
1

Digital Systems and Microprocessor Design
(H7068)

Daniel Roggen
d.roggen@sussex.ac.uk

10.2. Interrupts

2

Content

• Summary: discontinuities in program flow
– Jumps
– Reset

• Interrupts: changing the program flow upon
hardware event

• External interrupts

• Internal interrupts

3

Program flow

PC Adr Inst
-> 00 mov ra,42

02 mov rb,3
04 add ra,rb
06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...

4

Program flow

PC Adr Inst
00 mov ra,42

-> 02 mov rb,3
04 add ra,rb
06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...

5

Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3

-> 04 add ra,rb
06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...

6

Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3
04 add ra,rb

-> 06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...

Under “normal”
circumstances PC is
incremented to point to the
next instruction (after each
instruction / clock cycle,
depending on the
implementation)

In the Educational
Processor PC is
incremented by 1 in the
fetchh and fetchl cycles

7

Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3
04 add ra,rb
06 cmp ra,70

-> 08 ja 0Ch
0A jmp 04
0C ...
0E ...

PC is not always
incremented to point to
the next instruction:
• Conditional jumps
• Unconditional jumps

Here the conditional
jump is not taken

8

Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3
04 add ra,rb
06 cmp ra,70
08 ja 0Ch

-> 0A jmp 04
0C ...
0E ... This unconditional jump

is taken

PC is not always
incremented to point to
the next instruction:
• Conditional jumps
• Unconditional jumps

9

Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3

-> 04 add ra,rb
06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...

Habitual program flow
continues

jmp

10

Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3
04 add ra,rb

-> 06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...

11

Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3
04 add ra,rb
06 cmp ra,70

-> 08 ja 0Ch
0A jmp 04
0C ...
0E ...

clk rst

Reset creates a discontinuity
in the program flow: PC set
to 0

Really: more than a
discontinuity as all registers
are cleared – but
fundamentally it is a
discontinuity

12

Program flow

PC Adr Inst
00 mov ra,42
02 mov rb,3
04 add ra,rb
06 cmp ra,70
08 ja 0Ch

-> 0A jmp 04
0C ...
0E ...

clk rst

Let’s reset the processor!

13

Program flow

PC Adr Inst
-> 00 mov ra,42

02 mov rb,3
04 add ra,rb
06 cmp ra,70
08 ja 0Ch
0A jmp 04
0C ...
0E ...

clk rst

Processor after reset:
PC=0

rst

14

From reset to interrupts

• Reset is a an external signal that changes the flow of
execution

• Interrupts are another mechanism by which an external
signal can change the execution flow

• Interrupts exist on all commercial processors and
microcontrollers!

• Note: there are no interrupts in the educational
processor...

clk rst

15

Motivation for interrupts

• Let’s say a program must wait until a pin goes high on
the external interface….
– for example to count how often a pin is toggled
– Or to implement a communication protocol in software (e.g. I2C,

SPI, etc)

• How to implement this in a program?

clk rst

Ext interface

16

Polling

• Implementation by polling: continuously reading the pin
to detect changes

mov ra,0 // number of toggles
testbit:

in rb // read ext input
and rb,1 // check bit 0
cmp rb,1 // bit 0 set?
jne testbit //
add ra,1 // increment counter

// instead of increment we
// could do more complex stuff

waitclr: // now wait until clear
in rb
and rb,1
cmp rb,0 // bit clear?
jne waitclr // no, loop until clear
jmp testbit // yes, go back to test bit set

17

Polling

• Latency?
– 7 instructions to react to rising edge (worst case)
– 8 instructions to react to falling edge (worst case)

mov ra,0 // number of toggles
testbit:

in rb // read ext input
and rb,1 // check bit 0
cmp rb,1 // bit 0 set?
jne testbit //
add ra,1 // increment counter

// instead of increment we
// could do more complex stuff

waitclr: // now wait until clear
in rb
and rb,1
cmp rb,0 // bit clear?
jne waitclr // no, loop until clear
jmp testbit // yes, go back to test bit set

18

Polling

• Latency?
– 7 instructions to react to rising edge
– 8 instructions to react to falling edge

• Total: 15*3=45 processor clock cycles to detect one
cycle on the external input!

• If the external signal toggles with a period smaller than
45 clock cycles then the processor cannot count the
number of toggles!

45clk

Ext input:

19

Polling

• Polling is usually a very slow solution (compared to a
hardware approach) to the problem of detecting changes
on input pins
– 1/45th speed of processor in this example! (100MHz->2MHz)
– (although some specific use cases are suitable for polling!)

• During polling the processor cannot do anything else!

• Not suitable for multitasking

20

Solution 1: hardware

• Hardware counter (outside of processor)

• Hardware interface: see previous lectures
– There are hardware interfaces dedicated to "count" events in

many microcontrollers!

• (however that's not the point of this lecture)

21

Solution 2: external interrupt

• An external interrupt is a condition on a external pin that
triggers an interruption of the normal program flow

• Several conditions can trigger ints (usually configurable):
– Rising edge
– Falling edge
– Any edge
– Level-triggered

Ext interface

clk rst

pin that generates an interrupt

22

External interrupts

• External condition interrupts program flow

• PC set to jump to an interrupt vector

• Interrupt vector: piece of code that will handle
the interrupt (do something in reaction to it)

• There can be multiple interrupts!
– E.g. one per pin

FLASH

RAM

Int vect 1

Int vect 2

23

External interrupts

• The following happens during an interrupt:

• The processor keeps a return address:
– Address of PC before the interrupt

• PC set to the interrupt vector (i.e. jump to IV)

• The processor executes the instructions in the
interrupt vector

• Interrupt return instruction (RETI)
– Indicates the end of the interrupt routine
– The processor returns to the PC value before the

interrupt (return address)

FLASH

RAM

Int vect 1

Int vect 2

24

Interrupt vector table

• Processor jumps to a fixed location! (interrupt vector)
– Typically at the start or end of memory

• Interrupt vector table (IVT): with multiple interrupts, all
interrupt vectors follow each other

• Each entry is one instruction wide
• Reset can sometimes be seen as an entry in the IVT

Adr What
----- ------
00-01 First instruction on reset
02-03 Int0 (First instruction of Int0)
04-05 Int1 (First instruction of Int1)
...
0A-0B First "normal" program instruction

25

Interrupt vector table

• The IVT holds only one instruction per interrupt!
– How to have an interrupt routine of more than one instruction??

• A jump (one instruction) is stored in the IVT
• This allows to program the location of interrupt routine

– The programmer can decide where to place the interrupt routine!
• The program continues until the RETI instruction

Adr What
----- ------
00-01 First instruction on reset
02-03 Int0 (First instruction of Int0)
04-05 Int1 (First instruction of Int1)
...
0A-0B First "normal" program instruction

26

IVT example

Adr What
----- ------
00-01 jmp 20
02-03 jmp 80
04-05 jmp A0

20-21 First program instruction
.....
78-79 Last possible program instruction
80-81 First instruction for Int0
.....
A0-A1 First instruction for Int1
.....

27

Using interrupt to count toggles

• Assumption: int0 is called on rising edge of a pin

Adr
00 jmp 10h
02 jmp 20h

10 mov ra,0h // number of toggles
12 ... // do
14 ... // something
16 ... // continuously
18 jmp 12h // here

20 add ra,1h // increment counter
22 reti // interrupt return

28

Using interrupt to count toggles

• Latency?
– 1 instruction to go to interrupt vector
– 1 instruction to return from interrupt vector

Adr
00 jmp 10h
02 jmp 20h

10 mov ra,0h // number of toggles
12 ... // do
14 ... // something
16 ... // continuously
18 jmp 12h // here

20 add ra,1h // increment counter
22 reti // interrupt return

29

External interrupts

• External interrupts are a very fast approach to react to
external events!
– 2 instruction latency instead of 15 -> 7.5x speedup!

• Interrupts permit the processor to execute a main task
and occasionally process "urgent" events

• Processors have an "interrupt pin" that can be used by
peripherals (I/O interfaces) to trigger interrupts
– Often used in microcontrollers
– E.g. Interrupt once byte is sent over I2C

• Commonly used for:
– communication
– storage devices
– user interaction
– sensor sampling

• Foundation of multitasking

30

comp_ip: entity work.dffre generic map(N=>N) port
map(clk=>clk,rst=>rst,en=>'1',d=>ipnext,q=>ip);

ipnext <= ip+1 when fetch='1' else
ip when jump='0' else
jumpip;

• Educational processor has no interrupts!
– ip incremented in the fetchh and fetchl cycles
– In exec cycle ip is unchanged if there is no jump,
– or ip is set to the jump address if there is jump

• unconditional jump
• conditional jump with a valid jump condition

Possible Implementation

31

comp_ip: entity work.dffre generic map(N=>N) port
map(clk=>clk,rst=>rst,en=>'1',d=>ipnext,q=>ip);

ipnext <= ip+1 when fetch='1' else
ip when jump='0' and int ='0' else
iv when int='1' else
jumpip;

• Adding an interrupt:
– Implemented in the same way as a jump
– int indicates an interrupt: e.g. can be level of a signal of

the external input interface
– iv is the address of the interrupt vector (e.g. "02" in the

previous example)

Possible Implementation

32

• Additionally (not shown here):
– Keep the return address (PC before modification stored

in a register or memory
– Implement the RETI instruction (e.g. using a spare

opcode)

Possible Implementation

33

Internal interrupts

• External interrupts react to external events (on pins)

• Internal interrupts react to processor events

• Common processor events:
– Division by zero / invalid math operation
– Invalid opcode
– Data alignment check
– etc

• For example, "invalid opcode" could be used to emulate
new opcodes on an older processor!

34

Summary

• Interrupts change the control flow until a RETI instruction

• Multiple interrupts can placed in programmer-defined
memory location using the interrupt vector table

• External interrupts allow very fast reaction to external
events while allowing multitasking!

• External interrupts include pin change interrupts and
peripheral interrupts

• Processors have internal interrupts to indicate issues

