Digital Systems and Microprocessor Design
(H7068)

8.1. Intro to UoS
educational
processor

Daniel Roggen

d.roggen@sussex.ac.uk

UoS Educational Processor

Developed in 2014 for "Digital Systems and Microprocessor Design"
at University of Sussex by Daniel Roggen

License: LGPL 2.1

https://github.com/droggen/uos educational processor.qgit

https://opencores.org/project,uos processor

ul General processor

program eounter- - - - . - - — . — . — . —. - Y
. . din
----- 2> Memor
Control [____ we._,. | emaory
. dout
Ioglc e ¢ om s omm o ‘r_ -V I
7 :
Y -
T N Ja | W |
. . ::::rrl%: Register bank I
Instruction [A We | .
Dout > a = :
memory . I
I Y Y I
N o\ :
; ALU :
. |
: Y ,

 Instruction and data memory outside of processor
— One reason: different semiconductor technologies
— Higher densities with dedicated chips

What's next: Educational Processor

8-bit, 4 register processor, Von Neumann architecture
3 clock cycle per instruction
16-bit instruction set (inspired by x86 ISA)

— Direct, indirect, immediate, register addressing
Customizable instructions

External memory bus (for program/data)
/O interface (as in microcontrollers)

Implemented in VHDL

Synthesizable

CPU

'y
ram_address - 1
\@ _Co-_+- -CI_ .
Jjump
44[> s
Fetch/exec seq d
rst - st fetchh ~ en
ok fetchl st 9 i
exec ™1 o nstruction(15.8) " CIK jump decode
> ogic
ram_we ooy I\ggr;iitg L Register bank LA
d
ram_datard T d instruction(©. 8) 2 ata address
en q instruction(15..8) r \ rwr generation p—
- rst
. register write
Dok ~| decodie logic rwren
instruction(9..8) L 2 q1_{_' reg1OUt
> rrd1
instruction(1..0) [[g
Ne > rrd2 a2 reg2out
[d E — rst 1
en o —> clk
qrst 4 instruction(7 0)_5
- C|k g instruction(7..0)
£ T
£
instruction(12)
s
source
instruction(14..10) /
instruction(15.10) [[A B
instruction(15..13) [op f (N
(q
oxt in write data ~———p——¢ > EL
— select [o alugout
ram_datawr T f
wrdata(7..0)
d 4 Hd
ex er| e, en flag w? ei en |
4rst 9 rst ags(3..0
- clk - clk
ext_out

clk —

Educational processor overview

rst |
clk |

N

ram_address N
Control unit "":’"* Memory ram_datawr
E interface | | ram_datard
au(ram_we
Y Y Y Y ' >
<-4
|
Register bank i
[}
<!
RA RB RC RD —
N External »ext_out
interface < ext_in
1
Y Y

« Control unit: loads the instruction from memory and controls its execution

Memory interface: whether to read or write memory (we: write enable), where to read
(address), the data to write (datawr) and gets the data from memory with datard

External interface: whether to write or read

The ALU operation
The input to the register bank
The input to the ALU

Educational processor overview

ram_address N
Control unit "":’"* Memory ram_datawr
E interface | | ram_datard
au(ram_we
Y Y Y Y ' >
<-4
|
Register bank i
[}
<!
RA RB RC RD — P
N External »ext_out
interface < ext_in
1
Y Y

rst
clk |

N

Register bank: 4 8-bit registers RA,RB,RC,RD

Provides two outputs from any two registers (asynchronous output). Registers to read from are
specified by control lines.

Allows to synchronously write to one register. Register to write to, and whether to write, is
controlled by control lines.

Registers (to read or write) are identified by a 2-bit code: RA=00, RB=01, RC=10, RD=11

Educational processor overview

ram_address N
Control unit "":’"* Memory ram_datawr
E interface | | ram_datard
au(ram_we
Y Y Y Y ' >
<-4
|
Register bank i
[}
]!
RA RB RC RD — P
N External »ext_out
interface < ext_in
1
Y Y

rst
clk |

N

Register bank input: select data written to the register bank (if a write occurs
in the register bank)

Data to register bank can come from: ALU output, memory interface, external
interface, another register, or the instruction

Educational processor overview

ram_address N
Control unit "":’"* Memory ram_datawr
E interface | | ram_datard
au(ram_we
Y Y Y Y ' >
<-4
|
Register bank i
[}
]!
RA RB RC RD — P
N External »ext_out
interface < ext_in
1
Y Y

rst
clk |

N

ALU input: select data fed to ALU
ALU input data can come from the register bank or from the instruction

Educational processor overview

ram_address N
Control unit "":’"* Memory ram_datawr
E interface | | ram_datard
au(ram_we
Y Y Y Y ' >
<-4
|
Register bank i
|
]!
RA RB RC RD — P
N External »ext_out
interface < ext_in
1
Y Y

rst
clk |

N

The ALU takes two inputs and performs a logical or arithmetic operation
defined according to the control line

10

Educational processor overview

rst
clk |

N

The external interface allows to read or write data from a parallel interface on the

processor

This is commonly used in microcontrollers to connect peripherals (LEDs, buttons)
During a write the interface stores the value to put on ext_out (D FF).
No special operation during read, however more advanced external interfaces could

perform signal conditioning (e.g. debouncing)

ram_address N
Control unit "":’"* Memory ram_datawr
E interface | | ram_datard
; o] ram_we
Y Y Y Y ' >
-t
|
Register bank i
[}
<!
RA RB RC RD — P
N External »ext_out
interface < ext_in
—
Y Y

11

Educational processor overview

rst
clk |

N

The memory interface allows to connect to an external memory

In this educational processor the memory interface is transparent (no special function).
More advanced processors may have special interfaces to read from DRAM, SRAM,

SD cards, etc.

ram_address N
Control unit "":’"* Memory ram_datawr
E interface | | ram_datard
; N ram_we
Y Y Y Y ' >
<-4
|
Register bank i
[}
<!
RA RB RC RD — P
N External »ext_out
interface < ext_in
1

12

Educational processor overview

ram_address N
Control unit "":’"* Memory ram_datawr
E interface | | ram_datard
; o] ram_we
Y Y Y Y ' >
-t
|
Register bank i
|
<!
RA RB RC RD — P
N External »ext_out
interface < ext_in
—

rst
clk ___|

N

Processor ports: memory interface, exernal interface, clock and reset
Reset is synchronous! (occurs on the rising edge of clock)

More advanced processors may have several memory and external
interfaces, additional pins to generate "interrupts" (branch of the
execution flow when a pin is toggled), etc.

13

] Educational processor on FPGA

ram_we M emo ry

Push button

From switches

« The processor is synthesized on the FPGA as any other component
with the entity port map syntax.

* A 32 bytes memory is synthesized alongsize the processor for
program and data. It has 32 entries (5 bit address) of 8 bits

« Push buttons allow to generate single clocks to test the processor
« LED and switches connected to external interface

14

Stored program (von Neumann)

 Instructions represented as number in memory
 Programs are just like data

 However:
— Program goes to the control unit
— Data goes to the data path

Accounting program l
{machine code) |

1 Editor program |
1

I C compiler |
Processor I {machine code) |

Source code in C |
for editor prograin

Instruction

An instruction defines the operation of the processor
when it is executed

An instruction is defined by it's bit-width and whether it is

fixed-length or variable length

— Fixed length lead to easier implementation but use more
memory

— Variable length can optimize the size for frequent instruction

It comprises multiple fields: opcode (operation code),
source, destination, etc.

Different processor architectures have different
Instruction sets with their own encoding

16

Instructions in the educational CPU

« All instructions are 16-bit wide (fixed size)

instr (15..13)

instruction(12..8)

instruction(7..0)

Opcode

depends on the
instruction

Src

« 3-bit opcode (operation code): indicates the type of

operation

« The meaning of the remaining bits depends on the

opcode!

17

Program counter / Instruction pointer

PC or IP: register in the processor control unit that
Indicates the memory location where the instruction is
fetched

PC starts at zero on reset

As instructions are 16 bits, the first instruction is at
memory location 00 and 01; the second instruction at
memory location 02 and 03;...

PC incremented continuously for usual instructions

Except with "jump" instructions: the PC changed to fetch
iInstruction from another location

18

Encoding v.s. "assembler" instruction

All instructions are 16-bit data stored in memory

The instructions can be specified by their binary code:
— 1000001010101

Or to simplify reading by their hex code:
— 1055h

To further simplify reading we use a human readable
format:

— mov ra,55h

We refer to this format as an "assembler” instruction
because a software (or human) would read the text "mowv

ra, 55h" and "assemble” the various parts of the
encoding to obtain 1055h

19

Opcodes

Defines the "category" of the instruction

3-bit opcode: total of 8 "categories" of instructions

Defined in order to help the decoding of the instruction.

All instructions of the same opcode share the same encoding

Opcode 000: move instructions

Opcode 001: ALU instructions

Opcode 010: ALU instructions

Opcode 011: ALU instructions

Opcode 100: unused

Opcode 100: ALU instructions

Opcode 101: jump instructions

Opcode 110: external interface instructions

Opcode 111: unused

Move instructions (opcode 000)

 Moves data between registers, immediate and memory

* MoV

dst,src

— moves the data specified by source into destination

Instructions instruction (15..8) Instruction(7..0)
Move Opcode | R,/; | dd#m | sdiim | dreg src
mov r, r oO(0(0]|O0 0 0 r|lr|(-|-|-|-|-|-]|«r
mov r, i 0(0|0]|1 0 0 r|r|i|i|i|1|(i|1]|1
mov r, [r] 0(0|0]|O 0 1 r|lr|-|-|-|-|-|]-|¢
mov r, [i] 0(0|0]|1 0 1 r|r|i|i|i|1|(i|1]|1
mov [r], r o(of(0]|O0 1 0 r|lr|-|-|-|-|-|-|¢
mov [r], i 0(0|0]|1 1 0 r|r|i|i|i|1|(i|1]|1

21

Immediate/register

* the src field contains the "source" data for the instruction
(sometimes unused)

* Source can be immediate or register depending on R/

Instructions instruction(15..8) Instruction(7..0)

Move Opcode | 7 ,; |dd#m | sd#im | dreg src

« R’/I=1: srcis an immediate: the 8 LSBs in the instruction
are used as the data

« R'/I=0: srcis a register: the data comes from a register.
The register is specified by the 2 least significant bits in
SIC
— RA: 00
— RB: 01
— RC: 10
— RD: 11 22

direct/indirect

« Source: direct or memory mode specified by sd#m
» Direct mode: the value of a register or immediate is moved to dst

 Memory mode: the instruction fetch the data from the memory
location specified by src (which can be immediate or register)

« Syntax: use brackets around src to indicate memory mode

— mov ra,[55h]
Instructions instruction(15..8) Instruction(7..0)
Move Opcode o dd#im | sd#im | dreg src

R/I

23

destination

« Destination is always a register (direct) or a memory location
(memory mode) specified by a register, depending on dd#m

« Direct mode: the value of source is moved to a register

 Memory mode: the instruction will fetch the data from a memory
location.

« Syntax: use brackets around dst to indicate memory mode
— mov [ra],55h

Instructions instruction(15..8) Instruction(7..0)

Move Opcode R/ dd#im | sd#im | dreg src

24

Move examples

mov ra,rb:
— src is direct, register: moves the content of reg b into reg a
— dst is direct register
mov ra,13h:
— srcis direct, immediate: moves 13h into reg a
— dst is direct register
mov ra,[rb]
— src is memory, register: moves the data at the memory location b into a
— dst is direct register
mov ra,[13h]:

— src is memory, immediate: moves the data at the memory location 13h
into a

— dst is direct register

mov [ra],rb:

— Src is register:

— dst is memory: moves the content of reg b into reg a

25

ALU (opcodes 001,010,011)

Performs an arithmetic/logic operation on one or two
operands

Instr dst, src

— Performs a two operand operation on dst and src and puts the
result in dst

Instr dst

— Performs a single operand operation on dst and puts the result in
dst

dst is always a register

src is a register or an immediate

26

* ALU op indicates which ALU operation

ALU: two operands

 src: source (immediate/register according to R'/I)
 dst: destination

Instructions instruction (15..8) Instruction(7..0)
ALU 2 op opcode E /] ALU op dreg src
add r, r 0O|0(1]O0 0 0 r|lr|-|-|-|-|-|-]|¢
add r, i 0|01 |1 0 0 r|lr|(i|i|i1|i|i|i]|1i1
sub r, r 0|01]0 0 1 r|lr|-|-|-|-|-|-]|¢
sub r, i 0|01]|1 0 1 r|lr|i|i|i|i|i|i]|i
and r, r 0O|(0(1]O0 1 0 r|lr|-|-|-|-|-|-|¢r
and r, 1 0|01 |1 1 0 r|lr|(i|i|i|1|1|i1]1
or r, r 0O|(0(1]O0 1 1 r|lr|-|-|-|-|-|-|¢r
or r, 1i O(0|1]|1 1 1 r|r|(i|i|1|1|1|1]|1
Xor r, r O(1(0]O0 0 0 r|lr|-|-|-|-|-|-|¢
Xor r, 1 0O|1(0]|1 0 0 r|lr|(i|i1|i|1|1 |11

27

Examples

« addRA,RB
— Stores RA+RB in RA

 sub RA,03h
— stores RA-3 in RA.

 and RD,55h
— stores the logical AND of RD and 55h in RD

Always indicate numbers by a 2 digit with an h at the end for hex!
Avoids confusion between register RA and value Ah

28

ALU: comparison

Comparison: cmp dst,src

src: source (immediate/register according to R'/I)

dst: destination

Comparison is performed by subtracting src from dst!

Result of the comparison is stored in flags: carry and
Zzero

— Zero=1 Carry=0: dst=src
— Zero=0 Carry=0: dst>src
— Zero=0 Carry=1: dst<src

Result of comparison used by conditional jump

Test opco E /7 ALU op |dr |immedite /

de eg | reg
cmp r, r (0[1/0/0 0 1 rlr|-|-|-|-|-|-|xlx
cmp r, i (0[1/0|1 0 1 rlr|i|i|i|/ililiflifl1i

29

e Format:

ALU: one operand

Instr dst

 The operation is applied on dst and the result is in dst

Instructions

instruction(15..8)

Instruction(7..0)

ALU 1 op

opcode | ALU op

dreg

not

shr

ror

asr

BR[(B[(B|B|B

rol

o|lo|o|lo|o
RlR(R|R|[R
RlR(R|R|R
rlo|lo|lo|o
olr|Rr|O|O
o|lr|lo|lr|oO

BR[(B[(B|B|HR

BR[(B[(B|B|HR

 Example:
— notra
— asrrb

30

Jumps (opcode 101)

Unconditional jumps: changes the value of PC to
destination

— jmp dst

Conditional jumps: changes the value of PC if a
condition is met. Condition is tested by checking the
flags (carry, zero). Flags are set by a prior comparison
JA: jump if above

— Jumps if Zero=0 and Carry=0

JB: jump if below

— Jumps if Zero=0 and Carry=1

JE: jump if equal

— Jumps if Zero=1

31

mov
cmp
cmp

cmp

Compare / jump examples

ra, OAh
ra,09%h
ra, OAh
ra, OBh

Carry
0

0
0
1

Zero
0

0
1
0

32

mov

cmp

je
Jja

Compare / jump examples

Carry Zero
ra, OAh 0 0
ra,0%h 0 0
dstl -- not taken: RA not below %h
dst2 -- not taken: RA not equal 9h

dst3 —-- taken: RA above 9h

33

mov

cmp

Jje
ja

Compare / jump examples

ra, OAh
ra, OAh
dstl
dst2
dst3

Carry Zero
0 0
0 1

-— not taken: RA not below Ah
-—- taken: RA not equal Ah
-- not taken: RA not above Ah

34

mov

cmp

je
ja

Compare / jump examples

Carry Zero
ra, OAh 0 0
ra, OBh 1 0
dstl -- taken: RA below Bh
dst2 -- not taken: RA not equal Bh
dst3 -- not taken: RA above Bh

35

External interface (opcode 110)

Instructions instruction(15..8) Instruction(7..0)
IO opcode R/ IO type dreg src

out r 1(1(0 0 0 -|l=-|=-|-]-|-|-|-|x

out i 1/]1(0]|1 0 0 - |=-li|]i|1|[i|1|d1]|1l

in r 1(1|0]|- 0 1 r|lr|-|-|-|-|-|-|-

« Qut: write register or immediate to the external interface

 In: read data from the external interface into a register

36

ok Instruction fetch and execution

 Instructions are 16 bit but memory is 8 bit!
* Two cycles needed to fetch the instruction
« One cycle for execution

RST AN
CLK
PC xx X 00 X 01 X 02 X 02 X 03 X 04 X
INST__xxxx X XXXX X 55xx X 55AA X 55AA X 12AA X 1227 X
X fetchh X fetchl X exec X fetchh X fetchl X exec X
Address Content
Memory d : 0 29
y dump:. 1: AA
2: 12
3 27

« Consequence: 3 clock cycles per instruction

37

Summary

* The architecture and features of the processor are clear
at a high level

« The characteristics of the instruction set are understood:
— |Instruction execution time
— Instruction encoding

— Instruction set (move, alu, jump, external) and its characteristics
(register/immediate, direct/memory)

38

