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Content

• Summary: discontinuities in program flow
– Jumps
– Reset

• Interrupts: changing the program flow upon 
hardware event

• External interrupts

• Internal interrupts
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Program flow

PC Adr Inst
-> 00 mov ra,42

02 mov rb,3
04 add ra,rb
06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...
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Program flow

PC Adr Inst
00 mov ra,42

-> 02 mov rb,3
04 add ra,rb
06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...
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Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3

-> 04 add ra,rb
06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...
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Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3
04 add ra,rb

-> 06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...

Under “normal”
circumstances PC is 
incremented to point to the 
next instruction (after each 
instruction / clock cycle, 
depending on the 
implementation)

In the Educational 
Processor PC is 
incremented by 1 in the 
fetchh and fetchl cycles
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Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3
04 add ra,rb
06 cmp ra,70

-> 08 ja 0Ch
0A jmp 04
0C ...
0E ...

PC is not always 
incremented to point to 
the next instruction:
• Conditional jumps
• Unconditional jumps

Here the conditional 
jump is not taken
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Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3
04 add ra,rb
06 cmp ra,70
08 ja 0Ch

-> 0A jmp 04
0C ...
0E ... This unconditional jump 

is taken

PC is not always 
incremented to point to 
the next instruction:
• Conditional jumps
• Unconditional jumps
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Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3

-> 04 add ra,rb
06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...

Habitual program flow 
continues

jmp
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Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3
04 add ra,rb

-> 06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...



11

Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3
04 add ra,rb
06 cmp ra,70

-> 08 ja 0Ch
0A jmp 04
0C ...
0E ...

clk rst

Reset creates a discontinuity 
in the program flow: PC set 
to 0

Really: more than a 
discontinuity as all registers 
are cleared – but 
fundamentally it is a 
discontinuity
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Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3
04 add ra,rb
06 cmp ra,70
08 ja 0Ch

-> 0A jmp 04
0C ...
0E ...

clk rst

Let’s reset the processor!
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Program flow

PC Adr Inst
-> 00 mov ra,42

02 mov rb,3
04 add ra,rb
06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...

clk rst

Processor after reset: 
PC=0

rst
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From reset to interrupts

• Reset is a an external signal that changes the flow of 
execution

• Interrupts are another mechanism by which an external 
signal can change the execution flow

• Interrupts exist on all commercial processors and 
microcontrollers!

• Note: there are no interrupts in the educational 
processor...

clk rst
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Motivation for interrupts

• Let’s say a program must wait until a pin goes high on 
the external interface…. 
– for example to count how often a pin is toggled
– Or to implement a communication protocol in software (e.g. I2C, 

SPI, etc)

• How to implement this in a program?

clk rst

Ext interface
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Polling

• Implementation by polling: continuously reading the pin 
to detect changes

mov ra,0 // number of toggles
testbit:

in rb // read ext input
and rb,1 // check bit 0
cmp rb,1 // bit 0 set?
jne testbit // 
add ra,1 // increment counter

// instead of increment we
// could do more complex stuff

waitclr: // now wait until clear
in rb
and rb,1
cmp rb,0 // bit clear?
jne waitclr // no, loop until clear
jmp testbit // yes, go back to test bit set
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Polling

• Latency?
– 7 instructions to react to rising edge (worst case)
– 8 instructions to react to falling edge (worst case)

mov ra,0 // number of toggles
testbit:

in rb // read ext input
and rb,1 // check bit 0
cmp rb,1 // bit 0 set?
jne testbit // 
add ra,1 // increment counter

// instead of increment we
// could do more complex stuff

waitclr: // now wait until clear
in rb
and rb,1
cmp rb,0 // bit clear?
jne waitclr // no, loop until clear
jmp testbit // yes, go back to test bit set
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Polling

• Latency?
– 7 instructions to react to rising edge
– 8 instructions to react to falling edge

• Total: 15*3=45 processor clock cycles to detect one 
cycle on the external input!

• If the external signal toggles with a period smaller than 
45 clock cycles then the processor cannot count the 
number of toggles!

45clk

Ext input:
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Polling

• Polling is usually a very slow solution (compared to a 
hardware approach) to the problem of detecting changes 
on input pins
– 1/45th speed of processor in this example! (100MHz->2MHz)
– (although some specific use cases are suitable for polling!)

• During polling the processor cannot do anything else!

• Not suitable for multitasking
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Solution 1: hardware

• Hardware counter (outside of processor)

• Hardware interface: see previous lectures
– There are hardware interfaces dedicated to "count" events in 

many microcontrollers!

• (however that's not the point of this lecture)
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Solution 2: external interrupt

• An external interrupt is a condition on a external pin that 
triggers an interruption of the normal program flow

• Several conditions can trigger ints (usually configurable):
– Rising edge
– Falling edge
– Any edge
– Level-triggered

Ext interface

clk rst

pin that generates an interrupt
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External interrupts

• External condition interrupts program flow

• PC set to jump to an interrupt vector

• Interrupt vector: piece of code that will handle 
the interrupt (do something in reaction to it)

• There can be multiple interrupts!
– E.g. one per pin

FLASH

RAM

Int vect 1

Int vect 2
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External interrupts

• The following happens during an interrupt:

• The processor keeps a return address:
– Address of PC before the interrupt

• PC set to the interrupt vector (i.e. jump to IV)

• The processor executes the instructions in the 
interrupt vector

• Interrupt return instruction (RETI)
– Indicates the end of the interrupt routine
– The processor returns to the PC value before the 

interrupt (return address)

FLASH

RAM

Int vect 1

Int vect 2
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Interrupt vector table

• Processor jumps to a fixed location! (interrupt vector)
– Typically at the start or end of memory

• Interrupt vector table (IVT): with multiple interrupts, all 
interrupt vectors follow each other

• Each entry is one instruction wide
• Reset can sometimes be seen as an entry in the IVT

Adr What
----- ------
00-01 First instruction on reset
02-03 Int0 (First instruction of Int0)
04-05 Int1 (First instruction of Int1)
...
0A-0B First "normal" program instruction



25

Interrupt vector table

• The IVT holds only one instruction per interrupt!
– How to have an interrupt routine of more than one instruction??

• A jump (one instruction) is stored in the IVT
• This allows to program the location of interrupt routine

– The programmer can decide where to place the interrupt routine!
• The program continues until the RETI instruction

Adr What
----- ------
00-01 First instruction on reset
02-03 Int0 (First instruction of Int0)
04-05 Int1 (First instruction of Int1)
...
0A-0B First "normal" program instruction
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IVT example

Adr What
----- ------
00-01 jmp 20
02-03 jmp 80
04-05 jmp A0

20-21 First program instruction
.....
78-79 Last possible program instruction
80-81 First instruction for Int0
.....
A0-A1 First instruction for Int1
.....
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Using interrupt to count toggles

• Assumption: int0 is called on rising edge of a pin

Adr
00 jmp 10h
02 jmp 20h

10 mov ra,0h // number of toggles
12 ... // do
14 ... // something
16 ... // continuously
18 jmp 12h // here

20 add ra,1h // increment counter
22 reti // interrupt return
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Using interrupt to count toggles

• Latency?
– 1 instruction to go to interrupt vector
– 1 instruction to return from interrupt vector

Adr
00 jmp 10h
02 jmp 20h

10 mov ra,0h // number of toggles
12 ... // do
14 ... // something
16 ... // continuously
18 jmp 12h // here

20 add ra,1h // increment counter
22 reti // interrupt return
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External interrupts

• External interrupts are a very fast approach to react to 
external events!
– 2 instruction latency instead of 15 -> 7.5x speedup!

• Interrupts permit the processor to execute a main task 
and occasionally process "urgent" events

• Processors have an "interrupt pin" that can be used by 
peripherals (I/O interfaces) to trigger interrupts
– Often used in microcontrollers
– E.g. Interrupt once byte is sent over I2C

• Commonly used for:
– communication
– storage devices
– user interaction
– sensor sampling

• Foundation of multitasking
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comp_ip: entity work.dffre generic map(N=>N) port 
map(clk=>clk,rst=>rst,en=>'1',d=>ipnext,q=>ip);

ipnext <= ip+1 when fetch='1' else
ip when jump='0' else
jumpip;

• Educational processor has no interrupts!
– ip incremented in the fetchh and fetchl cycles
– In exec cycle ip is unchanged if there is no jump,
– or ip is set to the jump address if there is jump

• unconditional jump
• conditional jump with a valid jump condition

Possible Implementation
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comp_ip: entity work.dffre generic map(N=>N) port 
map(clk=>clk,rst=>rst,en=>'1',d=>ipnext,q=>ip);

ipnext <= ip+1 when fetch='1' else
ip when jump='0' and int ='0' else
iv when int='1' else
jumpip;

• Adding an interrupt:
– Implemented in the same way as a jump
– int indicates an interrupt: e.g. can be level of a signal of 

the external input interface
– iv is the address of the interrupt vector (e.g. "02" in the 

previous example)

Possible Implementation
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• Additionally (not shown here):
– Keep the return address (PC before modification stored 

in a register or memory
– Implement the RETI instruction (e.g. using a spare 

opcode)

Possible Implementation
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Internal interrupts

• External interrupts react to external events (on pins)

• Internal interrupts react to processor events

• Common processor events:
– Division by zero / invalid math operation
– Invalid opcode
– Data alignment check
– etc

• For example, "invalid opcode" could be used to emulate 
new opcodes on an older processor!
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Summary

• Interrupts change the control flow until a RETI instruction

• Multiple interrupts can placed in programmer-defined 
memory location using the interrupt vector table

• External interrupts allow very fast reaction to external 
events while allowing multitasking!

• External interrupts include pin change interrupts and
peripheral interrupts

• Processors have internal interrupts to indicate issues


