

.

Theia architecture
specification
Version 0.1
Last update Saturday, August 18, 2012
Diego Valverde 2012

Theia architecture specification

1

1 Theia architecture specification

 Revision & Review

Revision History

Version Description Author(s) Date
<yyyy-mm-dd>

0.1 Initial document Diego Valverde Garro 2011-12-19

Theia architecture specification

2

2 Theia architecture specification

Table of contents

Revision & Review ... 1

Table of contents .. 2

Table of tables ... 7

1. Introduction .. 11

1.1. Vector processing .. 13

1.2. Combining Vector processing and out-of-order execution. ... 14

2. System Overview... 15

2.1. Control processor Overview ... 17

1.1.1. Data block copy operations .. 18

1.1.2. Control processor messages ... 20

1.1.3. Mail-boxing ... 21

1.2. Vector processors (VP) .. 21

2. Control FSM .. 23

3. Vector Processor CORE (VP CORE) .. 24

3.1. Introduction .. 24

3.1.1. Single Thread execution example ... 25

3.2. VP Architecture ... 28

3.3. Word size and Endianness .. 31

3.4. Fixed point arithmetic. .. 31

3.5. Instruction overview ... 32

3.5.1. Instruction operation codes .. 33

3.5.2. Instruction destination block selector .. 35

3.5.3. Instruction source modifiers ... 36

3.5.4. Data dependencies and source modifiers .. 39

3.5.4.1. VP Flags ... 43

3.5.5. Execution units and reservation stations .. 44

3.5.6. VP Stall conditions ... 47

3.6. Instruction addressing modes ... 48

3.7. Instruction word fields .. 52

Theia architecture specification

3

3 Theia architecture specification

3.8. Addressing mode encoding ... 53

3.9. Selecting the Arithmetic operation ... 57

3.10. Fixed point Square Root unit .. 58

3.11. Bitwise logic operations .. 59

3.12. Destination write channel control .. 59

3.13. Operand Scale control ... 60

3.14. Operand Sign control .. 61

3.15. Operand swizzle control.. 62

3.16. Branching operations .. 64

3.16.1. Unconditional branches .. 65

3.16.2. Conditional Branches .. 66

4. VP Data path ... 67

4.1.1. Instruction issue unit (IIU) ... 70

4.1.2. Source Modification unit (SMU) ... 73

4.1.2.1. Issue Bus (IBUS) ... 74

4.1.2.2. Commit Bus (CBUS) ... 75

5. VP IO .. 77

5.1. Output memory OMEM .. 77

5.2. Texture memory TMEM .. 80

6. VP Register specification ... 82

6.1. General purpose registers (GPRs) ... 82

6.1.1. Zero register – R0. ... 83

6.1.2. Return address register – R2.x .. 84

6.1.3. Offset registers – R3.x, R2.y .. 84

6.2. Shadowed GPRs .. 85

6.3. Special purpose registers (SPRs) ... 86

7. Control Processor architecture ... 89

7.1. Instruction set ... 89

7.2. Special purpose registers (SPRs) ... 92

7.3. Branching .. 94

Theia architecture specification

4

4 Theia architecture specification

8. Internal Memory Controller (MCU) Architecture ... 96

9. Appendix A: VP Issue unit encoding table .. 96

10. Appendix B: VP addressing mode examples ... 0

Works Cited ... 9

Theia architecture specification

5

5 Theia architecture specification

Figure 1 THEIA environment overview ... 12

Figure 2 Data pipeline in an execution unit .. 13

Figure 3 X, Y and X data vector data lanes .. 14

Figure 4 Convoy chaining .. 15

Figure 5 The GPU simplified block diagram .. 16

Figure 6 Control Processor within the system .. 18

Figure 7 CP “data block copy command” format .. 19

Figure 8 CP control processor message. ... 20

Figure 9 Mailboxing registers .. 21

Figure 10 The main blocks of a CORE .. 22

Figure 11 The CONTROL FSM, the CP and the VP Core .. 23

Figure 12 Control FSM .. 24

Figure 13 A sample code (single thread)... 26

Figure 14 Behaviour of the execution units over time for the example from Figure 13 28

Figure 15 VP architecture ... 29

Figure 16 Vector word layout ... 31

Figure 17 Storing Fixed point numbers in a 96 bit word... 32

Figure 18 Instruction Layout ... 33

Figure 19 Immediate bit and the way the instruction is interpreted by the IIU ... 33

Figure 20 Modifying the individual signs of the instruction sources .. 36

Figure 21 Modifying the scale of the instruction sources ... 36

Figure 22 Swizzling instruction sources .. 37

Figure 23 Combining several source modifiers in a single instruction ... 38

Figure 24 Example of data dependencies when using source modifiers .. 39

Figure 25 IIU issues a division ... 40

Figure 26 The IIU issues an addition operation .. 41

Figure 27 The DIV UE commits the results to the CBUS and the SMU. The SMU presents the first data

dependency to the reservation stations. .. 42

Figure 28 The SMU presents the second data dependency to the reservation stations. The ADD EU

commits the result to the RF. ... 43

Figure 29 An example code written in T-Language. ... 46

Figure 30 The code from Figure 29 translated into assembly language ... 47

Figure 31 Direct addressing mode .. 48

Figure 32 Direct Addressing with displacement ... 49

Figure 33 direct addressing with displacement .. 49

Figure 34 Displacement and Index .. 50

Figure 35 Indirect addressing mode ... 50

Figure 36 Indirect addressing with displacement ... 51

Figure 37 indirect addressing example ... 51

Figure 38 Operand swizzle logic .. 64

file:///C:/Users/valverdi/Dropbox/outofoderALU/doc/Theia%20architecture%20specification8.docx%23_Toc330135114
file:///C:/Users/valverdi/Dropbox/outofoderALU/doc/Theia%20architecture%20specification8.docx%23_Toc330135116
file:///C:/Users/valverdi/Dropbox/outofoderALU/doc/Theia%20architecture%20specification8.docx%23_Toc330135117
file:///C:/Users/valverdi/Dropbox/outofoderALU/doc/Theia%20architecture%20specification8.docx%23_Toc330135136

Theia architecture specification

6

6 Theia architecture specification

Figure 39 VP data path Walk Through .. 68

Figure 40 The decoded instruction presented by the IIU to the SMU .. 69

Figure 41 The packet presented by the SMU to the reservation stations (RS)... 69

Figure 42 Block diagram of the IIU .. 71

Figure 43 SMU simplified diagram .. 73

Figure 44 multithreading .. 76

Figure 45 A typical pixel color stored as a 32 bit value in VP’s the OMEM .. 77

Figure 46 The OMI inside the IO unit .. 78

Figure 47 EXE and OMI signals .. 78

Figure 48 - VP writing data to an OMEM. ... 79

Figure 49 - Cross bar bus example .. 80

Figure 50 - CORE reading data from TMEM. ... 81

Figure 51 Using the R0 register ... 83

Figure 52 Using the R2 register ... 84

Figure 53 Example of using the offset register R30 to allocate memory for automatic variables. 85

Figure 54 Example of an SPR shadowing R30 ... 86

Figure 55 Control processor CP ... 89

Figure 56 CP block transfer high level syntax ... 93

Figure 57 CP copy data block high level syntax .. 94

Figure 58 ... 94

file:///C:/Users/valverdi/Dropbox/outofoderALU/doc/Theia%20architecture%20specification8.docx%23_Toc330135147

Theia architecture specification

7

7 Theia architecture specification

Table of tables

Table 1 Acronyms and Abbreviations ... 8

Table 2 Reference Documents .. 8

Table 3 Data copy command fields ... 19

Table 4 Control processor messages .. 20

Table 5 Scaling arithmetic operation for fixed point .. 32

Table 6 VP operations ... 34

Table 7 Example of destination selection ... 35

Table 8 instruction operand manipulators ... 39

Table 9 Execution SFLAG values .. 44

Table 10 Execution ZFLAG values .. 44

Table 11 VP Reservation Stations ... 44

Table 12 IIU Stall conditions .. 47

Table 13 Instruction Operation section fields ... 52

Table 14 Instruction Destination section fields .. 52

Table 15 Addressing mode encoding IMM = 0. .. 53

Table 16 Addressing mode encoding IMM = 1. .. 53

Table 17 Addressing mode encoding. ... 54

Table 18 Instruction Source 1 section fields ... 56

Table 19 Instruction Source 0 section fields ... 57

Table 20 Instruction OPCODE field values .. 57

Table 21 Write channel control bit values .. 59

Table 22 input operand scale control ... 60

Table 23 SRC1 Sign control ... 61

Table 24 SRC0 Sign control ... 61

Table 25 SRC1 Swizzle control X .. 62

Table 26 SRC1 Swizzle control Y .. 62

Table 27 SRC1 Swizzle control Z .. 62

Table 28 SRC0 Swizzle control X .. 63

Table 29 SRC0 Swizzle control Y .. 63

Table 30 SRC0 Swizzle control Z .. 63

Table 31 Branch operation BOP values ... 64

Table 32 Branch operation predicates. ... 64

Table 33 Unconditional branch with branch destination as immediate value ... 65

Table 34 Unconditional branch with branch destination stored in a register .. 66

Table 35 Example of Instruction operation for a conditional branch instruction 66

Table 36 Example of Instruction Destination for conditional branch instruction. 67

Table 37 Example of Instruction Sources for a conditional branch instruction .. 67

Theia architecture specification

8

8 Theia architecture specification

Table 38 Data path fields. ... 67

Table 39 Issue bus fields ... 74

Table 40 Commit bus fields ... 75

Table 41 – CORE signals for OMEM write bus cycles. ... 79

Table 4 – CORE signals for TMEM write bus cycles... 80

Table 41 Special purpose registers. .. 82

Table 42 List of special purpose registers ... 86

Table 43 Control register (CNTREG) .. 86

Table 44 Arithmetic error register .. 87

Table 45 CP Instruction set ... 90

Table 46 CP Special purpose registers .. 93

Table 1 Acronyms and Abbreviations

Acronym Description

ALU Arithmetic and logical unit
IIU Instruction Issue Unit

RF Register File
EA Effective Address

RTL Register transfer level
CBUS Commit bus
IBUS Issue bus
IMEM Instruction memory
RS Reservation Station
EU Execution Unit
IM Instruction Memory
SPR Special Purpose Register
Qm.n Fixed point number with n decimal bits a m integer bits
LUT Lookup Table
ILP Instruction level parallelism
TLP Thread level parallelism
PC Program counter
CP Control Processor
VP Vector Processor
CCB Control Command Bus
OOO Out of order

Table 2 Reference Documents

References Description

TH-LS001 T Language Specification <URL>

Theia architecture specification

9

9 Theia architecture specification

Theia architecture specification

10

10 Theia architecture specification

THIS PAGE IS INTENTIONALLY LEFT BLANK

Theia architecture specification

11

11 Theia architecture specification

1. Introduction

THEIA is a multi-thread, multicore, vector graphic processing unit (GPU). The idea of the THEIA project is

to provide an open source environment including functional RTL, test bench environment and an open

source high level programming language/compiler called T-Language.

The present document is dedicated to describe and specify the hardware architecture of the THEIA GPU

system and related hardware subsystems.

The THEIA hardware is described using RTL (register transfer level), written in Verilog 2001 HDL. In order

to perform a full RTL simulation, the HDL model needs a series of input files which represent the various

input parameters and the binary representation of the user code (written in T-Language or in

THEIA-Assembly language).

Theia architecture specification

12

12 Theia architecture specification

Figure 1 THEIA environment overview

The outputs from an RTL simulation are a series log files and the actual graphical representation of the

rendered image in a format which can be opened using a standard image editor such as GNU Gimp.

Even if the hardware architecture of the THEIA GPU is designed to be efficient in 3D computer graphic

related tasks, due to the flexibility of the system and the programming environment, a myriad of other

applications that can benefit from vector processing and parallel processing are also possible.

THEIA Compiler

Binary

code

User

code

THEIA SIMULATION ENVIRONMENT

Simulation

parameters

Theia architecture specification

13

13 Theia architecture specification

1.1. Vector processing

One of the interesting features of the THEIA GPU is the ability to handle vector operations. Each single

instruction can operate on vectors of data. Each element of the input data vector is fetched

consecutively by the corresponding execution unit in a pipelined fashion as illustrated in the next figure.

Figure 2 Data pipeline in an execution unit

Each vector functional unit is a separate and fully pipelined execution unit that and most execution units

can start a new operation every clock cycle. Therefore, each vector functional unit is effectively a data

pipeline. Furthermore each execution unit has 3 “data lanes” thus being able to simultaneously process

3 array elements every clock cycle.

EXE

Src1[0]

Src1[1]

Src1[2]

Src1[3]

Src1[4]

Src2[0]

Src2[1]

Src2[2]

Src2[3]

Src2[4]

Theia architecture specification

14

14 Theia architecture specification

Figure 3 X, Y and X data vector data lanes

Also each GPU core has a large register file where the data is guaranteed to be located in consecutive

memory positions1.

1.2. Combining Vector processing and out-of-order

execution.

The execution time of the vector operations primarily depends on the length of the vectors, but also

depends on the structural hazards and data dependencies. In order to obtain more instruction level

parallelism, the vector operations are combined with an out-out-of-order execution model. By executing

the vector operations in an out-of-order fashion, the data dependencies can be minimized and a better

performance is obtained.

The notion of “convoy” from [1] is defined as a series of vector instructions that can potentially execute

together and the performance of a section of code can be estimated by counting the number of

convoys. By introducing the OOO technique, these convoys are not limited to instructions that are

sequential in the program flow therefore the performance of the program can be increased.

Vector “Chaining” allows the results from a vector functional unit to be forwarded to a second

functional unit which has data dependency on the first one. By using chaining, a convoy which depends

on the results from a previous convoy can be chained together into a single convoy.

1
 This is done by software, at the Control Processor (CP) level.

EXE

Src1.x[0]

Src1.x[1]

Src1.x[2]

Src1.x[3]

Src1.x[4]

Src2.x[0]

Src2.x[1]

Src2.x[2]

Src2.x[3]

Src2.x[2]

EXE

Src1.y[0]

Src1.y[1]

Src1.y[2]

Src1.y[3]

Src1.y[4]

Src2.y[0]

Src2.y[1]

Src2.y[2]

Src2.y[3]

Src2.y[4]

EXE

Src1.z[0]

Src1.z[1]

Src1.z[2]

Src1.z[3]

Src1.z[4]

Src2.z[0]

Src2.z[1]

Src2.z[2]

Src2.z[3]

Src2.z[4]

Theia architecture specification

15

15 Theia architecture specification

Figure 4 Convoy chaining

THEIA extends the data forward of execution results from the OOO model in order to implement

“chaining” for the vector operations.

The details of the out-of-order engine are described later on this document.

2. System Overview

THEIA is a multi-thread, multicore, vector graphic processing unit (GPU). The THEIA GPU is comprised of

different hardware blocks that interact with other in order to render an image frame.

EXE

Src1[0]

Src1[1]

Src1[2]

Src1[3]

Src1[4]

Src2[0]

Src2[1]

Src2[2]

Src2[3]

Src2[4]

EXE

Src3[0]

Src3[1]

Src3[2]

Src3[3]

Src3[4]

Theia architecture specification

16

16 Theia architecture specification

Figure 5 The GPU simplified block diagram

Figure 5 presents the GPU main functional blocks and also an external memory called “Main Memory”

that is outside of the GPU. The Main memory is a large RAM that is used as a repository where the

textures, code, geometry, etc. can be stored. The contents of the Main Memory are read only from the

GPU stand point and can only be accessed through the internal Memory Control Unit (MCU). The MCU is

controlled by the Control Processor Unit (CP).

The CP block is responsible to control and monitor the global execution of the GPU. The CP is a simple

programmable unit which allows the user to programmatically control the resource allocation and the

workload distribution of the GPU. The CP can command the MCU to copy execution code and data to

one or more “Vector Processing Units” (VPs) at any given point in time. The CP can also request special

actions from one or more VPs by sending special commands directly to the VPs using a dedicated

System Memory

VP0 VP1 VP3

VP4 VP5 VP6 VP7

TMEM

Cross bar interconnection

CP

OM8

0M9

0M10

0M11

0M15

0M13

0M14

0M15

MCU

To frame buffer

VP11 VP9 VP10 VP11

VP12

VP13 VP14

OM0

0M1

0M2

0M3

0M4

0M5

0M6

0M7

VP2

VP15

GPU

Theia architecture specification

17

17 Theia architecture specification

“Control Command Bus” (CCB). By using the MCU and the CCB, the software running on the CP

effectively distributes the workload among the vector processing cores (VP).

The VPs, called V0 … VP152 in Figure 5, are the elements in charge of the actual processing of the data.

Each VP is a multi-thread out-of-order vector processor with hardware architecture and instruction set

that is specially optimized to operate on 3D vectors. Section 3 gives more detail regarding the Vector

processor architecture.

The THEIA GPU topology follows a “CROW PRAM” model. PRAM stands for Parallel Random Access

Machine, and is a common paradigm used to describe parallel machines [tbd]. CROW stands for

Concurrent-Read Owned-Write, CROW PRAMs are described by [tbd] and offer series of advantages

over other types of PRAM machines as analyzed by [tbd].

Following the CROW PRAM paradigm, some of the storage blocks from Figure 5 are read-only while

other blocks are write-only. The OMEMs are write-only memories (from the VP’s perspective) that are

“owned” by each VP, this is, each VP can only access a single and unique OMEM block, and can only

perform write operations to that OMEM block.

The TMEM, on the other hand, is a read-only block (from the VP’s perspective). The TMEM can be

concurrently accessed for reading operations by one or more VPs at any given point in time. Together

the TMEM and the OMEM blocks allow the GPU to be modeled as a CROW PRAM machine.

The next sections will further describe the various functional blocks from Figure 5.

2.1. Control processor Overview

The main function of the Control Processor (CP) is to allow the user to programmatically control the

resource allocation and the workload distribution of the GPU. In other words, instead of implementing

complex dynamic hardware based scheduling algorithms, the CP allows for these algorithms to be

implemented in software. This way the hardware complexity is reduced while the overall system

becomes more flexible. This section will present an overview of the CP, to see a full description of the CP

architecture and instruction set please see section 8.

2
 Figure 5presents a GPU configuration with 16 VPs but this number may vary depending on the specific GPU

implementation.

Theia architecture specification

18

18 Theia architecture specification

Figure 6 Control Processor within the system

The CP is a minimalistic processor. It is mainly in charge of controlling the dispatching of code, data and

commands into the vector processors (VPs). There is a single control processor for the entire GPU and it

is connected to the vector processors using a topology as the one depicted in Figure 6.

1.1.1. Data block copy operations

As depicted in Figure 6 the control processor (CP) interfaces with an internal memory controller (MCU).

The CP issues special instructions called “data block copy commands” to the MCU, telling the MCU to

copy memory blocks from the main memory into the TMEM or into the VP’s internal memory locations.

It is important to mention that the MCU can only copy data from the main memory and not into the

main memory, in other words, the Main memory is read-only from the GPU perspective.

Control Processor (CP)

VP0 VPN VP1

Memory Controller

(MCU)

Texture Memory (TMEM)

Cross Bar

System Memory

Control Command Bus

Block copy cmd

Mailbox

From VPs

Theia architecture specification

19

19 Theia architecture specification

The format of the “data block copy commands” is illustrated in Figure 7

Figure 7 CP “data block copy command” format

The data block copy command is made of several fields as shown in the previous illustration. Table 3

describes the meaning of the various fields of the “data block copy command”.

Table 3 Data copy command fields

Field Description

DstId 0: Destination NULL: No data blocks are copied
and no copy commands are queued in the MCU.

1: Destination TMEM: The data block is copied by
the MCU from the main memory into the TMEM memory.

2 to N+2: Destination VP: The data block is copied by
the MCU from the main memory into the VP identified by
the index DstId-2

BlockLen How many blocks to copy from the Main memory into the
destination resource identified by DstId. Up to 1024 blocks
can be copied.

DstOffset Offset where the MCU will copy the data at the
destination resource identified by DstId.
• When the target resource is the TMEM, the offset
represents the linear address where the data will start to
be copied.
• When the target resource is one of the VPs, the
offset is divided in address and tag:
 • DstOffset [20:0]: Linear address.
 • DstOff[22:21]: Destination Tag: Can have one of
the following values:
 10 -> Final destination is VP Instruction Address.
 01 -> Final destination is VP Data Address .

SrcOffset Offset into the main memory from where the MCU will
start coping the data.

DstId DstOffset SrcOffset BlockLen

16 bits 22 bits 32 bits

Tag

8 bits 2 bits

Theia architecture specification

20

20 Theia architecture specification

The data block copy commands are issued by the CP to the MCU in an asynchronous way. In other

words, the CP issues a data block command and then the CP can continue with the control code

execution even if the MCU has not yet finished copying the data blocks. If the CP issues another data

copy command to the MCU while the previous copy command has not finished, then the copy command

gets queued in the MCU. The MCU presents a signal with the number of pending copy operations to the

CP. This signal is mapped into the CP internal register STATUS[MCU_OPERATION_PENDING]3; it is the

software responsibility to poll this register in order to know the number of pending memory copy

operations in the MCU.

1.1.2. Control processor messages

The CP has the ability to send special messages called “control processor messages” to one or more VPs

using the Control Command Bus (CBC) from Figure 6. The control processor messages have the following

format:

Figure 8 CP control processor message.

As depicted in Figure 8 the format of the “control processor messages” is very simple, it is made of a VP

destination field, which specifies whether the CP message is targeted at a single VP or broadcasted to all

the VPs, a command to specify the action that the VP has to perform and also an optional 32bit

argument.

Table 4 Control processor messages

CP message field Arguments

VPDST The destination for the CP command.
It has one of the following possible values:

0: NULL Message. The message has no target VPs.
1-127: Message is targeted to one of the possible VPs.4
128: Message is broadcasted to all the VPs.

3
 More information in section <TBD>

4
 The number of VPs depend on the version of the GPU implementation. Currently up to 16 VPs are supported.

VP DST Command Arguments

8 bits 16 bits 8 bits

Theia architecture specification

21

21 Theia architecture specification

Command The command that the CP sends to one or more VPs to
execute. It has one of the following possible values:

0: Start Execution
1: Stop Execution
More to be defined

Argument Reserved for future use

The most important use of the “control processor messages” is allowing the CP to start or to stop the

VPs execution. This allows the user to program the CP in order to have full control of the resource and

workload distribution.

1.1.3. Mail-boxing

Mail-boxing is a mechanism which allows passing messages between the VPs and the CP5 during code

execution. Each VP has a special 33 bit register called Mailbox. Each Mailbox has 32 bits of data and a 1

bit semaphore flag.

Figure 9 Mailboxing registers

The semaphore flag controls the write ownership of the mailbox register. If the semaphore bit is set

then the CP has write ownership of the mailbox, otherwise the corresponding VP has write ownership of

the mailbox. All mailboxes’ semaphore bits are cleared after reset.

If the semaphore bit is set, then the CP gets notified of an incoming message delivered by the VP into

the corresponding mailbox. The CP can now post a reply and then clear the semaphore flag to notify the

VP that a reply has been delivered.

1.2. Vector processors (VP)

5
 In the current version of the RTL, the communication can only be initiated by the VP.

S Data

32 bits 1

Theia architecture specification

22

22 Theia architecture specification

The VPs are a series of multithreaded out-of-order vector processors featuring fixed point arithmetic

units and special purpose hardware to accelerate the most common 3D graphic operations. Each VP is

divided into 5 main block called IO, EXE, MEM and CTRL. This is illustrated in Figure 10.

Figure 10 The main blocks of a CORE

The main building blocks shown in Figure 10 are further described later on this document.

The “VP CORE” block is where most of the complexity resides, thus section 3 of this document is

dedicated exclusively to the VP CORE block.

VP CORE

WHISHBONE

MASTER (WBM)

Mailbox

Register File

(RAM)

Control FSM

WHISHBONE

SLAVE (WBS)

Instruction

Memory (RAM)

MEM

CTRL

IO

EXE

CCB

Theia architecture specification

23

23 Theia architecture specification

2. Control FSM

This block has the main control FSM that is in charge of orchestrating the VP operation. Each VP has a

single Control FSM. The Control FSM is mainly responsible of handling commands coming from the CP

through the CCB (control command bus) and guarantying that the VP Core reacts accordingly.

Figure 11 The CONTROL FSM, the CP and the VP Core

When the VP first comes out of reset no code in the VP gets executed by default. Instead of this, the VP

first reaches a state called WAIT_FOR_CP where it will remain until one or more CP commands get

queued into the CP command FIFO. Once a CP command becomes queued, the FSM will transition into a

specific state which will take care of the CP request. If the CP command requires starting the main

execution thread then the FSM transitions into the START_MAIN_THREAD state and then back into the

WAIT_FOR_CP state. This means that the control FSM is not required to wait until the VP code is

finished in order the handle more CP commands.

CONTROL FSM
VP Core

IO

CP

FIFO

CCB

Theia architecture specification

24

24 Theia architecture specification

Figure 12 Control FSM

3. Vector Processor CORE (VP CORE)

The current section provides the architecture specification for the GPU’s VPs. A detailed explanation of

all the VP data structures is reviewed in the subsequent sections.

3.1. Introduction

Each THEIA VP combines the features of a vector processor and a multithreaded out-of-order machine.

This means that the VP is capable of sustaining various levels of instruction level parallelism (ILP) and

data level parallelism.

AFTER_RESET

WAIT_FOR_CP

START_MAIN_THREAD

STOP_MAIN_THREAD

HANDLE_CP_INTERRUPT

EXE_WD_EXPIRED

Theia architecture specification

25

25 Theia architecture specification

Instruction level parallelism is achieved by means of an in-order pipelined issue unit and several

out-of-order execution units. The Tomasulo’s algorithm [citation] is used to implement the out-of-order

machine using the register renaming technique.

In order to cover for long stalls that the ILP from the out-of-execution can no longer prevent, a

multithreading technique is used.

There are three main approaches to multithreading as mentioned by [1]: Fined grained multithreading,

coarse-grained multithreading and simultaneous multithreading (SMT). The THEIA VP implements a

simple version of SMT where up to 4 threads6 can share the resources of a single VP unit.

As with most SMT implementations, all of the issues at a given point in time come from the same

thread, but instructions from different threads can start executing on the same clock cycle (when

dependencies are resolved at the reservation stations and so on). Since THEIA VP builds SMT on top on

of an out-of-order machine, separate per-thread PC and renaming tables are maintained.

Data level parallelism is achieved by having 3 separate data lanes on each execution unit and also by

means of vector processing techniques. Each THEIA VP has 256 x 32 bit registers which are divided

logically across the 3 data lanes. These registers are implemented using a simple RAM memory structure

divided into banks in order to provide the sufficient bandwidth for the vector operations. Each Thread is

limited to access up to ¼ of the total register address7 and there is no means of data sharing among the

threads.

3.1.1. Single Thread execution example

This section will briefly describe the flow of the execution for a program running on a single thread. The

next short code snippet will help clarify some of the concepts related to the VP execution and

capabilities.8 This code is written in a high level language called T-Language which is designed

specifically to write code for the THEIA GPU. The language itself is described on separate document.

Given that the T-Language closely resembles C/C++ it is assumed that an average reader can understand

it.

6
 This number may vary depending on the release of the RTL

7
 When multithreading is disabled, the single thread has access to the entire register address space, this is in fact

controlled by the software
8
 The code snippet is written in “T-Language”. For more information on the “T-Language” please refer to the

<TBD> documentation.

Theia architecture specification

26

26 Theia architecture specification

 //Declare some variables. These variables will get stored in the internal VP register file

 vector V1 = (1,2,3), V2=(4,5,6), V3=(7,8,9);

 vector V4 = (10,11,12), V5=(13,14,15), V6=(16,17,18);

 vector A[10], B[10], C[10];

 //Some code to initialize the arrays goes in here

 //Divide 2 variables. The division can take up to 32 clock cycles to complete

 V1 = V2 / V3;

 //Multiply two “arrays” in order to use the VP “vector” processing capabilities.

 //Thanks to the out of order nature of the VP this multiplications can be executed in

 //parallel with the previous division. Since each array has 10 element it will take the VP

 //10 clock cycles to complete the multiplications (each multiplication takes 1 clock cycle)

 C = B * A;

 //Now do a subtraction. Once more because of the out of order nature of the VP,

 //this will happen in parallel with the previous two operations. Also play around with

 //the “destination channel selector” and “swizzling” features

 V4.y = V5.yxz – V6.zyy;

Figure 13 A sample code (single thread)

The above code is meant to give the machine the opportunity to execute several instructions in parallel

as we are about to see. The code starts by declaring several variables. Each variable is called a “vector”

Theia architecture specification

27

27 Theia architecture specification

and consist of a single word which is divided among a 32 bit “X block”, a 32 bit “Y block” and a 32 bit “Z

block”. Consider the following statements from the above code:

vector V1 = (1,2,3), V2=(4,5,6), V3=(7,8,9);

This code declares 3 variables: V1, V2 and V3. It also specifies that those variables should be initialized to

the constant values (1,2,3), (4,5,6) and (7,8,9).

Each VP operation executes simultaneously on the X, Y and Z blocks of the data, meaning that the VP has

3 data lanes. In order words, each VP has 3 adders, 3 dividers, 3 multipliers and so on. Consider the

division operation from Figure 13, in a single clock cycle the 3 dividers will trigger in order to start

calculating the division for the X, Y and Z blocks from V2 and V3.

Since the VP runs in an out of order fashion, it doesn’t need to wait until the division is complete in

order to issue the next instruction. The next instruction is a multiplication; it multiplies two vector

“arrays” together. A vector “array” is an array consisting of two or more vector elements (each element

is a vector with an X block, a Y block and a Z block as before).

Each element from a vector array is internally allocated in consecutive memory positions so that the VP

can perform a type of “data pipeline” using “convoys” of data9. This type of data level parallelism is

typical in vector processor architectures.

Figure 5 shows how the multiplications are executed in parallel with the division. Each clock cycle the

VP’s multipliers serially calculate the result of each vector array element in the data convoy. Next, the

code specifies to execute a subtraction, this happens in parallel with the previous operations. Since the

Additions/Subtractions take 1 clock cycle, then the subtraction is going to end before the array

multiplication and the divisions are done.

9
See Hennesy and Paterson…

Theia architecture specification

28

28 Theia architecture specification

Figure 14 Behaviour of the execution units over time for the example from Figure 13

Figure 14 shows the overlapping execution of the various execution units involved in the code from

Figure 13. As it was mentioned before, the Division algorithm takes 32 clock cycles to complete (worst

case). It is also interesting to observe how the multiplying units are kept busy working on the array

elements with no need of a new instruction being issued. Also, since the addition units are free, those

can handle additional operation over time as shown in Figure 14. The Architectural features allowing this

kind of parallelism are described in the next sections.

3.2. VP Architecture

The VP is the logic block responsible to perform the Arithmetic and Logic operations within each CORE.

The VP can operate on vectors of data, each vector consisting of 3 32-bits words as explained in section

3.3. The VP features an in-order fetch and out-of-order execution following the classic Tomasulo’s

…

Time

DIV1

DIV2

MUL0

MUL1

MUL2

ADD0

ADD1

ADD2

B[0].z * A[0].z B[1].z * A[1].z B[9].z * A[9].z

B[0].y * A[0].y B[1].y * A[1].y B[9].y* A[9].y

B[0].x * A[0].x B[1].x * A[1].x B[9].x * A[9].x

V2.x / V3.x V2.x / V3.x

V2.y / V3.y V2.y / V3.y

V2.z / V3.z V2.z / V3.z

V5.z – V6.z

V5.y - V6.y

V5.x – V6.x

…

…

…

…

…

…

DIV0

Theia architecture specification

29

29 Theia architecture specification

10algorithm for register renaming.

Figure 15 VP architecture

Figure 15 shows the main building blocks of the VP. The instructions are initially fetched from the

instruction memory (IM) by the IIU. Each instruction is a 64 bit word and the layout of the instruction is

discussed in section 3.5.

Once the instruction is fetched, the IIU chooses a free reservation station (RS1 to RS6) to issue the

instruction, according to the instruction OPCODE. If there are no reservation stations available to

execute the instruction, then there is a structural hazard condition and the IIU stalls until an appropriate

reservation station becomes available.

10

 Note: with some modifications as that are specified in s subsequent sections.

 REGISTER

FILE
X Y Z

ADD 0 ADD 1 DIV MUL SQRT

RS0 RS1 RS2 RS3 RS4

BUS ARB

LGC

RS5

Instruction Memory (IM)

ISSUE FSM Per thread Dependency Table

Register File (RF)

IBUS

MCBUS

CBUS

Issue unit (IIU)

Swizzle modifier

Scale modifier

Sign modifier

Source modifier unit (SMU)

Per thread PC

IO

RS6

Theia architecture specification

30

30 Theia architecture specification

If there are reservation stations available to execute the instruction, then the IIU determines the

reservation station number and data dependencies that will be added into the Issue packet using the

dependency table from Figure 1. The issue packet is a special data structure that is broadcasted to all

the reservation stations connected to the Issue Bus. The format of the issue packet is discussed in

section 4.1.2.1.

While the dependencies are established, the IIU also reads the instruction operand values from the

register file RF. Each instruction operand value is a 96 bit word, and the layout of these words is

discussed in section 3.3.

Once the operand values are retrieved from the RF, the operand manipulators (section 3.5.3) are

applied in the following sequence:

First the sign control does a 2 complement on the individual X, Y and Z components of each operand

source, as described in section 3.14.

Next the source operands are scaled according to the rules in section 3.13 and swizzled according to the

rules in section 3.15.

Finally the source operands are presented to the issue bus, together with reservation station number

and the dependency fields. The instruction is finally issued to the reservation stations, the dependency

table gets updated with the current instruction and the Issue packet is broadcasted to the Reservation

stations.

Theia architecture specification

31

31 Theia architecture specification

3.3. Word size and Endianness

THEIA words are little endian, meaning that the least significant bit goes into the lowest address. Each

word is 96 bits long and usually represents a 3D vector11; thus it is divided among three 32 bits value

slots called X, Y and Z as depicted in Figure 16. Depending on the VP operation, the X, Y and Z

components of the word can be individually accessed or the entire 96 bits can be accessed

simultaneously.

3.4. Fixed point arithmetic.

The VP has the ability to work with integer arithmetic or with fixed point arithmetic.

When working with integer arithmetic, the entire 32 bits from the X, Y or Z blocks of a word are used to

store the integer value.

When working with fixed point arithmetic (Qm.n), the ‘n’ least significant bits of the X, Y or Z blocks are

used to store the decimal part of the number , while the ‘m’ more significant bits of the X, Y or Z blocks

are used to store the integer part of the number.

11

 4D/Homogenous-coordinates are not natively supported at the hardware level.

Figure 16 Vector word layout

X [95:64] Y [63:32] Z [31:0]

32 bits 32 bits 32 bits

96 bits

Theia architecture specification

32

32 Theia architecture specification

Figure 17 Storing Fixed point numbers in a 96 bit word

The length of the ‘n’ bits of a Qm.n number is called the fixed point SCALE. The SCALE is used to

transform numbers from fixed point to integer and vice versa and is also used as part of the fixed point

multiplication and division operations12. Table 5 shows the way in which the arithmetic operations are

performed when using integer arithmetic and when using fixed point arithmetic.

Table 5 Scaling arithmetic operation for fixed point

Operation Integer Fixed Point

Addition R = A + B R = A + B

Subtraction R = A – B R = A – B

Multiplication R = A * B R = (A * B) >> SCALE

Division R = A / B R = (A << SCALE) / B

Logic operation See section <> n/a

It is important to mention that it is the compiler’s responsibility to appropriately manage the SCALE in

the operations to either use fixed point or integer arithmetic. In other words, the VP has no knowledge if

a particular instruction should use fixed point or integer arithmetic; the VP only executes the operation

after applying the SCALE to the input arguments according to Table 23. The logic operations are not

affected by the SCALE.

3.5. Instruction overview

THEIA instructions are 64 bits wide. Each instruction is divided into various “sections” as depicted in

Figure 18: operation section, destination section, source 1 and source 0 sections or immediate value

section. The source 0 and source 1 sections are mutually exclusive with the immediate value section.

12

 The square root operation is a special case which always assumes fixed point input arguments. See section 3.9
for details.

m.x n.x

32 bits 32 bits 32 bits

m.y n.y m.z n.z

Theia architecture specification

33

33 Theia architecture specification

Each instruction section has special fields that modify the VP behavior in various ways. A very important
field is the IMM field. The IMM field tells the VP whether it has to interpret the lowest 32 bits of the
instruction as an immediate (literal) value, called IMMV, or as part of the register source sections. The
IMM field also takes part in the addressing mode as discussed in section 3.6. Figure 19 illustrates how
the VP interprets the instruction depending on the IMM bit.

Other instruction fields specify different behaviors such as which blocks of the resulting word to write

back into the RF, how to handle the sign of the input operands, how to handle branches, etc. Table 13,

Table 14, Table 18 and Table 19 show the various Instruction section fields and their meaning.

3.5.1. Instruction operation codes

The instruction operation codes or OPCODEs are the set of all the possible arithmetic or logic operations

that the VP is capable of doing. The VP is actually able to do a small number of different OPCODES:

Operation Destination Source 1 Source 0

Immediate Value

16 bits 14 bits 17 bits 17 bits

32 bits

64 bits

Figure 18 Instruction Layout

0 Operation Destination Source 1 Source 0

14 bits 17 bits 17 bits 16 bits

IMM

Immediate Value

32 bits

Operation Destination 1

14 bits 16 bits

IMM

Figure 19 Immediate bit and the way the instruction is interpreted by the IIU

Theia architecture specification

34

34 Theia architecture specification

addition, multiplication, division, square root, IO and logic operations. This may seem as a small set of

possible operations at first, but when combined with the instruction source modifiers from section

3.5.3, it becomes capable of doing a wide variety of operations.

Also, each of the possible OPCODES is executed simultaneously on the x, y and z blocks of the instruction

sources. In other words, the VP has 3 adders, 3 multipliers, 3 dividers and so on13. Table 6 lists the

possible arithmetic operations the VP can do.

Table 6 VP operations

Operation Description

Addition

(

) (

)

Multiplication

(

) (

)

Division

(

) (

)

Square root

(

) (
√

√

√

)

Bitwise AND

(

) (

)

Bitwise OR

(

) (

)

Bitwise NOT

(

) (

)

SHIFT LEFT

13

 The exception to this is the SQRT which has a s ingle execution unit

Theia architecture specification

35

35 Theia architecture specification

(

) (

)

SHIFT RIGHT

(

) (

)

Note from Table 6 how each operation is simultaneously executed on the x, y and z blocks of the source

data. Again, it is important to mention that the VP makes no distinction between fixed point numbers

and integer numbers; it is the compiler that needs to apply the corresponding SCALE using the

techniques from the next sections in order to obtain the proper result for integer numbers or fixed point

numbers.

3.5.2. Instruction destination block selector

As mentioned in section 3.3, each THEIA word has 3 32 bit blocks called x, y and z. Each instruction has

the ability to write the results simultaneously into the three destination blocks, or it can also choose to

store the results into only some of the x, y and z blocks leaving the other blocks un-changed.

Table 7 Example of destination selection

Operation Description

R = A + B

(

) (

)

R.y = A + B

() ()

R.xnz = A + B

(

) (

)

Note from Table 7 that the ‘n’ symbol stands for no-write, so for example R1.xnz means to write the

results into the x and z blocks but not into the ‘y’ block. Section 3.13 will list all of the possible

combinations of destination blocks; from Table 7 it becomes clear that destination can be all of the

Theia architecture specification

36

36 Theia architecture specification

blocks, one single block or any two blocks.

3.5.3. Instruction source modifiers

Instruction source modifiers are special ways in which the VP can modify the input source data (Source 0

(SRC0) and Source 1 (SRC1)) before they reach the execution units (EU).

There are 3 ways in which the SRC0 and SRC1 data can be modified before they reach the EU: modifying

the signs, modifying the scale or “swizzling” the data blocks. Each of these three modifications can be

individually applied into the x, y or z blocks of SRC1 or SRC0. The next series of figures represent

examples of possible source modifications.

Figure 20 Modifying the individual signs of the instruction sources

Figure 20 shows an example of how the signs of the individual x, y and z blocks of the data sources can

be modified. The sign modification can be used for vector operations such as cross products.

Furthermore, the VP does not have a subtraction operation per se, but instead the compiler is required

to negate the SRC0 from an addition in order to perform a subtraction.

Figure 21 Modifying the scale of the instruction sources

SRC1.x SRC1.y

- + -

SRC0.x SRC0.y SRC0.z

SRC0.x - SRC0.y -SRC0.z

+ - -

SRC1.z

- SRC1.x SRC1.y -SRC1.z

SRC1.x SRC1.y SRC1.z

>> >> >> << << <<

SRC1.x’ SRC1.y’ SRC1.z’

SRC0.x SRC0.y SRC0.z

SRC0.x’ SRC0.y’ SRC0.z’

Theia architecture specification

37

37 Theia architecture specification

Figure 21 illustrates a source scaling. Each x, y and z block can be shifted left or shifted right SCALE

number of bits. The value of SCALE can be controlled by the setting the appropriate value in the

configuration registers as will be detailed later on this document. The scale operations are used to

transform numbers between the integer and fixed point numerical representations, and are also used to

perform fixed point multiplications and divisions as it is specified on Table 5.

The last of the three possible source modifications is what is called “swizzling”. Swizzling allows

replacing the x, y or z blocks of a source register by any other x, y or z block from that same source

register. This concept is illustrated in the next figure.

Figure 22 Swizzling instruction sources

Register swizzle is a very powerful technique which allows the VP to perform a variety of operations. An

example of the usefulness of operand swizzling is matrix multiplication. Let’s take for instance the

following 3x3 matrix multiplication:

(

) (

) (

)

Let’s assume that R1 has been loaded with the value (1,4,7), that R2 has been loaded with the value

(2,5,8), that R3 has been loaded with the value (3,6,9), and that R4 has been loaded with the value

(a,b,c). Equation (1) can be represented as series of swizzled operations in T-language like this:

R7 = R1 * R4.xxx;

R8 = R2 * R4.yyy;

R9 = R3 * R4.zzz;

R1 = R7 + R8;

R1 = R1 + R9;

The previous code shows that it would take the VP 5 operations to complete the 3x3 matrix

SRC1.x SRC1.y SRC1.z

SRC1.z SRC1.x SRC1.y

SRC0.x SRC0.y SRC0.z

SRC0.z SRC0.z SRC0.y

Theia architecture specification

38

38 Theia architecture specification

multiplication.

Finally it also possible to simultaneously combine the 3 types of source modifiers in a single instruction

as illustrated in the next figure.

Figure 23 Combining several source modifiers in a single instruction

Figure 23 shows how it is possible to combine sign modifications, scaling and swizzling in the same

instruction. To illustrate this, let’s take for example a cross product vector operation. The cross product

can be written as the following column of vectors:

(

) (

) (

)

You can see from (2) that the cross product needs to perform a series of subtractions (the VP uses sign

control to negate the second argument for subtractions) and also needs to organize the sources in a

special way in order to obtain the desired result. Let’s assume that R1 has been loaded with the value

(Ax, Ay, Az) and R2 has been loaded with the value (Bx, By, Bz). Equation (2) can be represented as series

of swizzled operations in T-language14 like this:

R3 = R1.yzx * R2.zxy;

R4 = R1.zxy * R2.yzx;

R1 = R3 – R4;

So the previous code shows that the VP can perform a cross product using only three instructions.

It is important to mention that the source modifiers are implemented as pure combinatorial blocks, this

means that they add no extract latency to the operations.

14

 This a special ‘middle level’ language specially designed for the THEIA GPU, more details on section <TBD>

SRC1.x SRC1.y SRC1.z

SRC1.z - SRC1.x SRC1.y’

>>

-
-

SRC0.x SRC0.y SRC0.z

-SRC0.x’ SRC0.x -SRC0.z

- <<

Theia architecture specification

39

39 Theia architecture specification

Table 8 summarizes the three possible instruction source modifiers and the document section where

more information can be found.

Table 8 instruction operand manipulators

Instruction source
modifier

Document
section

Description

Swizzle control 3.15 Input operand Swizzle control logic.

Sign control 3.14 Input operand Sign control logic.

Scale control 3.13 Input operand Scale control logic.

3.5.4. Data dependencies and source modifiers

Looking back at Figure 15, it must be noted how the Source modifier unit (SMU) is connected to the

issue unit (IIU) and is also connected to the commit bus (CBUS). This is because the SMU needs to apply

the source modifiers to the data sources coming from the issue stage and it may also potentially need to

apply source modifiers to the results from the execution units (EU) when the data dependencies get

resolved. Let’s illustrate this concept with an example.

 R2 = (10,20,30);

 R3 = (2,0,0);

 R1 = R2 / R3.xxx;

 R2.y = R1.zzz + R1;

Figure 24 Example of data dependencies when using source modifiers

In the example from Figure 24, the addition operation depends upon the result from the division

operation. Because of the out-of-order execution, the addition instruction will be issued into the

reservation stations regardless of the division result not being yet committed into the RF. Once the

divider EU finishes calculating the result of the division, this result is written back into the RF and also

forwarded into the SMU. The SMU needs to apply to proper modifiers to the result from the division EU

and then present this modified result into the reservation stations so that the data dependencies can be

properly resolved. This concept is illustrated in the next series of figures.

Theia architecture specification

40

40 Theia architecture specification

Figure 25 IIU issues a division

Figure 25 depicts the IIU is issuing the division instruction from Figure 24. The IIU retrieves the value of

R2 (10, 20, 30) and the value of R3 (2, 0, 0) from the RF and then sends these vectors to the SMU. The

SMU swizzles the values of R2 so that it becomes R2.xxx (2, 2, 2) and then broadcasts these values to the

reservation stations along with the reservation station index (RSID)15. The reservation station whose

index matches with the RSID broadcasted by the SMU latches the value, since no data dependencies

where found, the RS triggers the corresponding EU (the divider for this example) using these input

values from the SMU.

15

 Not shown in the picture.

Instruction Issue (IIU)

Source Modifier (SMU)

RS0

DIV

Register File (RF)

DIV R1 10 20 30 2 0 0

DIV R1

R1

RS1

ADD

10 20 30 2 2 2

10 20 30 2 2 2

Theia architecture specification

41

41 Theia architecture specification

Figure 26 The IIU issues an addition operation

While the Divider EU is busy calculating the result of DIV operation, the IIU issues the next instruction

which is an addition. Since the addition source operands depends on the result from the division

instruction, the IIU uses the register renaming technique to specify the reservation station that will

resolve the data dependencies, this is illustrated in Figure 26. The RS1 will not start the addition EU until

it receives the result from RS0.

A number of clock cycles after issuing the DIV instruction, the divider EU is finally done calculating the

result; this is shown in Figure 27. Figure 27 depicts the DIV EU committing the division results into the

shared commit bus (CBUS). These results are also forwarded into the SMU, the SMU has a series of

internal registers that store the various data dependencies that need to be scaled16, signed changed or

swizzled. In this example, the SMU knows that it needs to propagate two result values from RS0 back to

the reservation stations. One value would be the division result using the “yyy” swizzle combination and

the other value would be the division result with no modifiers. Figure 27 shows when the SMU issues

the “yyy” swizzled value (15, 15, 15) back into the reservation stations17.

16

 More detail on this on section 4.1.2
17

 The order in which the dependencies values are presented by the SMU into the RSs is not deterministic. See
section xxx for details.

Instruction Issue (IIU)

ADD R2

Source Modifier (SMU)

RS0

DIV

Register File (RF)

ADD R2 RS0.y RS0.y RS0.y

RS1

ADD

RS0.x RS0.y RS0.z

R1 10 20 30 2 2 2

RS0.y RS0.y RS0.y RS0.x RS0.y RS0.z

R2 RS0.y RS0.y RS0.y RS0.x RS0.y RS0.z

Theia architecture specification

42

42 Theia architecture specification

Figure 27 The DIV UE commits the results to the CBUS and the SMU. The SMU presents the first data dependency to the
reservation stations.

Once the RS1 gets the value (15, 15, 15) from the SMU it stores this value inside a set of internal

registers. This resolves the first dependency, but the second dependency (RS0.x RS0.y RS0.z) is still

pending. One extra clock cycle needs to pass before RS1 gets the second dependency from SMU; this is

shown in Figure 28.

Instruction Issue (IIU)

Source Modifier (SMU)

RS0

DIV

Register File (RF)

RS1

5 10 15

15 15 15

ADD

R2 15 15 15 RS0.x RS0.y RS0.z

Theia architecture specification

43

43 Theia architecture specification

Figure 28 The SMU presents the second data dependency to the reservation stations. The ADD EU commits the result to the
RF.

Figure 28 shows the last step needed to execute the code from Figure 24. In this illustration, the RS1 is

presented with the second data dependency (5 10 15) coming from the SMU. Now that RS1 has the two

necessary data dependencies it can finally send the operands to the ADD EU so that 1 clock cycle later,

the result is calculated and presented to the CBUS so that it can finally be written back into the register

file.

3.5.4.1. VP Flags

The IIU receives two input flags from the EUs. These two flags are called the ZFLAG and the SFLAG. The

ZFLAG is a 3 bit wide signal that indicates that the current result in the CBUS is a zero. The SFLAG is a 3

bit signal that indicates that the current result in the CBUS is a negative number18.

18

 Using 2’s complement.

Instruction Issue (IIU)

Source Modifier (SMU)

RS0

DIV

Register File (RF)

RS1 5 10 15

ADD

R2 15 15 15 5 10 15

20 25 30

Theia architecture specification

44

44 Theia architecture specification

Table 9 Execution SFLAG values

SFLAG.x SFLAG.y SFLAG.z Description

000 Result X block, Y block and Z block in the CBUS are non-
negative.

001 Result X block in the CBUS is negative.

010 Result Y block in the CBUS is negative.

011 Result Y block and Z block in the CBUS is negative.

100 Result Z block in the CBUS is negative.

101 Result X block and Z block in the CBUS are negative.

110 Result X block and Y block in the CBUS are negative.

111 Result X block, Y block and Z block in the CBUS are
negative.

Table 10 Execution ZFLAG values

ZFLAG.x ZFLAG.y ZFLAG.z Description

000 Result X block, Y block and Z block in the CBUS are non-
zero.

001 Result X block in the CBUS is zero.

010 Result Y block in the CBUS is zero.

011 Result Y block and Z block in the CBUS is zero.

100 Result Z block in the CBUS is zero.

101 Result X block and Z block in the CBUS are zero.

110 Result X block and Y block in the CBUS are zero.

111 Result X block, Y block and Z block in the CBUS are zero.

The ZFLAG and the SFLAG are mainly used in the branch decision logic as explained in section 3.16.

3.5.5. Execution units and reservation stations

The VP has 6 reservation stations (RS). Each reservation station controls a single execution unit (EU). The

reservation stations are responsible of triggering the execution units when the operands are ready or

stalling the execution units while waiting for the data dependencies to arrive in the commit bus. Table

11 lists the available reservation stations.

Table 11 VP Reservation Stations

Reservation station Latency (clock cycles) Description

Theia architecture specification

45

45 Theia architecture specification

RS_ADD0 1 Integer unsigned addition/subtraction

RS_ADD1 1 Integer unsigned addition/subtraction

RS_DIV Variable Integer signed division

RS_MUL 1 Integer signed multiplication

RS_SQRT 1 Integer square root.19

RS_LOGIC 1 Bitwise logic operations. See section <> for more
details.

RS_IO Variable Input/Output operations

It is important to note from Table 11 that there are 2 reservation stations dedicated to do additions,

RS_ADD0 and RS_ADD1. The reason to have 2 separate reservation stations dedicated to add is that the

addition is the most issued instruction20. If a reservation station becomes busy waiting for a data

dependency, it is most likely that this RS was one of the adders, and it is also likely the next instruction

that will get fetched from IM is another addition.

The additions, subtractions, branches, register to register assignments, constant to register assignments,

etc. all these constructs can be achieved using simple additions. In order to illustrate this concept,

consider the snippet of code written in T-language21 presented in Figure 29.

The code from Figure 29 is basically assigning constant values to variables (variables are always stored in

registers), then it enters a function (called main), evaluates an “if” statement and calls a second function

from within the first function.

...

CameraPosition.x = 0;

CameraPosition.y = 0x00040000;

CameraPosition.z = 0x00020000;

//--

function main()

 {

19

 Note: This is not generic square root algorithm; it approximates the square root integer number within a range
of 0 and 512. See section 3.10 for details.
20

 See appendix TBD for a quantitative proof.
21

 This a special ‘middle level’ language specially designed for the THEIA GPU, see “T-Languague Document
specification” for more details.

Theia architecture specification

46

46 Theia architecture specification

 if (PrimitiveCount != MaxPrimitives)

 {

 GenerateRay();

 Hit = 0;

 PrimitiveCount = 0;

 }

 CalculateBaricentricIntersection();

 exit;

}

//--

...

Figure 29 An example code written in T-Language.

The code from Figure 29 then is compiled into a series of ADD operations as it is shown in the next

figure.

Theia architecture specification

47

47 Theia architecture specification

…

8: c001 200b 0 0 //ADD R11.x__ 0

9: a001 200b 2 0 //ADD R11._y_ 40000

10: 9001 200b 1 0 //ADD R11.__z 20000

//__main

11: 241 10 f 1c010 //ADD <BRANCH.ZERO> @16.___ R15.xyz R16.-x-y-z

12: f001 201f 0 e //ADD R31.xyz e

13: 201 @__GenerateRay 0 0 //ADD <BRANCH.ALWAYS> @__GenerateRay.___ R0.xyz R0.xyz

14: f001 201a 0 0 //ADD R26.xyz 0

15: f001 200f 0 0 //ADD R15.xyz 0

16: f001 201f 0 12 //ADD R31.xyz 12

17: 201 @__CalculateBaricentricIntersection 0 0 //ADD <BRANCH.ALWAYS> @__CalculateBaricentricIntersection.___ R0.xyz R0.xyz

18: 401 0 0 0 //ADD R0.___ R0.xyz R0.xyz

…

Figure 30 The code from Figure 29 translated into assembly language

Although the specific syntax of the assembly language from Figure 30 will not be covered in this

document, it becomes clear from this figure that the generated code is simply a series of ADD

operations.

Section 3.5 will provide more information regarding how the majority of the operations are really just

additions combined with some other fields from the instruction in Table 13.

3.5.6. VP Stall conditions

The VP can get into a stall state under certain scenarios; these scenarios are specified in Table 12 . When

the VP reaches a stall condition, the IIU stops fetching instructions from the IM and stops issuing

instructions to the reservation stations.

Table 12 IIU Stall conditions

Stall condition Description Un-stall condition

Theia architecture specification

48

48 Theia architecture specification

Structural hazard
detected

The IIU detected that there are no reservation
stations available to execute the current
instruction.

Once an appropriate RS
becomes available to execute
the current instruction

Data dependency
and special
operand modifiers.

The current instruction has a data dependency
on one of the operands and the SMU has no
free slots to handle the dependency.22

The data dependencies are
resolved and corresponding
result vector are written back
into the RF.

3.6. Instruction addressing modes

The VP has four addressing modes: direct, direct with displacement, indirect and indirect with

displacement. The addressing modes depend on the IMM bit and the MODE field as described in section

3.7.

In direct addressing mode the instruction destination is simply the index of the general purpose register

specified by the literal DSTINDEX field from Table 14. This mode does not depend on the IMM

instruction bit.

Figure 31 Direct addressing mode

In direct addressing with displacement the instruction destination is the index of the general purpose

register specified by the literal DSTINDEX field from Table 14, plus the SPR field OFFSET23.

Figure 32 depicts the logic that is used to calculate the RF address when using direct addressing with

displacement. It is important to note that the direct addressing mode can only be used to address

22

 For more information regarding the SMU dependency slot mechanism see section TBD.
23

 The value of OFFSET is zero by default, but this needs to be set by the software.

Instruction IMM=x

DSTINDEX

RF Address

DSTINDEX

Theia architecture specification

49

49 Theia architecture specification

memory locations in the internal GPU register file (RF). The direct addressing mode with displacement

does not depend on the IMM bit. Figure xxx shows an example of direct addressing.

ADD R1 R2 R3 //R1 = R2 + R3

Figure 32 Direct Addressing with displacement

Figure 33 shows an example of an instruction using direct addressing. The register in red (R1) is used as

the index into the RF, in other words the index is simply “1”. This index is added the value of OFFSET.

Since the OFFSET field is part of a special purpose register (SPR), it is not explicitly used in the

instruction. The only way to change the value of the OFFSET SPR is by writing directly into this special

purpose register24.

//Assume that the OFFSET register has been set to a value

ADD R[1 + offset] R2 R3 //R[1+offset] = R2 + R3

Figure 33 direct addressing with displacement

Additionally, the direct mode with displacement can have an “index” that is added to the offset. This

illustrated in the next figure.

24

 See section TBD for more information.

DSTINDEX RS OFFSET

+
RF Address

Instruction DSTINDEX IMM=x

Theia architecture specification

50

50 Theia architecture specification

Figure 34 Displacement and Index

The additional index from Figure 34 is used to de-reference arrays.

In indirect addressing mode the instruction destination is the content of the register file location

pointed by the DSTINDEX field from Table 14. In other words, the index of DSTINDEX is used as a

pointer, pointing to a memory location in the RF where the actual index will reside.

Figure 35 Indirect addressing mode

 Once again, the value pointed by DSTINDEX is added the OFFSET SPR. This concept is illustrated in

Figure 36.

DSTINDEX INDEX + RS_OFFSET

+

RF Address

Instruction DSTINDEX IMM=x

Instruction IMM=1

DSTINDEX

RF Address

DSTINDEX

RF

Theia architecture specification

51

51 Theia architecture specification

Figure 36 Indirect addressing with displacement

One important thing about the VP architecture is that only some instructions support the indirect

addressing mode while other instructions (most of them in fact) only support direct addressing mode.

This means that the instruction set is not orthogonal. This decision was made in order to remove

complexity from the decoding logic. Figure 37 shows an example of an instruction using indirect

addressing.

//Assume that the OFFSET register is zero

ADD R1.x 0x7 //R1 = 0x7

ADD <BRANCH_ALWAYS> *R1.x 0x1 //Jump to content of R

Figure 37 indirect addressing example

In the example from Figure 37, the first addition stores the immediate value 0x7 into the register file

location R1 (using direct addressing). Then, the second ADD operation executes a branch (see section

3.16 for more details on branching); the destination content of the register R1 (0x7) is used as the

branch destination.

Finally, Table 17 in the following sections presents the internal encoding of the addressing mode inside

the instruction word. This table may seem long, but is just an expanded version of the direct/indirect

addressing modes plus offset as it has been described. Table 17 also shows that it is possible to apply

the addressing modes to the SRC0 and SRC1 operands to use them as pointers under some

configurations.

Instruction IMM=1

DSTINDEX RS OFFSET

+

RF Address

DSTINDEX

RF

Theia architecture specification

52

52 Theia architecture specification

3.7. Instruction word fields

Section 3.5 presented a brief overview of the VP instructions; it showed how the VP instruction words

are broken down into “sections”. Each of these sections is broken down into fields.

This chapter is dedicated to specify all of the fields in each instruction section and describe its

functionality.

The next tables summarize the various instruction fields for the Operation, Destination, Source1 and

Source0 sections.

The first section to summarize is the Operation Section. The Operation section contains information

regarding which arithmetic operation will be performed, the type of instruction (using immediate value

or not using immediate value), branch information etc. The next table summarizes these concepts.

Table 13 Instruction Operation section fields

Field name Range Description

IMM 63 Immediate operation bit.
If this bit is set to 1, then the 32 least significant bits of the
instruction will be interpreted as the literal value IMMV. See
Figure 19.

SCOP/LOP 62:59 Scale modifier. This determines how the scale modifier is to be
applied. See section 3.13 for more details.
For logic operations it chooses the logic operation to perform
see section <TBD> for more details.

EOF 58 End of flow bit.
BBIT 57 Branch bit. See section 3.16for details.
BOP 56:54 Branch operation. See section 3.16 for details.

RESERVED 53:51 Reserved for future use.

OPCODE 50:48 Operation code. See section 3.9 for details.

The next section is the destination section. The destination section has to do with how the destination

address is resolved.

Table 14 Instruction Destination section fields

Field name Range Description

MODE 47:45 Addressing mode, see Table 17.
WEX 44 Destination write enable X.

If this bit is set to 1, then the channel X result from the VP will
be stored at the channel X slot of the destination register
DSTADDR, in the register file RF.

Theia architecture specification

53

53 Theia architecture specification

WEY 43 Destination write enable Y.
If this bit is set to 1, then the channel Y result from the VP will
be stored at the channel Y slot of the destination register
DSTADDR, in the register file RF.

WEZ 42 Destination write enable Z.
If this bit is set to 1, then the channel Z result from the VP will
be stored at the channel Z slot of the destination register
DSTADDR, in the register file RF.

DSTINDEX 41:34

3.8. Addressing mode encoding

The next two tables specify the values of the SRC1, SRC0 and DSTADDR for the various addressing mode

encodings. There are two main encodings: one when IMM = 0 and one when IMM = 1.

Table 15 Addressing mode encoding IMM = 0.

z/off1/off0
(IMM=0)

SRC1 SRC0 DSTADDR

000 R[SRC1INDEX] R[SRC0INDEX] DSTINDEX

001 R[SRC1INDEX] R[SRC0INDEX + OFFSET] DSTINDEX + OFFSET

010 R[SRC1INDEX +OFFSET] R[SRC0INDEX] DSTINDEX

011 R[SRC1INDEX + OFFSET] R[SRC0INDEX + OFFSET] DSTINDEX + OFFSET

100 R[SRC1INDEX] R[SRC0INDEX] DSTINDEX

101 R[SRC1INDEX] R[SRC0INDEX + OFFSET] DSTINDEX + OFFSET

110 R[SRC1INDEX + OFFSET] R[SRC0INDEX] DSTINDEX

111 R[SRC1INDEX + OFFSET] R[SRC0INDEX + OFFSET] DSTINDEX + OFFSET

Table 16 Addressing mode encoding IMM = 1.

z/off1/off0
(IMM=1)

SRC1 SRC0 DSTADDR

000 *branch IMMV R[DSTINDEX] DSTINDEX

001 * IMMV R[DSTINDEX] DSTINDEX + OFFSET

010 R[SRC1INDEX] R[SRC0INDEX+OFFSET +
RINDEX]

DSTINDEX + OFFSET

011*array 0 R[SRC0INDEX +
OFFSET]

DSTINDEX + OFFSET + SRC1[X]

100*assign IMMV

0 DSTINDEX

101*assign IMMV

0 DSTINDEX + OFFSET

Theia architecture specification

54

54 Theia architecture specification

110 R[SRC1INDEX +
OFFSET+ RINDEX]

0 DSTINDEX+OFFSET

111 * array R[SRC1INDEX +
OFFSET+ RINDEX]

R[SR0INDEX+OFFSET] DSTINDEX + OFFSET

The detail on how the addressing mode word is specified in Table 17. This table assumes the convention:

R[DSTADDR] = SRC1 OPCODE SRC0

This may seem as a rather large list but is simply a set of possible ‘flavors’ of the direct or indirect

addressing described in section 3.6.

Table 17 Addressing mode encoding.

IMM/MODE Description

0 000 Direct: The Indexes from SCR1, SRC0 and DST are directly used
to calculate the corresponding addresses in the RF.
DSTADDR = DSTINDEX
SRC1 = R[SRC1INDEX]
SRC0 = R[SRC0INDEX]

0 001 Direct with displacement: SRC0INDEX is added OFFSET and
then used to calculate SRC0ADDR in RF.
DSTADDR = DSTINDEX
SRC1 = R[SCR1INDEX]
SRC0 = R[SRC0INDEX + OFFSET]

0 010 Direct with displacement: SRC1INDEX is added OFFSET and
then used to calculate SRC1ADDR in RF.
DSTADDR = DSTINDEX
SRC1 = R[SCR1INDEX + OFFSET]
SRC0 = R[SRC0INDEX]

0 011 Direct with displacement: SRC1INDEX is added OFFSET and
then used to calculate SRC1ADDR in RF. SRC0INDEX is added
OFFSET and then used to calculate SRC0ADDR in RF.
DSTADDR = DSTINDEX
SRC1 = R[SCR1INDEX + OFFSET]
SRC0 = R[SRC0INDEX + OFFSET]

0 100 Direct with displacement: DSTINDEX is added OFFSET and
then used to calculate DSTADDR in RF.
DSTADDR = DSTINDEX + OFFSET
SRC1 = R[SCR1INDEX]
SRC0 = R[SRC0INDEX]

Theia architecture specification

55

55 Theia architecture specification

0 101 Direct with displacement: DSTINDEX is added OFFSET and
then used to calculate DSTADDR in RF. SRC0INDEX is added
OFFSET and then used to calculate SRC0ADDR in RF.
DSTADDR = DSTINDEX + OFFSET
SRC1 = R[SCR1INDEX]
SRC0 = R[SRC0INDEX + OFFSET]

0 110 Direct with displacement: DSTINDEX is added OFFSET and
then used to calculate DSTADDR in RF. SRC1INDEX is added
OFFSET and then used to calculate SRC1ADDR in RF.
DSTADDR = DSTINDEX + OFFSET
SRC1 = R[SCR1INDEX + OFFSET]
SRC0 = R[SRC0INDEX]

0 111 Direct with displacement: All the indexes from SRC1, SRC0 and
DST are displaced by the OFFSET.
DSTADDR = DSTINDEX + OFFSET
SRC1 = R[SCR1INDEX + OFFSET]
SRC0 = R[SRC0INDEX + OFFSET]

1 000* Direct with IMMV: The 32-bit immediate (literal) value IMMV
is used as SRC1, the value of the register pointed by DSTINDEX
is used as SRC0.25
DSTADDR = DSTINDEX
SRC1.x = IMMV
SRC1.y = IMMV
SRC1.z = IMMV
SRC0 = R[DSTINDEX]

1 001* Direct with IMMV and displacement: Combines
displacement and direct addressing.

DSTADDR = DSTINDEX + OFFSET
SRC1.x = IMMV
SRC1.y = IMMV
SRC1.z = IMMV
SRC0 = R[DSTINDEX + OFFSET]

1 010 Indirect with non-immediate
DSTADDR = R[DSTINDEX + SRC1[7:0]]
SRC1 = R[SRCINDEX1]
SRC0 = R[SRCINDEX1]

1 011 Indirect with non-immediate and offset: This is used to store
the results of the instruction directly into array elements.
(there is a traversal algorithm (see section TBD) which makes
heavy use of an array (working as a stack) this is why is

25

 In other words what this does is: R[DSTINDEX] = IMMV OPERATION R[DSTINDEX], where operation is one of the
operations from Table 6.

Theia architecture specification

56

56 Theia architecture specification

necessary for the instruction set to support storing directly
into array elements)
DSTADDR = R[DSTINDEX + OFFSET + SRC1[7:0]]
SRC1 = R[SRCINDEX1 + OFFSET]
SRC0 = R[SRCINDEX0 + OFFSET]

R[DSTADDR + SRC1[X_RNG] + OFFSET] = SRC0

1 100* Indirect with IMMV and Zero:
DSTADDR = DSTINDEX
SRC1.x = IMMV
SRC1.y = IMMV
SRC1.z = IMMV
SRC0.x = 0
SRC0.y = 0
SRC0.z = 0

1 101* Indirect with IMMV, displacement and clear SRC0: Combines
displacement, indirect addressing and zeroing of SRC0.

DSTADDR = DSTINDEX + OFFSET
SRC1.x = IMMV
SRC1.y = IMMV
SRC1.z = IMMV
SRC0.x = 0
SRC0.y = 0
SRC0.z = 0

1 110
1 111 Indirect with non-immediate and offset: This is used to store

the results of the instruction directly into array elements.
(there is a traversal algorithm (see section TBD) which makes
heavy use of an array (working as a stack) this is why is
necessary for the instruction set to support storing directly
into array elements)
DSTADDR = R[DSTINDEX + OFFSET + SRC1]
SRC1 = R[SRCINDEX1]
SRC0 = R[SRCINDEX0]

R[DSTADDR + SRC1 + OFFSET] = SRC0

The next 2 tables are the fields from the instruction source sections. Both SRC1 and SRC0 sections have a

similar layout. The values from these next two tables are especially important for the SMU in order to do

the source modifications.

Table 18 Instruction Source 1 section fields

Field name Range Description

Theia architecture specification

57

57 Theia architecture specification

SIGN1X 33 Source 1 sign X bit.
SIGN1Y 32 Source 1 sign Y bit.

SIGN1Z 31 Source 1 sign Z bit.
SWZZ1X 30:29 Source 1 swizzle X. See section 3.15 for details.

SWZZ1Y 28:27 Source 1 swizzle Y. See section 3.15 for details.
SWZZ1Z 26:25 Source 1 swizzle Z. See section 3.15 for details.
SRC1ADDR 17:24 Source 1 Address in RF.

Table 19 Instruction Source 0 section fields

Field name Range Description

SIGN0X 16 Source 0 sign X bit.
SIGN0Y 15 Source 0 sign Y bit.

SIGN0Z 14 Source 0 sign Z bit.
SWZZ0X 13:12 Source 0 swizzle X. See section 3.15 for details.

SWZZ0Y 11:10 Source 0 swizzle Y. See section 3.15 for details.
SWZZ0Z 9:8 Source 0 swizzle Z. See section 3.15 for details.
SRC0ADDR 7:0 Source 0 Address in RF.

3.9. Selecting the Arithmetic operation

The arithmetic operations were briefly introduced in section 3.5.1. This section will provide more details

on how the instruction determines the arithmetic operations.

The arithmetic operation within the instruction is controlled by the OPCODE field from Table 20. After

the IIU fetches an instruction it decodes the OPCODE in order to select the appropriate reservation

station to execute the OPCODE.

Table 20 Instruction OPCODE field values

OPCODE Name Description

000 NOP A NOP operation is issued by IIU.26
001 ADD Integer Addition. 27

010 DIV Integer division.
011 MUL Integer multiplication.

26

 Note: The NOP is actually sent into the IBUS with an RSID equal to zero. Since no reservation station has the
number zero as RSID then the NOP issue will be ignored by all the reservation stations and no operation will be
performed.
27

 Note: In order to perform a subtraction, the sign of one of the operands must be set to negative. See section
3.14 for details.

Theia architecture specification

58

58 Theia architecture specification

100 SQRT Integer square root. See section 3.10 for details.
101 LOGIC Bitwise logic operations. The specific logic operation is chosen

by setting the appropriate value into the SCOP/LOP field under
the operation instruction section. See section <> for details.

110 IO Input/Output operations see section 6 for details.

111 RSVR2 RESERVED.

The NOP, ADD, DIV and MUL operations from Table 20 are very straight forward. The square root

operation is a special case that is briefly explained in the next section.

3.10. Fixed point Square Root unit

As shown in Table 20, THEIA features an execution unit called SQRT which is dedicated to calculate

square roots. The SQRT unit has been designed to be very fast, but in return for that speed the SQRT

unit has a number of limitations. These limitations are related to the fact that the SQRT has been

implemented using a LUT, so SQRT can only calculate square roots for values that are constrained within

a certain range of numbers and only for fixed point numbers.

The SQRT can only calculate square roots for numbers that are between 0 and 127. This may seem like a

small range at first, but consider the following property of square roots illustrated with this example:

√ √

 √

So, if the number X from (3) is not between 0 and 127, then the number X can be divided by a power of

2 until it results in a number which is can be found within the range of numbers stored in the LUT. Then

the result from the LUT is multiplied back in order to get the result as in (3)28.

As it was mentioned earlier, SQRT only operates on fixed point numbers. The fixed point numbers have

an associated SCALE as described in section 3.4. The SQRT unit uses an LUT (ROM) to store the square

roots using a fixed point representation; this means that the SCALE is fixed for the SQRT unit. Since the

SQRT scale is fixed, then is the compiler’s responsibility to apply the appropriate scale operation (see

section 3.4) to the input arguments when issuing instructions into the SQRT unit.

The next table summarizes the limitations and special conditions of the SQRT unit.

Condition Description

Fixed point Scale The fixed point scale used by the SQRT unit is 17.
Numeric Range The range of number is between 0 and 64*127. If the SQRT attempts to

calculate a value outside if this range, then an arithmetic error condition is
generated. See section <TBD> for details.

28

 This multiplications and division by powers of two are implemented as shift operations.

Theia architecture specification

59

59 Theia architecture specification

Decimal truncation The when the fixed point number is between the range, then it is truncated
to the closest value on the LUT in order to calculate the square root.

3.11. Bitwise logic operations

The VP can perform bitwise logic operations by setting the value 3’b101 in the OPCODE field from Table

20 and then choosing among one of the following possible bitwise operations from Table 21.

Table 21 Logical operation selection

SCOP/LOP Name Description

000 AND Bitwise AND
001 OR Bitwise OR

010 NOT Bitwise NOT
011 SHL Shift left

100 SHR Shift right

As usual, the logical operations are applied in parallel into the x, y and z blocks of the operands as

mentioned in the previous sections.

3.12. Destination write channel control

Each VP instruction has the ability to specify the individual 32-bit destination blocks where the result will

be written back into the RF. This was briefly introduced in section 3.5.2. A VP instruction can choose to

alter the 3 32-bit destination blocks (X, Y and Z) or to selectively write only to some blocks, for example

storing the results into the X block only, or storing the results into the Z and the Y but not altering the X

block.

The way to control where to store the results is by using the WEX, WEY and WEZ Instruction bits from

the instruction destination section in Table 13. Table 22 lists all the possible WEX, WEY and WEZ values.

Table 22 Write channel control bit values

BBIT WEX WEY WEZ Description

0 000 No values are written to DSTADDR.29

29

 This is especially useful for branches. It is in general not desired that a branch operation writes values to the RF.

Theia architecture specification

60

60 Theia architecture specification

0 001 The result Z value is written to the DSTADDR Z block.

0 010 The result Y value is written to the DSTADDR Y block.
0 011 The result Z value is written to the DSTADDR Z block

AND the result Y value is written to the DSTADDR Y
block.

0 100 The result X value is written to the DSTADDR X block.
0 101 The result X value is written to the DSTADDR X block

AND the result Z value is written to the DSTADDR Z
block.

0 110 The result X value is written to the DSTADDR X block
AND the result Y value is written to the DSTADDR Y
block.

0 111 The result X value is written to the DSTADDR X block
AND the result Y value is written to the DSTADDR Y
block AND the result Z value is written to the DSTADDR
Z block.

1 xxx No values are written to DSTADDR. The branch logic is
activated.30

It is important to note from Table 22 that if a given X, Y or Z value is not written by the instruction, then

the previous (old) value will remain in the RF.

3.13. Operand Scale control

Each VP instruction has the ability to specify the optional scale operation for the input arguments SCR1

and SCR0. The scale operation shifts the x, y and z blocks of the specific source register by SCALE number

of bits. The scale operation is controlled by the SCOP instruction field from Table 13. The input

operands can be scaled to the left or can be scaled to the right depending on the value of the SCOP field

as specified in Table 23.

Table 23 input operand scale control

SCOP Description

000 No scale changes are applied to SRC1 or SCR0.
001 SRC1 << SCALE

010 SRC0 << SCALE
011 SRC1 << SCALE AND SCR0 << SCALE

100 Reserved
101 SRC1 >> SCALE
110 SRC0 >> SCALE

111 SRC1 >> SCALE AND SCR0 >> SCALE

30

 See section 3.16

Theia architecture specification

61

61 Theia architecture specification

It is important to remember that the scale operations from table<> modifies the individual x, y and z

blocks of the corresponding register, for example doing SCR0 << SCALE is really doing:

 (SRC0.x << SCALE, SCR0.y << SCALE, SCR0.z << SCALE)

So each x, y and z block is scaled individually.

The Scale operation is used to perform the operand scaling necessary for the fixed point arithmetic

operations31. The default value for the SCALE is 17 as defined in section Error! Reference source not

ound., and can be changed in the control register CNTREG.

3.14. Operand Sign control

Each VP instruction has the ability to change to sign of any given X, Y or Z block from any of the two

operand values. The sign change is applied by performing a 2 complement of the selected X, Y or Z

value. The sign control is very important since the VP doesn’t actually have a subtraction OPCODE (see

Table 20), therefore the sign control allows the SRC1 to be complemented in order to execute a

subtraction. Also note that the individual X, Y or Z blocks can be negated, this combined with the

operand “swizzling” allows for more complex operations as we will see in the next sections. The next

tables define how the sign is controlled using the SIGN* bits from the instruction SRC1 and SRC0 fields.

Table 24 SRC1 Sign control

SIGN1X SIGN1Y SIGN1Z Description

000 No sign changes are applied to SRC1.
001 SRC1 Z sign is inverted.

010 SRC1 Y sign is inverted.
011 SRC1 Y sign is inverted AND SRC1 Z sign is inverted.

100 SRC1 X sign is inverted.
101 SRC1 X sign is inverted AND SRC1 Z sign is inverted.
110 SRC1 X sign is inverted AND SRC1 Y sign is inverted.

111 SRC1 X sign is inverted AND SRC1 Y sign is inverted
AND SRC1 Z sign is inverted.

Table 25 SRC0 Sign control

SIGN0X SIGN0Y SIGN0Z Description

000 No sign changes are applied to SRC1.

31

 see section 3.4

Theia architecture specification

62

62 Theia architecture specification

001 SRC0 Z sign is inverted.

010 SRC0 Y sign is inverted.
011 SRC0 Y sign is inverted AND SRC0 Z sign is inverted.

100 SRC0 X sign is inverted.
101 SRC0 X sign is inverted AND SRC0 Z sign is inverted.
110 SRC0 X sign is inverted AND SRC0 Y sign is inverted.

111 SRC0 X sign is inverted AND SRC0 Y sign is inverted
AND SRC0 Z sign is inverted.

3.15.

Operand swizzle control

Operand swizzle consists of re-ordering the x, y and z blocks of the instruction input operands. Each

individual x, y or z operand block can be replaced by one of the x, y or z blocks in the same operand. This

is done by means of the SWZZL* fields from Table 18 and Table 19. The next tables define all the

possible input operand swizzle combinations.

Table 26 SRC1 Swizzle control X

SWZZ1X Description

00 Operand1.x is not modified.
01 Operand1.x is replaced by Operand1.z

10 Operand1.x is replaced by Operand1.y
11 Reserved

Table 27 SRC1 Swizzle control Y

SWZZ1Y Description

00 Operand1.y is not modified.
01 Operand1.y is replaced by Operand1.z

10 Operand1.y is replaced by Operand1.x
11 Replaced

Table 28 SRC1 Swizzle control Z

SWZZ1Z Description

00 Operand1.z is not modified.
01 Operand1.z is replaced by Operand1.y

10 Operand1.z is replaced by Operand1.x
11 Reserved

Theia architecture specification

63

63 Theia architecture specification

Table 29 SRC0 Swizzle control X

SWZZ0X Description

00 Operand1.x is not modified.
01 Operand1.x is replaced by Operand1.z

10 Operand1.x is replaced by Operand1.y
11 Reserved

Table 30 SRC0 Swizzle control Y

SWZZ0Y Description

00 Operand1.y is not modified.
01 Operand1.y is replaced by Operand1.z
10 Operand1.y is replaced by Operand1.x
11 Reserved

Table 31 SRC0 Swizzle control Z

SWZZ0Z Description

00 Operand1.z is not modified.
01 Operand1.z is replaced by Operand1.y

10 Operand1.z is replaced by Operand1.z
11 Reserved

There are 2 separate combinatorial blocks in the SMU dedicated to do the input operand swizzle32, one

for each of the two possible instruction operands. This is shown in Figure 38.

32

 Note: The instruction result cannot be swizzled.

Theia architecture specification

64

64 Theia architecture specification

3.16. Branching operations

Branching is done by setting to 1 the BBIT in the instruction’s operation field. After the instruction’s
result has been committed by the execution units, the IIU will check the values from the ZFLAG and the
SFLAG against Table 32 to decide if the branch was taken or not taken.

Table 32 Branch operation BOP values

BBIT/ BOP Description

1 000 Unconditional Branch.
1 001 Branch if ZFLAG is 1

1 010 Branch if ZFLAG is 0
1 011 Branch if SFLAG is 1

1 100 Branch if SFLAG is 0
1 101 Branch if ZFLAG is 1 OR SFLAG is 1
1 110 Branch if ZFLAG is 1 OR SFLAG is 0

1 111 Reserved

0 xxx No branch is performed

The branch decisions from Table 32 are further predicated by Table 33. Since the both the SFLAG and

ZFLAG have x, y and z values corresponding to the individual x, y and z result blocks, Table 33 describes

which x, y and z values from the ZFLAG and SFLAG are used by Table 32 in order to make the final

branch decision.

Table 33 Branch operation predicates.

BBIT / WE Description

X1 [95:64] Y1 [63:32] Z1 [31:0]

SRC1 [95:64] SRC1 [63:32] SRC1 [31:0]

SWZ1Y SWZ1Z SWZ1X

X0 [95:64] Y0 [63:32] Z0 [31:0]

SRC0 [95:64] SRC0 [63:32] SRC0 [31:0]

SWZ0Y SWZ0Z SWZ0X

Figure 38 Operand swizzle logic

Theia architecture specification

65

65 Theia architecture specification

1 000 Reserved
1 001 Use only z values of ZFLAG and SFLAG to make the branch

decision.
1 010 Use only y values of ZFLAG and SFLAG to make the branch

decision.
1 011 Use only y and z values of ZFLAG and SFLAG to make the

branch decision.
1 100 Use only x values of ZFLAG and SFLAG to make the branch

decision.
1 101 Use only x and z values of ZFLAG and SFLAG to make the

branch decision.
1 110 Use only x and y values of ZFLAG and SFLAG to make the

branch decision.
1 111 Use x, y and z values of ZFLAG and SFLAG to make the branch

decision
0 xxx The WE action is controlled by Table 22

Branching can usually be achieved by configuring the VP to perform a subtraction (this is an addition

with SRC0 sign bits set to 1) and then checking the SFLAG and ZFLAG to see if the source registers were

equal, greater, etc. according to Table 32 and Table 33.

It is important to note that nothing prevents the compiler from choosing to execute an operation

different from a subtraction and then checking the results of this operation against Table 32 to

determine the branch.

3.16.1. Unconditional branches

Unconditional branches are branches which are always taken. In order to set a branch as unconditional,

the BOP field has to be set to zero as specified in Table 32. Unconditional branches can either branch

into an effective address (EA) specified as an immediate value or can branch into an effective address

specified as the content of a register. Table 34 and Table 35 illustrate the previous concepts.

Table 34 Unconditional branch with branch destination as immediate value

Field name Range Value

IMM 63 0
WEX 62 0

WEY 61 0
WEZ 60 0

BP 59 0
EOF 58 0
BBIT 57 1

BOP 56:54 000

Theia architecture specification

66

66 Theia architecture specification

OPCODE 48:53 Any operation but NOP. See Table 20

DSTINDEX 41:34 Literal represent the EA to branch into.

Table 35 Unconditional branch with branch destination stored in a register

Field name Range Value

IMM 63 1
WEX 62 0
WEY 61 0
WEZ 60 0

BP 59 0
EOF 58 0
BBIT 57 1

BOP 56:54 000

OPCODE 48:53 Any operation but NOP. See Table 20

DSTINDEX 41:34 Literal represent the register index where the EA to branch will
be read.

3.16.2. Conditional Branches

For conditional branches, the IMM bit has to be clear to zero. THEIA does not allow using immediate

values as part of the sources to determine a conditional branch. The source values for branches shall

always be stored in registers.

Table 36, Table 37 and Table 38 show a possible scenario where the compiler would configure the VP to

perform a conditional branch by checking the ZFLAG and SFLAG after a subtraction.

Table 36 Example of Instruction operation for a conditional branch instruction

Field name Range Value

IMM 63 0
WEX 62 0

WEY 61 0
WEZ 60 0

BP 59 0
EOF 58 0
BBIT 57 1

BOP 56:54 B2 B1 B0. See Table 32.

OPCODE 48:53 ADDITION. See Table 20.

Theia architecture specification

67

67 Theia architecture specification

Table 37 Example of Instruction Destination for conditional branch instruction.

Field name Range Value

DSTZERO 47 DON’T CARE
RESERVED 46:34 Branch address.

Table 38 Example of Instruction Sources for a conditional branch instruction

Field name Range Value

SOURCE1 33:17 Any valid combination as described in <>
SIGN0X 16 1
SIGN0Y 15 1
SIGN0Z 14 1
SRC0ADDR 7:0 Source 0 address in RF.

4. VP Data path

Now that the various instruction fields have been described in the previous sections, it is time to give a

brief walk-through of the VP data path. The VP data path follows the path of the instruction and data

from the IM all to way down to the RF. There are several data structures and special values that get

added or removed along the way; this is illustrated in Figure 39. Figure 39 uses a series of acronyms such

as DSTADDR, SC, WE, etc. These acronyms come from the previous sections.

Table 39 Data path fields.

Field name Section Description

RSID Reservation station ID determined by the IIU
DSTADDR Destination address determined by the IIU

SC Table 13 Scale control

WE Table 14 The WE.x WE.y and WE.z from the Destination section.

RSID1 The ID of the reservation station which is currently
calculating the data dependency for SRC1. (Zero means no
dependency)

RSID0 The ID of the reservation station which is currently
calculating the data dependency for SRC0. (Zero means no
dependency)

SRC1 The 96 bit value (32 * 3) representing the instruction Source
1.

Theia architecture specification

68

68 Theia architecture specification

SRC0 The 96 bit value (32 * 3) representing the instruction Source
1.

Figure 39 VP data path Walk Through

The walkthrough starts with the instruction reaching the IIU. The IIU is in charge of decoding the

instruction and generating a decoded packet. This decoded packet is composed of various fields as it is

shown in Figure 39. The decoded packet is reprinted in Figure 40 for clarity.

Instruction Issue (IIU)

RSID DSTADR SC WE TAG1 RSID1 TAG0 RSID0 SRC1 SRC0

Source Modifier (SMU)

RSID DSTADR SC WE RSID1 SRC1* RSID0 SRC0*

Reservation Stationk (RSk)

DSTADR WE SRC1 SRC0

Execution Unitk (EUk)

RSID DSTADR WE

Register File (RF)

DSTADR WE Result RSID Result

Result

OperandRSID TAG

Theia architecture specification

69

69 Theia architecture specification

Figure 40 The decoded instruction presented by the IIU to the SMU

The first field from Figure 40 is the RSID which is simply the numerical index of the reservation station

that is required to handle this issue, this calculated using Table 20. The next field is the DSTADR, this is

the effective address calculated using Table 17. Next is the SC field, this is the scale field taken from the

Table 13. Next is the WE (Write Enable) field which is taken from Table 14. Next is the TAG1. The TAGs

are simply the SIGN+SWIZZLE for each SRC0 or SRC1 operands. The RSID1 field is the reservation station

index of the RS that is resolving the data dependency of SRC1 (zero in case there are no dependencies),

similarly RSID0 is the index of the RS resolving the data dependency of SRC0. SRC1 and SCR0 are the 96

bit wide values of the source operands taken from the RF.

This decoded packet from Figure 40 is presented to the SMU. The SMU looks at the TAG1 and TAG0

fields. If any of these fields is non-zero, then the SMU applies the corresponding data modifications

according to Table 23, Table 24, Table 25, Table 26, Table 27, Table 28, Table 29, Table 30 and Table 31.

The output from the SMU is modified packet that is reprinted from Figure 39 by Figure 41.

Figure 41 The packet presented by the SMU to the reservation stations (RS).

All of the fields from Figure 41 have been already mentioned. There are a couple of important things to

see from Figure 41. The first thing is that if the RSID1 is zero (meaning that there are no data

dependencies), then the SMU simply applies the scaling, swizzling and sign modifications to (SRC1.x,

SRC1.y, SRC1.z) so that is becomes (SRC1.x’, SRC1.y’, SRC1.z’). If RSID1 is not zero, then SMU cannot

apply the source modifications, instead the SMU inserts theTAG1 into the least significant bits of SRC1.

RSID DSTADR SC WE TAG1 RSID1 TAG0 RSID0 SRC1 SRC0

SWZ1 SIGN1 SWZ0 SIGN0

RSID DSTADR SC WE RSID1 SRC1 RSID0 SRC0

SRC1.x’ SRC1.y’ SRC1.z’

Reserved TAG1

SRC0.x’ SRC0.y’ SRC0.z’

Reserved TAG0

RSID1 == 0

RSID1 != 0

RSID0 == 0

RSID0 != 0

Theia architecture specification

70

70 Theia architecture specification

The same thing happens with SRC0.

Following Figure 39, the output packet from the SMU is broadcasted to the reservation stations. Only

the RS who’s RSID matches the RSID field from Figure 41 will handle the issue request. It is important to

mention that an issue request is targeted to a single RS, in other words it is not possible for two or more

RSs to handle the same issue request at any given point in time. Once the packet from Figure 41 reaches

an RS two things can happen: either there are no data dependencies (RSDI1 and RSID0 are both zero)

and the instruction is passed directly to the corresponding EU, or there is at least one data dependency

and then the RS will wait until the dependency becomes available from the SMU.

In the scenario where there are no data dependencies, the RS will trigger the EU so that the arithmetic

or logic operation starts executing. A number of clock cycles after the RS triggers the EU, the results

from the operation are obtained. These results need to follow several paths as illustrated in Figure 39.

One of these paths connects the results directly with the RF. The RF only needs information regarding

where to write the result values (DSTADDR) and which of the X, Y or Z channels to update (WE), and of

course the actual data to write. Another possible path for the results is to be connected from the EU

back into the SMU. This is used in order to resolve data dependencies which are pending a swizzle, scale

or sign change (for an example see section 3.5.4)

4.1.1. Instruction issue unit (IIU)

The instruction issue unit (IIU) is responsible of fetching the next instruction from the IM, decoding the

instruction, selecting the appropriate reservation stations, issuing the instruction into the IBUS or

stalling the machine when the stalling conditions from Table 12 are met.

Theia architecture specification

71

71 Theia architecture specification

Figure 42 Block diagram of the IIU

Figure 42 shows a block diagram of the IIU. The IIU interfaces with the instruction memory (IM), the

SMU and the Register File (RF). The main inputs to the IIU are the Instruction from the IM and the SRC0

and SRC1 data from the RF and the main output is the Issue-Packet send to the SMU; please refer to

Figure 39 for a detailed description of these packets.

The IIU is responsible of generating the next instruction pointer (IP). This IP is send to the IM and after 1

clock cycle the requested instruction reaches the IIU. Once the instruction arrives at the IIU, the SRC0

address and SRC1 address are decoded from the Instruction and send to the RF. One clock cycle after

the SRC0 address and SRC1 address are send to the RF, the corresponding data (SRC1 and SRC0) arrive at

FIFO

Dependency

Table
IIU FSM & Stall logic

Register

File

IM

Addressing mode

logic

SMU

IP Instruction

SRC1

SRC0

SRC1 Addr

SRC0 Addr

Reservation Stations

Execution Units

Issue Packet

Offset

Theia architecture specification

72

72 Theia architecture specification

the IIU.

In the same clock cycle when the SRC0 and SRC1 are requested from RF, these same addresses are

checked for dependencies on the Dependency-Table, this also takes 1 clock cycle but as mentioned

earlier it happens in parallel with the SRC1 and SRC0 request from the RF. So in the next clock cycle the

IIU knows the values of SRC0 and SRC1 and also knows if those two values are valid and can be used as

part of the Issue-Packet. Depending on the instruction codification, either the SRC1 and SRC0 or the

IMMV and the SRC1 are used to build the Issue-Packet. Also depending on the addressing mode, the

DST, SRC0 or SRC1 may need to be added the Offset value and/or Index value.

A FSM takes care of the special cases during the IIU execution: branch stall conditions, dependency

resolution, etc. For example, it may happen that SRC1 for the current instruction has a dependency on

RSk marked in the Dependency-Table. When this happens, the FSM first checks to see if the dependency

is currently waiting to be updated (there is an input FIFO in the IIU to serialize incoming dependency

resolutions from the EUs), if the dependency resolution is not currently pending on the FIFO then the

FSM uses the dependency index RSk value from the Dependency-Table to mark the corresponding

SRC1RS section of the Issue-Packet as a dependency of RSk.

The FSM also takes cares of stalling the IIU. The IIU can be stalled under the conditions described in

Table 12. For example, if there are no free reservations stations available to handle the current

instruction, then the FSM will stall until a suitable RS becomes available, also if the SMU runs out of free

slots then the FSM will also stall the IIU.

Finally when all the necessary information to create the Issue-Packet has been obtained (this usually

takes two clock cycles unless there is a stall) the FSM makes sure that the Dependency-Table gets

updated for the current instruction and finally issues the decoded instruction to the SMU.

It is important to mention that even if most of the EU can execute in 1 clock cycle, the IIU can only issue

an instruction every 2 clock cycles. This limitation is solved by the use of multithreading as we will see

later on this document.

Theia architecture specification

73

73 Theia architecture specification

4.1.2. Source Modification unit (SMU)

The Source modification unit is a hardware block dedicated to apply the scale, swizzle and sign

modifications to the data coming from IIU and to data result forwarded from the EUs. A behavioral

explanation of what the SMU does is available in section 3.5.3. The next figure illustrates the structure of

the SMU33.

Figure 43 SMU simplified diagram

33

 This is a simplification for the sake of the discussion

Sign

Scale

Swizzle

Round Robin

RSID DSTADR SC WE TAG1 RSID1 TAG0 RSID0 SRC1 SRC0

FFD

Sign

Scale

Swizzle

Dep-Store0

Dep-Store1

Dep-Store2

Dep-Store3

Store select

RS0

EU0

RSk

EUk

RF

Busy

Theia architecture specification

74

74 Theia architecture specification

The main inputs to the SMU are the Issue-Packet from the IIU and the result forwarded from the EU, and

the main output is the modified-issue packet that is send to the reservation stations; please refer to

Figure 39 for a detailed description of these packets.

When a packet arrives from the IIU, the SMU looks at the packet fields to see if the SRC1, SRC0 or the

Result needs to be modified. If either the SRC1 or the SRC0 (or both) need a modification, then the SMU

uses the two combinatorial blocks dedicated to do Scale, Swizzle and Sign modifications. If the Result

needs to be modified, then the SMU updates a special field on the packet and uses the “Dep-Store”

blocks to store the dependencies so that when the results are forwarded back from the EUs the

modifications can be applied.

The SMU has 4 “Dep-Store” blocks. Each Dep-Store block keeps track of a single result dependency by

storing a single TAG/Register pair. Every time a packet arrives from the IIU, a free Dep-Store block is

used to store the dependencies for SRC1 and SRC0 (if any). If there are no free Dep-Store blocks to store

the dependencies then the SMU stalls and sends a busy signal back to the IIU, indicating that it can

handle no more requests.

When a result is forwarded from the EUs, the SMU broadcasts this result to the “Dep-Stores”. If the

result is not pending a modification on any of the Dep-Stores, then no changes are applied to it and the

result is forwarded verbatim back to the reservation stations. If one or more Dep-Store has the result

marked as pending for modification, then the modifications are applied and the modified results are

serially forwarded to the RS, using a round robin algorithm.

4.1.2.1. Issue Bus (IBUS)

The issue bus or IBUS is a 216 bit wide shared bus which connects the IIU with the Reservation stations.

The next table shows the structure of the IBUS.

Table 40 Issue bus fields

Field name Range Description

SCOP 218:216 The scale operation bits (see section 3.13)
DEST_ZERO 215
RSID 214:211 The reservation station ID.

WE 210:208 Write enable bits. (see section 3.12)
DST 207:200 The destination address in RF.

SRC1RS 199:196 The SRC1 renamed register index according to Table 11.
The value 0 means that there are no data dependencies for
SRC1.

SRC0RS 195:192 The SRC0 renamed register index according to Table 11.
The value 0 means that there are no data dependencies for
SRC0.

Theia architecture specification

75

75 Theia architecture specification

SRC1 191:96 The 96 bit value (32x3) of SRC1.

SRC0 95:0 The 96 bit value (32x3) of SRC0.

All the reservation stations (RS) are connected to the IBUS as depicted in Error! Reference source not

ound.. When a RSID field in the IBUS matches the RS ID, the RS reads in the issue data from the IBUS.

The WE and DST fields are directly forwarded by the execution units into the CBUS.

The SRC1RS and SRC0RS are the instruction operand dependencies (aka. Renamed registers). These

registers are the indexes of the RSs which are currently operating on SRC0 and SRC1 respectively

(according to the Tomasulo’s algorithm). A value of zero on SRC*RS means that there are no data

dependencies.

4.1.2.2. Commit Bus (CBUS)

The commit bus or CBUS is a 111 bit wide shared bus which connects the execution units with the RF.

The CBUS also retro-feeds into the reservation stations and reaches back into the IIU to allow for data

forwarding as shown in Error! Reference source not found..

Table 41 Commit bus fields

Field name Range Description

RSID 110:107 The ID of the reservation station currently owning the CBUS.
WE 106:104 The write enable x, y and z values (see section 3.12)

DST 103:96 The destination address in RF.
COMMIT_X 95:64 The X block of the result

COMMIT_Y 63:32 The Y block of the result

COMMIT_Z 31:0 The Z block of the result

The CBUS is a shared bus. The RF and all the Reservation stations can concurrently read from the CBUS,

but only one execution unit is allowed to have write ownership of the CBUS at any given point in time.

The write arbitration of the CBUS is performed by a fair round robin arbiter as shown in Error!

eference source not found.. If only a single EU is requesting write ownership of the CBUS then the

arbiter grants the ownership one clock cycle after the request. If there are multiple EUs requesting write

ownership of the CBUS, then it may take up to (# of requesting EUs) clock cycles for a given EU to be

granted ownership of the CBUS.

Theia architecture specification

76

76 Theia architecture specification

5. VP SMT (simultaneous multithreading)

As previously mentioned each VP can execute multiple HW threads in an SMT fashion. There is a

separate issue unit for each thread with independent instruction pointers and dependency tables. Only

one of the issue units can issue an instruction to the reservation stations at any given point in time, since

many the instructions can take more than one clock cycle to complete, the instruction execution of

different threads overlaps in time. Each thread has a separate variable space in the register file; this

register file thread partition is done by the software34. These concepts are illustrated in the following

figure.

Figure 44 multithreading

 The previous figure also shows that there is a common variable space in the register file for all the

threads. This common variable space contains special control variables such as R0, R1, R2 and R3 which

can be safely used by each thread during its own time slot.

The register R2.z controls whether the multithreading is enabled or disabled and also stores the offset of

each thread variable area in the register file. It is important to note that the more active threads at a

34

 Currently this is done by the high level compiler.

II0 II1

Round

Robin

RS0 RSn …

Common space

Space for thread 0

Space for thread 1

Register file

Theia architecture specification

77

77 Theia architecture specification

given point in time the smaller is the variable space allocated for each thread in the register file.

Furthermore, if a single thread is executing then this thread has access to the entire RF address space.

It is also important to note that any thread can write into the VP’s OMEM resource, it is up to the

programmer to keep track of how each thread access the OMEM in order to avoid data corruption or

inconsistencies.

What happens if the code attempts to issue a thread and there are no more Issue units available?

6. VP IO

Each vector processor has a special reservation station dedicated to perform IO operations. The IO

reservation station can handle one OMEM write operation or one TMEM read operation. The OMEM

write operation takes 1 clock cycle, whereas the TMEM read operations can take multiple clock cycles

depending on the traffic congestion in the TMEM cross bar.

6.1. Output memory OMEM

The OMEM is a 32-bits x TBD memory where the CORE writes its result data. These results are usually

colors in RGB “true color” format, this is 8 bit per color channel plus 8 bit alpha transparency35 = 32 bits

per pixel color.

Figure 45 A typical pixel color stored as a 32 bit value in VP’s the OMEM

The VP IO module in charge of the OMEM logic is called the Output Memory Interface (OMI).

35

 Alpha channel is not mandatory and sometimes is simply ignored all zero filled.

32 bits

Red Green Blue Alpha

8 bits 8 bits 8 bits 8 bits

Theia architecture specification

78

78 Theia architecture specification

Figure 46 The OMI inside the IO unit

Figure 46 shows the signals entering and exiting the OMI and how these signals reach into the OMEM.

The OMI is directly connected to the VP’s EXE block, the IO Reservation station inside of the EXE

provides the OMI with the 3 main input signals: iAddress, iData and iWriteEnable. The following figure

illustrates how the OMI handles these inputs signals in order to write the data into the OMEM.

Figure 47 EXE and OMI signals

OMI OMEMi

VPi

IO

OMEM_ADR_O

OMEM_WE_O

OMEM_DAT_O

ADR_O

DAT_O

WE_O

EXE iData

iAddress

iWriteEnable

Theia architecture specification

79

79 Theia architecture specification

The signals iData and iAddress from Figure 47 are 96 bit wide OMI input ports. The iData signal

represents a 32 bit triplet of data that the OMI will write on each of the 3 32 bit addresses presented by

the EXE on the iAddress OMI input port. It is important to note that the iWriteEnable input port shall be

asserted for at least 3 clock cycles otherwise the data triplet will not be effectively written into the

OMEM.

As mentioned earlier, each VP is assigned to a single OMEM. The OMEM is write-only from the VP’s

perspective. Table 42 lists the relevant signals to communicate the VP with its corresponding OMEM

unit. Since there is no risk of contention, the bus cycles to write into the OMEM do not follow the

Wish-Bone protocol.

Table 42 presents the signals involved in the communication between the VP and the OMEM unit.

Table 42 – CORE signals for OMEM write bus cycles.

Signal name Type Size Description

OMEM_WE_O Output 1 Output memory Write Enable.
The VP-n puts this signal in 1 to write into the write-only
memory OMEM-n.

OMEM_ADR_O Output 1 Output memory Write Address.
The VP-n uses this signal to specify the write address into the
write-only memory OMEM-n.

OMEM_DAT_O Output 1 Output memory Write Data.
The VP-n uses this signal to specify the data to write into the
write-only memory VP-n.

The following figure illustrates some of the concepts from Table 42.

Figure 48 - VP writing data to an OMEM.

Marker 1 from Figure 48 shows when the VP is setting the OMEM_WE_O signal to 1. One clock cycle

after the OMEM_WE signal is set to 1 by the VP, the data on OMEM_DAT_O is written into the memory

address specified by OMEM_ADR_O.

Theia architecture specification

80

80 Theia architecture specification

6.2. Texture memory TMEM

The TMEM is an external memory from where the VP reads the texture information. The TMEM is

read-only from the VP’s perspective. All the VPs can access the TMEM through a cross bar

interconnection in order to perform read operations.

Figure 49 show a conceptual representation of the cross-bar bus. Each cross point from Figure 49 is

implemented as a simple switch. The TMEM is an interleaved RAM divided upon a number of memory

banks, called TM0 … TM3 in Figure 49. Also each memory bank has its own simple bus arbiter (not

shown in the picture). If two or more VPs want to read from the same memory bank at any given point

in time, then a bus contention scenario occurs and the corresponding bus arbiter will handle the read

requests in a round-robin fashion.

Table 43 presents the signals involved in the communication between the VP and the TMEM unit.

Table 43 – CORE signals for TMEM write bus cycles.

Signal name Type Size Description

TMEM_DAT_I Input 32 TMEM read data.
Data read from TMEM.

TMEM_ADR_O Output 32 TMEM read address.
The VP specifies the address in TMEM from which to read.

C0 C1 C2 C3

TM

0
TM

1

TM

2

TM

3

Figure 49 - Cross bar bus example

Theia architecture specification

81

81 Theia architecture specification

TMEM_CYC_O Output 1 Wishbone output cycle signal.
The VP puts this signal in one in order to request ownership of
the crossbar bus for a bus read cycle. The corresponding
memory bank arbiter will grant the petition by asserting the
GNT_I input signal.

TMEM_GNT_I Input 1 Cross bar bank read access granted.
The memory bank arbiter sets this signal to 1 when a bus read
ownership petition is granted for this CORE instance.

The following figure illustrates some of the concepts from Table 43.

Figure 50 - CORE reading data from TMEM.

Figure 50 shows a read bus cycle where a VP is reading from the TMEM. Since the VPs and the TMEM
are connected through a cross-bar bus, concurrent read access from different cores is guaranteed as
long as no two VP are attempting to read from the same memory of TMEM at the same time. If two or
more VPs are attempting to concurrently read from the same TMEM memory bank then the
corresponding arbiter will grant ownership of the bus to each VP in a round-robin fashion.

The marker 1 from Figure 50 shows a VP setting the TMEM_CYC_O to 1. By setting the TMEM_CYC_O

signal to one, the VP is requesting a read bus cycle from the address specified by TMEM_ADR_O. If no

other VP is trying to read from that same memory bank then the bus arbiter immediately grants the bus

ownership to the VP by asserting the TMEM_GNT_I signal to one, otherwise the VP has to wait until the

bus ownership is granted by the bus arbiter.

Marker 2 from Figure 50 shows the arbiter setting the TMEM_GNT_I signal to 1. This means that the VP

has been assigned exactly 1 clock cycle to read in the data from the TMEM_DAT_I signal. Note that 1

clock cycle after the data is read in by the VP, the TMEM_ADR_O signal changes values, since the

TMEM_CYC_I signal is still high, the arbiter understands that this VP wants to perform another read bus

cycle, the data corresponding to this new read bus cycle arrives when the VP is granted the bus in

marker 3.

Marker 5 from Figure 50 shows the VP setting the TMEM_CYC_O signal back to cycle. This marks the end

of the read bus cycle, and the bus arbiter assumes that no more read petitions will come from this VP.

Theia architecture specification

82

82 Theia architecture specification

7. VP Register specification

The register files (RF) hosts up to 6436 96bit general purpose registers. The VP also has a set of 8 special

purpose registers (SPR) which hold special values. The following sections summarize the register

specification.

7.1. General purpose registers (GPRs)

The general purpose registers are a set of 64 * 96 bit registers37. Each register has the structure

described in section 3.3. The general purpose registers are readable and writable by the ALU.

Although the Hardware makes no distinction on the usage of each general purpose registers, the

software compiler has special uses for some of the general purpose registers; this is summarized in

Table 44.

Table 44 Special purpose registers.

Register Size
(bits)

Name Description

R0.x 32 Zero Register This is intended to have the value 0x0.38
R0.y 32 One Register This is intended to store the value 0x1.
R0.z 32 Two Register. This is intended to store the value 0x2.31
R1 96 Return Value The software shall store the return value from a function

here. 31
R2.x 32 Return Address The software shall store the return address in this register.

31
R2.y 32 The scale used for fixed point arithmetic. 31
R2.z 32 Multi thread

Control
Control Register. See table <TBD> for details.
0: -> Multithread enabled.
8:1 -> Thread 1 Code Offset

R3.x* 32 OFFSET register The OFFSET used for the direct addressing mode with
displacement and the indirect addressing mode with
displacement. 31

R3.y* 32 Previous
OFFSET

The previous value of the OFFSET. 31

R3.z 32 Index Register
SCALE

Index Register used by the software to dereference arrays.

R4 – R9 96 Function
parameters

The software shall store up to the first 6 function input
parameters in the registers R24 – R29. 38

36

 This number might change, depending on the performance analysis.
37

 This is about 3 kilobytes, perhaps we can bring down this number to 128 register which is around 1.5kB.
38

 This is a software convention; there is no hardware which enforces this convention.

Theia architecture specification

83

83 Theia architecture specification

R10 – R63 96 General
purpose

Used by the compiler to store program variables and
arrays.

The Registers marked with an ‘*’ in Table 44 are shadowed. See next sections for details on this.

7.1.1. Zero register – R0.

As mentioned earlier, the compiler assumes that the register R0 has the value (0, 1, 2). This is a software

convention, but it is very important for the compiler. Consider the following example:

//Assign a value

R7 = R8;

//Do a simple increment

R1.y++;

//Assign a value

ADD R7 R8, R0.xxx

//Do a simple increment

ADD R1.y R1 R0.yyy

Figure 51 Using the R0 register

In the previous code, the compiler first uses the register R0 in order to copy the value from R8 into R7.

Since the VP does not have a “COPY” opcode, the compilers achieves the copy operation simply by using

an addition in the form R7 = R8 + 0. This is done by using the swizzled register R0.xxx which is assumed

by the compiler to have the value (0, 0, 0).

After doing the operation R = R8, the code from Figure 51 does a unitary increment R1.y++. To do this

increment, the compiler uses the swizzled register R0.yyy, which is assumed to have the value (1, 1, 1),

so is effectively doing R1.y = R1.xyz + (1, 1, 1);

It is important to mention that R0 (and in fact all of the general purpose registers) are readable and

writable by the user. This means that nothing prevents the user from changing the values of R0, and this

is fine for programs written in the THEIA assembly language, but for the high level language,

unpredictable behavior may happen when the values of R0 are changed.

Theia architecture specification

84

84 Theia architecture specification

7.1.2. Return address register – R2.x

The R2.x register is used by the compiler to store the return address before making function calls. When

the called function returns, the value in R2.x is used as an indirect address to return to the caller

function. This illustrated in the next code.

//main calls MyFunction

function main

{

 GenerateRay();

}

// GenerateRay();

//store return address

24: 8001 2702 0 1c //ADD R2.xyz I(1c) 0

//store current frame offset

25: 1 203 a03 a00 //ADD R3._y_ R3.xxx R0.xxx

//displace next frame offset by the number of auto variables in current frame

26: 8001 403 0 2 //ADD R3.x__ I(2) R[DST]

//call the function

27: 201 @GenerateRay 0 //ADD <BRANCH.ALWAYS> @GenerateRay.___ R0.xyz R0.xyz

Figure 52 Using the R2 register

7.1.3. Offset registers – R3.x, R2.y

The Offset registers are used by the compiler to implement the function “stack frame”. The function

stack frame is used to allocate space for the automatic39 variables. Since the VP has no direct access to

external memory locations, the space for auto variables is simply allocated by providing an offset into

the register file (RF). The SPR R3.x is used as a pointer to the first memory location of the current stack

frame40. Each time a function gets called, the R3.x register is updated by adding the number of local auto

variables in the current frame. Also the previous frame offset is stored in R2.y; this is used so that when

the subroutine returns, the previous function frame is restored. The next figure illustrated these

concepts.

39

 See T-Language specification document for more details.
40

 Each memory location is a word, this is 96 bits.

Theia architecture specification

85

85 Theia architecture specification

Figure 53 Example of using the offset register R30 to allocate memory for automatic variables.

7.2. Shadowed GPRs

As previously mentioned each VP has a set of general purpose registers (GPRs). Some of these GPRs

have special meanings for the compiler. Also, some of the GPRs have special behaviors and under

certain scenarios, certain VP blocks may have a need to read from a GPR “without having to access the

RF directly”.

Let’s illustrate this with an example, let’s suppose that the IIU is decoding an instruction that has direct

addressing mode with displacement. Since the displacement is used the IIU would need to read the

Offset register (R3.x) from the RF, but it would also needs to read the SRC0 and SRC1 values from the RF.

The RF is a dual read channel RAM, meaning that the IIU can simultaneously read from 2 memory

locations in the RF, but for this particular example it would need to read from 3 RF locations in the same

clock cycle (which is not possible). In order to be able to read from certain special GPRs without using

one of the two data address lines from the RF, a special “shadow register” topology is used for a small

number of the GPRs such as R3.

R1 = foo

R2 = bar

R3.x = 0

R2.y = ??

function F1()

{

 auto foo, bar;

 F2();

}

function F2()

{

 auto A, B, C ;

}

R3.x = 2

R2.y = 0 R1 = foo

R2 = bar

R3 = A

R4 = B

R5 = C

F1

Frame

F1

Frame

F2

Frame

Theia architecture specification

86

86 Theia architecture specification

Figure 54 Example of an SPR shadowing R30

Figure 54 shows how R3 is present in the RF but it is also replicated outside of the RF, in a separate set

of flops. When the EUs write into R3, the values are written to both the R3 location in the RF and also to

the copy of R3 in the external flops. This allows the IIU to read the value of R3.x from the external flops

instead using one of the two address lines to read from the RF, so that it can simultaneously read R3.x

together with other two values from the RF during the same clock cycle.

7.3. Special purpose registers (SPRs)

These are special registers outside of the GPR space. This section is TBD.

Table 45 List of special purpose registers

Name Position in RF Size Description

CONFIG TBD TBD
ALUERR TBD TBD The VP error registers. See table <>.
WDT TBD TBD The watch dog timer. When the specified bit of the

WDT is set, then an interrupt is generated.

The next table provides a description of the Control register.

Table 46 Control register (CNTREG)

Field Range Description

IIU

SMU

RS

EU ==

Write Address

Offset

Scale

R3.xx R3.yx R3.zx

Register file

Index

Theia architecture specification

87

87 Theia architecture specification

RESERVED 23:0 The scale used for the input operand scaling.41 See
section 3.13.

EXCEN 24 Enable exception handling.
WDTEN 25 Watch dog timer enabled
WDTSEL 30:26 WDT select bit.

The next table provides a description of the Error register.

Table 47 Arithmetic error register

Field Range Description

XYZ 2:0 This field indicates if the current error is related to
the x, y or z block.

000: Unknown: the machine has no information
regarding the x, y or blocks which generated the
error.

001: Current error generated by the operation z
block.

010: Last operation had division by zero on the Y
block.

011: Current error generated by the operation’s Y
block and the Z block.

100: Current error generated by the operations X
block.

101: Current error generated by the operations X
block and the Z block.

110: Current error generated by the operations X
block and the Y block.

111: Current error generated by the operations X
block, Y block and the Z block.

Division by zero42 3 Division by zero. The block specified by the XYZ field
generated the error.

Arithmetic overflow 7:4 RSID of the RS causing the arithmetic overflow. The
block specified by the XYZ field generated the error.

41

 Even if this scale gets changed, the SQRT always expects SCALE = 17. See section 3.10
42

 Fixed point arithmetic allows infinity divisions.

Theia architecture specification

88

88 Theia architecture specification

Scale overflow 11:8 RSID of the RS causing the scale overflow. The block
specified by the XYZ field generated the error.

Scale underflow 12 A scale underflow occurred in the IIU.
Unknown square root 13 The value send into the SQRT unit was not found in

the LUT. See section 3.10 for details.

Theia architecture specification

89

89 Theia architecture specification

8. Control Processor architecture (CP)

The control processor (CP) is an in-order processor with a simple 3 stage pipeline. The CP instructions

are stored in 32x<tbd> a single read channel RAM called InstructionRam. Each instructions is 32bit wide.

A dual read channel RAM called DataRam serves as a simple register file. One instruction is fetched on

every clock cycle, except for the branch family of instructions which take 2 clock cycles. Given the

simplicity of the instruction format, the decode and execution logic is merged into a single pipe stage.

The following figure illustrates the basic building blocks of the CP.

Figure 55 Control processor CP

8.1. CP Instruction set

The CP features a very simple instruction set. As mentioned earlier the CP has a very limited set of

arithmetic operations and the instruction set is more focused towards control related tasks.

Nevertheless the CP can still do operations such as additions, subtractions and simple bitwise logic

operations. Each instruction is 32 bit wide; the following figure illustrates a CP instruction.

Instruction Fetch

Decode/Execution

InstructionRam

Register File (RF)

IO

Theia architecture specification

90

90 Theia architecture specification

Figure 56 CP Instruction format

As shown in previous figure, the CP instruction is divided into 4 fields: The OP field has the actual

operation to be executed; the DST field indicates the destination of the current operation in the register

file, the SRC1 and SCR0 fields are arguments for the current operation and represent addresses in the

register file. For the copy block command the SRC0 is further divided in subfields as shown next.

Figure 57 SR0 special fields for copy block operations

The following table summarizes the CP instruction set.

Table 48 CP Instruction set

OP Value
43

DST SRC1 SCR0 Description

NOP 0 n/a n/a n/a No operation
DELIVER_CO
MMAND

1 This instruction delivers a command
into the CCB (Control command Bus).

The command is formed as follows:
CCB =
{ DST[7:0], SRC1[7:0],SRC0[15:0] }

No data is written into the CP RF as
result of this operation.

43

 In decimal

OP DST

32 bits

SRC1 SRC0

31:24 23:16 15:8 7:0

SRC0

BLK_LEN TAG DSTOFF

Theia architecture specification

91

91 Theia architecture specification

ADD 2 Destination

of
operation

First
operand

Second
operand

Addition.
RF[DST] = SRC1 + SCR0

SUB 3 Destination
of
operation

First
operand

Second
operand

Subtraction (2 complement).
RF[DST] = SRC1 – SCR0

AND 4 Destination
of
operation

First
operand

Second
operand

Bitwise AND.
RF[DST] = SRC1 & SCR0

OR 5 Destination
of
operation

First
operand

Second
operand

Bitwise OR.
RF[DST] = SRC1 | SRC0

BRANCH 6 Next PC n/a n/a Unconditional branch.
NextPC = DST

BEQ 7 Next PC First
operand

Second
operand

Branch if equal.

If (SRC1 == SRC0)
 NextPC = DST
Else
 NextPC = NextPC + 1

BNE 8 Next PC First
operand

Second
operand

Branch if not equal

If (SRC1 != SRC0)
 NextPC = DST
Else
 NextPC = NextPC + 1

BG 9 Next PC First
operand

Second
operand

Branch if greater than

If (SRC1 > SRC0)
 NextPC = DST
Else
 NextPC = NextPC + 1

BL 10 Next PC First
operand

Second
operand

Branch if less than

If (SRC1 < SRC0)
 NextPC = DST
Else
 NextPC = NextPC + 1

BGE 11 Next PC First
operand

Second
operand

Branch if grater of equal than

If (SRC1 >= SRC0)
 NextPC = DST
Else
 NextPC = NextPC + 1

Theia architecture specification

92

92 Theia architecture specification

BLE 12 Next PC First
operand

Second
operand

Branch if less of equal than

If (SRC1 <= SRC0)
 NextPC = DST
Else
 NextPC = NextPC + 1

ASSIGN 13 Destination
of
operation

First
operand

Second
operand

Moves a literal value to the Register
file position RF[DST]
RF[DST] = Instruction[15:0]

COPYBLOCK 14 This instruction issues a block copy
command into the MCU. The Copy
block command is formed of the
concatenation of various fields (see
Figure 57) as shown next:

CopyBlockCommand =
{
CP_SPR_BLOCK_DST[15:0]44,
SRC1,
SRC0[TAG_BIT],
SRC0[BLKLEN],
SRC0[DSTOFF]
}

No data is written into the CP RF as
result of this operation.

EXIT 15 n/a n/a Marks the end of a CP program
execution

NOT 16 Bitwise Not
SHL 17 Shift left

RF[DST] = SRC1 << SRC0

SHR 18 Shift Right

RF[DST] = SRC1 >> SRC0

8.2. CP Special purpose registers (SPRs)

44

 See next section for details on this special purpose register

Theia architecture specification

93

93 Theia architecture specification

Table 49 CP Special purpose registers

Name Offset Description

CP_SPR_STATUS 2 Bit 0: MCU pending operations: . Zero means that
there are no operations pending in the MCU.

CP_SPR_BLOCK_DST 3 Bits 15:0
This register stores the destination ID that
subsequent block copy operations will use.
For example the next high level statement that issues
a block copy command

CP_SPR_STATUS 2

Bit 0: MCU pending operations: . Zero means that there are no operations pending in the MCU. The CP

can check for pending block copy operations using a code like the one in the following example.

//wait until queued block transfers are complete

 while (block_transfer_in_progress) {}

Figure 58 CP block transfer high level syntax

The reserved keyword “block_transfer_in_progress” returns 1 if CP_SPR_STATUS[0] is zero meaning

there a no pending block copy operations, otherwise returns 0.

CP_SPR_BLOCK_DST 3 [15:0]

This register stores the destination ID that subsequent block copy operations will use.

For example the next high level statement that issues a block copy command

copy_data_block< CoredId, DstOffsetAndLen, SrcOffset>;

Theia architecture specification

94

94 Theia architecture specification

Figure 59 CP copy data block high level syntax

Translates into the next sequence of instructions:

//Setting destination ID SPR for Copy data block

14: 2030a00 //ADD R3 R10 R0

//Copy data block

15: e000b0c //COPYBLOCK DstId: R0 SrcOffset: R11

Figure 60

 Notice how the R3 (CP_SPR_BLOCK_DST) is written and then COPYBLOCK command is issued.

8.3. CP Branching

The branch operation takes 1 extra clock cycle to decide the next instruction to fetch.

The compiler automatically inserts a NOP operation after each branch operation as shown in the

following control processor code listing.

Theia architecture specification

95

95 Theia architecture specification

17: d890001 //ASSIGN R137 I(1)

18: 7150289 //BEQ R21 R2 R137

//branch delay

19: 110000 //NOP R0 R0 R0

//while loop goto re-eval boolean

20: 6110000 //BRANCH R17 R0 R0

//branch delay

21: 110000 //NOP R0 R0 R0

// start <2>;

//Start

22: 1020000 //DELIVERCOMMAND R2 R0 R0

Theia architecture specification

96

96 Theia architecture specification

9. Internal Memory Controller (MCU) Architecture

10. Appendix A: VP Issue unit encoding table

Op C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0

NOP 0 0 0 0 0 0 0 0 0 0 0
 NOP 0 0 0 0 0 0 0 0 0 0 1
 NOP 0 0 0 0 0 0 0 0 0 1 0
 NOP 0 0 0 0 0 0 0 0 0 1 1
 NOP 0 0 0 0 0 0 0 0 1 0 0
 NOP 0 0 0 0 0 0 0 0 1 0 1
 NOP 0 0 0 0 0 0 0 0 1 1 0
 NOP 0 0 0 0 0 0 0 0 1 1 1
 NOP 0 0 0 0 0 0 0 1 0 0 0
 NOP 0 0 0 0 0 0 0 1 0 0 1
 NOP 0 0 0 0 0 0 0 1 0 1 0
 NOP 0 0 0 0 0 0 0 1 0 1 1
 NOP 0 0 0 0 0 0 0 1 1 0 0
 NOP 0 0 0 0 0 0 0 1 1 0 1
 NOP 0 0 0 0 0 0 0 1 1 1 0
 NOP 0 0 0 0 0 0 0 1 1 1 1
 Operation C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0

ADD 0 0 0 1 0 0 1 0 0 0 0

1

ADD 0 0 0 1 0 0 1 0 0 0 1

1
 ADD 0 0 0 1 0 0 1 0 0 1 0

1

ADD 0 0 0 1 0 0 1 0 0 1 1
 ADD 0 0 0 1 0 0 1 0 1 0 0

1

ADD 0 0 0 1 0 0 1 0 1 0 1

1
 ADD 0 0 0 1 0 0 1 0 1 1 0

1

ADD 0 0 0 1 0 0 1 0 1 1 1
 ADD 0 0 0 1 0 0 1 1 0 0 0

1

ADD 0 0 0 1 0 0 1 1 0 0 1

1
 ADD 0 0 0 1 0 0 1 1 0 1 0

1

ADD 0 0 0 1 0 0 1 1 0 1 1
 ADD 0 0 0 1 0 0 1 1 1 0 0

1

ADD 0 0 0 1 0 0 1 1 1 0 1

1

Theia architecture specification

1

1 Theia architecture specification

ADD 0 0 0 1 0 0 1 1 1 1 0

1

ADD 0 0 0 1 0 0 1 1 1 1 1
 Operation C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0

DIV 0 0 1 0 0 1 0 0 0 0 0

1 1

DIV 0 0 1 0 0 1 0 0 0 0 1

1 1

DIV 0 0 1 0 0 1 0 0 0 1 0

1 1

DIV 0 0 1 0 0 1 0 0 0 1 1

1 1

DIV 0 0 1 0 0 1 0 0 1 0 0
 DIV 0 0 1 0 0 1 0 0 1 0 1
 DIV 0 0 1 0 0 1 0 0 1 1 0
 DIV 0 0 1 0 0 1 0 0 1 1 1
 DIV 0 0 1 0 0 1 0 1 0 0 0

1 1

DIV 0 0 1 0 0 1 0 1 0 0 1

1 1

DIV 0 0 1 0 0 1 0 1 0 1 0

1 1

DIV 0 0 1 0 0 1 0 1 0 1 1

1 1

DIV 0 0 1 0 0 1 0 1 1 0 0
 DIV 0 0 1 0 0 1 0 1 1 0 1
 DIV 0 0 1 0 0 1 0 1 1 1 0
 DIV 0 0 1 0 0 1 0 1 1 1 1
 Operation C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0

MUL 0 0 1 1 0 1 1 0 0 0 0

1
 MUL 0 0 1 1 0 1 1 0 0 0 1

1

 MUL 0 0 1 1 0 1 1 0 0 1 0

1
 MUL 0 0 1 1 0 1 1 0 0 1 1

1

 MUL 0 0 1 1 0 1 1 0 1 0 0

1
 MUL 0 0 1 1 0 1 1 0 1 0 1

1

 MUL 0 0 1 1 0 1 1 0 1 1 0

1
 MUL 0 0 1 1 0 1 1 0 1 1 1

1

 MUL 0 0 1 1 0 1 1 1 0 0 0
 MUL 0 0 1 1 0 1 1 1 0 0 1

Theia architecture specification

2

2 Theia architecture specification

MUL 0 0 1 1 0 1 1 1 0 1 0
 MUL 0 0 1 1 0 1 1 1 0 1 1
 MUL 0 0 1 1 0 1 1 1 1 0 0
 MUL 0 0 1 1 0 1 1 1 1 0 1
 MUL 0 0 1 1 0 1 1 1 1 1 0
 MUL 0 0 1 1 0 1 1 1 1 1 1
 Operation C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0

SQRT 0 1 0 0 1 0 0 0 0 0 0

1

1

SQRT 0 1 0 0 1 0 0 0 0 0 1

1

1

SQRT 0 1 0 0 1 0 0 0 0 1 0

1

1

SQRT 0 1 0 0 1 0 0 0 0 1 1

1

1

SQRT 0 1 0 0 1 0 0 0 1 0 0

1

1

SQRT 0 1 0 0 1 0 0 0 1 0 1

1

1

SQRT 0 1 0 0 1 0 0 0 1 1 0

1

1

SQRT 0 1 0 0 1 0 0 0 1 1 1

1

1

SQRT 0 1 0 0 1 0 0 1 0 0 0

1

1

SQRT 0 1 0 0 1 0 0 1 0 0 1

1

1

SQRT 0 1 0 0 1 0 0 1 0 1 0

1

1

SQRT 0 1 0 0 1 0 0 1 0 1 1

1

1

SQRT 0 1 0 0 1 0 0 1 1 0 0

1

1

SQRT 0 1 0 0 1 0 0 1 1 0 1

1

1

SQRT 0 1 0 0 1 0 0 1 1 1 0

1

1

SQRT 0 1 0 0 1 0 0 1 1 1 1

1

1

Operation C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0

LOGIC 0 1 0 1 1 0 1 0 0 0 0

1 1
 LOGIC 0 1 0 1 1 0 1 0 0 0 1

1 1

 LOGIC 0 1 0 1 1 0 1 0 0 1 0

1 1
 LOGIC 0 1 0 1 1 0 1 0 0 1 1

1 1

 LOGIC 0 1 0 1 1 0 1 0 1 0 0

1 1
 LOGIC 0 1 0 1 1 0 1 0 1 0 1

1 1

Theia architecture specification

3

3 Theia architecture specification

LOGIC 0 1 0 1 1 0 1 0 1 1 0

1 1
 LOGIC 0 1 0 1 1 0 1 0 1 1 1

1 1

 LOGIC 0 1 0 1 1 0 1 1 0 0 0

1 1
 LOGIC 0 1 0 1 1 0 1 1 0 0 1

1 1

 LOGIC 0 1 0 1 1 0 1 1 0 1 0

1 1
 LOGIC 0 1 0 1 1 0 1 1 0 1 1

1 1

 LOGIC 0 1 0 1 1 0 1 1 1 0 0

1 1
 LOGIC 0 1 0 1 1 0 1 1 1 0 1

1 1

 LOGIC 0 1 0 1 1 0 1 1 1 1 0

1 1
 LOGIC 0 1 0 1 1 0 1 1 1 1 1

1 1

 Operation C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0

IO 0 1 1 1 1 1 0 0 0 0 0
 IO 0 1 1 1 1 1 0 0 0 0 1
 IO 0 1 1 1 1 1 0 0 0 1 0
 IO 0 1 1 1 1 1 0 0 0 1 1
 IO 0 1 1 1 1 1 0 0 1 0 0
 IO 0 1 1 1 1 1 0 0 1 0 1
 IO 0 1 1 1 1 1 0 0 1 1 0
 IO 0 1 1 1 1 1 0 0 1 1 1
 IO 0 1 1 1 1 1 0 1 0 0 0
 IO 0 1 1 1 1 1 0 1 0 0 1
 IO 0 1 1 1 1 1 0 1 0 1 0
 IO 0 1 1 1 1 1 0 1 0 1 1
 IO 0 1 1 1 1 1 0 1 1 0 0
 IO 0 1 1 1 1 1 0 1 1 0 1
 IO 0 1 1 1 1 1 0 1 1 1 0
 IO 0 1 1 1 1 1 0 1 1 1 1
 IO 0 1 1 1 1 1 1 0 0 0 0
 IO 0 1 1 1 1 1 1 0 0 0 1

Theia architecture specification

4

4 Theia architecture specification

IO 0 1 1 1 1 1 1 0 0 1 0
 IO 0 1 1 1 1 1 1 0 0 1 1
 IO 0 1 1 1 1 1 1 0 1 0 0
 IO 0 1 1 1 1 1 1 0 1 0 1
 IO 0 1 1 1 1 1 1 0 1 1 0
 IO 0 1 1 1 1 1 1 0 1 1 1
 IO 0 1 1 1 1 1 1 1 0 0 0
 IO 0 1 1 1 1 1 1 1 0 0 1
 IO 0 1 1 1 1 1 1 1 0 1 0
 IO 0 1 1 1 1 1 1 1 0 1 1
 IO 0 1 1 1 1 1 1 1 1 0 0
 IO 0 1 1 1 1 1 1 1 1 0 1
 IO 0 1 1 1 1 1 1 1 1 1 0
 IO 0 1 1 1 1 1 1 1 1 1 1
 IO 0 1 1 1 0 0 0 0 0 0 0

1 1 1

IO 0 1 1 1 0 0 0 0 0 0 1

1 1 1

IO 0 1 1 1 0 0 0 0 0 1 0

1 1 1

IO 0 1 1 1 0 0 0 0 0 1 1

1 1 1

IO 0 1 1 1 0 0 0 0 1 0 0

1 1 1

IO 0 1 1 1 0 0 0 0 1 0 1

1 1 1

IO 0 1 1 1 0 0 0 0 1 1 0

1 1 1

IO 0 1 1 1 0 0 0 0 1 1 1

1 1 1

IO 0 1 1 1 0 0 0 1 0 0 0

1 1 1

IO 0 1 1 1 0 0 0 1 0 0 1

1 1 1

IO 0 1 1 1 0 0 0 1 0 1 0

1 1 1

IO 0 1 1 1 0 0 0 1 0 1 1

1 1 1

IO 0 1 1 1 0 0 0 1 1 0 0

1 1 1

IO 0 1 1 1 0 0 0 1 1 0 1

1 1 1

IO 0 1 1 1 0 0 0 1 1 1 0

1 1 1

IO 0 1 1 1 0 0 0 1 1 1 1

1 1 1

Theia architecture specification

5

5 Theia architecture specification

dsdsdsds

11. Appendix B: VP addressing mode examples

This section gives several examples and use cases of the VP addressing modes from Table 17. The

examples are provided from a software/compiler perspective, so knowledge of the T-Language and GPU

assembly language is assumed.

Direct (0 000): The Indexes from SCR1, SRC0 and DST are directly used to calculate the corresponding

addresses in the RF.

DSTADDR = DSTINDEX

SRC1 = R[SRC1INDEX]

SRC0 = R[SRC0INDEX]

Example:

//Simple addition

R1 = R2 + R3;

Becomes:

ADD R1.xyz R2.xyz R3.xyz

DSTADDR 1

SRC1 R[2]

SRC0 R[3]

Direct with displacement (0 001): SRC0INDEX is added OFFSET and then used to calculate SRC0ADDR in

RF.

DSTADDR = DSTINDEX

SRC1 = R[SCR1INDEX]

SRC0 = R[SRC0INDEX + OFFSET]

Example:

Theia architecture specification

1

1 Theia architecture specification

//Simple addition using offset for index0

function foo()

{

 vector LocalVec = (1,2,3);

 R1 = R2 + LocalVec;

}

Becomes:

ADD R1.xyz R2.xyz R[8+offset].xyz45

DSTADDR 1

SRC1 R[2]

SRC0 R[8+offset]

0 010 Direct with displacement: SRC1INDEX is added OFFSET and then used to calculate SRC1ADDR in
RF.

DSTADDR = DSTINDEX
SRC1 = R[SCR1INDEX + OFFSET]
SRC0 = R[SRC0INDEX]

Example:

//Simple addition using offset for index0

function foo()

{

 vector LocalVec = (1,2,3);

 R1 = LocalVec + R2;

45

 8 is the RF address where the local variables for the current function frame are allocated.

Theia architecture specification

2

2 Theia architecture specification

}

Becomes:

ADD R1.xyz R2.xyz R[8+offset].xyz46

DSTADDR 1

SRC1 R[8+offset]

SRC0 R[2]

0 011 Direct with displacement: SRC1INDEX is added OFFSET and then used to calculate SRC1ADDR in
RF. SRC0INDEX is added OFFSET and then used to calculate SRC0ADDR in RF.

DSTADDR = DSTINDEX
SRC1 = R[SCR1INDEX + OFFSET]
SRC0 = R[SRC0INDEX + OFFSET]

Example:

//Simple addition using offset for index0

function foo()

{

 vector A = (1,2,3),B=(4,5,6);

 R1 = LocalVec + B;

}

Becomes:

46

 8 is the RF address where the local variables for the current function frame are allocated.

Theia architecture specification

3

3 Theia architecture specification

ADD R1.xyz R[9+offset].xyz R[8+offset].xyz47

DSTADDR 1

SRC1 R[8+offset]

SRC0 R[9+offset]

0 100 Direct with displacement: DSTINDEX is added OFFSET and then used to calculate DSTADDR in
RF.

DSTADDR = DSTINDEX + OFFSET
SRC1 = R[SCR1INDEX]
SRC0 = R[SRC0INDEX]
Example:

//Simple addition using offset for index0

function foo()

{

 vector Result;

 Result = R1 + R2;

}

Becomes:

ADD R[8+offset].xyz R1.xyz R2.xyz48

DSTADDR 8+offset

SRC1 R[1]

SRC0 R[2]

0 101 Direct with displacement: DSTINDEX is added OFFSET and then used to calculate DSTADDR in RF.
SRC0INDEX is added OFFSET and then used to calculate SRC0ADDR in RF.

47

 8 is the RF address where the local variables for the current function frame are allocated.
48

 8 is the RF address where the local variables for the current function frame are allocated.

Theia architecture specification

4

4 Theia architecture specification

DSTADDR = DSTINDEX + OFFSET
SRC1 = R[SCR1INDEX]
SRC0 = R[SRC0INDEX + OFFSET]
Example:

//Simple addition using offset for index0

function func()

{

 vector Result, foo = (1,2,3);

 Result = R1 + foo;

}

Becomes:

ADD R[8+offset].xyz R1.xyz R[9+offset].xyz49

DSTADDR 8+offset

SRC1 R[1]

SRC0 9+offset

0 110 Direct with displacement: DSTINDEX is added OFFSET and then used to calculate DSTADDR in RF.
SRC1INDEX is added OFFSET and then used to calculate SRC1ADDR in RF.

DSTADDR = DSTINDEX + OFFSET
SRC1 = R[SCR1INDEX + OFFSET]
SRC0 = R[SRC0INDEX]
Example:

//Simple addition using offset for index0

function func()

{

 vector Result, foo = (1,2,3);

49

 8 is the RF address where the local variables for the current function frame are allocated.

Theia architecture specification

5

5 Theia architecture specification

 Result = foo + R1;

}

Becomes:

ADD R[8+offset].xyz R[9+offset].xyz R1.xyz 50

DSTADDR 8+offset

SRC1 9+offset

SRC0 R[1]

0 111 Direct with displacement: All the indexes from SRC1, SRC0 and DST are displaced by the OFFSET.

DSTADDR = DSTINDEX + OFFSET
SRC1 = R[SCR1INDEX + OFFSET]
SRC0 = R[SRC0INDEX + OFFSET]

Example:

//Simple addition using offset for index0

function func()

{

 vector Result, foo = (1,2,3), bar = (4,5,6);

 Result = foo + bar;

}

Becomes:

ADD R[8+offset].xyz R[9+offset].xyz R[a+offset].xyz

51

DSTADDR 8+offset

SRC1 R[9+offset]

50

 8 is the RF address where the local variables for the current function frame are allocated.

Theia architecture specification

6

6 Theia architecture specification

SRC0 R[a+offset]

1 000 Direct with IMMV: The 32-bit immediate (literal) value IMMV is used as SRC1, the value of the
register pointed by DSTINDEX is used as SRC0.

DSTADDR = DSTINDEX
SRC1.x = IMMV
SRC1.y = IMMV
SRC1.z = IMMV
SRC0 = R[DSTINDEX]

Example:

//Cummulative addition

R1 += 5;

Becomes:

ADD R1 IMM(5) R1

DSTADDR 1

SRC1 (5,5,5)

SRC0 R[1]

1 001 Direct with IMMV and offset:

DSTADDR = DSTINDEX
SRC1.x = IMMV
SRC1.y = IMMV
SRC1.z = IMMV
SRC0.x = 0
SRC0.y = 0
SRC0.z = 0

Example:

//Literal increment

51

 8 is the RF address where the local variables for the current function frame are allocated.

Theia architecture specification

7

7 Theia architecture specification

vector foo;

foo += 0xcafe;

Becomes:

ADD R[8+offset] IMM(

0xcafe) R[8+offset]

DSTADDR 8+offset

SRC1 (0xcafe,0xcafe,0xcafe)

SRC0 R[8+offset]

1 100 Direct with IMMV and clear SRC0: Similar to the previous case except that SRC0 always takes the
value of zero instead of the value of R[DSTINDEX]

DSTADDR = DSTINDEX
SRC1.x = IMMV
SRC1.y = IMMV
SRC1.z = IMMV
SRC0.x = 0
SRC0.y = 0
SRC0.z = 0

Example:

//Literal Assignment

R1 = 0xcafe;

Becomes:

ADD R1.0 IMM(0xcafe) 0x0

DSTADDR 1

SRC1 (0xcafe,0xcafe,0xcafe)

SRC0 (0,0,0)

Theia architecture specification

8

8 Theia architecture specification

Theia architecture specification

9

9 Theia architecture specification

Works Cited

[1] D. P. John Hennessy, Computer Architecture: A Quantitative Approach, Morgan Kaufmann, 5 edition

(September 30, 2011).

