creating the newtput “go_missed”. Go to the Global Attributes
> Qutputs tab and add “go_missed” . Set the tygedmb” and the default value to O.

(Example: cliff_mealy_onstates.fzm)
|| Edit Global Properties =]

Here you can change the global attributes of all objects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

r State Machine |/ Inputs rOutputs r States rTransitions

Altribute Mame | Default Value Visibility Type Comment Color UserAits ResetValue
rd 0 Yes reg
ds 0 Yes e
go_missed 0 Yes C [comb
~—_ ~

| Delete || User || Output || Multibit Output || Flag |

Fizzim 37 Fizzim

Now edit the DLY state to change the equation 'g

Edit State Properties @
Edit the properties of the selected state:
Adtribute Mame Value Visibility Type Comment |Cal... seralts ResetvValue
name DLY Yes def_type
rd 1 Yes output
ds A [Yes output
go_missed_ [go D |es output

Width: 130 | e

Height: (130 |

OK Cancel

The result looks like this:

STATE MACHINE
name cliff_classic
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue
default_state_is_x 1 IBLE
INPUTS rd<=0
clk ds«=10
rst_n go_missed =0
o
WS
QUTPUTS
rd 1] reg
ds 1] req
go_missed 0 comb
STATES DOME READ
rd 0 autput rd<=10 Ff g
ds 0 output ds <= 1
go_missed 0 output : ds <=0
TRANSITIONS go_missed = 0 go_missed = 0
eguation 1 def_type -

go_missed = go

Notice the go_missed output shows up on each Istditiele with an “=" instead of a “<=",
because it is of type “comb”.

Fizzim 38 Fizzim

Re-run the backend, and the new output is addégasreg”

module cli
oltput

wire ds ,
reg go_missed

);

That seems a bit counter-intuitive for a comb otjtput recall that “reg” in Verilog doesn’t
necessarily imply a physical register. It's typg because it will be assigned in the
combinational always block, which now looks likésth

/l comb always block
always @* begin

IDLE: begin
if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end

epa
b
go_misSed =Qo ;
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
DONE begin
begin
nextstate = IDLE;
end
end
READ begin
begin
nextstate = DLY;
end
end
endcase
end

Note that this structure changed with fizzim.plsien 2.0. Older versions will look different
from code show above.

Fizzim 39 Fizzim

Notice the new lines have been added to each stzdse entry that assign values to go_missed.

Note the default value line (circled). To make tlele easier to read, and to prevent latches,
fizzim.pl will output the default value, then supps any non-default values for the output in the
case (state) block. If no default value is giviezgim.pl will use “0”. This is to provide better
synthesis results out-of-the-box.

One side-effect of this may be zero-length traosgiin some simulators. An alternative (used
by fizzim.pl pre-version 2.0) is to set the defdalthe variable itself. This could be done in the
example by setting the default for “go_missed”¢o “missed”. This would reproduce the
version 1.x behavior.

Note that output equations for comb outputs (is tase, just “go”) are NOT parsed by fizzim.

They are just strings to fizzim.

7.2 Mealy outputs assigned on transitions
Although this behavior could also be described iyipg the equation “go” on the transition

from READ to DLY, and creating a loopback transit@nd putting the same equation on it, it is
probably most naturally described using the “otestamethod above.

But there is a case where assigning the Mealy oaipiransitions might make more sense than
assigning it on states — when the Mealy output #gpuanatches the transition equation.

Suppose we wanted to send out an early copy ofdh@utput on the transition from IDLE to
READ?

This is the same as saying that the new pre_rdibiggqual to “go” in state IDLE. So, one way
to implement this is by setting the pre_rd outputgo” in the IDLE state, similar to the example
above.

But since the equation is the same as for theitram$rom IDLE to READ, another way is to
make the pre_rd output equal to 1 onttia@sitionfrom IDLE to READ.

Let's take a closer look at this approach. Fing]l go back to cliff_classic and add the (comb)
pre_rd output:

(Example: cliff_mealy_ontransition.fzm)

Fizzim 40 Fizzim

|£:| Edit Glokal Properties

5

Here you can change the global attributes of all objects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to 'Edit Properties.'

(State Machine r Inputs rOutputs r States rTransitions

Altribute Mame | Default Value Visibility Type Comment Color Useralts ResetValue
rd 0 Yes reg
ds 0 Yes reg
pre_rd 0 Only non-default j[comb

| Delete || User || Output || Multibit Output || Flag |

Fizzim will automatically transfer your new combtput to the states attributes list (as in the
previous example), as it does for registered ostplityou want to specify a comb output
changing on a transition, you have to add it toTttensitions attribute list yourself:

Go to the Global Attributes > Transitions tab, aisé the “Output” button to add “pre_rd”. Set
visibility to “Only non-default”.

|£| Edit Global Properties 52 |

|

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’
(" state Machine | Inputs | Outputs | States | Transitions |

Altribute Name | Default Value Visibility Type Comment Caolor UserAits ResetValue
name def_name Mo def_type
equation 1 Only non-default |def_type
pre_rd 0 Only non-default |output

N

[petete | [user || cravedse | [ouout | [_phorty |

Now double-click the IDLE to READ transition. lbw has “pre_rd” as an attribute (of type
output). Change the value to 1.

Since we set the visibility to only non-defaulte thalue will only show up on this transition, and
we get the following state diagram:

Fizzim 41 Fizzim

STATE MACHINE

nams cliff_classic
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue
default_state_is_x 1
INPUTS
clk
rst_n
go
WS
QUTPUTS
rd 8] reg
ds a reg
pre_rd [a] comb
STATES
rd 8] output
ds [u] output
pre_rd g output
TRAMNSITIONS
eqjuation 1 def_type
pre_rd a output

Fizzim 42 Fizzim

The Verilog output looks like this:

/I comb always block
always @* begin

nextstate = 3'bx ; [/ default to x because default_state_is_x is set
pre_rd = 0; [/l default
case (sta
: begin
if (go) begin

nextstate = READ

nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
DONE begin
begin
nextstate = IDLE;
end
end
READ begin
begin
nextstate = DLY;
end
end
endcase
end

So, the output pre_rd does indeed change whemahsition path is taken.

7.3 Mixing the styles

Also, note that yoewanmix the two styles. If the output has been crarea transition attribute,
fizzim.pl will assume that you are going to use ‘ihefined on transitions” approach, and the
comb output value defined on the state will be sepgedf it matches the default valudf it
doesn'tmatch the default value, it will be output, yogkt a warning, and any non-default on-
transition values for that combinational outpunfrthat state will be suppressed.

In this fsm, the output “rd” has been declaredaslt, and has been added to the transition
attributes table. So, fizzim.pl assumes that #fendion will use the on-transitions style. The
default value of “rd” is O for both states and s#ions. “rd” has been given a value of 1 on the
transition from IDLE to READ, and a value of 1 irat®s READ and DLY:

Fizzim 43 Fizzim

STATE MACHINE

nams cliff_preread
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvaluz
default_state_is_x 1
INPUTS
clk
rst_n
o
WS
QUTPUTS
rd 8] comby
ds 8] reg
STATES
rd 8] oLtput
ds 8] output
TRANSITIONS
eguation 1 def_type
rd 8] otput

(Example: cliff_preread.fzm)

The resulting output looks like this:

/Il comb always block
always @* begin
nextstate = 3'bx ; [/ default to x because default_state is x is set
rd = 0; // default
case (state)
IDLE: begin
if (go) begin
nextstate = READ
rd = 1
end
else begin
nextstate = IDLE;
end
end
DLY : begin
/I Warning C7: Combinational output rd is assigned on transitions, but
has a non-default value "1" in state DLY
rd = 1
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
DONE begin
begin

Fizzim 44 Fizzim

nextstate = IDLE;
end
end
READ begin
/l Warning C7: Combinational output rd is assigned on transitions, but
has a non-default value "1" in state READ
rd = 1;
begin
nextstate = DLY;
end
end
endcase
end

In state IDLE, the defined state value is the samthe default value, so transition values are
used.

In states DLY and READ, however, rd has been assignnon-default value of 1, so the line “rd
=1"is output, and no assignment values are usdti@transitions (because all the transitions
use the default value of 0). Warning C7 is issteeitag this issue.

Note that this structure effectively gives prioritynon-default on-transition values, followed by
non-default on-state values, followed by defaahsitions values.

This is far from simple, so be very careful whemximg the two styles.

Fizzim 45 Fizzim

8 Datapath outputs

Recall that fizzim has two types of registered atgp- reg and regdp. The “dp” in regdp stands
for “datapath”. When the type is regdp, fizzimIwibt attempt to encode the bits in the state
vector.
As a simple example, we’ll go back to Cliff Clasaid change the type of output rd to regdp:
(Example: cliff_rdregdp.fzm)

Edit Global Properties E'

Here you can change the global attributes of all ohjects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to "Edit Properties.'

|/S’tate Machine |/Inputs |T'Dutputs rStates rTransitiuns |

Attribute Name | Default Value visibility /T Type Comrment 0n|nr|

rd Ves _|regdp)

=

ds Ves T

Delete User Ourtpurt Multibit Outpurt

OK Cancel
Re-run fizzim.pl, and the output looks like this:

T statebits
parameter
IDLE = 3'b000 , // extra=00 ds=0
DLY = 3'b010 , //extra=10 ds=0
DONE= 3'b001 , // extra=01 ds=1
READ = 3'b100 ; // extra=00 ds=0
reg | 2:0] state ;
reg [2:0] nextstate ;
/I comb always block
always @* begin
nextstate = 3'bx ; [/ default to x because default_state_is_x is set

case (state)

IDLE: begin
if (go) begin

Fizzim 46 Fizzim

nextstate = READ
end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
DONE begin
begin
nextstate = IDLE;
end
end
READ begin
begin
nextstate = DLY;
end
end
endcase
end

/I Assign reg'd outputs to state bits
assign ds =state |[O];

/I sequential always block

always @(@osedge clk or negedge rst n) begin
if (!rstn)

state <= IDLE;
else

state <= nextstate ;

end

/I datapath sequential always block
always @(osedge clk or negedge rst n) begin
if (! rst.n) begin
rd <= 0;
end
else begin
/I Warning D11: Datapath output rd has no default v
rd <= 0; [/ default to zero for better synth results (no def
.fzm file)
case (nextstate)
DLY : begin
rd <= 1;
end
READ begin
rd <= 1;
end
endcase
end
end

Fizzim 47

alue - using 0
ault setin

Fizzim

Notice that the signal rd is no longer includedhie state vector, and that a third always block
has been added. This third always block does se"aan nextstate, and assigns rd on the clock
edge — creating a registered rd output.

This is similar to the registered output formatdoehot encoding discussed earlier. Note that
this particular fsm did not have a default valugigised for rd. As mentioned earlier, fizzim.pl
will default it to O for better synth results (apbduce a D11 warning).

Well, that's fine if all you want to do is pull Bibut of the state vector. But the real value of
regdp is true datapath outputs. But suppose weéegancounter to be controlled by the state
machine? You can’t very well emb#thtin the state bits! Some tools require you to pusha
control signal (usually a Mealy output) and implertnthe counter externally. Fizzim will let you
bury the counter right in with the state machine.

So, let's add a counter. First, we add a regdputicalled count[8:0].

(Example: cliff_counter.fzm)

Edit Global Properties rg|
Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

(State Machine |/ Inputs |/ Outputs |/ States |/Transitiuns
Aftribiute Mame | DefaultValue Wigibility Type Comment Caolar
rd I} es req
s I} es req
count[E:0] es reqdp
Delete User Outpurt Muhtibit Output
0K Cancel

The “Multibit Output” button creates an examplemiihe correct syntax (bit field after the
name).

Add an input of “load[8:0]” so we can load the ctam

Fizzim 48 Fizzim

Edit Global Properties

Here you can change the global attributes of all objects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

f State Machine |T' Inputs r Outputs r States rTransitinns

X]

Attribute Mame | Default Yalue Wisibility Type Comment Calor
clk Mo
rst_n Mo
oo Mo
WS Mo
load[a:0] Mo
Delete User Inpurt Multibit Inpurt

OK Cancel

Now go around to the states and assign the colikeethis:

IDLE: 8'b0

READ: load[8:0]
DLY: count[8:0] - 1

DONE: count[8:0] + 1

The result looks like this:

Fizzim

49

Fizzim

STATE MACHINE

nams cliff_classic
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue
default_state_is_x 1
INPUTS
clk
rst_n
o
WS
load[5:0]
OUTPUTS
rd 1] reg
ds 1] req
count[3:0] 2'h00000000 regep DOME
STATES rd==0
rd 1] output ds <=1
ds 0 output ount[8:0] <= court[5:0] + 1
court[3:0] FB00000000 output
TRANSITIONS
eqjuation 1 def_type

Save it away and re-run fizzim.pl, and here’s wuat get:

Fizzim 50

READ
rd==1
ds <=0

count[5: 0] <= load[8:0]

ourt[3:0] == count[5:0] - 1

Fizzim

/I state bits
parameter
IDLE = 3'b000 /I extra=0 rd=0 ds=0
DLY = 3'b010 /I extra=0 rd=1 ds=0
DONE= 3'b001 /I extra=0 rd=0 ds=1
READ = 3'b110 /I extra=1 rd=1 ds=0

reg [2:0] state ;
reg [2:0] nextstate ;

/l comb always block
always @* begin
nextstate = 3'bx ; [/ default to x because default_state_is_x is set
case (state)
IDLE: begin
if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
DONE begin
begin
nextstate = IDLE;
end
end
READ begin
begin
nextstate = DLY;
end
end
endcase
end

/I Assign reg'd outputs to state bits
assign ds =state [O0];
assign rd =state [1];

/I sequential always block
always @(@osedge clk or negedge rst n) begin
if (!rstn)

State <= IDLE;

else

state <= nextstate
end

/I datapath sequential always block

always @(osedge clk or negedge rst n) begin
if (! rst.n) begin

count [8:0] <= 80 ;

Fizzim 51 Fizzim

end

else begin
count [8: 0] <= 8b00000000 ; // default
case (nextstate)
IDLE: begin
count [8:0] <= 8Db0 ;
end
DLY : begin
count [8:0] <=count [8:0] - 1;
end
DONE begin
count [8:0] <=count [8:0] + 1;
end
READ begin
count [8:0] <=load [8:0];
end
endcase
end
end

Note that, as with comb outputs, the values fodpegutputs areot parsedy fizzim. They're
just strings. Outputs of type reg must be parsetthat they can be included in the state
assignments. Currently, only constants are all@svgalues in reg outputs (no macros,
parameters, etc) because fizzim.pl must parse them.

Note also that fizzim.pl doesséring compare to see if a default value matched thgaadi
value. That's why the IDLE case gets “count[8:6]&b0” — because the default value of
“8’b00000000” doesn’'t match.

Fizzim 52 Fizzim

9 Flags (new with version 4.0)

Starting with version 4.0, there is a new outppety flags. Flags are like a cross between a
comb and a regd. Like a comb, they can be assigndxbth transitions and states. But, unlike
comb outputs, they are registered - independethteo$tate vector like a regd.

9.1 Basic Example (flag set only on states)

One common use of flags is to keep track of whertewe been. Let's look at an example.
Starting with the cliff_classic fsm design agampgose we wanted to skip the DLY state the
very first time only, then run normally.

Go to Global Attributes > Outputs, and click théatf™ button. This will give you a new entry
with the Type set to "flag”". We'll create one edll'done_that". Set "ResetValue" to 0.

| £:| Edit Glebal Properties @

Here you can change the global attributes of all objects. Once an aftribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

r State Machine r Inputs r Outputs r States rTransitions

Altribute Mame | Default Value Visibility Type Comment Color UserAlts ResetValue
rd 0 Yes reg
ds 0 Yes reg
peen there Only non-default [flag suppress_portlist 0

| Delete || User || Output || Multibit Output || Flag |

Note that you cannot set a default value on a(tlag gui won't let you). A flag is intended to
hold it's state until it is explicitly changed, whas other outputs take on their default value
whenever not explicitly changed. So, it makesenss to have a default value for a flag. But,
since it is a register, it needs a reset valueat'$hvhat the new "ResetValue" column is used for.

Also note the UserAtts field has "suppress_pofttligthis is included automatically when a new
flag type output is created using the "flag" butt@ince flags are normally only used internally,
the "flag" button inserts this for you (you canetelit if you wish).

OK, now that we have our flag, we can start asemralues to it. We'll set it true in state
DONE, and add a transition from READ to DONE witle equation "!been_there™:

Fizzim 53 Fizzim

been_there == 1

/\

@

Note that the values use a "<=" to indicate tregdlare registers.

For heros encoding, the resulting code looks likg: t

Fizzim 54

Fizzim

module cliff_classic (
output wire ds ,
output wire rd ,
input wire clk
input wire go,
input wire rst.n
input wire ws

/I state bits
parameter
IDLE = 3'b000 /I extra=0 rd=0 ds=0
DLY = 3'b010 /I extra=0 rd=1 ds=0
DONE= 3'b001 /I extra=0 rd=0 ds=1
READ = 3'b110 /I extra=1 rd=1 ds=0

[2: 0] state ;
2: 0] nextstate
reg been_there ;

reg next_been_there

reg

/I CO A2 S|
always @* begin
next = .
t been_there = been_there ;
case [state—)
IDLE: begin
if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end

X because default_state is_x is set

end
end
READ begin
if (! been_there) begin
nextstate = DONE
end
else begin
nextstate = DLY;
end
end
endcase
end

Fizzim 55 Fizzim

/I Assign reg'd outputs to state bits
assign ds =state [O0];
assign rd =state [1];

/I sequential always block
always @(osedge clk or negedge rst n) begin
if (! rst.n) begin

state — 1D -
e < 0>

enad
else begin
state =mrextstate S
en
end
Fizzim 56 Fizzim

Notice all the code that got added! "been_theot'tgeated, along with "next_been_there", and
the setting of "been_there" got added to the mequential always block.

9.2 Flags set on transitions

OK, but we probably could have done that with alpegThe real power of flags is being able to
set them on transitions.

As an example, now assume that we want to chamgisti to only pay attention to "ws" once
per transaction. We can do this by setting a(time_that) on the way from DLY to READ,
and clearing it again on the way from DLY to DONE.

Creating flags that change on transitions is lileating Mealy comb outputs
the output, then add it to the transitions table:

. You have to create

|| Edit Global Properties ==
Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.’
[state Machine | Inputs | Outputs | States | Transitions
Altribute Mame | Default Value Visibility Type Comment Color UserAlis ResetValue
rd 0 Yes reg
ds 0 Yes reg
been_there Only non-default [flag suppress_portlist 0
done that Only non-default |flag suppress_portlist 0
| Delete | | User | | Output | | Multibit Output | | Flag |
Fizzim 57 Fizzim

| £:| Edit Global Properties IE

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

r State Machine rlnputs rDutputs |/ States |TTransilions |

Altribute Name | Default Value Visibility Type Comment Color UserAlts ResetValue
name def_name Mo def_type
equation 1 Only non-default |def_type
done_that Only non-default |output
| Delete | | User | | Graycode | | Qutput | | Priority

Now edit the arcs from DLY to READ and from DLY BXONE as described:

DOME
red ==10
ds ==1
been_there == 1

heen_there

done_that ==0

we &8 ldone_that
done_that <=1

The resulting code looks like this:

Fizzim 58 Fizzim

module cliff_classic (
output wire ds ,
output wire rd ,
input wire clk
input wire go ,
input wire rst.n
input wire ws

/I state bits
parameter
IDLE = 3'b000 , /I extra=0 rd=0 ds=0
DLY = 3'b010 , /Il extra=0rd=1 ds=0
DONE= 3'b001 , /Il extra=0 rd=0 ds=1
READ = 3'b110 ; [/l extra=1rd=1 ds=0

reg [2:0] state ;

reg [2:0] nextstate ;
reg been_there ;

reg done_that ;

reg next_been_there ;
reg next_done_that ;

/I comb always block
always @* begin
nextstate = 3'bxxx ; [/l default to x because default_state is_x is set
next_been_there = been_there ;
next_done_that =done_that ;
case (state)
IDLE: begin
if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws && ! done that) begin

DONE begin
next_been_there = 1;
begin
nextstate = IDLE;
end
end
READ begin
if (! been_there) begin
nextstate = DONE
end
else begin
nextstate = DLY;

Fizzim 59

Fizzim

end
end
endcase
end

/I Assign reg'd outputs to state bits
assign ds =state |[O0];
assign rd =state |[1];

/I sequential always block
always @(osedge clk or negedge rst n) begin
if (! rst.n) begin
state <= IDLE;
been_there <= 0;
done_that <= 0;
end
else begin
state <= nextstate ;
been_there <= next_been_there ;
done_that <= next_done_that ;
end
end

Fizzim 60 Fizzim

Notice the flag being set/cleared on the "if" ctin&# corresponds to the transition arc.

Instead of a simple flag, we could use a multibitiable, and look at a count. Change
"done_that" to "count[7:0]", then change the edquatd use "ws && (count <=4)", for example:

DOME
rd ==0
ds ==1
bheen_there <=1

lheen_there

count[7:0] =="d0

wE &alcourt ==4)
count[7:0] == court+1

9.3 Capturing incoming data on an arc using flags

Flags can also be used to capture incoming daga@mc. In this case, we'll add an input
addr_in[7:0] and a flag output addr_out[7:0]. Bud're likely to want addr_out to be available in
the portlist, so we'll delete the "suppress_pditfrom UserAtts:

Fizzim 61 Fizzim

o

|£:| Edit Global Properties

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.'

r State Machine |T Inputs r Qutputs r States |’Tran5i'tions

Altribute Mame | Default Value Visibility Type Comment Color LserAlts Resetvalue
clk Na
rsi_n Mo
go Mo
e No
< addr_in[7:0]) Mo
\/
| Delete | | User | | Input | | Multibit Input

| £ Edit Global Properties

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.’
[state Machine | Inputs | Outputs | States | Transitions

Altribute Name | Default Value Visibility Type Comment Caolor UseraAits ResetvValue
rd_——_—_ |0 Yes reg ee——
ds Yes reg ~N
addr_out[7:0] Only non-default [flag captured address)
\/
| Delete | | User | | QOutput | | Multibit Qutput | | Flag |

We also add addr_out[7:0] to the Transitions pagee can use it on transitions:

Fizzim 62 Fizzim

| £:| Edit Global Properties

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an objec

iag to 'Edit Properties.’
(State Machine |/ Inputs r Outputs r States(ﬁ’ Transitions | ,

addr_out[7:0]) Only non-default joutput

ResetValue

Altribute Mame | Default Value Visibility \Fj\pe——/ Comment Color UserAlts
name def_name Mo def_type
Jeation T Only non-default [def_type

| Delete || User || Graycode || Output || Priority

We double-click the transition from IDLE to READdenter "addr_in" as the value:

-

Edit State Transition Properties

Edit the properties of the selected state transition;

(==

Altribute M... YWalue Wisibility Type Comment Userdlts [ResetValue
name trans0 o [o] def_type
eguation Jge———Only non-... |[def _type
addr_out] ([addr_in Only non-_. [output
Start State: |IDLE |w e
End State: |READ |+ [] Stub? OK —
Now our state diagram looks like this:
Fizzim 63

Fizzim

IDLE
rd==0
dg==0
addr_out[7:0] == "h00

Qo
addr_out[7:0] == addr_in

Fizzim 64 Fizzim

10 Transition priority

10.1Basic Example

Suppose we add an input to Cliff Classic callegttéhat will cause the FSM to pop over to
DONE, wait for test to go away, then pop back taHD

(Example: cliff_priority.fzm)

STATE MACHINE

nams cliff_classic

clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue

default_state_is_x 1
INPUTS
clk

rst_n

go

WS

test
OUTPUTS

rd reg

ds reg
STATES

rd output

ds output
TRAMSITIONS

equation 1 def_type

Since we expect test to be false during normalaifmer, we can just change the DONE->IDLE
equation to “Itest”.

If we run fizzim.pl, the following warnings appears

IDLE: begin
/I Warning P3: State IDLE has multiple exit transit ions, and
transition transO has no defined priority
/I Warning P3: State IDLE has multiple exit transit ions, and

transition trans6 has no defined priority
This is telling us that we haven't defined what E&M should do when both test and go are true.

Assume that we give priority to test. We couldrai@the equation for the IDLE->READ
transition to be “Itest && go”. But this gets rgatedious when the transition equations get

Fizzim 65 Fizzim

complicated. If we were coding the FSM by handweeild just encode the priority into the
if/else stucture in Verilog by putting the “if (tsfirst.

if (test) begin

nextstate = DONE
end
else if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end

You can do this in fizzim by assigning a “prioritgttribute to the transitions. This will tell
fizzim.pl what order to use in the if/else blockMerilog.

First we create a “priority” attribute for transitis in Global Attributes > Transitions. There’s
even a handy button to do it for you!

Edit Global Properties [E|

Here you can change the global attributes of all ohjects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

r State Machine |/ Inputs |/ Outputs |/ States |TTransitiuns |

Attribute Hame | Default Yalue Wigibilit Type Comment
narme fef_name Mo def_tvpe
eguation P L Only non-def.. [def_tvpe
priority — ([1000) Qnly nan-def...
N

Delete User Graycode Outpourt w

OK Cancel

Note that | set the default priority to 1000 — arioer larger than | expect to ever use. That

means that any transition whose priorityet defined explicitly will have low priority. Morero
this in a moment.

Now we can set priority 1 on the test transitioh @udle, and priority 2 on the go transition
(double-click each transition and edit the valu@mbrity).

Fizzim 66 Fizzim

STATE MACHINE
nams cliff_classic

clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue

default_state_is_x 1
INPUTS

clk

rst_n

o

WS

test
OUTPUTS

rd 1] reg

ds 1] reg
STATES

rd 1] output

ds 1] output
TRANMSITIONS

equation 1 def_type

pricrity 1

Now when we run fizzim.pl, and the IDLE transitiblock looks like this:

IDLE: begin
if (test) begin
nextstate = DONE
end
else if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end
end

You might be wondering why fizzim.pl didn't compfaabout the loopback path on IDIbEfore
we added the transition priorities. For that nrattdy doesn’t it complain about the exits from
DLY? One is “ws” and the other is “1” (becausestisi the default value for the transition
attribute “equation” that was set in the Globalribitites — fizzim sets it this way by default), and
they both have the default priority of 1000.

The answer is that the equation value of “1” gptxcgl handling by fizzim.pl.
10.2The special case of equation equal to “1”
OK, let’s go back to the original Cliff Classic sganachine. We’'ll turn equation visiblity to

YES so that all the transition equations are vés{ltthey were set to “Only non-default” to
suppress all the “1” equations):

Fizzim 67 Fizzim

STATE MACHINE
nams cliff_classic
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue
default_state_is_x 1

INPUTS
clk

rst_n

o

WS
QUTPUTS

rd 8] reg

ds 8] reg
STATES

rd 8] oLtput

ds 8] output
TRANSITIONS

eguation 1 def_type

Why don’t | need a “lgo” equation on the IDLE logatk (and “!'ws” on the DLY to DONE
transition)?

The answer is that fizzim.pl has some special mdgarding transition priority and equations
equal to “1”. First, if two exit transitions hattee same (or no) priority set, the one with the
always-true equation (“1”) is assumed to have logrearity, and no warning is issued.
Similarly, if there are only two exit conditionsdathe always-true one is the lower priority
(either due the rule above or because it has etlpleen set), no warning is issued.

So, fizzim.pl sees the transition equations frorhHas “go” and “1”, and assumes that “1” is
the default (lower-priority) transition.

But there’s a little more to this than just savamgne typing. It allows fizzim.pl to output
Verilog code that matches what most designers wioalea written had they coded this by hand.
You wouldn’t write:

case (state)
IDLE: begin
if (go) begin
nextstate = READ
end
else if (! go) begin
nextstate = IDLE;
end

Fizzim 68 Fizzim

You'd write this:

case (state)
IDLE: begin

if (go) begin

nextstate = READ
end
else begin

nextstate = IDLE;
end

You'd look at the state diagram, recognize thatidlopback was the default, and make it the
“else” condition.

But fizzim has no easy way of inferring what is ttefault condition. So, you have to tell it.
That's what priority is for — to tell fizzim.pl whahe order of the “if” statement ought to be.

That's what priority is for — to tell fizzim.pl whahe order of the “if’ statement ought to be.
If you don't like this feature, you don’t have teauit. Let's add the “missing” equations:

(Example: cliff_classic_explicit_equations.fzm)

STATE MACHINE

nams cliff_classic

clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue

default_state_is_x 1
INPUTS
clk

rst_n

o

WS
QUTPUTS

rd 8] reg

ds 8] reg
STATES

rd 8] oLtput

ds 8] output
TRANSITIONS

eguation 1 def_type

The Verilog output now looks like this:

/I comb always block
always @* begin

Fizzim 69 Fizzim

nextstate = 3'bxxx ; [/l default to x because default_state is_x is set
case (state)
IDLE: begin
/I Warning P3: State IDLE has multiple exit transit ions, and
transition transO has no defined priority
/I Warning P3: State IDLE has multiple exit transit ions, and
transition trans5 has no defined priority
if (go) begin
nextstate = READ
end
else if (! go) begin
nextstate = IDLE;
end
end
DLY: begin
/I Warning P3: State DLY has multiple exit transiti ons, and transition
trans2 has no defined priority
/I Warning P3: State DLY has multiple exit transiti ons, and transition
trans3 has no defined priority
if (ws) begin
nextstate = READ
end
else if (! ws) begin
nextstate = DONE
end
end
DONE begin
begin
nextstate = IDLE;
end
end
READ begin
begin
nextstate = DLY,
end
end
endcase
end

Except for the warnings, this is what you would estp
The warnings are telling you that you have two Adransition equations and haven't defined
their priorities. You and Iknow that they are mutually exclusive, but fizzahrdoesn’t parse the

equations, so it doesn’t know. So, it warns you.

But you can easily turn the warnings off. To toffithis specific warning, use the —nowarn
switch:

fizzim.pl —nowarn P3 < cliff.fzm > cliff.v

You can also turn off whole groups of warnings (fRéans priority warnings) by just using the
letter:

fizzim.pl —nowarn P < cliff.fzm > cliff.v

Fizzim 70 Fizzim

So, if you prefer to always use explicit equaticars] never use priorities, just use “-nowarn P”
when you invoke fizzim.pl.

Fizzim 71 Fizzim

11 Adding gray codes
Back to Cliff Classic. Here’s what heros came ug\for the state encoding:

IDLE is 000, and READ is 110. Suppose we wantediansition from IDLE to READ to be
gray coded?

Easy — just add a “graycode” attribute the traasiti
So, we double-click the transition, and...

(Example: cliff_graycode.fzm)

Fizzim 72 Fizzim

Edit State Transition Properties

Edit the properties of the selected state transition:
Aftribute Mame Yalue Wisibility Tvpe Comment | Calor
narne trans1 e [u] def_type
equation (s Dnly non-default|def_type
Start State: |IDLE |« [| Stub?
End State: READ |+ oK cancel

Wait, there’s no “graycode” attribute, and no baftdo add one. How do we add a “graycode”
attribute?

Recall that attributes dndividual states and transitions are only available onceéxbdyeen
added in the global tabs.

So, select “Global Attributes > Transitions”. (&ithe “Graycode” button. Select whatever
visibility you want (we suggest “Only non-defauléipd click OK.

Fizzim 73 Fizzim

Edit Global Properties

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.'
r State Machine r Inputs r Outputs |/ States |T Transitions |

Aftribute Mame| Default*alue Wisikility Type Comment Calor
harrne defl_name [def_type
equation 1 Qnly non-def.. |def_type
draycode] Qnly non-def..

Delete User Graycode Ourtpurt Priority

OK Cancel

Now double-click the transition and change the gaitithe graycode field to “1”

Edit State Transition Properties

Edit the properties of the selected state transition:

Aftribute Mame Yalue Wisibility Type Comment [Colar
narre trans i [u] def_type
equation oo Qnly non-default|def_type
draycode 1 Only non-default

Start State: |IDLE |+ [| Stub?

End State: READ |+

OK Cancel

Fizzim 74 Fizzim

Save the file and re-run fizzim.pl, and the stateoeling changes to this:

/I state bits
parameter
IDLE = 3'b000 , /I extra=0 rd=0 ds=0
DLY = 3'b110 , // extra=1rd=1 ds=0
DONE= 3'b001 , /Il extra=0 rd=0 ds=1
READ = 3'b010 ; // extra=0 rd=1 ds=0

Note that the IDLE to READ transition is now gragea (000 to 010). Also, a comment has
been added on the transition itself:

IDLE: begin
if (go) begin
nextstate = READ // graycoded
end
else begin
nextstate = IDLE;
end

It is not always possible to make a transition gragled. As an experiment, we’ll try changing
the value of “rd” in DONE to “1”, then turning oray code on the DONE to IDLE transition.
The DONE to IDLE transition is a double-bit chamgehe registered outputs, so no gray code is
possible. Save it and run fizzim.pl, and we get:th

Error: No valid state assignment found in range of 3 to 6 bits - try using -
minbits 7 -maxbits 7 on the command line or in be_c md. - exiting

Note that it igpossibleto get this error even when gray coding is not#yrimpossible.

Fizzim.pl has certain rules for limiting the numioéistate bits to try. The error shows the range
it tried. If you have a case where you think thedly SHOULD be an encoding that meets all
your requirements and fizzim.pl just isn’t findirtgtry using the “-maxbits” switch on fizzim.pl
to widen the search space:

fizzim.pl -minbits 7 —maxbits 7 < cliff.fzm > clif¥

In this case, it just isn’t possible, so you gigt the error:

Error: No valid state assignment found in range of 7 to 7 bits - try using -
minbits 8 -maxbits 8 on the command line or in be_c md. - exiting

Notice that yowcouldget around this by making one or more of your otgpype “regdp” (see
below). This would allow the gray code, but whetthes isreally a solution is open to debate.
Sure, the state machine is gray coded, but theutsigan now be out-of-sync with the state
machine. Whether this meets the original needifay coding is up to the designer.

Gray coding is, of course, not possible with onedratoding.

Fizzim 75 Fizzim

12 Mapping states to values in heros

In addition to the impossible gray code examplanshabove, there are other cases where
fizzim.pl may have trouble finding a mapping oftetato codes that meets all the user
requirements.

Starting with version 4.0, the algorithm got ddittmarter, and it also got more controllability.
To avoid long runtimes, fizzim.pl will only attematlimited number of bit ranges. If it cannot
find a correct mapping, it will error out with mag®s as shown above:

Error: No valid state assignment found in range of 3 to 6 bits - try using -
minbits 7 -maxbits 7 on the command line or in be_c md. - exiting

At this point, you might want to examine your raganents and see that they really do make
sense. If you still think fizzim.pl should be albdefind a mapping, start bumping -minbits and -
maxbits.

Fizzim.pl can also error out of this mapping cddénuns too many iterations:

Error: No valid state assignment found after 200000 00 iterations. Try using -
minbits 8 or increase max iterations using -iterati ons - exiting

If you're still convinced that their should be appilmg, and you're willing to expend some more
cpu time looking for it, you can increase the itenas limit by using the "-iterations" option on
the command line or in be_cmd. Using the suggestaabits value will skip all bit lengths that
are known to fail, thus speeding up the searchnabdonsuming those iterations.

Fizzim 76 Fizzim

13 Stubs

Suppose we wanted to add an “abort” input to @iHssic that would cause the FSM to go back
to idle, no matter what state it happened to beltis?easy enough to add the transitions, but the
resulting FSM has so many arcs that it becomesdiéfrgult to read.

To avoid this problem, transitions can be desighate“stubs”. Stubs are just like regular
transitions, except the arc only goes to a stulbgymvith the name of the destination state.
Here’s how we would create the stub back to idlalbort for Cliff Classic. After adding “abort”
as an input, we create new transition arcs batRli& for each state by right-clicking in open
space and selecting “New State Transition”. Thisds up a box where we can select the states
and set the equation. To make it a stub, checkStubd?” box.

Edit State Transition Properties

Edit the properties of the selected state transition:
Aftribiute Mame Walue Yisitility Type Comment Caolar
name trans10 [0 def_type
equation ahort Cnly non-default| def_type
Start State: |READ |+ Stub?
End State: IDLE |+ OK cancel

We’'ll also have to add priorities to the transitattributes and assign the DLY->READ
transition on “ws” a lower priority than the “abbttansition.

(Example: cliff_abort_stub.fzm)

Fizzim 77 Fizzim

pricrity =1

priority = 2

abort

IDLE

peRrty=1 pricrity =1

priority = 2

priority =1

The resulting Verilog has all the expected traossi

always @* begin
nextstate = 3'bxxx ; [/l default to x because default_state is_x is set
case (state)
IDLE: begin
if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end
end
DLY: begin
if (abort) begin
nextstate = IDLE;
end
else if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
DONE begin
if (abort) begin

Fizzim 78 Fizzim

nextstate
end
else begin
nextstate
end
end
READ begin
if (abort) begin
nextstate = IDLE;
end
else begin
nextstate = DLY;
end
end
endcase
end

IDLE;

IDLE;

Fizzim 79 Fizzim

14 Bringing out internal signals

14.1Renaming internal signals

The default values of the state vector, nextstattor, and ascii statename are “state”,
“nextstate”, and “statename”, respectively. Yoo change this on the command line using the
switches “-statevar”, “-nextstatevar”, and “-stasrevar”.

14.2Bringing out internal signals

Sometimes the designer wants to bring the intestadé vectors (state and/or nextstate) out as
ports on the module. Thism®tdone by adding them to the output list (fizzimapll error out if
you do this). Instead, there are special FSM dlattabutes that you can set:

e ‘“stateout” — value field is the name of the sigiwalise. Do not use [m:n] — size will be
determined automatically by fizzim.pl.

e ‘“nextstateout” — value field is the name of thensigto use. Again, do not use [m:n] —
size will be determined automatically by fizzim.pl.

Edit Global Properties E'
Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.”

l/ State Machine |/ Inputs |/ Outputs |/ States |/ Transitions

Aftribiute Mame DefaultVYalue Wisikility Type Comment Colar

name cliff_classic [0

clock ik [0 posedge

reset_signal rst_n [0 negedge

reset_state IDLE [0 ammalue

default_state_i... [1 [0

stateout state [[u]

hextstateout nextstate M

Delete User Reset
OK Cancel

Fizzim 80 Fizzim

If the signal name matches the internal signal néistate” and “nextstate” by default — see
“renaming internal signals” below), fizzim.pl wlutput these directly.

module cliff_classic (
output wire ds ,
output wire rd ,
output reg |[2:0] state ,
output reg [2:0] nextstate
input wire clk
input wire go,
input wire rst.n
input wire ws);

(Example: cliff_stateout.fzm)
If not, it will create a new wire with the corregtdth for the output and assign this wire to the
internal signal. Suppose we change the namesystate” and “mynextstate”.

(Example: cliff_mystateout.fzm)

Edit Global Properties E'
Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.’

l/ State Machine |/ Inputs |/ Outputs |/ States |/Transitiuns

Attribute Mame | DefaultYalue Yigikility Tvpe Camment Color

narne cliff_classic (]

clock clk (] posedge

reset_signal rst_n (] negedge

reset_state IDLE (] ampalue

default_state_i... |1 (]

stateout mystate (]

nextstateout v esxtstate Mo

Delete User Reset
OK Cancel
module cliff_classic (

output wire ds ,

output wire rd ,

output wire [2: 0] mystate |,
output wire [2:0] mynextstate
input wire clk

input wire go

Fizzim 81 Fizzim

input wire rst.n
input wire ws);

/I state bits
parameter
IDLE = 3'b000 /I extra=0 rd=0 ds=0
DLY = 3'b010 /I extra=0 rd=1 ds=0
DONE= 3'b001 /I extra=0 rd=0 ds=1
READ = 3'b110 /I extra=1 rd=1 ds=0

reg [2:0] state
assigrm_mystate = state

reg [2:0] nextstate ;

assign mynextstate = nextstate

In other words, whatever you name it, fizzim.pllwlib the right thing.

Note that SystemVerilog does not support outputtiregstate variables as module ports. This is
because the state variables are enumerated tygewtaavailable outside the module
(technically, the declaration could be moved owshte module, but then there is no way of
knowing if this conflicts with something else iretdesign).

So, in SystemVerilog, the internal state/nextstargablesmustbe different from the port names.
This can be accomplished in one of two ways. Fy@i can simple give the output a different
name, like the “mystate/mynextstate” example abdwuehis case, the SystemVerilog output
would look like this:

module cliff_classic (
output logic ds ,
output logic rd ,
output logic [2: 0] mystate
output logic [2: 0] mynextstate
input logic clk ,
input logic go ,
input logic rst.n
input logic ws

/I state bits

enum logic [2:0]
IDLE = 3'b000 , /I extra=0 rd=0 ds=0
DLY = 3'b010 , /Il extra=0rd=1 ds=0
DONE= 3'b001 , /Il extra=0 rd=0 ds=1
READ = 3'b110 , /Il extra=1rd=1 ds=0
XXX ='X

} state , nextstate

assign mystate = state ;
assign mynextstate = nextstate

Fizzim 82 Fizzim

The other approach is to use the —statevar/-néatstaoptions to rename the internal names.
The example file cliff_stateout.fzm normally proéscan error when run with —lang
SystemVerilog:

module cliff_classic (
output logic ds ,
output logic rd ,

Error : Cannot use state or nextstate variables as module ports in
SystemVerilog - you must rename them . See documentation for details . -
exiting

But when run with “-statevar statel —nextstatevaxtstatel”, it produces this:

module cliff_classic (
output logicds
output logic rd)
output logic [2: 0] state
output logic [2: 0] nextstate
input logic clk ,
input logicgo
input logic rst_n ,
input logic ws

/I state bits
enum logic [2: 0]

IDLE 3'b000 , /I extra=0 rd=0 ds=0
DLY 3'b010 , [/l extra=0 rd=1 ds=0
DONE= 3'b001 , /Il extra=0 rd=0 ds=1
READ = 3'b110 , /Il extra=1rd=1 ds=0
XXX ="'X

} statel , nextstatel ;

assign state = statel
assign nextstate = nextstatel ;

Either way, the result is the same - different nsfioe the ports and the internal signals.

Fizzim 83 Fizzim

15 Using parameters

Parameters are a very handy feature of the vealoguage. They allow code to be written once
and used in a variety of contexts with differentithis, for example. They also provide a
mechanism for applying meanful names to valuegzifi.pl uses parameter statements to assign
names to the state values, for example.

Parameters are often preferable to "define valaeause they are more tightly bound to their
module, instead of being global. If fizzim.pl useeéfine to specify the statenames, for example,
this might accidentally redefine this value elsexgha the design.

Stating with version 3.6, fizzim supports parametefhey are entered in the gui as state
machine attributes of type “parameter”:

Edit Global Properties [z|
Here you can change the glohal attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.'
| State Machine r Inputs |/ Outputs |/ States |/Transitiuns

Aftribute Mame | DefaultValue Wisibility Twpe Comment Calar

narme cliff_classic [0

clock clk [0 posedge

reset_signal rst_n [0 negedge

reset_state IDLE [0 ammalue

default_state_i... [1 [0

ADDRE_WIDTH |20 [0 parameter

DATAWIDTH 128 [0 parameter

Delete User Reset
OK Cancel

Fizzim 84 Fizzim

This results in a “parameter block” begin addetheomodule statement:

module cliff_classic

#(
parameter ADDR_WIDTH= 20,
parameter DATA _WIDTH= 128

X

output reg [ADDR_WIDTHL: 0] addr ,

output reg ds ,

output reg rd ,

input wire clk

input wire go,

input wire rst.n

input wire ws

);
The default values specified in the gui will bediss the defaults.

These parameter values can then be used to spi@aifyg inside the fsm. In the example above,
ADDR_WIDTH was used as part of the declarationaufdr:

Edit Global Properties f'5_<|

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.'

r State Machine r Inputs |T Outputs r States |/Transitiuns

Atribute Mame Default Yalue Yigikility Tvpe Comment | Color
ro I es comb
ds I es comb
addrpaDDRE_AWIDTH-1:0) (0 es regdp
Delete User Ourtpart Multibit Outpurt

OK Cancel

Note that “addr” is of type “regdp”Parameters cannot be used to size type “reg” owgpdthis
is because fizzim.pl needs to know the size of typg” outputs at compile time in order to
create the state vector assignments.

Fizzim 85 Fizzim

16 Inserting random bits of code at strategic places

Fizzim.pl has the following attributes that alloawto insert random bits of code at strategic
locations:

e insert_at_top_of file — string from value field ible inserted at the top of the file, before
the “module” statement.

e insert_in_module_declaration — string from valediwill be inserted into the module
declaration.

e insert_at_top_of _module — string from value fieldl e inserted after the module
statement, but before anything else.

e insert_at_bottom_of_module - string from valuedielill be inserted just before the
endmodule statement.

e insert_at_bottom_of_file - string from value fieldl be inserted after the endmodule
statement.

Using these “hooks”, it should be possible to ihabout anything you want into the Verilog
code.

Since it is common to insert a large chunk of catne top of the file (copyright statement),
there is a special attribute that will read froffl@an put whatever it finds at the top of the
output file:

e include_at_top_of file — pointer to file whose camtis should be inserted at the top of the
file.

Currently, the other insert_at attributes haveinolar file provision, although it would be easy
to add. There just doesn’t seem to be any grest fox it.

Fizzim 86 Fizzim

17 Inserting comments

All of the attribute forms have a comment fieldong of these comments are intended for the
visible table in the gui, some are for the Veritmgle, some show up in both, and some are
utterly useless. Here’'s a basic guide:

Comment Field Attribute On In Verilog?
Diagram?
Globals > State name Yes Yes — on “module” line
Machine
clock Yes No
reset_signal Yes No
reset state| Yes No
<user atts>| Yes No
Globals > Inputs <all> Yes Yes — on input declanatbf module statement
Globals > Outputs <all> Yes Yes — on output detlanaof module statement
Globals > States name No No
<outputs> | (outputs | No
tab)
Globals > Transitions name No No
equation Yes No
<user atts>| Yes No
State Properties name No Yes — on STATE: line mlzblock case statement
<outputs> No No
Transition Properties name No Yes — on transitighstatement in comb block
<user atts>| No No
Fizzim 87 Fizzim

18 Using multiple pages

Fizzim will also let you split the FSM across mplé pages.

We'll start with a simple example. Back to CliffsSsic. Let's move the READ state to its own
page.

(Example: cliff_classic_multipage.fzm)

Click the “Create New Page” tab at the bottom I&kte now have 2 page tabs:

B Fizzim - cliff_classic.fzm
File Edit Global Attributes Help

4]

Fizzim 88 Fizzim

B3 Fizzim - cliff_classic.fzm
File Edit Global Attributes Help

STATE MACHINE -
name cliff_classic |
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalus
default_state_is_x 1

INPUTS
clk
rst_n
ao
wWs

OUTPUTS
rd o reg =
ds o reg

STATES
rd] oltput
ds o output

TRANSITIONS
eguation 1 def_type

4

Create New Page Page 1 X Page2 X

Pop back to Page 1, select the READ state by olickn it, then right-click to select Move to
Page > Page 2:

Fizzim 89 Fizzim

File Edit Global Attributes Help
STATE MACHINE -
name cliff_classic T
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalug IDLE
default_state_is_x 1 rd<=0
INPUTS cigae b
clk
rst_n
g0 '
ws =
CUTPUTS
rd o reg g0
ds o reg
STATES
rd o output DOME
s o outplt rd==0
TRAMSITIONS s <=1
eguation 1 def_type 1 4
Add Loopback Transition
Add State Transition to... »
Edit State Properties
»| Page2 |
DLY
rd==1 e
ds==0
-
Create New Page Page1 X Page 2 X

Page 1 now looks like this:

Fizzim

90

Fizzim

Fizzim - cliff_classic.fzm
File Edit Global Attributes Help

STATE MACHINE
name
clock
reset_signal
reset_state
default_state_is_x
INPUTS
clk
rst_n
go
WS
QUTPUTS
rel
ds
STATES
rl
ds
TRANSITIONS
eguation

[>

cliff_classic
clk

rst_n

IDLE

1

o

o

posedge
negedge
anyvalue

reg
reg

output
autput

def_type

go

[»

READ (Page 2)

[>

READ (Page 2)

WS

[>

READ (Page 2)

4]

Create New Page - Page1 X | Page2 X |

The arcs leading to/from state READ now terminatgage connectors. Input arcs come in
from the left, output arcs go out on the right.

Page 2 looks like this:

Fizzim

91

Fizzim

Fizzim - cliff_classic.fzm

File Edit Global Attributes Help

[>

IDLE (Page 1)

DLY (Page 1)

DLY (Page 1)

Create New Page | Page1 X Page2 X |

The usual editing rules apply. You can selecipidige connectors, state, etc and move them
around to clean up the diagram.

One handy use of multiple pages is to move théatas table to its own page. You can select
the attributes table just like a state and move it.

Fizzim 92 Fizzim

19 ‘include and “define

Many designers prefer to assign constants by usnges set by “define:

“define OPCODE_READ 4'b0110

Often these "define statements will be put intangle shared file, which is then read into
Verilog using the “include directive.

This is easy enough to do in fizziprovided that the values are not being assigneal datput
of type “reg”. This restriction will be explained in a momemior now, let’s look at how you
can do it for type comb or regdp.

(Example: cliff_ticdefine.fzm)

Since values of comb and regdb are not parsedbyrfipl, there’s no problem using a "define

value. Here, I've added a multibit output callegp€ode[1:0]” and given it values of 'NOP,
"READ, 'DELAY, and 'INCR.

STATE MACHINE

name cliff_ticdefines

clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue

default_state_is_x 1 IDLE

insert_at_top_of_file “include "defines ¥" \nin :; : g
IPLTS opcode[1:0] = 'NOP
clk
rst_n
go
WS
OUTPUTS
rd 0 reg
ds 0 reg
opcode[1:0] “HOP comb DOMNE
STATES rd <=0 I.EE,{A:D:I
rd 1] output ds <=1 de <=0
ds 0 output opcode[1:0] = "IMCR ar="
opcode[1:0] “NOP output ARcheR = O
TRANSITIONS
eqjuation 1 def_type

oLy
rd <=1
ds==0
opcode[1:0] = "DELAY

Now | create my “defines.v” file:

“define NOP 2'b00
‘define READ 2'b01

Fizzim 93 Fizzim

“define DELAY 2'b10
“define INCR 2'b11

To get it read in, we use the state machine ateitinsert_at_top_of_file” (see “inserting
random bits of code a strategic places above)sand to:

‘include "defines.v" \n\n

The result looks like this:

“include "defines.v"

module cliff_ticdefines (
output wire ds ,
output reg [1:0] opcode |,
output wire rd ,
input wire clk
input wire go ,
input wire rst n
input wire ws

);

/I state bits
parameter
IDLE = 3'b000 /I extra=0 rd=0 ds=0
DLY = 3'b010 /I extra=0 rd=1 ds=0
DONE= 3'b001 /I extra=0 rd=0 ds=1
READ = 3'b110 /I extra=1 rd=1 ds=0

reg [2:0] state ;
reg [2:0] nextstate ;

/I comb always block
always @* begin

nextstate = 3'bx ; [/ default to x because default_state_is_x is set
opcode [1:0] =" NOP [/ default
case (state)
IDLE: begin
if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end
end
DLY : begin
opcode [1: 0] =" DELAY,

So, why not allow type reg? Well, the problemhiattfizzim.pl musknowthe values for type
reg outputs so that it can encode the state maghaperly (well, not for onehot, but the idea is
to have a single source able to produce both ferd®nehot).

Fizzim 94 Fizzim

Fine, so parse the Verilog, right? Well, it's woplite that simple. First, you'd have to FIND the
include file(s). Does that mean parsing the “file’ and reproducing Verilog's directory
searchpath algorithm? Hmmm. And what if the keftatements are in among other compiler
directives? Now you have to parse most or alhefdcompiler directives as well.

Worse, the code generation happens in a diffetepttian the simulation or synthesis. What
happens if someone edits the defines file afteF®Bi code is generated? Ouch. To get around
this, you'd probably want to add some sort of sinlya@ode that verifies that the required values
didn’t change. But that only works for simulatiavhat about synthesis? Ideally, you'd like to
do this with compiler directives, but | don’t seaanto do that.

So, it might be feasible, but allowing “define veduor reg outputs raises a lot of thorny issues,

as well as being a fair amount of work. So, fowni remains on the “maybe, but probably not”
list.

Fizzim 95 Fizzim

20 Forcing the state vector

Despite the heros encoding’s ability to do all tvatzzy stuff, some control-freaks (or speed-
freaks!) will still insist on forcing particular values onto the staits.

Fizzim.pl doesn’t support this directly (in partdaese we think it's generally a bad idea), but it's
easy enough to fake it. How you fake it depend#/bether you want to just force the

assignments (making the registered outputs datdguiadh or you want to force the assignments,
thenusethe values as your registered outputs.

20.1With registered outputs as datapath bits

To force the state assignment without trying tothgevalues as registered outputs, here’s what
you do:

First, create your registered outputs as type regdp

Now, add an output called, for example, “STATE”mwihe width of your state vector. Edit each
state to assign this to your target value.

Here’s what Cliff Classic looks like with this dane

(Example: cliff_forcestate _regdp.fzm)

Fizzim 96 Fizzim

STATE MACHINE

nams cliff_classic
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue IDLE
default_state_is_x 1 rd<=0
INZETS ds<=0
STATE[1:0] == 00
rst_n =00 =
o
WS
QUTPUTS
ds eqadp
STATE[M:0] reg
STATES DONE
READ
rd autput re <=0 rd <=1
ds output ds==1 des <=0
STATE[1:0] output STATE[1:0] == 11 7 e
TRANSITIONS ALHEE =0
eqjuation 1 def_type

oLY
rd==1
ds==0

STATE[1:0] ==10

WS

If you've encoded the state bits correctly, herdsfimd your encoding to be just exactly what it
needs, and you get output like this:

/] state bits
parameter
IDLE = 2'b00 , // STATE[1:0]=00
DLY = 2'b10 , // STATE[1:0]=10
DONE= 2'bll , // STATE[1:0]=11
READ = 2'b01 ; // STATE[1:0]=01

Il Assign reg'd outputs to state bits
assign STATH 1: 0] =state [1:0];

20.2With registered outputs assigned to state bits
If you want to assign your registered outputs te fsom your forced state vector, do this:

(Example: cliff_forcestate regout.fzm)

Change their type to “comb” and set their defaalties to assign each to a state bit (ex:
name=ds, Default value=STATE[0]). Add the STATEw& as described above.

Fizzim 97 Fizzim

Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’
r State Machine r Inputs |T Outputs r States |/Transitinns

Aftribute Mame Default Walue Wigibilit Type Comment Caolar
rd STATE[1] eS comkb
s STATE[D] eS comkb
STATE[Z:0] eS req
Delete User Outpurt Muktibit Outpurt
OK Cancel

Edit Global Properties [E|

The result would look something like this:

Fizzim

98

Fizzim

STATE MACHINE

name
clock
reset_signal
reset_state
default_state_is_x
INPUTS
clk

STATE[2:0]
TRANSITIONS
eqjuation

cliff_classic

clk
rst_n
IDLE
1

STATE[]
STATE[D]

STATE[]
STATE[D]

posedge
negedge
anyvalue

camb
comb
reg

output
output
output

def_type

IDLE
rd = STATE[T
ds = STATE[0]
STATE[2:0] <= 00D /

DONE
rd = STATE[1]
ds = STATE[0]
STATE[2:0] <= 001

READ
rd = STATE[]
ds = STATE[D]

STATE[Z:0] <= 010

oLY
rd = STATE[]
ds = STATE[D]
STATE[20] == 110

WS

To make it look even prettier, you could turn tiegadlt visibility on rd and ds to “NO”, then go

to one state (IDLE) and turn it on:

STATE MACHINE

name

clock

reset_signal

reset_state

default_state_is_x
INPUTS

clk

rst_n

go

WS
QUTPUTS

rd

ds

STATE[2:0]
STATES

rd

ds

STATE[2:0]
TRANSITIONS

eguation

cliff_classic
clk

rst_n

IDLE

1

STATE[M]
STATE[D]

STATE[]
STATE[D]

posedges
negedge
anyvalue

camb
comb
reg

oLtput
output
oltput

def_type

IDLE
rd = STATE[1]
ds = STATE[0]
STATE[2:0] <= 000

DONE

READ
STATE[2:0] == 001

STATE[Z:0] <= 010

DLY

STATE[Z:0] == 110 ws

Or you could turn visibility off complete, and atlte mapping as free text. You get the idea.

Fizzim

99 Fizzim

However you choose to do it, the comb block wilnook like this:

/I comb always block
always @* begin

nextstate = 3'bx ; [/ default to x because default_state_is_x is set

ds = STATH 0]; /Il default
rd = STATH 1]; /I default
case (state)
IDLE: begin
if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
DONE begin
begin
nextstate = IDLE;
end
end
READ begin
begin
nextstate = DLY,
end
end
endcase
end

Now your outputs are forced to the state bit values

Fizzim

100

Fizzim

21 Suppressing outputs in the module portlist

Starting with version 4.0, there is a new "UserAtlled "suppress_portlist" that will remove
any output from the module portlist. It defauhiset for flags. For other outputs, you have to set
it manually. Just edit the "UserAtts" column oe tlOutputs” page and add "suppress_portlist”.

Fizzim 101 Fizzim

22 Splitting lines in free text and equations

Beginning with gui version v110824 and fizzim.ptsien 4.01 (package release 4.01), you can
split lines in free text and transition equatiogsembedding newline characters in the text. Just
insert the string "\n". This will cause a line &kewvhen the text (free text or transition equation)
is displayed in the gui. Free text is never péthe fizzim.pl verilog/systemverilog output, but
the newline will be stripped from transition eqoas before the output is generated.

Fizzim 102 Fizzim

23 Unknown states

Most state machines have more possible combinatibtiee state bits than they have states.
Cliff_classic is like this. Due to the fact thata of the states have identical outputs, the heros
encoding will use 3 bits for the states — one flhrone for ds, and one “extra”. This means that
only 4 of the 8 possible values of the 3-bit stadetor correspond to states of the state machine.

There’s no inherent problem in this. The codinghef fsm guarantees that it will not be possible
to get into any of these “unknown” states. Thadageated by synthesis will only ever go to
legal states. The only way the fsm can get in® afithese states is if the gates or flipflops
malfunction. This is distinct from a “bug in th&” which would mean the fsm didn’'t do what
the designer intended. Getting into one of théstes requires a circuit problem, not a design
flaw.

Still, some designers like to design their fsm stinat these unknown states go to a known state
— so the fsm doesn’t “hang” if the circuit malfuiocts (but it had better be a one-time
malfunction or all bets are off). Fizzim suppdtis through an attribute called
“unknown_states _go_here”.

23.1Case 1 — sparse state space and unknowns go to &istng state

Here’s a simple example. We'll add the unknowatest_go_here attribute to cliff_classic, and
send the unknown states to IDLE.

Recall that the nature of the output values irf aiifassic forces fizzim to generate a 3-bit vector
for this 4-bit state machine:

/I state bits
parameter
IDLE = 3'b000 , /I extra=0 rd=0 ds=0
DLY = 3'b010 , /Il extra=0rd=1 ds=0
DONE= 3'b001 , /Il extra=0 rd=0 ds=1
READ = 3'b110 ; // extra=1 rd=1 ds=0

So, there are lots of undefined state values (ftd@&xample). Using the
unknown_states_go_here attribute, we can haverfieeeate code that will send the fsm to
IDLE if it ever lands in one of these states.

"unknown_states_go_here" istateattribute, and it is not predefined in the guigia "user”
attribute). So, as with other such special attabuwe have to create it first, then set it:

To create a new user attribute, use Global Attebut States

Fizzim 103 Fizzim

-

Edit Global Properties =
Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.'

r State Machine r Inputs r Outputs h’ States rTransitinns |

Altribute Mame Default Value Visibility Type Comment| Color

name def_name fes def_type

rd 0 fes output

ds 0 fes output
undefined_states_go_here 0 Only non-de...

Delete User
OK Cancel

Click "User" and type in the name. Set the defaalitie to 0 and set visibility however you like.

Now, double click on IDLE and set the value of thigibute to 1 in this state:

-

Edit State Properties @

Edit the properties of the selected state:

Altribute Name Value Visibility Type Comment
name IDLE Yes def_type
rd 0 Yes output
ds 0 Yes output
undefined_states_.. |1 Only non-default

width: [130 | e

Height: [130 |

OK Cancel

The state diagram should now look like this:

Fizzim 104 Fizzim

IDLE
rd ==10
de==0

Now, the case statement will look like this:

/I comb always block
always @* begin
nextstate = state
set
case (state)
IDLE: begin

if (go) begin

nextstate
end
end
DLY : begin

if (ws) begin

nextstate
end
else begin
nextstate
end
end
DONE begin
begin
nextstate

Fizzim

/I default to hold value because implied_loopback i

READ

READ

DONE

IDLE;

105

eﬂned_states _go_here =

Fizzim

end
end
READ begin
begin
nextstate = DLY,
end
end
default . begin
nextstate = IDLE; // Added because undefined_states go_here is set
end
endcase
end

Note the addition of the "default : " statemenny/Atates that don't match the known ones fall
through to this statement and the next transitiohbe to IDLE.

23.2 Case 2 — full state space and unknowns go to an &xng state

OK, so what happens if we change the encodingatdhis 4-bit state machine actually fits into
a 2 bit state vector?

STATE MACHINE

nams unknown_4state
clock clk posedge
reset_signal ret_n negedge
reset_state IDLE anyvalus
default_state_is_x 1
INEETS ds <=0
s ufydefined_states_go_here =
go
WS
QUTPUTS __—/
rd o reg
ds o reg
STATES
rd o oLtput
ds o] output
undefined_states_go_here o
TRAMSITIONS
equation 1 def_type

Notice that the state vector is now only 2 bits:

/] state bits
parameter

Fizzim 106 Fizzim

IDLE = 2'b00 , //rd=0 ds=0
DLY = 211 , //rd=1ds=1
DONE= 2'b01 , //rd=0ds=1
READ = 2'b10 ; //rd=1ds=0

Well, you get the "default :" statement anyway:

reg [1:0] state ;
reg [1:0] nextstate ;

/I comb always block
always @* begin
nextstate = 2'bxx ; [/l default to x because default_state is_x is set
case (state)
IDLE: begin
if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
DONE begin
begin
nextstate = IDLE;
end
end
READ begin
begin
nextstate = DLY,
end
end
default : begin
nextstate = IDLE; // Added because undefined_states go_here is set
end
endcase
end

This is harmless functionally, but it might be ugdor linting tools that insist on seeing the
"default :".

23.3Case 3 — sparse state space and unknowns go to & rstate

OK, back to the original cliff_classic. Suppossher than have unknown states go to IDLE, we
want them to go to a new ERROR state (note: | dentmmend actually calling the state

Fizzim 107 Fizzim

"ERROR", since | always avoid using the string @nilog names as it makes grepping more
difficult)?

Well, just add the new state as usual, createndefined_states go_here attribute as above, and
set it in the new state:

STATE MACHINE

nams unknown_4state
clock clk posedge
reset_signal ret_n negedge
reset_state IDLE anyvalus
default_state_is_x 1
INPUTS
clk
rst_n
go
WS
QUTPUTS
rd o reg
ds o reg
STATES
rd o oLtput
ds o] output
undefined_states_go_here o
TRAMSITIONS
equation 1 def_type

ERROR
rd==10
ds <=0
undefined_states_go_here =1

The resulting code looks like this:

/] state bits
parameter

IDLE 3'b000 /I extra=0 rd=0 ds=0

DLY = 3'b010 , [/l extra=0 rd=1 ds=0
DONE = 3'b001 , /I extra=0 rd=0 ds=1
ERROR= 3100 , // extra=1 rd=0 ds=0
READ = 3'b110 ; /Il extra=1 rd=1 ds=0

reg [2:0] state ;
reg [2:0] nextstat ;

/I comb always block
always @* begin

nextstate = 3'bxxx ; [l default to x because default_state is x is set
case (state)
IDLE : begin
if (go) begin
nextstate = READ

Fizzim 108 Fizzim

end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
DONE: begin
begin
nextstate = IDLE;
end
end
ERROR begin
end
READ : begin
begin
nextstate = DLY,
end
end
default : begin
nextstate = ERROR // Added because undefined_states_go_here is set
end
endcase
end

23.4Case 4 — full state space and unknowns go to a netate

Ahah! What if the space state was already fullwedadded the ERROR state? Are we going to
end up with a 3-bit vector instead of a 2-bit veqiist to have a now-useless ERROR state?

NO! Fizzim is smart enough to detect this. Ikfim sees a state with unknown_states_go_here

set, and there are no transitions into this statd,it is not the reset staet, it will first tryetbtate
encoding without this state. If this encoding engdull, the special state is suppressed.

Fizzim 109 Fizzim

STATE MACHINE
name
clock
reset_signal
reset_state
implied_loopback
INPUTS
clk
rst_n
go
WS
QUTPUTS
rd
ds
STATES
rd
ds
undefined_states_go_here
TRAMSITIONS
equation

/I state bits

parameter

IDLE = 2'b00
DLY = 2'bl1
DONE= 2'h01
READ = 2'b10

/I Note: State ERROR (with undefined_states_go_here
because it had no transitions into it and the state

reg
reg

unknown_dstate_iloop
clk

ret_n

IDLE

1

undefined_states_go_here =1

, 1/ rd=0 ds=0
, Il rd=1ds=1
, I/ rd=0ds=1
;[rd=1 ds=0

[1:0] state ;
[1: 0] nextstate ;

/I comb always block

always
nextstate
set

@* begin
= state ;

case (state)

IDLE:

begin

if (go) begin

nextstate
end

= READ

else begin

nextstate
end
end
DLY :

= IDLE;

begin

if (ws) begin

nextstate
end

Fizzim

= READ

posedge
negedge
anyvalue

req
reg

output
output

def_type

attribute) dropped
map was full without it.

/I default to hold value because implied_loopback i S

110 Fizzim

else begin
nextstate
end
end
DONE begin
begin
nextstate
end
end
READ begin
begin
nextstate = DLY;
end
end
endcase
end

DONE

IDLE;

Notice the "Note: " showing what fizzim has done.

What if this special state has outputs? Welhd# dutputs are comb or regd, nothing changes.
The default of the output will always be assertedr a comb output, you get something like
this:

For a regdp output, you'll get this:

/I datapath sequential always block
always @(osedge clk or negedge rst n) begin
if (!rst.n) begin

err <= 0,
end
else begin
err <= 0; /I default
/I Warning D9: Did not find any non-default values for any datapath
outputs - suppressing case statement
end
end

This ends up as a wire tied to ground...

If, however, you declare this output as type "rg@y won't get the special state suppression
functionality. Type "reg" means the bit is supgbs®be part of the state vector. Figuring out
which outputs could be suppressed (and tying thignisgust too hard - use a regd or comb.

Note that this suppression behavior an be overidderg the "-
force_keep_undefined_goto_state" switch.

Fizzim 111 Fizzim

24 Controlling and suppressing warning messages

Fizzim.pl has a couple of command-line switches #éiaw you to control what warning
messages are generated, and where they go.

Currently, warning messages are placed in theviatig groups:

“R” messages — Reset-related warnings.

“I” messages — Implied loopback warnings.

“P” messages — Priority-related warnings.

“C” messages — Combinational output-related warsing

PonE

Each individual message also has a number. Natetth numbers within the group are not
necessarily continguous, since each number i$ iils&ue across all groups.

So, for example, warning message “R1” is “No regetcified” and warning message “R5” is
“No reset value for datapath output <output> setset state <state> - Assigning a reset value of
<value> based on default”.

You can use the —nowarn switch to suppress thes@mga. Using the full group+number will
suppress just that message:

-nowarn R1

Usingjust the groupwill suppress all messages in the group, so:
-nowarn R

suppresses all reset messages.

You can also control where the messages are sigt the —warnout switch. This switch has 3
possible values:

e stdout — place the messages in the Verilog as consme
e stderr — just send the messages to unix stderr.
e both — send the messages to both places.

The default value for warnout is “both”.

Fizzim 112 Fizzim

25 Printing and exporting the state diagram

One of the nice things about using a gui-based B88ign tool is the ability to use the state
diagram in your documentation. In addition to png the state diagram, you can export it in
three ways:

1. As a .png file

2. As a .jpg file

3. Directly to the clipboard

Having the attributes table on the diagram alloas ¥ put ALL the information into your
documentation quickly and easily.

All the state diagrams in this paper were inseusdg the export to clipboard feature.

Note that currently fizzim only prints/exports oo&ge at a time.

Fizzim 113 Fizzim

26 Specifying the fizzim.pl options

There is a special state machine attribute calbed ¢md” that is used to specify the backend
command to run. Some day, this will be used toth@backend from within the gui. That'’s still
on the todo list (because it has some platform midgrecies), but the be_cmd attribute is fully
supported in fizzim.pl. The attribute is parsealbain theoptions and those options are treated
exactly as if they had been specified on the conthiae — ahead of the actual command line
options. Since they come first, they can be ogidan by the options specified on the command
line, giving priority to these.

Fizzim 114 Fizzim

27 Requiring a minimum revision of fizzim.pl

Beginning with revision 3.6, fizzim.pl has a comrddime option (more often used in be_cmd)
“-minversion” which will cause it to error out if$ version is less than the version specified:

$ cat cliff.fzm | fizzim.pl -minversion 6.1

Error: Version 3.55 is less than required minversio n 6.1 — exiting

This is to cover the situation where your fsm reggia specific feature or bug fix.

Fizzim 115 Fizzim

28 Group select and move

The fizzim gui also supports multiple item selendl anove. In this case, the “items” are states
and the attribute table — transitions are only nddwe moving the attached state(s).

Any modifications made to attached transitionsganeerally retained if both of the attached

states are moved (in fact, whenever possible, dheyetained when a single attached state is
moved).

A common example is having to move the while fsrodose the attribute table grew too big.
Suppose | added a be_cmd and ended up with this:

M rizzim - be_cmd.fzm

File Edit Global Attributes Help

STATE MACHINE
name fsmla_ffol
clock clk posedge
reset_signal rst_n clie
reset_state IDLE g5

default_state_is_x 1

be_cme fizzim pl -enc onehat -terse -nosimcode -statevar STATE -nextstatevar NEXT
INPUTS

clk

rst_n

go

waitstate_request
QUTPUTS

rd

rd <=0
data_strobe <=0

reg

data_strobe o reg
STATES DOMNESTATE READ
rd rd <=0 output e
uatd iy o data_strobe <= 1 output T
TRAMSITIONS data_strobe ==0
eguation 1

def_type

DLY
rd==1
data_strobe ==0

waitstate_reguest

| can move the whole fsm by selecting all the staiéher by selecting each state individually
(click, ctl-click, ctl-click, etc), or by drawing laox around the whole fsm:

Fizzim 116 Fizzim

' Fizzim - be_cmd.fzm
File Edit Global Attributes Help

STATE MACHINE
rame famla_ffol
clock clk
reset_signal rst_n
reset_state IDLE
default_state_is_x 1
be_cmd fizzim pl -enc onehot -terse -nosi le -stat STATE -nextstat MEXT
INPUTS
clk
rst_n
go
waitstate_reguest
QUTPUTS
rd reg
clata_strobe o reg
STATES
e output
i oupu :
TRAMNSITIONS data_strobe <=0
eguation 1 cef_type

7/ waitstate_request

And then just drag it to the new location.

Fizzim 117 Fizzim

Fizzim - be_cmd.fzm
File Edit Global Attributes Help

STATE MACHINE

name famla_ffol
clock clk
reset_signal rst_n
reset_state IDLE
default_state_is_x 1
be_cmd fizzim pl -enc onehot -terse -nosi le -stat STATE -
INPUTS
clk
rst_n
go
waitstate_reguest
QUTPUTS
rd
cata_strobe o
STATES
rd
data_strobe o
TRANSITIONS
eguation 1

IDLE
red <=0
clata_strobe <=0

DOMESTATE
rd==0
data_strobe ==1

DLY
re == 1
data_strobe <=0

Notice that my arcs didn’t change.

Fizzim

118

MEXT

data_strobe <=0

posedge
negedge
anyvalue

reg
reg

output
output

def_type

READ
rd <=1

waitstate_reguest

Fizzim

29 —terse (-sunburst) option

Cliff Cummings of Sunburst Design is one of theustly’s top Verilog experts. He participates
in standards activities, teaches Verilog and Sysgtitog classes, and presents frequently on all
things Verilog.

Cliff is a firm believer in “less is more”. He gegs a coding style that eliminates any and all
unnecessary syntax (like begin/end blocks, eizgim.pl has an option (-terse or —sunburst) that
will produce this sort of output.

Here’s an example:
(Example: cliff_terse_example.fzm)

Standard output looks like this:

module cliff_classic (

output wire ds ,
output reg pre_rd ,
output reg rd ,

input wire clk

input wire go ,

input wire rst.n
input wire ws

/I state bits
parameter
IDLE = 3'b000 /I extra=00 ds=0
DLY = 3'b010 /I extra=10 ds=0
DONE= 3'b001 /I extra=01 ds=1
READ = 3'b100 /I extra=00 ds=0

reg [2:0] state ;
reg [2:0] nextstate ;

/l comb always block
always @* begin

nextstate = 3'bx ; [/ default to x because default_state_is_x is set
pre_rd = 0; [/l default
case (state)
IDLE: begin
if (go) begin
nextstate = READ
pre_rd = 1;
end
else begin
nextstate = IDLE;
end
end

Fizzim 119 Fizzim

DLY : begin
if (ws) begin
nextstate = READ
end
else begin
nextstate
end
end
DONE begin
begin
nextstate
end
end
READ begin
begin
nextstate = DLY;
end
end
endcase
end

DONE

IDLE;

/I Assign reg'd outputs to state bits
assign ds =state |[O0];

/I sequential always block
always @(osedge clk or negedge rst n) begin
if (!rstn)

State <= IDLE;

else

state <= nextstate
end

/I datapath sequential always block
always @(osedge clk or negedge rst n) begin
if (! rst.n) begin

rd <= 0;
end
else begin
rd <= 0; /I default
case (nextstate)
DLY : begin
rd <= 1;
end
READ begin
rd <= 1;
end
endcase
end
end
/I This code allows you to see state names in simul ation

“ifndef SYNTHESIS
reg [31:0] statename ;
always @* begin

case (state)

IDLE:

statename = "IDLE" ;
DLY :

statename = "DLY";

Fizzim 120 Fizzim

DONE
statename
READ
statename
default
statename
endcase
end
“endif

endmodule

The sunburst version looks like this:

module cliff_classic
output ds ,

"DONE";

"READ",

XXXX"

output reg pre_rd ,

output reg rd ,
input clk
input go ,

input rst.n
input ws

);

/I state bits
parameter
IDLE = 3'b000
DLY = 3'b010
DONE= 3'b001
READ = 3'b100

reg [2:0] state

/I extra=00 ds=0
/I extra=10 ds=0
/I extra=01 ds=1
/I extra=00 ds=0

reg [2:0] nextstate ;

/I comb always block
always @* begin

nextstate = 3'bx ; [/ default to x because default_state_is_x is set
pre_rd = 0; [/l default
case (state)
IDLE: begin
if (go) begin
nextstate = READ
pre_rd ;
end
else nextstate = IDLE;
end
DLY : if (ws) nextstate = READ
else nextstate = DONE
DONE nextstate = IDLE;
READ nextstate = DLY;
endcase
end
/I Assign reg'd outputs to state bits
assign ds =state |[O0];
Fizzim 121

Fizzim

/I sequential always block
always @(osedge clk or negedge rst n) begin
if (!rstn)

State <= IDLE;

else

state <= nextstate
end

/I datapath sequential always block
always @(osedge clk or negedge rst n) begin
if (!rstn) rd <= 0;
else begin
rd <= 0; /I default
case (nextstate)
DLY : rd <= 1;
READ rd <= 1;
endcase
end
end

/I This code allows you to see state names in simul ation
“ifndef SYNTHESIS
reg [31:0] statename ;
always @* begin
case (state)

IDLE: statename = "IDLE" ;
DLY : statename = "DLY";
DONE statename = "DONE";
READ statename = "READ";
default : statename = "XXXX";
endcase
end
“endif
endmodule

Fizzim 122 Fizzim

30 SystemVerilog output
Beginning in revision 3.0, fizzim.pl can producepmit in SystemVerilog format.

SystemVerilog is invoked by specifying “-languagestemVerilog” on the command line (or in
the be_cmd attribute string — see the section oorbd).

The code is structured to follow coding guidelifresn Cliff Cummings (as taught in his
SystemVerilog class). The primary changes arberfallowing areas:

1. Use of logic data type instead of wire and reg

2. Use of enumerated types instead of parametersdia sames. In most waveform
viewers, the eliminates the need for special codeetable to see the state names.
Because of this, the “-simcode” option defaultstionhen the language is
SystemVerilog (the default is on normally).

3. Use of always_comb, always_ff instead of alway$_at

4. Use unique case instead of “//synopsys full_casallpl case” in onehot encoding
(unless the attribute “onehot_pragma” is set).

The heros output for cliff_classic looks like timsSystemVerilog:

module cliff_classic (
output logic ds ,
output logic rd ,
input logic clk
input logic go ,
input logic rst_n
input logic ws

/I state bits

enum logic [2:0]
IDLE = 3'b000 , /I extra=0 rd=0 ds=0
DLY = 3'b010 , /Il extra=0rd=1 ds=0
DONE= 3'b001 , /Il extra=0 rd=0 ds=1
READ = 3'b110 , /Il extra=1rd=1 ds=0
XXX ='X

} state , nextstate

/I comb always block
always_comb begin
nextstate = XXX [/l default to x because default_state is_x is set
case (state)
IDLE: begin
if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end

Fizzim 123 Fizzim

end
DLY : begin
if (ws) begin
nextstate = READ
end
else begin
nextstate
end
end
DONE begin
begin
nextstate
end
end
READ begin
begin
nextstate = DLY;
end
end
endcase
end

DONE

IDLE;

/I Assign reg'd outputs to state bits
assign ds =state [O0];
assign rd =state [1];

/I sequential always block
always_ff @(@posedge clk or
if (!rstn)

State <= IDLE;
else
state <= nextstate
end
endmodule

The heros output for cliff_classic looks like timsSystemVerilog:

module cliff_classic (
output logic ds ,
output logic rd ,
input logic clk ,
input logic go,
input logic rst.n
input logic ws

/I state bits
enum {
IDLE_BIT ,
DLY_BIT,
DONE_BIT,
READ_BIT
} index

enum logic [3:0] {

IDLE = 4'bl <<IDLE_BIT ,
DLY = 4'bl <<DLY_BIT,

Fizzim

negedge rst n) begin

Fizzim

DONE= 4'bl <<DONE_BIT,
READ = 4'bl <<READ_BIT,
XXX ="X

} state , nextstate

/I comb always block
always_comb begin
nextstate = XXX [/l default to x because default_state is_x is set
uniqgue case (1'bl)
state [IDLE_BIT]: begin
if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end
end
state [DLY_BIT]: begin
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
state [DONE_BIT]: begin
begin
nextstate = IDLE;
end
end
state [READ_BIT]: begin
begin
nextstate = DLY;
end
end
endcase
end

/I sequential always block
always_ff @@posedge clk or negedge rst n) begin
if (!rstn)

State <= IDLE;

else

state <= nextstate
end

/I datapath sequential always block
always_ff @@posedge clk or negedge rst n) begin
if (! rst.n) begin

ds <= 0;
rd <= 0;
end
else begin
ds <= 0; /I default
rd <= 0; /I default
uniqgue case (1'bl)
nextstate [DLY_BIT]: begin
rd <= 1;

Fizzim 125 Fizzim

end

nextstate [DONE_BIT]:

ds <= 1;
end

nextstate [READ_BIT]:

rd <= 1;
end
endcase
end
end

endmodule

Fizzim

begin

begin

126

Fizzim

31 Future directions / wishlist

e Multi-page print

e Better support for pages sizes other than 8-1/P1by

e (Limited?) parsing of “include files for "definaad/or parameters to allow their use as
values for reg outputs.

Fizzim 127 Fizzim

32 Acknowledgements

The authors would like to acknowledge the followindividuals for their assistance in mapping
our the feature set and reviewing the output:

Bruce Lavigne — Hewlett Packard
Mark Gooch — Hewlett Packard
Jon Watts — Hewlett Packard

Cliff Cummings — Sunburst Design

Fizzim 128 Fizzim

33 References

(1) Synthesizable Finite State Machine Design TechnigadJsing the New
SystemVerilog 3.0 Enhancements
Cliff Cummings
Synopsys Users Group 2003 San Jose
(available atvww.sunburst-design.com

(2) State machine design techniques for Verilog and VHD
Steve Golson
Synopsys Users Group 1994 San Jose
(available atvww.trilobyte.con)

(3) Coding And Scripting Techniques For FSM Designs Wi Synthesis-Optimized,

Glitch-Free Outputs

Cliff Cummings

Synopsys Users Group 2000 Boston
(available atvww.sunburst-design.cam

Fizzim 129

Fizzim

