
Chips-2.0 Demo for SP605 Development Card
Author: Jonathan P Dawson

Date: 2013-10-17

email: chips@jondawson.org.uk

This project implements a TCP/IP stack. The TCP/IP stack acts as a server, and can accept a single
connection to a TCP port. The connection is provided as a bidirectional stream of data to the application.
The following protocols are supported:

• ARP request/response (with 16 level cache)

• ICMP echo request/response (ping)

• TCP/IP socket

Synthesis Estimate
The TCP/IP server consumes around 800 LUTs and 300 Flip-Flops in a Xilinx Spartan 6 device.

Dependencies
The stack is implemented in C, and needs Chips-2.0 to compile it into a Verilog module.

Source Files
The TCP/IP stack is provided by two source files:

• source/server.h

• source/server.c

Configuration
The following parameters can be configured at compile time within source/server.h:

• Local Ethernet MAC address

• Local IP Address

• Local TCP Port number

Compile
Compile into a Verilog module (server.v) using the following command:

$ chip2/c2verilog source/server.v

Interface

Ethernet Interface
The Ethernet interface consists of two streams of data:

mailto:chips@jondawson.org.uk

• An input, input_eth_rx.

• An output, output_eth_tx.

Both streams are 16 bits wide, and use the following protocol:

word designation

0 length in bytes

n data

Socket Interface
The socket interface consists of two streams of data:

• An input, input_socket.

• An output, output_socket.

Both streams are 16 bits wide, and use the following protocol:

word designation

0 length in bytes

n data

Stream Interconnect Conventions
The main aims of the interface are:

• To be simple to implement.

• Add little performance/logic overhead.

• Allow designs to grow without adding extra levels of asynchronous logic.

• Easy to interface with standard interconnects.

RST >-o-----------------------------+
CLK >-+-o-------------------------+ |
 | | | |
 | | +-----------+ | | +--------------+
 | | | TX | | | | RX |
 | +---> | | +-----> |
 +-----> | +-------> |
 | | | |
 | | <BUS_NAME> | |
 | out >=================> in |
 | | <BUS_NAME>_STB | |
 | out >-----------------> in |
 | | <BUS_NAME>_ACK | |
 | in <-----------------< out |
 | | | |
 +-----------+ +--------------+

Global Signals

Name Direction Type Description

CLK input bit Clock

RST input bit Reset

Interconnect Signals

Name Direction Type Description

<BUS_NAME> TX to RX bus Payload Data

<BUS_NAME>_STBTX to RX bit '1' indicates that payload data is valid and TX is ready.

<BUS_NAME>_ACKTX to RX bit '1' indicates that RX is ready.

Interconnect Bus Transaction

• Both transmitter and receiver shall be synchronised to the '0' -> '1' transition of CLK.

• If RST is set to '1' upon the '0' -> '1' transition of clock the transmitter shall terminate any active bus
transaction and set <BUS_NAME>_STB to '0'.

• If RST is set to '1' upon the '0' -> '1' transition of clock the receiver shall terminate any active bus
transaction and set <BUS_NAME>_ACK to '0'.

• If RST is set to '0', normal operation shall commence as follows:

• The transmitter may insert wait states on the bus by setting <BUS_NAME>_STB '0'.

• The transmitter shall set <BUS_NAME>_STB to '1' to signify that data is valid.

• Once <BUS_NAME>_STB has been set to '1', it shall remain at '1' until the transaction completes.

• The transmitter shall ensure that <BUS_NAME> contains valid data for the entire period that
<BUS_NAME>_STB is '1'.

• The transmitter may set <BUS_NAME> to any value when <BUS_NAME>_STB is '0'.

• The receiver may insert wait states on the bus by setting <BUS_NAME>_ACK to '0'.

• The receiver shall set <BUS_NAME>_ACK to '1' to signify that it is ready to receive data.

• Once <BUS_NAME>_ACK has been set to '1', it shall remain at '1' until the transaction completes.

• Whenever <BUS_NAME>_STB is '1' and <BUS_NAME>_ACK are '1', a bus transaction shall
complete on the following '0' -> '1' transition of CLK.

RST
 --
 - - - - - - - - - - - - - - -
 CLK |
 - - - - - - - - - - - - - - - -

 ----- ------- --
<BUS_NAME> X VALID X
 ----- ------- --

<BUS_NAME>_STB | |
 ----- --

<BUS_NAME>_ACK | |
 --------- --

 ^^^^ RX adds wait states

 ^^^^ Data transfers

RST
 --
 - - - - - - - - - - - - - - -
 CLK |
 - - - - - - - - - - - - - - - -

 ----- ------- --
<BUS_NAME> X VALID X
 ----- ------- --

<BUS_NAME>_STB | |
 --------- --

<BUS_NAME>_ACK | |
 ----- --

 ^^^^ TX adds wait states

 ^^^^ Data transfers

• Both the transmitter and receiver may commence a new transaction without inserting any wait states.

RST
 --
 - - - - - - - - - - - - - - -
 CLK |
 - - - - - - - - - - - - - - - -

 ----- ------- ---- ---- --------------------------------------
<BUS_NAME> X D0 X D1 X D2 X
 ----- ------- ---- ---- --------------------------------------

<BUS_NAME>_STB | |
 --------- --------------------------------------

<BUS_NAME>_ACK | |
 ----- --------------------------------------

 ^^^^ TX adds wait states

 ^^^^ Data transfers

 ^^^^ STB and ACK needn't return to 0 between data words

• The receiver may delay a transaction by inserting wait states until the transmitter indicates that data
is available.

• The transmitter shall not delay a transaction by inserting wait states until the receiver is ready to
accept data.

• Deadlock would occur if both the transmitter and receiver delayed a transaction until the other was
ready.

	Chips-2.0 Demo for SP605 Development Card
	Synthesis Estimate
	Dependencies
	Source Files
	Configuration
	Compile
	Interface
	Ethernet Interface
	Socket Interface

	Stream Interconnect Conventions
	Global Signals
	Interconnect Signals
	Interconnect Bus Transaction

