T-Language specification

Specific purpose language for the THEIA GPU

Diego Valverde Garro

2/29/2012

T-Language is a special purpose language written specifically for the THEIA GPU project. The T-Language is intended to be a language that allows writing programs for the THEIA GPU in a way such that is takes advantage of the GPU features but is also easy to learn and use.

Contents

1. What is T-Language? 2
2. The simplest program 2
3. Variables and data types 3
3.1. Vector variables 3
3.2. Using the GPU registers as variables 3
4. Literal constants 4
5. Arithmetic expressions 5
5.1. Addition and subtraction 5
5.2. Increment and decrement 6
5.3. Multiplication and Division 6
5.4. Square root 7
5.5. Sign control 7
5.6. Swizzling 8
5.7. Scaling and Unscaling 9
6. Control flow 10
6.1. if-else 10
6.2. Loops - while and for 11
7. Functions and program structure 12
7.1. Basics of Functions 12
7.2. Scoping and function frames 14
7.3. Function parameters 14
7.4. About recursion 15
8. Pointers and arrays 15
9. I/O operations 15
10. The preprocessor 16
2.1. File inclusion 16
11. Appendix A-Examples 17
3.1. Example 1 - Solving a system of equations 17
3.2. Example 2 - Converting a triangle into a plane 19

1. What is T-Language?

T-Language is a special purpose language written specifically for the THEIA GPU project. The T-Language is intended to be a language that allows writing programs for the THEIA GPU in a way such that it takes advantage of the GPU features but that it is also easy to learn and use. This is why T-Language resembles a bit of C . That being said, $\mathrm{C} / \mathrm{C}++$ programmers will hopefully feel more comfortable using this language.

2. The simplest program

Since the GPU doesn't really have such thing as a "Hello World", the simplest program would be a program that adds two numbers.

```
//This is a comment
vector MyVariable1, MyVariable2, MyVariable3;
MyVariable1 = (1,2,3);
MyVariable2 = (4,5,6);
MyVariable3 = MyVariable1 + MyVariable2;
```

Figure 1 Function that adds two numbers
Let's look at the code from Figure 1. As usual, comments start with the "//" string, same as C++. The code declares 3 variables: MyVariable1, MyVariable2 and MyVariable3. The code then initializes MyVariable1 and MyVariable2 with some constant values.

The first thing to note is the fact that T-Language variables represent 3D vectors, in other words each variable stores a triplet of values. Each variable is divided into an x block, a y block and a z block. When the code from Figure 1 does the following statement:

MyVariable1 = (1,2,3);
What is really doing is assigning the x, y and z blocks of MyVariable1 to 1,2 and 3 . This can also be written in the following way:

```
MyVariable1.x = 1;
MyVariable1.y = 2;
MyVariable1.z = 3;
```

Finally the code stores the result of the addition into MyVariable3. Note that the GPU actually does 3 additions, this is MyVariable3. $x=1+4$, MyVariable3. $y=2+5$ and MyVariable3.z $=3+6$.

3. Variables and data types

T-Language has two data types: vector variables or registers. The next two sections will give a brief overview of these concepts.

3.1. Vector variables

Let's start by looking at the vector type. The vector variables are 96 bit wide, and are divided into x, y and z 32 bit blocks. The next figure illustrates common uses of vector variables ${ }^{1}$.

```
vector foo;
vector a, b, c;
a=10; //This is the same as a.x=10; a.y=10;a.z = 10;
foo.x = a +b; //The result from the addition is stored in foo.x
```

Figure 2 Using vector variables.
The vector variable names can be any string that is not a reserved word, please note the R[1-63] and r[163] are reserved words as we will see in the next section. Note also that the statement "foo.x" tells the compiler to use the 32 bit " x " block of "foo" as the destination for the addition.

The vector variables can be declared and initialized in the same line. Un-initialized vector variables contain undefined values.
vector MyVar1 = (1,2,3); //Defines and initializes a variable
vector MyVar2 = (0xFF, 0b111000, 0b101010), MyVar3; //Defines two more variables
Figure 3 Defining and initializing vector variables

3.2. Using the GPU registers as variables

[^0]There are times when the programmer will not want to rely on the compiler in order to allocate the variables. If this is the case, then the programmer can choose to directly use the GPU CORE registers. The GPU registers are identified using the reserved words r[0-63] or R[0-63]. Since registers are reserved words, they don't need a declaration. Example:

$$
\begin{aligned}
& \mathrm{R} 1=r 2+r 5^{*} \mathrm{R} 7 ; \\
& \text { r3.z = 0xfff; }
\end{aligned}
$$

Figure 4 Directly using the GPU registers
There are a couple of points to consider here. Even though the GPU registers are general purpose registers, some of these registers are used by the compiler for specific tasks. For example RO.x shall always be zero; R0.y shall always be 1, etc. The programmer can play around with the registers as long as he is aware of what the registers do.

4. Literal constants

T-Language accepts literal constants in 3 formats: decimal, hexadecimal and binary. The next snippet illustrates this:

```
//Assign a constant in decimal
    foo.x = 1234;
//Assign a constant in HEX, the constant can be uppercase or lowercase
    bar.y = 0xCAFE;
//Assign a constant in Binary, up to 32 bits can be used (bits assumed to be LSB)
    R1.z = 0b111000111;
//Assign a constant representing a fractional number in fixed point scale 17
Fixedpoint17 = 17fp3.14159265
//Assign a constant representing a fractional number in fixed point scale
Fixedpoint8 = 8fp3.14159265
//Can even combine into a single statement
    R2 = (0b10101, 0xff, 75);
```

Figure 5 Literal constant and numeric bases
Note from the previous figure that the " $0 x$ " prefix is used to indicate a HEX constant, the " $0 b$ " prefix is used to indicate a binary constant; this is the same as in C/C++. The prefix 17 fp is used to indicate that the constant represents a "scale 17 fixed point arithmetic" number. Recall from the architecture definition that the ALU only supports fixed point arithmetic in order to operate on fractional numbers.

5. Arithmetic expressions

Arithmetic expression consist of any combinations of $+,-, *, /$ and $\operatorname{sqrt}()$.The parenthesis can be used to group sub-expressions. Example:

$$
\begin{aligned}
& A=\left(B+C^{*}(D+2)\right) /\left(H^{*} W-F\right) ; \\
& \text { R7.y =A / sqrt(A + B *D); }
\end{aligned}
$$

Figure 6 Defining and initializing vector variables
It is important to note from the previous figure that the precedence of the ${ }^{*}$, and / is resolved by the compiler therefore, $A+B^{*} C$ is equivalent to $A+\left(B^{*} C\right)$.

Also note that sqrt() is not a function call, but represents an actual GPU hardware operation. However, the compiler allows to use expressions as input arguments to the sqrt (the compiler does a lot of the magic behind the scenes).

5.1. Addition and subtraction

Addition and subtraction are regular 3D vector addition/subtractions:

$$
\left(\begin{array}{l}
a x \\
a y \\
a z
\end{array}\right) \pm\left(\begin{array}{l}
b x \\
b y \\
b z
\end{array}\right)=\left(\begin{array}{l}
a x \pm b x \\
a y \pm b y \\
a z \pm b z
\end{array}\right)
$$

//Add and Sub a bunch of stuff

 $A=B+C+R 1-D ;$Figure 7 Adding and subtracting

There is also an abbreviated way to add a number with the same number very similar to the C/C++ syntax:

```
//This is the same as Foo = Foo + 5;
    Foo += 5
//This is the same as Foo = Foo-5;
    Foo -= 5
```

Figure 8 Adding and subtracting

5.2. Increment and decrement

T-Language features increment and decrement operators "a la C".
Next figure illustrates this:

```
vector V1 = (0,0,0);
//Increment x, y and z
V1++; //V1 = (1,1,1)
//Increment x only
V1.x++; //V1 = (2, 1, 1)
//Decrement y only
V1.y--; //V1 = (2,1,0);
```

Figure 9 Increment and decrement operators
One thing to note here is the fact the T-Language only supports "pos-fix" increment and decrements (pre-fix is not supported).

5.3. Multiplication and Division

The GPU multiplication operation does 3 separate scalar multiplications on the x, y and z components of each variable. This is not to be confused with a cross product or a dot product. That being said, the scalar multiplication is given by the following formula:

$$
A * B=\left(\begin{array}{ccc}
a x & 0 & 0 \\
0 & a y & 0 \\
0 & 0 & a z
\end{array}\right) *\left(\begin{array}{l}
b x \\
b y \\
b z
\end{array}\right)=\left(\begin{array}{c}
a x * b x \\
a y * b y \\
a z * b z
\end{array}\right)
$$

Division works in a similar fashion:

$$
A / B=\left(\begin{array}{ccc}
1 / a x & 0 & 0 \\
0 & 1 / a y & 0 \\
0 & 0 & 1 / a z
\end{array}\right) *\left(\begin{array}{c}
b x \\
b y \\
b z
\end{array}\right)=\left(\begin{array}{c}
a x / b x \\
a y / b y \\
a z / b z
\end{array}\right)
$$

5.4. Square root

The GPU features a fast square root hardware unit. This square root unit gives an approximation of the square root value for a limited range of integer numbers represented as scale 17 fixed points.

$$
\sqrt{A}=\left(\begin{array}{c}
\sqrt{a x} \\
\sqrt{a x} \\
\sqrt{a x}
\end{array}\right)
$$

Note that only the x part of the vector A is used as input for the square root. Also note that the square root output is copied in the x, y and z blocks of the result.

5.5. Sign control

The ALU allows changing the individual signs of the x, y or z components of a vector. For example:

```
vector foo,bar;
foo = (1, 1, 1);
bar = foo.x-yz; //bar is (1, -1, 1)
bar = foo.-xyz; //bar is (-1, 1, 1)
bar = foo.-x-y-z; //bar is (-1, -1,- 1)
```

Figure 10 Defining and initializing vector variables
So in the previous example it becomes clear the each individual sign can be negated. A typical application for sign control can be a function that needs to calculate the adjugate of a matrix in order to find its inverse. Suppose a 3×3 matrix, the inverse can be find building a matrix of co-factors:

$$
M^{T}=\left(\begin{array}{ccc}
m 11 & m 12 & m 13 \\
m 21 & m 22 & m 23 \\
m 31 & m 32 & m 33
\end{array}\right)
$$

Then the determinants are calculated:

$$
M 11=\left|\begin{array}{ll}
m 22 & m 23 \\
m 32 & m 33
\end{array}\right|, \quad M 12=\left|\begin{array}{cc}
m 21 & m 23 \\
m 32 & m 33
\end{array}\right|, \text { etc } \ldots
$$

Finally the sings need to be changed, that's when sign control can become useful.

$$
\left(\begin{array}{lll}
M 11 & M 12 & M 13 \\
M 21 & M 22 & M 23 \\
M 31 & M 32 & M 33
\end{array}\right) \text { needs to apply }\left(\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right)
$$

5.6. Swizzling

Operand swizzle consists of re-ordering the x, y and z blocks of the instruction input operands. Each individual x, y or z operand block can be replaced by one of the x, y or z blocks in the same operand.

Swizzling is a very powerful technique which allows the ALU to perform a variety of operations. An example of the usefulness of swizzling is matrix multiplication. Let's take for instance the following 3×3 matrix multiplication:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
1 a+2 b+3 c \\
4 a+5 b+6 c \\
7 a+8 b+9 c
\end{array}\right)
$$

This can be written in T-Language as follows:

```
vector Col1 = (1,4,7);
vector Col2 = (2,5,8);
vector Col2 = (3,6,9);
vector Col4 = (0xa,0xb,0xc);
vector Result;
Result = Col1 * Col4.xxx + Col2*Col4.yyy + Col3*Col4.zzz;
```

Figure 11 Using Swizzling to calculate a 3x3 matrix multiplication
Let's do another example, this time a cross product.

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) X\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
2 c-3 b \\
3 a-1 c \\
1 b-2 a
\end{array}\right)
$$

This can be written in T-Language as follows:

```
vector V1 = (1,2,3);
vector V2 = (a,b,c);
vector Result;
Result = V1.yzx * V2.zxy - V1.zxy * V2.yzx ;
```

Figure 12 Using Swizzling to calculate a cross product
As a final note, operand swizzling and sign control can be combined in the same instruction.

5.7. \quad Scaling and Unscaling

The ALU has the ability to work with fixed point numbers or with integer numbers. For the fixed point number representation, the fixed point SCALE can be applied using the scale() or the unscale() operations. These operations will tell the hardware to shift the number left or right SCALE number of bits.

```
vector a1 = (1,2,3), a2 = (0xa,0xb,0xc);
vector Result;
Result = scale( unscale( a1 ) * unscale( a2 ) );
```

Figure 13 Using scale modifier on integer values
In the previous example, the vectors a1 and a2 are unscaled prior to the multiplication and then scaled back. This can be useful to avoid overflows.

The scale and unscale operations are also used to transform between fixed point and integer numbers:
using fixed_point_arithmetic; //Tells the compiler to assemble for fixed point arithmetic
vector MyFixedPoint $=(0 x 00050000,0 \times 00040000,0 \times 00000000) ; / /$ this is $(2.5,2.0,0.0)$ in decimal vector MyInteger;

MyInteger = unscale(MyFixedPoint);

Figure 14 Transforming between integers and fixed point
One important detail about the code from Figure 14 is the line "using fixed_point_arithmetic;": what this does is tell the compiler to assemble so that the GPU interprets the data as fixed point arithmetic.

Fixed point arithmetic is the only way for the GPU to handle numbers with decimal since the hardware doesn't have a fixed point unit. In other words you cannot assign a vector a fractional number like this:

```
using fixed_point_arithmetic; //Tells the compiler to assemble for fixed point arithmetic
vector MyNumber.x = 2.5; //This is wrong!
vector MyNumber.x = 17fp2.5; //This is OK, the compiler will transform into 2.5*2^17 = 0x50000
```

Figure 15 Using Fixed point arithmetic

6. Control flow

The Control flow specifies the order in which the operations are performed. T-Langue allows for some basic control flow as we will see next.

6.1. if-else

The syntax of the if-else statement is very similar to C/C++. Let's illustrate with some examples:

```
vector foo, bar, result;
//if block
if (foo <= bar)
{
    result = 0xaced;
}
//if and else
if (foo.xxx == 0)
{
    result = 1;
} else {
    result = 2;
}
```

Figure 16 Using if-else blocks
The first important fact to consider about T-language if statements are that when a Boolean expression is evaluated, it evaluates the anded result of the comparison on the x, y and z blocks of the arguments. In the previous example, the statement if (foo <= bar) is really doing if (foo. $x<b a r<=x$) \& \& (foo.y <= bar.y) \&\& (foo.z <= bar.z)). If a single x, y or z block wants to be used in the the if statement, then the if arguments must be swizzled.

It becomes clear from Figure 16 that the use of the else part is optional. Another slight difference between T-Language and $C / C++$ is the that " $\{$ " and the " $\}$ " delimiters are always necessary, even if the if block encloses a single statement. This was chosen to avoid ambiguities such as this one:

```
vector a, b, n, z;
//This is not valid in T-Language
if (n>0)
if (a>b)
    z = a;
else
        z = b;
//This is valid in T-Language
if (n>0) {
    if (a>b) {
        z = a;
        } else {
        z = b;
    }
}
```

Figure 17 Mandatory use of '\{' and ' $\}$ ' for if-else statements

6.2. Loops - while and for

The "while" and "for" keywords provide the language with basic loop functionality. Note that only the while loop is supported; the for loop is currently not supported and left for a future implementation of the compiler.

```
vector a;
vector i = 0;
//The iteration variable is stored in i.x
while (i.x < 10)
{
    a = i;
}
```

Figure 18 if statement

The next example show the use of a for statement:

```
vector i, a, b;
b = 0;
//The iteration variable is stored in i.x
for (i.x = 0; i.x < 10; i.x++)
{
    a = b + i.x;
}
```

Figure 19 for statement

7. Functions and program structure

This chapter deals with function declaration and definition.

T-Language functions have return values and input arguments, and these can either be vector variables or register types.

An important thing to note is the fact that there is no "main" function required by the language. You can still have function called "main" for the sake of nostalgia; however code is executed from top to bottom, regardless of the location of main ${ }^{2}$.

7.1. Basics of Functions

A function is a section of code which can be called by other code sections in order to perform specific tasks. Functions can take from zero up to six input parameters ${ }^{3}$; each parameter is passed as a copy. Functions can return a single value. The return value can represent a 3D vector or can point to the address of a memory location.

Next is an example of the definition of a function which does not take any input arguments and does not return a value.

```
function MyFunction()
{
```

[^1]```
 vector a, b;
 if (a=b) {
 return 1;
 } else {
 return 0;
 }
}
```

Figure 20 Function definition
There are several differences between $T$-languages and $C / C++$ regarding function definitions. The first difference is that the return value type is not specified (because the size of the returned value is always that of a vector variable). The second difference is the use of the keyword function in order to let the compiler know that this is function definition. Also note the use of the reserved keyword return that is used to return values. A function can return vector variables, registers or constants.

```
//return constant
function foo()
{
 return Oxcafe;
}
//return expression
function bar()
{
 vector a,b;
 return (a+b);
}
//return register
function boo()
{
 return R7;
}
//return nothing
function weee()
{
 return;
}
```

Figure 21 return from functions

### 7.2. Scoping and function frames

An important fact about functions is that the variables declared within a function can only be accessed by that function. In other words functions also limit the scope of the vector variables. Global variables are not allowed.

```
vector GlobalVariable;
//No globals are allowed!
function Function1()
{
 vector a,b;
 //these are local to this function
 return (a + b);
}
function Function2()
{
 vector c,d;
 //these are local to this function
 return (c - d);
}
```

Figure 22 Scoping

### 7.3. Function parameters

Functions parameters are always pass by value (as a copy into a temporary register). Up to six parameters can be passed to functions (more than this will generate a compilation error).

```
function main()
{
 vector a = (1,2,3);
 vector b = (4,5,6);
 vector c;
 c= WeirdAddition(a,b);
```

\}
function WeirdAddition( Argument1, Argument2 )

```
{
 return (Argument1.y-yy + Argument2.-zy-x);
}
```


### 7.4. About recursion

Even if the T-language allows writing recursive functions, this is highly discouraged. The reason why recursion should generally be avoided is that, for performance reasons, the GPU ALU stores the vector variables in the CORE's internal register file instead of accessing the CORE external memory.

## 8. Pointers and arrays

TBD.

## 1. I/O operations

TBD.

```
#define TEXTURE_MEMORY_START_ADDRESS 0xOAC;
function main()
{
 vector Color = (0,0,0), i;
 vector Address = TEXTURE_MEMORY_START_ADDRESS;
 for (i.x = 0; i.x < 10; i.x++;)
 {
 Color = mem[Address];
 }
}
```

Figure 24 Scoping

## 2. The preprocessor

The T-Language compiler features a simple pre-processor. The preprocessor allows for simple macro replacements as well as some modest flavor of macro functions. The next example illustrates these concepts.

```
#define MyMacroVectorO R2
#define MyMacroVector1 R3
#define MyMacroVector2 R4
#macro C = CrossProduct(A, B)
 R7 = A.yzx * B.zxy;
 R8 = A.zxy * B.yzx;
 C = R7 - R8;
#endmacro
//---
function main()
{
 vector Normal, tmp1, tmp2;
 tmp1 = MyMacroVector1 - MyMacroVectorO;
 tmp2 = MyMacroVector2 - MyMacroVector0;
 Normal = CrossProduct(tmp1,tmp2);
}
//---
```

Figure 25 Using macros
The first thing to note in the previous example is the use of the keyword \#define. Using \#define simply does a textual substitutions throughout the file. The second option is to use the special keyword \#macro/\#endmacro, this allows to define a simple macro substitution with parameters.

### 2.1. File inclusion

The preprocessor also allows including files. What the preprocessor does is to simple paste the included code where it finds the \#include keyword ${ }^{4}$.

[^2]Let's assume that the a file called "MyDefinitions.tsh" contains all of the definitions we need. The file is defined as follows:

```
#define CameraPostion R47
#define GloballluminationIndex R48
#define AnsiotropicGlobalWeight R49
```

Figure 26 the file to be included
Now, the next code shows how to include the previous file:

```
#include "Mydefintions.tsh"
//--
function main()
{
CameraPostion.x = 0;
}
//---
```

Figure 27 including files

## 3. Appendix A - Examples

This section provides some simple examples to illustrate the use of the T-language. The code from this examples was not meant to be efficient, but instead it was meant to help the reader getting familiar with the language syntax and features.

### 3.1. Example 1 - Solving a system of equations

Write a T-Language program that use Cramer's rule to solve the next system of linear equations:

$$
\begin{gathered}
x+3 y-2 z=5 \\
3 x+5 y+6 z=7 \\
2 x+4 y+3 z=8
\end{gathered}
$$

## Solution:

Using Crammer's rule the solution is given by the determinants:

$$
x=\frac{\left|\begin{array}{ccc}
5 & 3 & -2 \\
7 & 5 & 6 \\
8 & 4 & 3
\end{array}\right|}{\left|\begin{array}{ccc}
1 & 3 & -2 \\
3 & 5 & 6 \\
2 & 4 & 3
\end{array}\right|}, \quad y=\frac{\left|\begin{array}{ccc}
1 & 5 & -2 \\
3 & 7 & 6 \\
2 & 8 & 3
\end{array}\right|}{\left|\begin{array}{ccc}
1 & 3 & -2 \\
3 & 5 & 6 \\
2 & 4 & 3
\end{array}\right|}, \quad z=\frac{\left|\begin{array}{ccc}
1 & 3 & 5 \\
3 & 5 & 7 \\
2 & 4 & 8
\end{array}\right|}{\left|\begin{array}{ccc}
1 & 3 & -2 \\
3 & 5 & 6 \\
2 & 4 & 3
\end{array}\right|}
$$

Recall that the determinant of a $3 \times 3$ matrix is given by:

$$
\left\lceil\left.\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array} \right\rvert\,=a e i+b f g+c d h-c e g-b d i-a f h\right.
$$

A possible code that solves this problem would look like this:

```
//-
//Uses Crammer's rule to solve the system of equations
function main()
{
vector ResultX, ResultY, ResultZ;
vector A,B,C,D;
vector R1,R2,R3;
R1 = (1,3,-2);
R2 = (3,5,6);
R3 = (2,4,3);
//Calculate the divisor
D = Determinant3x3(R1, R2, R3);
R1 = (5,3,-2);
R2 = (7,5,6);
R3 = (8,4,3);
A = Determinant3x3(R1, R2, R3);
R1 = (1,5,-2);
R2 = (3,7,6);
R3 = (2,8,3);
B = Determinant3x3(R1, R2, R3);
R1 = (1,3,5);
R2 = (3,5,7);
R3 = (2,4,8);
C = Determinant3x3(R1, R2, R3);
ResultX = A / D;
ResultY = B / D;
```

```
ResultZ = C / D;
}
//--
//Returns a 3\times3 determinant, represent the matrix a row vectors
function Determinant3x3(Row1, Row2, Row3)
{
vector temp1, tmp2;
//Note how multiplications can be done in parallel (it takes 1 clock cycle to calculate the 2 MULs)
temp1 = Row1 * Row2.yzx* Row1.zxy;
temp1 = temp1.xxx + temp1.yyy + temp1.zzz;
temp2 = Row1.xyz * Row2.yxz* Row2.xzy;
temp2 = temp2.xxx + temp2.yyy + temp1.zzz;
return (temp1 - temp2);
}
|/--
```


### 3.2. Example 2 - Converting a triangle into a plane

Write a T-Language code to convert a triangle (represented by three 3D points P1, P2 and P3) to an infinite plane represented by a normal vector and distance from origin.

## Solution:

Build a plane from a triangle is often used to create the planes of a clipping frustum. We can use the cross-product of 2 of the vectors to obtain the orthogonal vector. To compute the distance we can use the dot product to compute the distance along the normal.

```
#macro C = DotProduct(A, B)
 R7 = A * B;
 R7.x = R7.xxx + R7.yyy;
 C = R7.xxx + R7.zzz;
#endmacro
#macro C = CrossProduct(A, B)
```

```
 R7 = A.yzx * B.zxy;
 R8 = A.zxy * B.yzx;
 C = R7 - R8;
#endmacro
//--
function main()
{
 vector Normal, Distance, tmp1, tmp2;
 tmp1 = P2 - P1;
 tmp2 = P3 - P1;
 Normal = CrossProduct(tmp1,tmp2);
 Normal = Normalize(Normal);
 Distance = DotProduct(-Normal, P1);
}
//-
function Normalize(Vector)
{
 Vector = Vector * Vector;
 return (Vector / sqrt(Vector.xxx + Vector.yyy + Vector.zzz));
}
//---
```

Figure 29 Calculating a plane from a triangle


[^0]:    ${ }^{1}$ Note: When the user declares a vector variable, is basically telling the compiler: "allocate memory for this variable wherever you think is a good place". Depending on the context of the program (global variable, function frame, etc.), the compiler can choose from several internal GPU memory locations to put the vector variable.

[^1]:    ${ }^{2}$ This resembles the way Perl programming language executes code.
    ${ }^{3}$ More that this slows down the Hardware, use pointers instead.

[^2]:    ${ }^{4} \mathrm{C} / \mathrm{C}++$ preprocessor actually works in a similar way.

