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1. Introduction 
 

THEIA is a multi-thread, multicore, vector graphic processing unit (GPU). The idea of the THEIA project is 

to provide an open source environment including functional RTL, test bench environment and an open 

source high level programming language/compiler called T-Language. 

The present document is dedicated to describe and specify the hardware architecture of the THEIA GPU 

system and related hardware subsystems. 

The THEIA hardware is described using RTL (register transfer level), written in Verilog 2001 HDL. In order 

to perform a full RTL simulation, the HDL model needs a series of input files which represent the various 

input parameters and the binary representation of the user code (written in T-Language or in 

THEIA-Assembly language).  
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Figure 1 THEIA environment overview 

The outputs from an RTL simulation are a series log files and the actual graphical representation of the 

rendered image in a format which can be opened using a standard image editor such as GNU Gimp. 

Even if the hardware architecture of the THEIA GPU is designed to be efficient in 3D computer graphic 

related tasks, due to the flexibility of the system and the programming environment, a myriad of other 

applications that can benefit from vector processing and parallel processing are also possible. 
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1.1. Vector processing 
 

One of the interesting features of the THEIA GPU is the ability to handle vector operations. Each single 

instruction can operate on vectors of data. Each element of the input data vector is fetched 

consecutively by the corresponding execution unit in a pipelined fashion as illustrated in the next figure. 

 

 

Figure 2 Data pipeline in an execution unit 

Each vector functional unit is a separate and fully pipelined execution unit that and most execution units 

can start a new operation every clock cycle. Therefore, each vector functional unit is effectively a data 

pipeline. Furthermore each execution unit has 3 “data lanes” thus being able to simultaneously process 

3 array elements every clock cycle. 
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Figure 3 X, Y and X data vector data lanes 

Also each GPU core has a large register file where the data is guaranteed to be located in consecutive 

memory positions1. 

1.2. Combining Vector processing and out-of-order 

execution. 
 

The execution time of the vector operations primarily depends on the length of the vectors, but also 

depends on the structural hazards and data dependencies. In order to obtain more instruction level 

parallelism, the vector operations are combined with an out-out-of-order execution model. By executing 

the vector operations in an out-of-order fashion, the data dependencies can be minimized and a better 

performance is obtained.  

The notion of “convoy” from [1] is defined as a series of vector instructions that can potentially execute 

together and the performance of a section of code can be estimated by counting the number of 

convoys. By introducing the OOO technique, these convoys are not limited to instructions that are 

sequential in the program flow therefore the performance of the program can be increased.  

Vector “Chaining” allows the results from a vector functional unit to be forwarded to a second 

functional unit which has data dependency on the first one. By using chaining, a convoy which depends 

on the results from a previous convoy can be chained together into a single convoy. 

                                                           
1
 This is done by software, at the Control Processor (CP) level. 
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Figure 4 Convoy chaining 

THEIA extends the data forward of execution results from the OOO model in order to implement 

“chaining” for the vector operations. 

The details of the out-of-order engine are described later on this document. 

2. System Overview 
 

THEIA is a multi-thread, multicore, vector graphic processing unit (GPU). The THEIA GPU is comprised of 

different hardware blocks that interact with other in order to render an image frame.  
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Figure 5 The GPU simplified block diagram 

 

Figure 5 presents the GPU main functional blocks and also an external memory called “Main Memory” 

that is outside of the GPU. The Main memory is a large RAM that is used as a repository where the 

textures, code, geometry, etc. can be stored. The contents of the Main Memory are read only from the 

GPU stand point and can only be accessed through the internal Memory Control Unit (MCU). The MCU is 

controlled by the Control Processor Unit (CP).  

The CP block is responsible to control and monitor the global execution of the GPU. The CP is a simple 

programmable unit which allows the user to programmatically control the resource allocation and the 

workload distribution of the GPU. The CP can command the MCU to copy execution code and data to 

one or more “Vector Processing Units” (VPs) at any given point in time. The CP can also request special 

actions from one or more VPs by sending special commands directly to the VPs using a dedicated 
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“Control Command Bus” (CCB). By using the MCU and the CCB, the software running on the CP 

effectively distributes the workload among the vector processing cores (VP).  

The VPs, called V0 … VP152 in Figure 5, are the elements in charge of the actual processing of the data. 

Each VP is a multi-thread out-of-order vector processor with hardware architecture and instruction set 

that is specially optimized to operate on 3D vectors. Section 3 gives more detail regarding the Vector 

processor architecture. 

The THEIA GPU topology follows a “CROW PRAM” model. PRAM stands for Parallel Random Access 

Machine, and is a common paradigm used to describe parallel machines [tbd]. CROW stands for 

Concurrent-Read Owned-Write, CROW PRAMs are described by [tbd] and offer series of advantages 

over other types of PRAM machines as analyzed by [tbd].  

Following the CROW PRAM paradigm, some of the storage blocks from Figure 5 are read-only while 

other blocks are write-only. The OMEMs are write-only memories (from the VP’s perspective) that are 

“owned” by each VP, this is, each VP can only access a single and unique OMEM block, and can only 

perform write operations to that OMEM block.  

The TMEM, on the other hand, is a read-only block (from the VP’s perspective). The TMEM can be 

concurrently accessed for reading operations by one or more VPs at any given point in time. Together 

the TMEM and the OMEM blocks allow the GPU to be modeled as a CROW PRAM machine. 

 

The next sections will further describe the various functional blocks from Figure 5. 

 

 

 

 

 

2.1. Control processor Overview 
 

The main function of the Control Processor (CP) is to allow the user to programmatically control the 

resource allocation and the workload distribution of the GPU. In other words, instead of implementing 

complex dynamic hardware based scheduling algorithms, the CP allows for these algorithms to be 

implemented in software. This way the hardware complexity is reduced while the overall system 

becomes more flexible. This section will present an overview of the CP, to see a full description of the CP 

architecture and instruction set please see section 8. 

                                                           
2
 Figure 5presents a GPU configuration with 16 VPs but this number may vary depending on the specific GPU 

implementation.  
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Figure 6 Control Processor within the system 

 

The CP is a minimalistic processor. It is mainly in charge of controlling the dispatching of code, data and 

commands into the vector processors (VPs). There is a single control processor for the entire GPU and it 

is connected to the vector processors using a topology as the one depicted in Figure 6. 

1.1.1. Data block copy operations 
 

As depicted in Figure 6 the control processor (CP) interfaces with an internal memory controller (MCU). 

The CP issues special instructions called “data block copy commands” to the MCU, telling the MCU to 

copy memory blocks from the main memory into the TMEM or into the VP’s internal memory locations.  

It is important to mention that the MCU can only copy data from the main memory and not into the 

main memory, in other words, the Main memory is read-only from the GPU perspective.  
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The format of the “data block copy commands” is illustrated in Figure 7 

 

Figure 7 CP “data block copy command” format 

The data block copy command is made of several fields as shown in the previous illustration. Table 3 

describes the meaning of the various fields of the “data block copy command”. 

Table 3 Data copy command fields 

Field Description 

DstId 0:       Destination NULL: No data blocks are copied 
and no copy commands are queued in the MCU. 
 
1:       Destination TMEM: The data block is copied by 
the MCU from the main memory into the TMEM memory. 
 
2 to N+2:  Destination VP: The data block is copied by 
the MCU from the main memory into the VP identified by 
the index DstId-2 

BlockLen How many blocks to copy from the Main memory into the 
destination resource identified by DstId. Up to 1024 blocks 
can be copied. 

DstOffset Offset where the MCU will copy the data at the 
destination resource identified by DstId.  
• When the target resource is the TMEM, the offset 
represents the linear address where the data will start to 
be copied. 
• When the target resource is one of the VPs, the 
offset is divided in address and tag: 
   • DstOffset [20:0]: Linear address. 
   • DstOff[22:21]:  Destination Tag: Can have one of 
the following values: 
 10 -> Final destination is VP Instruction Address. 
 01 -> Final destination is VP Data Address . 
 

SrcOffset Offset into the main memory from where the MCU will 
start coping the data. 

 

DstId DstOffset SrcOffset BlockLen 

16 bits    22 bits 32 bits 

Tag 

8 bits 2 bits 
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The data block copy commands are issued by the CP to the MCU in an asynchronous way. In other 

words, the CP issues a data block command and then the CP can continue with the control code 

execution even if the MCU has not yet finished copying the data blocks. If the CP issues another data 

copy command to the MCU while the previous copy command has not finished, then the copy command 

gets queued in the MCU. The MCU presents a signal with the number of pending copy operations to the 

CP. This signal is mapped into the CP internal register STATUS[MCU_OPERATION_PENDING]3; it is the 

software responsibility to poll this register in order to know the number of pending memory copy 

operations in the MCU. 

 

1.1.2. Control processor messages 
 

The CP has the ability to send special messages called “control processor messages” to one or more VPs 

using the Control Command Bus (CBC) from Figure 6. The control processor messages have the following 

format: 

 

Figure 8 CP control processor message. 

As depicted in Figure 8 the format of the “control processor messages” is very simple, it is made of a VP 

destination field, which specifies whether the CP message is targeted at a single VP or broadcasted to all 

the VPs, a command to specify the action that the VP has to perform and also an optional 32bit 

argument.  

Table 4 Control processor messages 

CP message field Arguments 

VPDST The destination for the CP command. 
It has one of the following possible values: 
 
0:  NULL Message. The message has no target VPs. 
1-127: Message is targeted to one of the possible VPs.4 
128:  Message is broadcasted to all the VPs. 

                                                           
3
 More information in section <TBD> 

4
 The number of VPs depend on the version of the GPU implementation. Currently up to 16 VPs are supported. 

VP DST Command Arguments 

 
8 bits 16 bits 8 bits 
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Command The command that the CP sends to one or more VPs to 
execute. It has one of the following possible values: 
 
0: Start Execution 
1: Stop Execution 
More to be defined 

Argument Reserved for future use 

 

The most important use of the “control processor messages” is allowing the CP to start or to stop the 

VPs execution. This allows the user to program the CP in order to have full control of the resource and 

workload distribution. 

1.1.3. Mail-boxing 
 

Mail-boxing is a mechanism which allows passing messages between the VPs and the CP5 during code 

execution. Each VP has a special 33 bit register called Mailbox. Each Mailbox has 32 bits of data and a 1 

bit semaphore flag. 

 

Figure 9 Mailboxing registers 

 

The semaphore flag controls the write ownership of the mailbox register. If the semaphore bit is set 

then the CP has write ownership of the mailbox, otherwise the corresponding VP has write ownership of 

the mailbox. All mailboxes’ semaphore bits are cleared after reset. 

If the semaphore bit is set, then the CP gets notified of an incoming message delivered by the VP into 

the corresponding mailbox. The CP can now post a reply and then clear the semaphore flag to notify the 

VP that a reply has been delivered. 

 

1.2. Vector processors (VP) 
 

                                                           
5
 In the current version of the RTL, the communication can only be initiated by the VP. 
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The VPs are a series of multithreaded out-of-order vector processors featuring fixed point arithmetic 

units and special purpose hardware to accelerate the most common 3D graphic operations. Each VP is 

divided into 5 main block called IO, EXE, MEM and CTRL. This is illustrated in Figure 10. 

 

Figure 10 The main blocks of a CORE 

The main building blocks shown in Figure 10 are further described later on this document. 

The “VP CORE” block is where most of the complexity resides, thus section 3 of this document is 

dedicated exclusively to the VP CORE block. 
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2. Control FSM 
 

This block has the main control FSM that is in charge of orchestrating the VP operation. Each VP has a 

single Control FSM. The Control FSM is mainly responsible of handling commands coming from the CP 

through the CCB (control command bus) and guarantying that the VP Core reacts accordingly. 

 

Figure 11 The CONTROL FSM, the CP and the VP Core 

When the VP first comes out of reset no code in the VP gets executed by default. Instead of this, the VP 

first reaches a state called WAIT_FOR_CP where it will remain until one or more CP commands get 

queued into the CP command FIFO. Once a CP command becomes queued, the FSM will transition into a 

specific state which will take care of the CP request. If the CP command requires starting the main 

execution thread then the FSM transitions into the START_MAIN_THREAD state and then back into the 

WAIT_FOR_CP state. This means that the control FSM is not required to wait until the VP code is 

finished in order the handle more CP commands. 

CONTROL FSM 
VP Core 

IO 

CP 

FIFO 

CCB 
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Figure 12 Control FSM 

 

 

 

 

3. Vector Processor CORE (VP CORE) 
 

The current section provides the architecture specification for the GPU’s VPs. A detailed explanation of 

all the VP data structures is reviewed in the subsequent sections. 

 

3.1. Introduction 

 

Each THEIA VP combines the features of a vector processor and a multithreaded out-of-order machine. 

This means that the VP is capable of sustaining various levels of instruction level parallelism (ILP) and 

data level parallelism. 

AFTER_RESET 

WAIT_FOR_CP 

START_MAIN_THREAD 

STOP_MAIN_THREAD 

HANDLE_CP_INTERRUPT 

EXE_WD_EXPIRED 
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Instruction level parallelism is achieved by means of an in-order pipelined issue unit and several 

out-of-order execution units. The Tomasulo’s algorithm [citation] is used to implement the out-of-order 

machine using the register renaming technique.  

In order to cover for long stalls that the ILP from the out-of-execution can no longer prevent, a 

multithreading technique is used. 

There are three main approaches to multithreading as mentioned by [1]: Fined grained multithreading, 

coarse-grained multithreading and simultaneous multithreading (SMT). The THEIA VP implements a 

simple version of SMT where up to 4 threads6 can share the resources of a single VP unit. 

As with most SMT implementations, all of the issues at a given point in time come from the same 

thread, but instructions from different threads can start executing on the same clock cycle (when 

dependencies are resolved at the reservation stations and so on). Since THEIA VP builds SMT on top on 

of an out-of-order machine, separate per-thread PC and renaming tables are maintained. 

Data level parallelism is achieved by having 3 separate data lanes on each execution unit and also by 

means of vector processing techniques. Each THEIA VP has 256 x 32 bit registers which are divided 

logically across the 3 data lanes. These registers are implemented using a simple RAM memory structure 

divided into banks in order to provide the sufficient bandwidth for the vector operations. Each Thread is 

limited to access up to ¼ of the total register address7 and there is no means of data sharing among the 

threads. 

3.1.1. Single Thread execution example 
 

This section will briefly describe the flow of the execution for a program running on a single thread. The 

next short code snippet will help clarify some of the concepts related to the VP execution and 

capabilities.8 This code is written in a high level language called T-Language which is designed 

specifically to write code for the THEIA GPU. The language itself is described on separate document. 

Given that the T-Language closely resembles C/C++ it is assumed that an average reader can understand 

it. 

 

 

                                                           
6
 This number may vary depending on the release of the RTL 

7
 When multithreading is disabled, the single thread has access to the entire register address space, this is in fact 

controlled by the software 
8
 The code snippet is written in “T-Language”. For more information on the “T-Language” please refer to the 

<TBD> documentation. 



 

Theia architecture specification 

 

26 

26 Theia architecture specification 

     //Declare some variables. These variables will get stored in the internal VP register file 

    vector V1 = (1,2,3), V2=(4,5,6), V3=(7,8,9); 

    vector V4 = (10,11,12), V5=(13,14,15), V6=(16,17,18); 

    vector A[10], B[10], C[10]; 

 

    //Some code to initialize the arrays goes in here 

 

    //Divide 2 variables. The division can take up to 32 clock cycles to complete 

    V1 = V2 / V3; 

 

    //Multiply two “arrays” in order to use the VP “vector” processing capabilities. 

    //Thanks to the out of order nature of the VP this multiplications can be executed in 

    //parallel with the previous division. Since each array has 10 element it will take the VP  

    //10 clock cycles to complete the multiplications (each multiplication takes 1 clock cycle) 

    C = B * A; 

 

    //Now do a subtraction. Once more because of the out of order nature of the VP, 

    //this will happen in parallel with the previous two operations. Also play around with 

    //the “destination channel selector” and “swizzling” features 

 

   V4.y = V5.yxz – V6.zyy; 

 

Figure 13 A sample code (single thread) 

The above code is meant to give the machine the opportunity to execute several instructions in parallel 

as we are about to see. The code starts by declaring several variables. Each variable is called a “vector” 
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and consist of a single word which is divided among a 32 bit “X block”, a 32 bit “Y block” and a 32 bit “Z 

block”. Consider the following statements from the above code: 

vector V1 = (1,2,3), V2=(4,5,6), V3=(7,8,9); 

This code declares 3 variables: V1, V2 and V3. It also specifies that those variables should be initialized to 

the constant values (1,2,3), (4,5,6) and (7,8,9).  

Each VP operation executes simultaneously on the X, Y and Z blocks of the data, meaning that the VP has 

3 data lanes. In order words, each VP has 3 adders, 3 dividers, 3 multipliers and so on. Consider the 

division operation from Figure 13, in a single clock cycle the 3 dividers will trigger in order to start 

calculating the division for the X, Y and Z blocks from V2 and V3. 

Since the VP runs in an out of order fashion, it doesn’t need to wait until the division is complete in 

order to issue the next instruction. The next instruction is a multiplication; it multiplies two vector 

“arrays” together. A vector “array” is an array consisting of two or more vector elements (each element 

is a vector with an X block, a Y block and a Z block as before). 

Each element from a vector array is internally allocated in consecutive memory positions so that the VP 

can perform a type of “data pipeline” using “convoys” of data9. This type of data level parallelism is 

typical in vector processor architectures. 

Figure 5 shows how the multiplications are executed in parallel with the division. Each clock cycle the 

VP’s multipliers serially calculate the result of each vector array element in the data convoy. Next, the 

code specifies to execute a subtraction, this happens in parallel with the previous operations. Since the 

Additions/Subtractions take 1 clock cycle, then the subtraction is going to end before the array 

multiplication and the divisions are done. 

                                                           
9
See Hennesy and Paterson… 
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Figure 14 Behaviour of the execution units over time for the example from Figure 13 

Figure 14 shows the overlapping execution of the various execution units involved in the code from 

Figure 13. As it was mentioned before, the Division algorithm takes 32 clock cycles to complete (worst 

case). It is also interesting to observe how the multiplying units are kept busy working on the array 

elements with no need of a new instruction being issued. Also, since the addition units are free, those 

can handle additional operation over time as shown in Figure 14. The Architectural features allowing this 

kind of parallelism are described in the next sections. 

3.2. VP Architecture 

 

The VP is the logic block responsible to perform the Arithmetic and Logic operations within each CORE. 

The VP can operate on vectors of data, each vector consisting of 3 32-bits words as explained in section 

3.3. The VP features an in-order fetch and out-of-order execution following the classic Tomasulo’s 
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10algorithm for register renaming.  

 

Figure 15 VP architecture 

 

 

Figure 15 shows the main building blocks of the VP. The instructions are initially fetched from the 

instruction memory ( IM) by the IIU. Each instruction is a 64 bit word and the layout of the instruction is 

discussed in section 3.5. 

Once the instruction is fetched, the IIU chooses a free reservation station (RS1 to RS6) to issue the 

instruction, according to the instruction OPCODE. If there are no reservation stations available to 

execute the instruction, then there is a structural hazard condition and the IIU stalls until an appropriate 

reservation station becomes available. 

                                                           
10

 Note: with some modifications as that are specified in s subsequent sections. 
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If there are reservation stations available to execute the instruction, then the IIU determines the 

reservation station number and data dependencies that will be added into the Issue packet using the 

dependency table from Figure 1. The issue packet is a special data structure that is broadcasted to all 

the reservation stations connected to the Issue Bus. The format of the issue packet is discussed in 

section 4.1.2.1. 

While the dependencies are established, the IIU also reads the instruction operand values from the 

register file RF. Each instruction operand value is a 96 bit word, and the layout of these words is 

discussed in section 3.3. 

Once the operand values are retrieved from the RF, the operand manipulators (section 3.5.3) are 

applied in the following sequence:  

First the sign control does a 2 complement on the individual X, Y and Z components of each operand 

source, as described in section 3.14. 

Next the source operands are scaled according to the rules in section 3.13 and swizzled according to the 

rules in section 3.15. 

Finally the source operands are presented to the issue bus, together with reservation station number 

and the dependency fields. The instruction is finally issued to the reservation stations, the dependency 

table gets updated with the current instruction and the Issue packet is broadcasted to the Reservation 

stations. 
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3.3. Word size and Endianness 
 

THEIA words are little endian, meaning that the least significant bit goes into the lowest address. Each 

word is 96 bits long and usually represents a 3D vector11; thus it is divided among three 32 bits value 

slots called X, Y and Z as depicted in Figure 16. Depending on the VP operation, the X, Y and Z 

components of the word can be individually accessed or the entire 96 bits can be accessed 

simultaneously. 

 

 

 

 

 

 

 

3.4. Fixed point arithmetic. 
 

The VP has the ability to work with integer arithmetic or with fixed point arithmetic.  

When working with integer arithmetic, the entire 32 bits from the X, Y or Z blocks of a word are used to 

store the integer value.  

When working with fixed point arithmetic (Qm.n), the ‘n’ least significant bits of the X, Y or Z blocks are 

used to store the decimal part of the number , while the ‘m’ more significant bits of the X, Y or Z blocks 

are used to store the integer part of the number.  

                                                           
11

 4D/Homogenous-coordinates are not natively supported at the hardware level. 

Figure 16 Vector word layout 

X [95:64] Y [63:32] Z [31:0] 

32 bits 32 bits 32 bits 

96 bits 
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Figure 17 Storing Fixed point numbers in a 96 bit word 

 

The length of the ‘n’ bits of a Qm.n number is called the fixed point SCALE. The SCALE is used to 

transform numbers from fixed point to integer and vice versa and is also used as part of the fixed point 

multiplication and division operations12. Table 5 shows the way in which the arithmetic operations are 

performed when using integer arithmetic and when using fixed point arithmetic. 

 

Table 5 Scaling arithmetic operation for fixed point 

Operation Integer Fixed Point 

Addition R = A + B R = A + B 

Subtraction R = A – B R = A – B 

Multiplication R = A * B R = (A * B) >> SCALE  

Division R = A / B R = ( A << SCALE) / B 

Logic operation See section <> n/a 

 

It is important to mention that it is the compiler’s responsibility to appropriately manage the SCALE in 

the operations to either use fixed point or integer arithmetic. In other words, the VP has no knowledge if 

a particular instruction should use fixed point or integer arithmetic; the VP only executes the operation 

after applying the SCALE to the input arguments according to Table 23. The logic operations are not 

affected by the SCALE. 

3.5. Instruction overview 
 

THEIA instructions are 64 bits wide. Each instruction is divided into various “sections” as depicted in 

Figure 18: operation section, destination section, source 1 and source 0 sections or immediate value 

section. The source 0 and source 1 sections are mutually exclusive with the immediate value section. 

                                                           
12

 The square root operation is a special case which always assumes fixed point input arguments. See section 3.9 
for details. 

m.x n.x 

32 bits 32 bits 32 bits 

m.y n.y m.z n.z 
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Each instruction section has special fields that modify the VP behavior in various ways. A very important 
field is the IMM field. The IMM field tells the VP whether it has to interpret the lowest 32 bits of the 
instruction as an immediate (literal) value, called IMMV, or as part of the register source sections. The 
IMM field also takes part in the addressing mode as discussed in section 3.6. Figure 19 illustrates how 
the VP interprets the instruction depending on the IMM bit.  

 

 

 

 

 

 

 

 

Other instruction fields specify different behaviors such as which blocks of the resulting word to write 

back into the RF, how to handle the sign of the input operands, how to handle branches, etc. Table 13, 

Table 14, Table 18 and Table 19 show the various Instruction section fields and their meaning. 

3.5.1. Instruction operation codes 
 

 

The instruction operation codes or OPCODEs are the set of all the possible arithmetic or logic operations 

that the VP is capable of doing. The VP is actually able to do a small number of different OPCODES: 

Operation Destination Source 1 Source 0 

Immediate Value 

16 bits 14 bits 17 bits 17 bits 

32 bits 

64 bits 

Figure 18 Instruction Layout 

0 Operation Destination Source 1 Source 0 

14 bits 17 bits 17 bits 16 bits 

IMM 

Immediate Value 

32 bits 

Operation Destination 1  

14 bits 16 bits 

IMM 

Figure 19 Immediate bit and the way the instruction is interpreted by the IIU 
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addition, multiplication, division, square root, IO and logic operations. This may seem as a small set of 

possible operations at first, but when combined with the instruction source modifiers from section 

3.5.3, it becomes capable of doing a wide variety of operations.  

Also, each of the possible OPCODES is executed simultaneously on the x, y and z blocks of the instruction 

sources. In other words, the VP has 3 adders, 3 multipliers, 3 dividers and so on13. Table 6 lists the 

possible arithmetic operations the VP can do. 

Table 6 VP operations 

Operation Description 

Addition  

(
  
  
  

)  (
     
     
     

)   

 
Multiplication  

(
  
  
  

)  (
     
     
     

) 

 
Division  

(
  
  
  

)  (

     
     
     

) 

 
Square root  

(
  
  
  

)  (
√  

√  

√  

) 

 
Bitwise AND  

(
  
  
  

)  (
         
         
         

) 

 
Bitwise OR  

(
  
  
  

)  (
        
        
        

) 

 
Bitwise NOT 

(
  
  
  

)  (
       
       
      

) 

 
SHIFT LEFT  

                                                           
13

 The exception to this is the SQRT which has a s ingle execution unit 
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(
  
  
  

)  (
      
      
      

) 

 
SHIFT RIGHT 

(
  
  
  

)  (
      
      
      

) 

 

 

Note from Table 6 how each operation is simultaneously executed on the x, y and z blocks of the source 

data. Again, it is important to mention that the VP makes no distinction between fixed point numbers 

and integer numbers; it is the compiler that needs to apply the corresponding SCALE using the 

techniques from the next sections in order to obtain the proper result for integer numbers or fixed point 

numbers. 

3.5.2. Instruction destination block selector 
 

As mentioned in section 3.3, each THEIA word has 3 32 bit blocks called x, y and z. Each instruction has 

the ability to write the results simultaneously into the three destination blocks, or it can also choose to 

store the results into only some of the x, y and z blocks leaving the other blocks un-changed. 

Table 7 Example of destination selection 

Operation Description 

R = A + B  

(
  
  
  

)  (
     
     
     

)   

 
R.y = A + B  

(  )  (     ) 

 
R.xnz = A + B  

(
  

  
)  (

     

      
) 

 

 

Note from Table 7 that the ‘n’ symbol stands for no-write, so for example R1.xnz means to write the 

results into the x and z blocks but not into the ‘y’ block. Section 3.13 will list all of the possible 

combinations of destination blocks; from Table 7 it becomes clear that destination can be all of the 
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blocks, one single block or any two blocks. 

3.5.3. Instruction source modifiers 
 

Instruction source modifiers are special ways in which the VP can modify the input source data (Source 0 

(SRC0) and Source 1 (SRC1)) before they reach the execution units (EU).  

There are 3 ways in which the SRC0 and SRC1 data can be modified before they reach the EU: modifying 

the signs, modifying the scale or “swizzling” the data blocks. Each of these three modifications can be 

individually applied into the x, y or z blocks of SRC1 or SRC0. The next series of figures represent 

examples of possible source modifications. 

 

Figure 20 Modifying the individual signs of the instruction sources 

Figure 20 shows an example of how the signs of the individual x, y and z blocks of the data sources can 

be modified. The sign modification can be used for vector operations such as cross products. 

Furthermore, the VP does not have a subtraction operation per se, but instead the compiler is required 

to negate the SRC0 from an addition in order to perform a subtraction. 

 

Figure 21 Modifying the scale of the instruction sources 

SRC1.x SRC1.y 

- + - 

SRC0.x SRC0.y SRC0.z 

SRC0.x - SRC0.y -SRC0.z 

+ - - 

SRC1.z 

- SRC1.x SRC1.y -SRC1.z 

SRC1.x SRC1.y SRC1.z 

>> >>  >>  <<  <<  <<  

SRC1.x’ SRC1.y’ SRC1.z’ 

SRC0.x SRC0.y SRC0.z 

SRC0.x’ SRC0.y’ SRC0.z’ 
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Figure 21 illustrates a source scaling. Each x, y and z block can be shifted left or shifted right SCALE 

number of bits. The value of SCALE can be controlled by the setting the appropriate value in the 

configuration registers as will be detailed later on this document. The scale operations are used to 

transform numbers between the integer and fixed point numerical representations, and are also used to 

perform fixed point multiplications and divisions as it is specified on Table 5.  

The last of the three possible source modifications is what is called “swizzling”. Swizzling allows 

replacing the x, y or z blocks of a source register by any other x, y or z block from that same source 

register. This concept is illustrated in the next figure. 

 

Figure 22 Swizzling instruction sources 

Register swizzle is a very powerful technique which allows the VP to perform a variety of operations. An 

example of the usefulness of operand swizzling is matrix multiplication. Let’s take for instance the 

following 3x3 matrix multiplication: 

(
   
   
   

)  ( 
 
 
 
)  ( 

        
        
         

)         

Let’s assume that R1 has been loaded with the value (1,4,7), that R2 has been loaded with the value 

(2,5,8), that R3 has been loaded with the value (3,6,9), and that R4 has been loaded with the value 

(a,b,c). Equation (1) can be represented as series of swizzled operations in T-language like this: 

R7 = R1 * R4.xxx; 

R8 = R2 * R4.yyy; 

R9 = R3 * R4.zzz; 

R1 = R7 + R8; 

R1 = R1 + R9; 

The previous code shows that it would take the VP 5 operations to complete the 3x3 matrix 

SRC1.x SRC1.y SRC1.z 

SRC1.z SRC1.x SRC1.y 

SRC0.x SRC0.y SRC0.z 

SRC0.z SRC0.z SRC0.y 
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multiplication. 

Finally it also possible to simultaneously combine the 3 types of source modifiers in a single instruction 

as illustrated in the next figure. 

 

Figure 23 Combining several source modifiers in a single instruction 

Figure 23 shows how it is possible to combine sign modifications, scaling and swizzling in the same 

instruction. To illustrate this, let’s take for example a cross product vector operation. The cross product 

can be written as the following column of vectors: 

(
  
  
  

)  (
  
  
  

 )   (
         
         
         

)        

You can see from (2) that the cross product needs to perform a series of subtractions (the VP uses sign 

control to negate the second argument for subtractions) and also needs to organize the sources in a 

special way in order to obtain the desired result. Let’s assume that R1 has been loaded with the value 

(Ax, Ay, Az) and R2 has been loaded with the value (Bx, By, Bz). Equation (2) can be represented as series 

of swizzled operations in T-language14 like this: 

R3 = R1.yzx * R2.zxy; 

R4 = R1.zxy * R2.yzx; 

R1 = R3 – R4; 

So the previous code shows that the VP can perform a cross product using only three instructions. 

It is important to mention that the source modifiers are implemented as pure combinatorial blocks, this 

means that they add no extract latency to the operations.  

                                                           
14

 This a special ‘middle level’ language specially designed for the THEIA GPU, more details on section <TBD> 

SRC1.x SRC1.y SRC1.z 

SRC1.z - SRC1.x SRC1.y’ 

>>  

- 
- 

SRC0.x SRC0.y SRC0.z 

-SRC0.x’  SRC0.x -SRC0.z 

- << 
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Table 8 summarizes the three possible instruction source modifiers and the document section where 

more information can be found. 

Table 8 instruction operand manipulators 

Instruction source 
modifier 

Document 
section 

Description 

Swizzle control 3.15 Input operand Swizzle control logic. 

Sign control 3.14 Input operand Sign control logic. 

Scale control 3.13 Input operand Scale control logic. 

 

3.5.4. Data dependencies and source modifiers  
 

Looking back at Figure 15, it must be noted how the Source modifier unit (SMU) is connected to the 

issue unit (IIU) and is also connected to the commit bus (CBUS). This is because the SMU needs to apply 

the source modifiers to the data sources coming from the issue stage and it may also potentially need to 

apply source modifiers to the results from the execution units (EU) when the data dependencies get 

resolved. Let’s illustrate this concept with an example. 

 

   R2  = (10,20,30); 

   R3   = (2,0,0); 

    

   R1 = R2 / R3.xxx; 

   R2.y = R1.zzz + R1; 

 

Figure 24 Example of data dependencies when using source modifiers 

In the example from Figure 24, the addition operation depends upon the result from the division 

operation. Because of the out-of-order execution, the addition instruction will be issued into the 

reservation stations regardless of the division result not being yet committed into the RF. Once the 

divider EU finishes calculating the result of the division, this result is written back into the RF and also 

forwarded into the SMU. The SMU needs to apply to proper modifiers to the result from the division EU 

and then present this modified result into the reservation stations so that the data dependencies can be 

properly resolved. This concept is illustrated in the next series of figures. 
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Figure 25 IIU issues a division 

Figure 25 depicts the IIU is issuing the division instruction from Figure 24. The IIU retrieves the value of 

R2 (10, 20, 30) and the value of R3 (2, 0, 0) from the RF and then sends these vectors to the SMU. The 

SMU swizzles the values of R2 so that it becomes R2.xxx (2, 2, 2) and then broadcasts these values to the 

reservation stations along with the reservation station index (RSID)15. The reservation station whose 

index matches with the RSID broadcasted by the SMU latches the value, since no data dependencies 

where found, the RS triggers the corresponding EU (the divider for this example) using these input 

values from the SMU. 

                                                           
15

 Not shown in the picture.  
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Figure 26 The IIU issues an addition operation 

While the Divider EU is busy calculating the result of DIV operation, the IIU issues the next instruction 

which is an addition. Since the addition source operands depends on the result from the division 

instruction, the IIU uses the register renaming technique to specify the reservation station that will 

resolve the data dependencies, this is illustrated in Figure 26. The RS1 will not start the addition EU until 

it receives the result from RS0. 

A number of clock cycles after issuing the DIV instruction, the divider EU is finally done calculating the 

result; this is shown in Figure 27. Figure 27 depicts the DIV EU committing the division results into the 

shared commit bus (CBUS). These results are also forwarded into the SMU, the SMU has a series of 

internal registers that store the various data dependencies that need to be scaled16, signed changed or 

swizzled. In this example, the SMU knows that it needs to propagate two result values from RS0 back to 

the reservation stations. One value would be the division result using the “yyy” swizzle combination and 

the other value would be the division result with no modifiers. Figure 27 shows when the SMU issues 

the “yyy” swizzled value (15, 15, 15) back into the reservation stations17. 

                                                           
16

 More detail on this on section 4.1.2 
17

 The order in which the dependencies values are presented by the SMU into the RSs is not deterministic. See 
section xxx for details. 
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Figure 27 The DIV UE commits the results to the CBUS and the SMU. The SMU presents the first data dependency to the 
reservation stations. 

Once the RS1 gets the value (15, 15, 15) from the SMU it stores this value inside a set of internal 

registers. This resolves the first dependency, but the second dependency (RS0.x RS0.y RS0.z) is still 

pending. One extra clock cycle needs to pass before RS1 gets the second dependency from SMU; this is 

shown in Figure 28.  

Instruction Issue (IIU) 

Source Modifier (SMU) 

RS0 

DIV 

Register File (RF) 

RS1 

5 10 15 

15 15 15 

ADD 

R2 15 15 15 RS0.x RS0.y RS0.z 
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Figure 28 The SMU presents the second data dependency to the reservation stations. The ADD EU commits the result to the 
RF. 

Figure 28 shows the last step needed to execute the code from Figure 24. In this illustration, the RS1 is 

presented with the second data dependency (5 10 15) coming from the SMU. Now that RS1 has the two 

necessary data dependencies it can finally send the operands to the ADD EU so that 1 clock cycle later, 

the result is calculated and presented to the CBUS so that it can finally be written back into the register 

file. 

3.5.4.1. VP Flags 
 

The IIU receives two input flags from the EUs. These two flags are called the ZFLAG and the SFLAG. The 

ZFLAG is a 3 bit wide signal that indicates that the current result in the CBUS is a zero. The SFLAG is a 3 

bit signal that indicates that the current result in the CBUS is a negative number18. 

                                                           
18

 Using 2’s complement. 

Instruction Issue (IIU) 

Source Modifier (SMU) 

RS0 

DIV 

Register File (RF) 

RS1 5 10 15 

ADD 

R2 15 15 15 5 10 15 

20 25 30 
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Table 9 Execution SFLAG values 

SFLAG.x SFLAG.y SFLAG.z Description 

000 Result X block, Y block and Z block in the CBUS are non- 
negative. 

001 Result X block in the CBUS is negative. 

010 Result Y block in the CBUS is negative. 

011 Result Y block and Z block in the CBUS is negative. 

100 Result Z block in the CBUS is negative. 

101 Result X block and Z block in the CBUS are negative. 

110 Result X block and Y block in the CBUS are negative. 

111 Result X block, Y block and Z block in the CBUS are 
negative. 

 

Table 10 Execution ZFLAG values 

ZFLAG.x ZFLAG.y ZFLAG.z Description 

000 Result X block, Y block and Z block in the CBUS are non- 
zero. 

001 Result X block in the CBUS is zero. 

010 Result Y block in the CBUS is zero. 

011 Result Y block and Z block in the CBUS is zero. 

100 Result Z block in the CBUS is zero. 

101 Result X block and Z block in the CBUS are zero. 

110 Result X block and Y block in the CBUS are zero. 

111 Result X block, Y block and Z block in the CBUS are zero. 

 

The ZFLAG and the SFLAG are mainly used in the branch decision logic as explained in section 3.16. 

3.5.5. Execution units and reservation stations 
 

The VP has 6 reservation stations (RS). Each reservation station controls a single execution unit (EU). The 

reservation stations are responsible of triggering the execution units when the operands are ready or 

stalling the execution units while waiting for the data dependencies to arrive in the commit bus. Table 

11 lists the available reservation stations. 

Table 11 VP Reservation Stations 

Reservation station Latency (clock cycles) Description 
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RS_ADD0 1 Integer unsigned addition/subtraction 

RS_ADD1 1 Integer unsigned addition/subtraction 

RS_DIV Variable Integer signed division 

RS_MUL 1 Integer signed multiplication 

RS_SQRT 1 Integer square root.19  

RS_LOGIC 1 Bitwise logic operations. See section <> for more 
details. 

RS_IO Variable Input/Output operations 

 

It is important to note from Table 11 that there are 2 reservation stations dedicated to do additions, 

RS_ADD0 and RS_ADD1. The reason to have 2 separate reservation stations dedicated to add is that the 

addition is the most issued instruction20. If a reservation station becomes busy waiting for a data 

dependency, it is most likely that this RS was one of the adders, and it is also likely the next instruction 

that will get fetched from IM is another addition. 

The additions, subtractions, branches, register to register assignments, constant to register assignments, 

etc. all these constructs can be achieved using simple additions. In order to illustrate this concept, 

consider the snippet of code written in T-language21 presented in Figure 29.  

The code from Figure 29 is basically assigning constant values to variables (variables are always stored in 

registers), then it enters a function (called main), evaluates an “if” statement and calls a second function 

from within the first function. 

... 

 

CameraPosition.x   = 0; 

CameraPosition.y  = 0x00040000; 

CameraPosition.z  = 0x00020000; 

//---------------------------------------------------------- 

function main() 

 { 

                                                           
19

 Note: This is not generic square root algorithm; it approximates the square root integer number within a range 
of 0 and 512. See section 3.10 for details. 
20

 See appendix TBD for a quantitative proof. 
21

 This a special ‘middle level’ language specially designed for the THEIA GPU, see “T-Languague Document 
specification” for more details. 



 

Theia architecture specification 

 

46 

46 Theia architecture specification 

  if ( PrimitiveCount != MaxPrimitives ) 

  { 

   GenerateRay(); 

   Hit = 0; 

   PrimitiveCount = 0; 

  } 

  CalculateBaricentricIntersection(); 

  exit; 

} 

 

//---------------------------------------------------------- 

 

... 

Figure 29 An example code written in T-Language. 

The code from Figure 29 then is compiled into a series of ADD operations as it is shown in the next 

figure. 
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… 

 

8: c001 200b 0 0                            //ADD R11.x__ 0 

9: a001 200b 2 0                            //ADD R11._y_ 40000 

10: 9001 200b 1 0                            //ADD R11.__z 20000 

//__main 

11: 241 10 f 1c010                            //ADD <BRANCH.ZERO> @16.___ R15.xyz R16.-x-y-z 

12: f001 201f 0 e                             //ADD R31.xyz e 

13: 201 @__GenerateRay 0 0                   //ADD <BRANCH.ALWAYS> @__GenerateRay.___ R0.xyz R0.xyz 

14: f001 201a 0 0                            //ADD R26.xyz 0 

15: f001 200f 0 0                            //ADD R15.xyz 0 

16: f001 201f 0 12                           //ADD R31.xyz 12 

17: 201 @__CalculateBaricentricIntersection 0 0   //ADD <BRANCH.ALWAYS> @__CalculateBaricentricIntersection.___ R0.xyz R0.xyz 

18: 401 0 0 0                               //ADD R0.___ R0.xyz R0.xyz 

 

… 

Figure 30 The code from Figure 29 translated into assembly language 

Although the specific syntax of the assembly language from Figure 30 will not be covered in this 

document, it becomes clear from this figure that the generated code is simply a series of ADD 

operations.  

Section 3.5 will provide more information regarding how the majority of the operations are really just 

additions combined with some other fields from the instruction in Table 13. 

3.5.6. VP Stall conditions 
 

The VP can get into a stall state under certain scenarios; these scenarios are specified in Table 12 . When 

the VP reaches a stall condition, the IIU stops fetching instructions from the IM and stops issuing 

instructions to the reservation stations.  

Table 12 IIU Stall conditions 

Stall condition Description Un-stall condition 
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Structural hazard 
detected 

The IIU detected that there are no reservation 
stations available to execute the current 
instruction. 

Once an appropriate RS 
becomes available to execute 
the current instruction 

Data dependency 
and special 
operand modifiers. 

The current instruction has a data dependency 
on one of the operands and the SMU has no 
free slots to handle the dependency.22 

The data dependencies are 
resolved and corresponding 
result vector are written back 
into the RF. 

 

 

  

3.6.  Instruction addressing modes 
 

The VP has four addressing modes: direct, direct with displacement, indirect and indirect with 

displacement. The addressing modes depend on the IMM bit and the MODE field as described in section 

3.7.  

In direct addressing mode the instruction destination is simply the index of the general purpose register 

specified by the literal DSTINDEX field from Table 14. This mode does not depend on the IMM 

instruction bit. 

 

Figure 31 Direct addressing mode 

In direct addressing with displacement the instruction destination is the index of the general purpose 

register specified by the literal DSTINDEX field from Table 14, plus the SPR field OFFSET23. 

Figure 32 depicts the logic that is used to calculate the RF address when using direct addressing with 

displacement. It is important to note that the direct addressing mode can only be used to address 

                                                           
22

 For more information regarding the SMU dependency slot mechanism see section TBD. 
23

 The value of OFFSET is zero by default, but this needs to be set by the software. 

Instruction IMM=x 

DSTINDEX 

RF Address 

DSTINDEX 
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memory locations in the internal GPU register file (RF). The direct addressing mode with displacement 

does not depend on the IMM bit. Figure xxx shows an example of direct addressing. 

 

 

ADD R1 R2 R3      //R1 = R2 + R3 

 

 

 

Figure 32 Direct Addressing with displacement 

Figure 33 shows an example of an instruction using direct addressing. The register in red (R1) is used as 

the index into the RF, in other words the index is simply “1”. This index is added the value of OFFSET. 

Since the OFFSET field is part of a special purpose register (SPR), it is not explicitly used in the 

instruction. The only way to change the value of the OFFSET SPR is by writing directly into this special 

purpose register24. 

//Assume that the OFFSET register has been set to a value 

ADD R[1 + offset] R2 R3      //R[1+offset] = R2 + R3 

Figure 33 direct addressing with displacement 

Additionally, the direct mode with displacement can have an “index” that is added to the offset. This 

illustrated in the next figure. 

                                                           
24

 See section TBD for more information. 

DSTINDEX RS OFFSET 

+ 
RF Address 

Instruction DSTINDEX IMM=x 
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Figure 34 Displacement and Index 

The additional index from Figure 34 is used to de-reference arrays. 

In indirect addressing mode the instruction destination is the content of the register file location 

pointed by the DSTINDEX field from Table 14. In other words, the index of DSTINDEX is used as a 

pointer, pointing to a memory location in the RF where the actual index will reside. 

 

Figure 35 Indirect addressing mode 

 

 Once again, the value pointed by DSTINDEX is added the OFFSET SPR. This concept is illustrated in 

Figure 36. 

DSTINDEX INDEX + RS_OFFSET 

+ 

RF Address 

Instruction DSTINDEX IMM=x 

Instruction IMM=1 

DSTINDEX 

RF Address 

DSTINDEX 

RF 
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Figure 36 Indirect addressing with displacement 

One important thing about the VP architecture is that only some instructions support the indirect 

addressing mode while other instructions (most of them in fact) only support direct addressing mode. 

This means that the instruction set is not orthogonal. This decision was made in order to remove 

complexity from the decoding logic. Figure 37 shows an example of an instruction using indirect 

addressing. 

//Assume that the OFFSET register is zero 

ADD R1.x 0x7                       //R1 = 0x7 

ADD <BRANCH_ALWAYS> *R1.x 0x1      //Jump to content of R 

 

Figure 37 indirect addressing example 

In the example from Figure 37, the first addition stores the immediate value 0x7 into the register file 

location R1 (using direct addressing). Then, the second ADD operation executes a branch (see section 

3.16 for more details on branching); the destination content of the register R1 (0x7) is used as the 

branch destination. 

Finally, Table 17 in the following sections presents the internal encoding of the addressing mode inside 

the instruction word. This table may seem long, but is just an expanded version of the direct/indirect 

addressing modes plus offset as it has been described. Table 17 also shows that it is possible to apply 

the addressing modes to the SRC0 and SRC1 operands to use them as pointers under some 

configurations. 

Instruction IMM=1 

DSTINDEX RS OFFSET 

+ 

RF Address 

DSTINDEX 

RF 
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3.7.  Instruction word fields 
 

Section 3.5 presented a brief overview of the VP instructions; it showed how the VP instruction words 

are broken down into “sections”. Each of these sections is broken down into fields.  

This chapter is dedicated to specify all of the fields in each instruction section and describe its 

functionality. 

The next tables summarize the various instruction fields for the Operation, Destination, Source1 and 

Source0 sections.  

The first section to summarize is the Operation Section. The Operation section contains information 

regarding which arithmetic operation will be performed, the type of instruction (using immediate value 

or not using immediate value), branch information etc. The next table summarizes these concepts. 

Table 13 Instruction Operation section fields 

Field name Range Description 

IMM 63 Immediate operation bit.  
If this bit is set to 1, then the 32 least significant bits of the 
instruction will be interpreted as the literal value IMMV. See 
Figure 19. 

SCOP/LOP 62:59 Scale modifier. This determines how the scale modifier is to be 
applied. See section 3.13 for more details. 
For logic operations it chooses the logic operation to perform 
see section <TBD> for more details. 

EOF 58 End of flow bit. 
BBIT 57 Branch bit. See section 3.16for details. 
BOP 56:54 Branch operation. See section 3.16 for details. 

RESERVED 53:51 Reserved for future use. 

OPCODE 50:48 Operation code. See section 3.9 for details. 

 

The next section is the destination section. The destination section has to do with how the destination 

address is resolved. 

Table 14 Instruction Destination section fields 

Field name Range Description 

MODE 47:45 Addressing mode, see Table 17. 
WEX 44 Destination write enable X.  

If this bit is set to 1, then the channel X result from the VP will 
be stored at the channel X slot of the destination register 
DSTADDR, in the register file RF.  
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WEY 43 Destination write enable Y. 
If this bit is set to 1, then the channel Y result from the VP will 
be stored at the channel Y slot of the destination register 
DSTADDR, in the register file RF. 

WEZ 42 Destination write enable Z. 
If this bit is set to 1, then the channel Z result from the VP will 
be stored at the channel Z slot of the destination register 
DSTADDR, in the register file RF. 

DSTINDEX 41:34  

3.8.  Addressing mode encoding 
 

The next two tables specify the values of the SRC1, SRC0 and DSTADDR for the various addressing mode 

encodings. There are two main encodings: one when IMM = 0 and one when IMM = 1. 

Table 15 Addressing mode encoding IMM = 0. 

z/off1/off0 
(IMM=0) 

SRC1 SRC0 DSTADDR 

000  R[SRC1INDEX] R[ SRC0INDEX ] DSTINDEX 

001  R[SRC1INDEX] R[ SRC0INDEX + OFFSET]  DSTINDEX + OFFSET 

010  R[ SRC1INDEX +OFFSET] R[SRC0INDEX] DSTINDEX  

011 R[ SRC1INDEX + OFFSET] R[ SRC0INDEX + OFFSET] DSTINDEX + OFFSET 

100 R[ SRC1INDEX ] R[ SRC0INDEX ] DSTINDEX  

101 R[ SRC1INDEX ] R[ SRC0INDEX + OFFSET ] DSTINDEX + OFFSET 

110 R[ SRC1INDEX + OFFSET] R[ SRC0INDEX ] DSTINDEX 

111 R[ SRC1INDEX + OFFSET] R[ SRC0INDEX + OFFSET ] DSTINDEX + OFFSET 

 

Table 16 Addressing mode encoding IMM = 1. 

z/off1/off0 
(IMM=1) 

SRC1 SRC0 DSTADDR 

000 *branch IMMV R[ DSTINDEX ] DSTINDEX 

001 * IMMV R[ DSTINDEX ] DSTINDEX + OFFSET 

010 R[ SRC1INDEX ] R[SRC0INDEX+OFFSET + 
RINDEX] 

DSTINDEX + OFFSET  

011*array 0 R[ SRC0INDEX + 
OFFSET] 

DSTINDEX + OFFSET + SRC1[ X ] 

100*assign IMMV 
 

0 DSTINDEX 

101*assign IMMV 
 

0 DSTINDEX + OFFSET 
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110 R[ SRC1INDEX + 
OFFSET+ RINDEX ] 

0 DSTINDEX+OFFSET 

111 * array R[ SRC1INDEX + 
OFFSET+ RINDEX ] 

R[SR0INDEX+OFFSET]  DSTINDEX + OFFSET 

 

The detail on how the addressing mode word is specified in Table 17. This table assumes the convention: 

R[DSTADDR] =  SRC1 OPCODE SRC0 

This may seem as a rather large list but is simply a set of possible ‘flavors’ of the direct or indirect 

addressing described in section 3.6. 

Table 17 Addressing mode encoding. 

IMM/MODE Description 

0 000 Direct: The Indexes from SCR1, SRC0 and DST are directly used 
to calculate the corresponding addresses in the RF.  
DSTADDR  =  DSTINDEX 
SRC1      =  R[ SRC1INDEX ] 
SRC0      =  R[ SRC0INDEX ] 

0 001 Direct with displacement: SRC0INDEX is added OFFSET and 
then used to calculate SRC0ADDR in RF. 
DSTADDR  =  DSTINDEX  
SRC1      =  R[ SCR1INDEX ] 
SRC0      =  R[ SRC0INDEX + OFFSET ] 

0 010 Direct with displacement: SRC1INDEX is added OFFSET and 
then used to calculate SRC1ADDR in RF. 
DSTADDR  =  DSTINDEX  
SRC1      =  R[ SCR1INDEX + OFFSET] 
SRC0      =  R[ SRC0INDEX ] 

0 011 Direct with displacement: SRC1INDEX is added OFFSET and 
then used to calculate SRC1ADDR in RF. SRC0INDEX is added 
OFFSET and then used to calculate SRC0ADDR in RF. 
DSTADDR  =  DSTINDEX 
SRC1      =  R[ SCR1INDEX + OFFSET] 
SRC0      =  R[ SRC0INDEX + OFFSET] 

0 100 Direct with displacement:  DSTINDEX is added OFFSET and 
then used to calculate DSTADDR in RF. 
DSTADDR  =  DSTINDEX + OFFSET 
SRC1      =  R[ SCR1INDEX ] 
SRC0      =  R[ SRC0INDEX ] 
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0 101 Direct with displacement: DSTINDEX is added OFFSET and 
then used to calculate DSTADDR in RF. SRC0INDEX is added 
OFFSET and then used to calculate SRC0ADDR in RF. 
DSTADDR  =  DSTINDEX + OFFSET 
SRC1      =  R[ SCR1INDEX ] 
SRC0      =  R[ SRC0INDEX + OFFSET] 

0 110 Direct with displacement: DSTINDEX is added OFFSET and 
then used to calculate DSTADDR in RF. SRC1INDEX is added 
OFFSET and then used to calculate SRC1ADDR in RF. 
DSTADDR  =  DSTINDEX + OFFSET 
SRC1      =  R[ SCR1INDEX + OFFSET ] 
SRC0      =  R[ SRC0INDEX ] 

0 111 Direct with displacement: All the indexes from SRC1, SRC0 and 
DST are displaced by the OFFSET. 
DSTADDR  =  DSTINDEX + OFFSET  
SRC1      =  R[ SCR1INDEX + OFFSET  ] 
SRC0      =  R[ SRC0INDEX + OFFSET ] 

1 000* Direct with IMMV: The 32-bit immediate (literal) value IMMV 
is used as SRC1, the value of the register pointed by DSTINDEX 
is used as SRC0.25 
DSTADDR = DSTINDEX 
SRC1.x = IMMV 
SRC1.y = IMMV 
SRC1.z = IMMV 
SRC0 = R[DSTINDEX] 

1 001* Direct with IMMV and displacement:  Combines 
displacement and direct addressing. 
 
DSTADDR  =  DSTINDEX  + OFFSET 
SRC1.x = IMMV 
SRC1.y = IMMV 
SRC1.z = IMMV 
SRC0 = R[DSTINDEX + OFFSET] 
 

1 010 Indirect with non-immediate 
DSTADDR  =  R[ DSTINDEX + SRC1[7:0] ] 
SRC1 = R[ SRCINDEX1 ] 
SRC0 = R[ SRCINDEX1 ] 
 
 

1 011 Indirect with non-immediate and offset: This is used to store 
the results of the instruction directly into array elements. 
(there is a traversal algorithm (see section TBD) which makes 
heavy use of an array (working as a stack) this is why is 

                                                           
25

 In other words what this does is: R[DSTINDEX] = IMMV OPERATION R[ DSTINDEX], where operation is one of the 
operations from Table 6. 
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necessary for the instruction set to support storing directly 
into array elements) 
DSTADDR  =  R[ DSTINDEX + OFFSET + SRC1[7:0] ] 
SRC1 = R[ SRCINDEX1 + OFFSET ] 
SRC0 = R[ SRCINDEX0 + OFFSET ] 
 
R[ DSTADDR + SRC1[X_RNG] + OFFSET ] = SRC0 

1 100* Indirect with IMMV and Zero:   
DSTADDR  =  DSTINDEX 
SRC1.x = IMMV 
SRC1.y = IMMV 
SRC1.z = IMMV 
SRC0.x = 0 
SRC0.y = 0 
SRC0.z = 0 

1 101* Indirect with IMMV, displacement and clear SRC0: Combines 
displacement, indirect addressing and zeroing of SRC0. 
 
DSTADDR  =  DSTINDEX + OFFSET 
SRC1.x = IMMV 
SRC1.y = IMMV 
SRC1.z = IMMV 
SRC0.x = 0 
SRC0.y = 0 
SRC0.z = 0 

1 110  
1 111 Indirect with non-immediate and offset: This is used to store 

the results of the instruction directly into array elements. 
(there is a traversal algorithm (see section TBD) which makes 
heavy use of an array (working as a stack) this is why is 
necessary for the instruction set to support storing directly 
into array elements) 
DSTADDR  =  R[ DSTINDEX + OFFSET + SRC1 ] 
SRC1 = R[ SRCINDEX1 ] 
SRC0 = R[SRCINDEX0] 
 
R[ DSTADDR + SRC1 + OFFSET ] = SRC0 

 

The next 2 tables are the fields from the instruction source sections. Both SRC1 and SRC0 sections have a 

similar layout. The values from these next two tables are especially important for the SMU in order to do 

the source modifications. 

Table 18 Instruction Source 1 section fields 

Field name Range Description 
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SIGN1X 33 Source 1 sign X bit. 
SIGN1Y 32 Source 1 sign Y bit. 

SIGN1Z 31 Source 1 sign Z bit. 
SWZZ1X 30:29 Source 1 swizzle X. See section 3.15 for details. 

SWZZ1Y 28:27 Source 1 swizzle Y. See section 3.15 for details. 
SWZZ1Z 26:25 Source 1 swizzle Z. See section 3.15 for details. 
SRC1ADDR 17:24 Source 1 Address in RF. 

 

 

Table 19 Instruction Source 0 section fields 

Field name Range Description 

SIGN0X 16 Source 0 sign X bit. 
SIGN0Y 15 Source 0 sign Y bit. 

SIGN0Z 14 Source 0 sign Z bit. 
SWZZ0X 13:12 Source 0 swizzle X. See section 3.15 for details. 

SWZZ0Y 11:10 Source 0 swizzle Y. See section 3.15 for details. 
SWZZ0Z 9:8 Source 0 swizzle Z. See section 3.15 for details. 
SRC0ADDR 7:0 Source 0 Address in RF. 

3.9.  Selecting the Arithmetic operation 
 

The arithmetic operations were briefly introduced in section 3.5.1. This section will provide more details 

on how the instruction determines the arithmetic operations. 

The arithmetic operation within the instruction is controlled by the OPCODE field from Table 20. After 

the IIU fetches an instruction it decodes the OPCODE in order to select the appropriate reservation 

station to execute the OPCODE. 

 

Table 20 Instruction OPCODE field values 

OPCODE Name Description 

000 NOP A NOP operation is issued by IIU.26 
001 ADD Integer Addition. 27 

010 DIV Integer division. 
011 MUL Integer multiplication. 

                                                           
26

 Note: The NOP is actually sent into the IBUS with an RSID equal to zero. Since no reservation station has the 
number zero as RSID then the NOP issue will be ignored by all the reservation stations and no operation will be 
performed. 
27

 Note: In order to perform a subtraction, the sign of one of the operands must be set to negative. See section 
3.14 for details. 
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100 SQRT Integer square root.  See section 3.10 for details. 
101 LOGIC Bitwise logic operations. The specific logic operation is chosen 

by setting the appropriate value into the SCOP/LOP field under 
the operation instruction section. See section <> for details. 

110 IO Input/Output operations see section 6 for details. 

111 RSVR2 RESERVED. 

 

The NOP, ADD, DIV and MUL operations from Table 20 are very straight forward. The square root 

operation is a special case that is briefly explained in the next section. 

3.10. Fixed point Square Root unit 
 

As shown in Table 20, THEIA features an execution unit called SQRT which is dedicated to calculate 

square roots. The SQRT unit has been designed to be very fast, but in return for that speed the SQRT 

unit has a number of limitations. These limitations are related to the fact that the SQRT has been 

implemented using a LUT, so SQRT can only calculate square roots for values that are constrained within 

a certain range of numbers and only for fixed point numbers. 

The SQRT can only calculate square roots for numbers that are between 0 and 127. This may seem like a 

small range at first, but consider the following property of square roots illustrated with this example: 

√  √  
 

  
  √

 

  
              

So, if the number X from (3) is not between 0 and 127, then the number X can be divided by a power of 

2 until it results in a number which is can be found within the range of numbers stored in the LUT. Then 

the result from the LUT is multiplied back in order to get the result as in (3)28.  

As it was mentioned earlier, SQRT only operates on fixed point numbers. The fixed point numbers have 

an associated SCALE as described in section 3.4. The SQRT unit uses an LUT (ROM) to store the square 

roots using a fixed point representation; this means that the SCALE is fixed for the SQRT unit. Since the 

SQRT scale is fixed, then is the compiler’s responsibility to apply the appropriate scale operation (see 

section 3.4) to the input arguments when issuing instructions into the SQRT unit.  

The next table summarizes the limitations and special conditions of the SQRT unit. 

Condition Description 

Fixed point Scale The fixed point scale used by the SQRT unit is 17. 
Numeric Range The range of number is between 0 and 64*127. If the SQRT attempts to 

calculate a value outside if this range, then an arithmetic error condition is 
generated. See section <TBD> for details. 

                                                           
28

 This multiplications and division by powers of two are implemented as shift operations. 
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Decimal truncation The when the fixed point number is between the range, then it is truncated 
to the closest value on the LUT in order to calculate the square root. 

 

3.11. Bitwise logic operations 
 

The VP can perform bitwise logic operations by setting the value 3’b101 in the OPCODE field from Table 

20 and then choosing among one of the following possible bitwise operations from Table 21. 

 

Table 21 Logical operation selection 

SCOP/LOP Name Description 

000 AND Bitwise AND 
001 OR Bitwise OR 

010 NOT Bitwise NOT 
011 SHL Shift left 

100 SHR Shift right 

 

As usual, the logical operations are applied in parallel into the x, y and z blocks of the operands as 

mentioned in the previous sections. 

 

3.12.  Destination write channel control 
 

Each VP instruction has the ability to specify the individual 32-bit destination blocks where the result will 

be written back into the RF. This was briefly introduced in section 3.5.2. A VP instruction can choose to 

alter the 3 32-bit destination blocks (X, Y and Z) or to selectively write only to some blocks, for example 

storing the results into the X block only, or storing the results into the Z and the Y but not altering the X 

block.  

The way to control where to store the results is by using the WEX, WEY and WEZ Instruction bits from 

the instruction destination section in Table 13. Table 22 lists all the possible WEX, WEY and WEZ values. 

 

Table 22 Write channel control bit values 

BBIT WEX WEY WEZ Description 

0 000 No values are written to DSTADDR.29 

                                                           
29

 This is especially useful for branches. It is in general not desired that a branch operation writes values to the RF. 
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0 001 The result Z value is written to the DSTADDR Z block. 

0 010 The result Y value is written to the DSTADDR Y block. 
0 011 The result Z value is written to the DSTADDR Z block 

AND the result Y value is written to the DSTADDR Y 
block. 

0 100 The result X value is written to the DSTADDR X block. 
0 101 The result X value is written to the DSTADDR X block 

AND the result Z value is written to the DSTADDR Z 
block. 

0 110 The result X value is written to the DSTADDR X block 
AND the result Y value is written to the DSTADDR Y 
block. 

0 111 The result X value is written to the DSTADDR X block 
AND the result Y value is written to the DSTADDR Y 
block AND the result Z value is written to the DSTADDR 
Z block. 

1 xxx No values are written to DSTADDR. The branch logic is 
activated.30 

 

It is important to note from Table 22 that if a given X, Y or Z value is not written by the instruction, then 

the previous (old) value will remain in the RF. 

3.13.  Operand Scale control  
 

Each VP instruction has the ability to specify the optional scale operation for the input arguments SCR1 

and SCR0. The scale operation shifts the x, y and z blocks of the specific source register by SCALE number 

of bits. The scale operation is controlled by the SCOP instruction field from Table 13. The input 

operands can be scaled to the left or can be scaled to the right depending on the value of the SCOP field 

as specified in Table 23.  

Table 23 input operand scale control 

SCOP Description 

000 No scale changes are applied to SRC1 or SCR0. 
001 SRC1 << SCALE  

010 SRC0 << SCALE 
011 SRC1 << SCALE AND SCR0 << SCALE 

100 Reserved 
101 SRC1 >> SCALE 
110 SRC0 >> SCALE 

111 SRC1 >> SCALE AND SCR0 >> SCALE 

 

                                                           
30

 See section 3.16 
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It is important to remember that the scale operations from table<> modifies the individual x, y and z 

blocks of the corresponding register, for example doing SCR0 << SCALE is really doing: 

 (SRC0.x << SCALE, SCR0.y << SCALE, SCR0.z << SCALE) 

So each x, y and z block is scaled individually. 

The Scale operation is used to perform the operand scaling necessary for the fixed point arithmetic 

operations31. The default value for the SCALE is 17 as defined in section Error! Reference source not 

ound., and can be changed in the control register CNTREG. 

3.14.  Operand Sign control  
 

Each VP instruction has the ability to change to sign of any given X, Y or Z block from any of the two 

operand values. The sign change is applied by performing a 2 complement of the selected X, Y or Z 

value. The sign control is very important since the VP doesn’t actually have a subtraction OPCODE (see 

Table 20 ), therefore the sign control allows the SRC1 to be complemented in order to execute a 

subtraction. Also note that the individual X, Y or Z blocks can be negated, this combined with the 

operand “swizzling” allows for more complex operations as we will see in the next sections. The next 

tables define how the sign is controlled using the SIGN* bits from the instruction SRC1 and SRC0 fields. 

 

Table 24 SRC1 Sign control 

SIGN1X SIGN1Y SIGN1Z Description 

000 No sign changes are applied to SRC1. 
001 SRC1 Z sign is inverted. 

010 SRC1 Y sign is inverted. 
011 SRC1 Y sign is inverted AND SRC1 Z sign is inverted. 

100 SRC1 X sign is inverted. 
101 SRC1 X sign is inverted AND SRC1 Z sign is inverted. 
110 SRC1 X sign is inverted AND SRC1 Y sign is inverted. 

111 SRC1 X sign is inverted AND SRC1 Y sign is inverted 
AND SRC1 Z sign is inverted. 

 

 

Table 25 SRC0 Sign control 

SIGN0X SIGN0Y SIGN0Z Description 

000 No sign changes are applied to SRC1. 

                                                           
31

  see section 3.4 
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001 SRC0 Z sign is inverted. 

010 SRC0 Y sign is inverted. 
011 SRC0 Y sign is inverted AND SRC0 Z sign is inverted. 

100 SRC0 X sign is inverted. 
101 SRC0 X sign is inverted AND SRC0 Z sign is inverted. 
110 SRC0 X sign is inverted AND SRC0 Y sign is inverted. 

111 SRC0 X sign is inverted AND SRC0 Y sign is inverted 
AND SRC0 Z sign is inverted. 

 

 

3.15.  

Operand swizzle control 
 

Operand swizzle consists of re-ordering the x, y and z blocks of the instruction input operands. Each 

individual x, y or z operand block can be replaced by one of the x, y or z blocks in the same operand. This 

is done by means of the SWZZL* fields from Table 18 and Table 19. The next tables define all the 

possible input operand swizzle combinations. 

Table 26 SRC1 Swizzle control X 

SWZZ1X  Description 

00 Operand1.x is not modified. 
01 Operand1.x is replaced by Operand1.z 

10 Operand1.x is replaced by Operand1.y 
11 Reserved 

 

Table 27 SRC1 Swizzle control Y 

SWZZ1Y Description 

00 Operand1.y is not modified. 
01 Operand1.y is replaced by Operand1.z 

10 Operand1.y is replaced by Operand1.x 
11 Replaced 

 

Table 28 SRC1 Swizzle control Z 

SWZZ1Z Description 

00 Operand1.z is not modified. 
01 Operand1.z is replaced by Operand1.y 

10 Operand1.z is replaced by Operand1.x 
11 Reserved 
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Table 29 SRC0 Swizzle control X 

SWZZ0X Description 

00 Operand1.x is not modified. 
01 Operand1.x is replaced by Operand1.z 

10 Operand1.x is replaced by Operand1.y 
11 Reserved 

 

Table 30 SRC0 Swizzle control Y 

SWZZ0Y Description 

00 Operand1.y is not modified. 
01 Operand1.y is replaced by Operand1.z 
10 Operand1.y is replaced by Operand1.x 
11 Reserved 

 

Table 31 SRC0 Swizzle control Z 

SWZZ0Z Description 

00 Operand1.z is not modified. 
01 Operand1.z is replaced by Operand1.y 

10 Operand1.z is replaced by Operand1.z 
11 Reserved 

 

There are 2 separate combinatorial blocks in the SMU dedicated to do the input operand swizzle32, one 

for each of the two possible instruction operands. This is shown in Figure 38.  

 

                                                           
32

 Note: The instruction result cannot be swizzled. 
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3.16. Branching operations 
 

Branching is done by setting to 1 the BBIT in the instruction’s operation field. After the instruction’s 
result has been committed by the execution units, the IIU will check the values from the ZFLAG and the 
SFLAG against Table 32 to decide if the branch was taken or not taken.  

 

Table 32 Branch operation BOP values 

BBIT/ BOP Description 

1 000 Unconditional Branch. 
1 001 Branch if ZFLAG is 1 

1 010 Branch if ZFLAG is 0 
1 011 Branch if SFLAG is 1 

1 100 Branch if SFLAG is 0 
1 101 Branch if ZFLAG is 1 OR SFLAG is 1 
1 110 Branch if ZFLAG is 1 OR SFLAG is 0 

1 111 Reserved 

0 xxx No branch is performed 

 

The branch decisions from Table 32 are further predicated by Table 33. Since the both the SFLAG and 

ZFLAG have x, y and z values corresponding to the individual x, y and z result blocks, Table 33 describes 

which x, y and z values from the ZFLAG and SFLAG are used by Table 32 in order to make the final  

branch decision. 

Table 33 Branch operation predicates. 

BBIT / WE Description 

X1 [95:64] Y1 [63:32] Z1 [31:0] 

   

SRC1 [95:64] SRC1 [63:32] SRC1 [31:0] 

SWZ1Y SWZ1Z SWZ1X 

X0 [95:64] Y0 [63:32] Z0 [31:0] 

   

SRC0 [95:64] SRC0 [63:32] SRC0 [31:0] 

SWZ0Y SWZ0Z SWZ0X 

Figure 38 Operand swizzle logic 
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1 000 Reserved 
1 001 Use only z values of ZFLAG and SFLAG to make the branch 

decision. 
1 010 Use only y values of ZFLAG and SFLAG to make the branch 

decision. 
1 011 Use only y and z values of ZFLAG and SFLAG to make the 

branch decision. 
1 100 Use only x values of ZFLAG and SFLAG to make the branch 

decision. 
1 101 Use only x and z values of ZFLAG and SFLAG to make the 

branch decision. 
1 110 Use only x and y values of ZFLAG and SFLAG to make the 

branch decision.  
1 111 Use x, y and z values of ZFLAG and SFLAG to make the branch 

decision 
0 xxx The WE action is controlled by Table 22 

 

Branching can usually be achieved by configuring the VP to perform a subtraction (this is an addition 

with SRC0 sign bits set to 1) and then checking the SFLAG and ZFLAG to see if the source registers were 

equal, greater, etc. according to Table 32 and Table 33. 

It is important to note that nothing prevents the compiler from choosing to execute an operation 

different from a subtraction and then checking the results of this operation against Table 32 to 

determine the branch.  

3.16.1. Unconditional branches 

 

Unconditional branches are branches which are always taken. In order to set a branch as unconditional, 

the BOP field has to be set to zero as specified in Table 32. Unconditional branches can either branch 

into an effective address (EA) specified as an immediate value or can branch into an effective address 

specified as the content of a register. Table 34 and Table 35 illustrate the previous concepts. 

Table 34 Unconditional branch with branch destination as immediate value 

Field name Range Value 

IMM 63 0 
WEX 62 0 

WEY 61 0 
WEZ 60 0 

BP 59 0 
EOF 58 0 
BBIT 57 1 

BOP 56:54 000 
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OPCODE 48:53 Any operation but NOP. See Table 20 

DSTINDEX 41:34 Literal represent the EA to branch into. 

 

Table 35 Unconditional branch with branch destination stored in a register 

Field name Range Value 

IMM 63 1 
WEX 62 0 
WEY 61 0 
WEZ 60 0 

BP 59 0 
EOF 58 0 
BBIT 57 1 

BOP 56:54 000 

OPCODE 48:53 Any operation but NOP. See Table 20 

DSTINDEX 41:34 Literal represent the register index where the EA to branch will 
be read. 

 

 

3.16.2. Conditional Branches 

For conditional branches, the IMM bit has to be clear to zero. THEIA does not allow using immediate 

values as part of the sources to determine a conditional branch. The source values for branches shall 

always be stored in registers.  

Table 36, Table 37 and Table 38 show a possible scenario where the compiler would configure the VP to 

perform a conditional branch by checking the ZFLAG and SFLAG after a subtraction. 

Table 36 Example of Instruction operation for a conditional branch instruction 

Field name Range Value 

IMM 63 0 
WEX 62 0 

WEY 61 0 
WEZ 60 0 

BP 59 0 
EOF 58 0 
BBIT 57 1 

BOP 56:54 B2 B1 B0. See Table 32. 

OPCODE 48:53 ADDITION. See Table 20. 
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Table 37 Example of Instruction Destination for conditional branch instruction. 

Field name Range Value 

DSTZERO 47 DON’T CARE 
RESERVED 46:34 Branch address. 

 

 

Table 38 Example of Instruction Sources for a conditional branch instruction 

Field name Range Value 

SOURCE1 33:17 Any valid combination as described in <> 
SIGN0X 16 1 
SIGN0Y 15 1 
SIGN0Z 14 1 
SRC0ADDR 7:0 Source 0 address in RF. 

 

 

4. VP Data path 
 

Now that the various instruction fields have been described in the previous sections, it is time to give a 

brief walk-through of the VP data path. The VP data path follows the path of the instruction and data 

from the IM all to way down to the RF. There are several data structures and special values that get 

added or removed along the way; this is illustrated in Figure 39. Figure 39 uses a series of acronyms such 

as DSTADDR, SC, WE, etc. These acronyms come from the previous sections.  

Table 39 Data path fields. 

Field name Section Description 

RSID  Reservation station ID determined by the IIU 
DSTADDR  Destination address determined by the IIU 

SC Table 13 Scale control  

WE Table 14 The WE.x WE.y and WE.z from the Destination section. 

RSID1  The ID of the reservation station which is currently 
calculating the data dependency for SRC1. (Zero means no 
dependency) 

RSID0  The ID of the reservation station which is currently 
calculating the data dependency for SRC0. (Zero means no 
dependency) 

SRC1  The 96 bit value (32 * 3) representing the instruction Source 
1. 
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SRC0  The 96 bit value (32 * 3) representing the instruction Source 
1. 

 

 

Figure 39 VP data path Walk Through 

The walkthrough starts with the instruction reaching the IIU. The IIU is in charge of decoding the 

instruction and generating a decoded packet. This decoded packet is composed of various fields as it is 

shown in Figure 39. The decoded packet is reprinted in Figure 40 for clarity. 

Instruction Issue (IIU) 

RSID DSTADR SC WE TAG1 RSID1 TAG0 RSID0 SRC1 SRC0 

Source Modifier (SMU) 

RSID DSTADR SC WE RSID1 SRC1* RSID0 SRC0* 

Reservation Stationk (RSk) 

DSTADR WE SRC1 SRC0 

Execution Unitk (EUk) 

RSID DSTADR WE 

Register File (RF) 

DSTADR WE Result RSID Result 

Result 

OperandRSID TAG 
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Figure 40 The decoded instruction presented by the IIU to the SMU 

The first field from Figure 40 is the RSID which is simply the numerical index of the reservation station 

that is required to handle this issue, this calculated using Table 20. The next field is the DSTADR, this is 

the effective address calculated using Table 17. Next is the SC field, this is the scale field taken from the 

Table 13. Next is the WE (Write Enable) field which is taken from Table 14. Next is the TAG1. The TAGs 

are simply the SIGN+SWIZZLE for each SRC0 or SRC1 operands. The RSID1 field is the reservation station 

index of the RS that is resolving the data dependency of SRC1 (zero in case there are no dependencies), 

similarly RSID0 is the index of the RS resolving the data dependency of SRC0. SRC1 and SCR0 are the 96 

bit wide values of the source operands taken from the RF. 

This decoded packet from Figure 40 is presented to the SMU. The SMU looks at the TAG1 and TAG0 

fields. If any of these fields is non-zero, then the SMU applies the corresponding data modifications 

according to Table 23, Table 24, Table 25, Table 26, Table 27, Table 28, Table 29, Table 30 and Table 31. 

The output from the SMU is modified packet that is reprinted from Figure 39 by Figure 41. 

 

Figure 41 The packet presented by the SMU to the reservation stations (RS). 

All of the fields from Figure 41 have been already mentioned. There are a couple of important things to 

see from Figure 41. The first thing is that if the RSID1 is zero (meaning that there are no data 

dependencies), then the SMU simply applies the scaling, swizzling and sign modifications to (SRC1.x, 

SRC1.y, SRC1.z) so that is becomes (SRC1.x’, SRC1.y’, SRC1.z’). If RSID1 is not zero, then SMU cannot 

apply the source modifications, instead the SMU inserts theTAG1 into the least significant bits of SRC1. 

RSID DSTADR SC WE TAG1 RSID1 TAG0 RSID0 SRC1 SRC0 

SWZ1 SIGN1 SWZ0 SIGN0 

RSID DSTADR SC WE RSID1 SRC1 RSID0 SRC0

SRC1.x’ SRC1.y’ SRC1.z’ 

Reserved TAG1

SRC0.x’ SRC0.y’ SRC0.z’ 

Reserved TAG0

RSID1 == 0 

RSID1 != 0 

RSID0 == 0 

RSID0 != 0 
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The same thing happens with SRC0. 

Following Figure 39, the output packet from the SMU is broadcasted to the reservation stations. Only 

the RS who’s RSID matches the RSID field from Figure 41 will handle the issue request. It is important to 

mention that an issue request is targeted to a single RS, in other words it is not possible for two or more 

RSs to handle the same issue request at any given point in time. Once the packet from Figure 41 reaches 

an RS two things can happen: either there are no data dependencies (RSDI1 and RSID0 are both zero) 

and the instruction is passed directly to the corresponding EU, or there is at least one data dependency 

and then the RS will wait until the dependency becomes available from the SMU. 

In the scenario where there are no data dependencies, the RS will trigger the EU so that the arithmetic 

or logic operation starts executing. A number of clock cycles after the RS triggers the EU, the results 

from the operation are obtained. These results need to follow several paths as illustrated in Figure 39. 

One of these paths connects the results directly with the RF. The RF only needs information regarding 

where to write the result values (DSTADDR) and which of the X, Y or Z channels to update (WE), and of 

course the actual data to write. Another possible path for the results is to be connected from the EU 

back into the SMU. This is used in order to resolve data dependencies which are pending a swizzle, scale 

or sign change (for an example see section 3.5.4)  

 

 

 

 

 

 

 

 

 

4.1.1. Instruction issue unit (IIU) 
 

The instruction issue unit (IIU) is responsible of fetching the next instruction from the IM, decoding the 

instruction, selecting the appropriate reservation stations, issuing the instruction into the IBUS or 

stalling the machine when the stalling conditions from Table 12 are met.
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Figure 42 Block diagram of the IIU 

Figure 42 shows a block diagram of the IIU. The IIU interfaces with the instruction memory (IM), the 

SMU and the Register File (RF). The main inputs to the IIU are the Instruction from the IM and the SRC0 

and SRC1 data from the RF and the main output is the Issue-Packet send to the SMU; please refer to 

Figure 39 for a detailed description of these packets.  

The IIU is responsible of generating the next instruction pointer (IP). This IP is send to the IM and after 1 

clock cycle the requested instruction reaches the IIU. Once the instruction arrives at the IIU, the SRC0 

address and SRC1 address are decoded from the Instruction and send to the RF. One clock cycle after 

the SRC0 address and SRC1 address are send to the RF, the corresponding data (SRC1 and SRC0) arrive at 
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the IIU.  

In the same clock cycle when the SRC0 and SRC1 are requested from RF, these same addresses are 

checked for dependencies on the Dependency-Table, this also takes 1 clock cycle but as mentioned 

earlier it happens in parallel with the SRC1 and SRC0 request from the RF. So in the next clock cycle the 

IIU knows the values of SRC0 and SRC1 and also knows if those two values are valid and can be used as 

part of the Issue-Packet. Depending on the instruction codification, either the SRC1 and SRC0 or the 

IMMV and the SRC1 are used to build the Issue-Packet. Also depending on the addressing mode, the 

DST, SRC0 or SRC1 may need to be added the Offset value and/or Index value.  

A FSM takes care of the special cases during the IIU execution: branch stall conditions, dependency 

resolution, etc. For example, it may happen that SRC1 for the current instruction has a dependency on 

RSk marked in the Dependency-Table. When this happens, the FSM first checks to see if the dependency 

is currently waiting to be updated (there is an input FIFO in the IIU to serialize incoming dependency 

resolutions from the EUs), if the dependency resolution is not currently pending on the FIFO then the 

FSM uses the dependency index RSk value from the Dependency-Table to mark the corresponding 

SRC1RS section of the Issue-Packet as a dependency of RSk. 

The FSM also takes cares of stalling the IIU. The IIU can be stalled under the conditions described in 

Table 12. For example, if there are no free reservations stations available to handle the current 

instruction, then the FSM will stall until a suitable RS becomes available, also if the SMU runs out of free 

slots then the FSM will also stall the IIU. 

Finally when all the necessary information to create the Issue-Packet has been obtained (this usually 

takes two clock cycles unless there is a stall) the FSM makes sure that the Dependency-Table gets 

updated for the current instruction and finally issues the decoded instruction to the SMU. 

It is important to mention that even if most of the EU can execute in 1 clock cycle, the IIU can only issue 

an instruction every 2 clock cycles. This limitation is solved by the use of multithreading as we will see 

later on this document. 
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4.1.2. Source Modification unit (SMU) 
 

The Source modification unit is a hardware block dedicated to apply the scale, swizzle and sign 

modifications to the data coming from IIU and to data result forwarded from the EUs. A behavioral 

explanation of what the SMU does is available in section 3.5.3. The next figure illustrates the structure of 

the SMU33. 

 

Figure 43 SMU simplified diagram 

                                                           
33
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The main inputs to the SMU are the Issue-Packet from the IIU and the result forwarded from the EU, and 

the main output is the modified-issue packet that is send to the reservation stations; please refer to 

Figure 39 for a detailed description of these packets.  

When a packet arrives from the IIU, the SMU looks at the packet fields to see if the SRC1, SRC0 or the 

Result needs to be modified. If either the SRC1 or the SRC0 (or both) need a modification, then the SMU 

uses the two combinatorial blocks dedicated to do Scale, Swizzle and Sign modifications. If the Result 

needs to be modified, then the SMU updates a special field on the packet and uses the “Dep-Store” 

blocks to store the dependencies so that when the results are forwarded back from the EUs the 

modifications can be applied. 

The SMU has 4 “Dep-Store” blocks. Each Dep-Store block keeps track of a single result dependency by 

storing a single TAG/Register pair. Every time a packet arrives from the IIU, a free Dep-Store block is 

used to store the dependencies for SRC1 and SRC0 (if any). If there are no free Dep-Store blocks to store 

the dependencies then the SMU stalls and sends a busy signal back to the IIU, indicating that it can 

handle no more requests. 

When a result is forwarded from the EUs, the SMU broadcasts this result to the “Dep-Stores”. If the 

result is not pending a modification on any of the Dep-Stores, then no changes are applied to it and the 

result is forwarded verbatim back to the reservation stations. If one or more Dep-Store has the result 

marked as pending for modification, then the modifications are applied and the modified results are 

serially forwarded to the RS, using a round robin algorithm.  

4.1.2.1. Issue Bus (IBUS) 
 

The issue bus or IBUS is a 216 bit wide shared bus which connects the IIU with the Reservation stations. 

The next table shows the structure of the IBUS. 

Table 40 Issue bus fields 

Field name Range Description 

SCOP 218:216 The scale operation bits (see section 3.13) 
DEST_ZERO 215  
RSID 214:211 The reservation station ID. 

WE 210:208 Write enable bits. (see section 3.12) 
DST 207:200 The destination address in RF. 

SRC1RS 199:196 The SRC1 renamed register index according to Table 11.  
The value 0 means that there are no data dependencies for 
SRC1. 

SRC0RS 195:192 The SRC0 renamed register index according to Table 11.  
The value 0 means that there are no data dependencies for 
SRC0. 
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SRC1 191:96 The 96 bit value (32x3) of SRC1.  

SRC0 95:0 The 96 bit value (32x3) of SRC0. 

 

All the reservation stations (RS) are connected to the IBUS as depicted in Error! Reference source not 

ound.. When a RSID field in the IBUS matches the RS ID, the RS reads in the issue data from the IBUS. 

The WE and DST fields are directly forwarded by the execution units into the CBUS. 

The SRC1RS and SRC0RS are the instruction operand dependencies (aka. Renamed registers). These 

registers are the indexes of the RSs which are currently operating on SRC0 and SRC1 respectively 

(according to the Tomasulo’s algorithm). A value of zero on SRC*RS means that there are no data 

dependencies. 

4.1.2.2. Commit Bus (CBUS) 
 

The commit bus or CBUS is a 111 bit wide shared bus which connects the execution units with the RF. 

The CBUS also retro-feeds into the reservation stations and reaches back into the IIU to allow for data 

forwarding as shown in Error! Reference source not found.. 

Table 41 Commit bus fields 

Field name Range Description 

RSID 110:107 The ID of the reservation station currently owning the CBUS. 
WE 106:104 The write enable x, y and z values (see section 3.12) 

DST 103:96 The destination address in RF. 
COMMIT_X 95:64 The X block of the result 

COMMIT_Y 63:32 The Y block of the result 

COMMIT_Z 31:0 The Z block of the result 

 

 

The CBUS is a shared bus. The RF and all the Reservation stations can concurrently read from the CBUS, 

but only one execution unit is allowed to have write ownership of the CBUS at any given point in time. 

The write arbitration of the CBUS is performed by a fair round robin arbiter as shown in Error! 

eference source not found.. If only a single EU is requesting write ownership of the CBUS then the 

arbiter grants the ownership one clock cycle after the request. If there are multiple EUs requesting write 

ownership of the CBUS, then it may take up to (# of requesting EUs) clock cycles for a given EU to be 

granted ownership of the CBUS. 
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5. VP SMT (simultaneous multithreading)  
 

As previously mentioned each VP can execute multiple HW threads in an SMT fashion. There is a 

separate issue unit for each thread with independent instruction pointers and dependency tables. Only 

one of the issue units can issue an instruction to the reservation stations at any given point in time, since 

many the instructions can take more than one clock cycle to complete, the instruction execution of 

different threads overlaps in time. Each thread has a separate variable space in the register file; this 

register file thread partition is done by the software34. These concepts are illustrated in the following 

figure. 

 

 

 

Figure 44 multithreading 

 The previous figure also shows that there is a common variable space in the register file for all the 

threads. This common variable space contains special control variables such as R0, R1, R2 and R3 which 

can be safely used by each thread during its own time slot. 

The register R2.z controls whether the multithreading is enabled or disabled and also stores the offset of 

each thread variable area in the register file. It is important to note that the more active threads at a 

                                                           
34
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given point in time the smaller is the variable space allocated for each thread in the register file. 

Furthermore, if a single thread is executing then this thread has access to the entire RF address space. 

It is also important to note that any thread can write into the VP’s OMEM resource, it is up to the 

programmer to keep track of how each thread access the OMEM in order to avoid data corruption or 

inconsistencies. 

What happens if the code attempts to issue a thread and there are no more Issue units available? 

6. VP IO  
 

Each vector processor has a special reservation station dedicated to perform IO operations. The IO 

reservation station can handle one OMEM write operation or one TMEM read operation. The OMEM 

write operation takes 1 clock cycle, whereas the TMEM read operations can take multiple clock cycles 

depending on the traffic congestion in the TMEM cross bar. 

6.1. Output memory OMEM 
 

The OMEM is a 32-bits x TBD memory where the CORE writes its result data. These results are usually 

colors in RGB “true color” format, this is 8 bit per color channel plus 8 bit alpha transparency35 = 32 bits 

per pixel color. 

 

Figure 45 A typical pixel color stored as a 32 bit value in VP’s the OMEM 

The VP IO module in charge of the OMEM logic is called the Output Memory Interface (OMI). 

                                                           
35
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Figure 46 The OMI inside the IO unit 

Figure 46 shows the signals entering and exiting the OMI and how these signals reach into the OMEM. 

The OMI is directly connected to the VP’s EXE block, the IO Reservation station inside of the EXE 

provides the OMI with the 3 main input signals: iAddress, iData and iWriteEnable. The following figure 

illustrates how the OMI handles these inputs signals in order to write the data into the OMEM. 

 

Figure 47 EXE and OMI signals 

OMI OMEMi    

VPi 

IO 

OMEM_ADR_O 

OMEM_WE_O 

OMEM_DAT_O 

ADR_O 

DAT_O 

WE_O 

EXE iData 

iAddress 

iWriteEnable 
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The signals iData and iAddress from Figure 47 are 96 bit wide OMI input ports. The iData signal 

represents a 32 bit triplet of data that the OMI will write on each of the 3 32 bit addresses presented by 

the EXE on the iAddress OMI input port. It is important to note that the iWriteEnable input port shall be 

asserted for at least 3 clock cycles otherwise the data triplet will not be effectively written into the 

OMEM. 

As mentioned earlier, each VP is assigned to a single OMEM. The OMEM is write-only from the VP’s 

perspective. Table 42  lists the relevant signals to communicate the VP with its corresponding OMEM 

unit. Since there is no risk of contention, the bus cycles to write into the OMEM do not follow the 

Wish-Bone protocol.  

Table 42 presents the signals involved in the communication between the VP and the OMEM unit. 

Table 42 – CORE signals for OMEM write bus cycles. 

Signal name Type Size Description 

OMEM_WE_O Output 1 Output memory Write Enable.  
The VP-n puts this signal in 1 to write into the write-only 
memory OMEM-n. 

OMEM_ADR_O Output 1 Output memory Write Address. 
The VP-n uses this signal to specify the write address into the 
write-only memory OMEM-n. 

OMEM_DAT_O Output 1 Output memory Write Data. 
The VP-n uses this signal to specify the data to write into the 
write-only memory VP-n. 

 

The following figure illustrates some of the concepts from Table 42. 

 

 

Figure 48 - VP writing data to an OMEM. 

Marker 1 from Figure 48 shows when the VP is setting the OMEM_WE_O signal to 1. One clock cycle 

after the OMEM_WE signal is set to 1 by the VP, the data on OMEM_DAT_O is written into the memory 

address specified by OMEM_ADR_O. 
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6.2. Texture memory TMEM 
 

The TMEM is an external memory from where the VP reads the texture information. The TMEM is 

read-only from the VP’s perspective. All the VPs can access the TMEM through a cross bar 

interconnection in order to perform read operations.  

Figure 49 show a conceptual representation of the cross-bar bus. Each cross point from Figure 49 is 

implemented as a simple switch.  The TMEM is an interleaved RAM divided upon a number of memory 

banks, called TM0 … TM3 in Figure 49. Also each memory bank has its own simple bus arbiter (not 

shown in the picture). If two or more VPs want to read from the same memory bank at any given point 

in time, then a bus contention scenario occurs and the corresponding bus arbiter will handle the read 

requests in a round-robin fashion. 

 

 

 

 

 

 

 

 

 

 

Table 43 presents the signals involved in the communication between the VP and the TMEM unit. 

Table 43 – CORE signals for TMEM write bus cycles. 

Signal name Type Size Description 

TMEM_DAT_I Input 32 TMEM read data. 
Data read from TMEM.  

TMEM_ADR_O Output 32 TMEM read address. 
The VP specifies the address in TMEM from which to read. 

C0 C1 C2 C3 

TM

0 
TM

1 

TM

2 

TM

3 

Figure 49 - Cross bar bus example 
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TMEM_CYC_O Output 1 Wishbone output cycle signal.  
The VP puts this signal in one in order to request ownership of 
the crossbar bus for a bus read cycle. The corresponding 
memory bank arbiter will grant the petition by asserting the 
GNT_I input signal. 

TMEM_GNT_I Input 1 Cross bar bank read access granted.  
The memory bank arbiter sets this signal to 1 when a bus read 
ownership petition is granted for this CORE instance. 

 

The following figure illustrates some of the concepts from Table 43. 

 

Figure 50 - CORE reading data from TMEM. 

Figure 50 shows a read bus cycle where a VP is reading from the TMEM. Since the VPs and the TMEM 
are connected through a cross-bar bus, concurrent read access from different cores is guaranteed as 
long as no two VP are attempting to read from the same memory of TMEM at the same time. If two or 
more VPs are attempting to concurrently read from the same TMEM memory bank then the 
corresponding arbiter will grant ownership of the bus to each VP in a round-robin fashion. 

The marker 1 from Figure 50 shows a VP setting the TMEM_CYC_O to 1. By setting the TMEM_CYC_O 

signal to one, the VP is requesting a read bus cycle from the address specified by TMEM_ADR_O. If no 

other VP is trying to read from that same memory bank then the bus arbiter immediately grants the bus 

ownership to the VP by asserting the TMEM_GNT_I signal to one, otherwise the VP has to wait until the 

bus ownership is granted by the bus arbiter. 

Marker 2 from Figure 50 shows the arbiter setting the TMEM_GNT_I signal to 1. This means that the VP 

has been assigned exactly 1 clock cycle to read in the data from the TMEM_DAT_I signal. Note that 1 

clock cycle after the data is read in by the VP, the TMEM_ADR_O signal changes values, since the 

TMEM_CYC_I signal is still high, the arbiter understands that this VP wants to perform another read bus 

cycle, the data corresponding to this new read bus cycle arrives when the VP is granted the bus in 

marker 3. 

Marker 5 from Figure 50 shows the VP setting the TMEM_CYC_O signal back to cycle. This marks the end 

of the read bus cycle, and the bus arbiter assumes that no more read petitions will come from this VP. 
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7. VP Register specification 
 

The register files (RF) hosts up to 6436 96bit general purpose registers. The VP also has a set of 8 special 

purpose registers (SPR) which hold special values. The following sections summarize the register 

specification. 

7.1. General purpose registers (GPRs) 
 

The general purpose registers are a set of 64 * 96 bit registers37. Each register has the structure 

described in section 3.3. The general purpose registers are readable and writable by the ALU.  

Although the Hardware makes no distinction on the usage of each general purpose registers, the 

software compiler has special uses for some of the general purpose registers; this is summarized in 

Table 44. 

Table 44 Special purpose registers. 

Register Size 
(bits) 

Name Description 

R0.x 32 Zero Register This is intended to have the value 0x0.38  
R0.y 32 One Register This is intended to store the value 0x1.  
R0.z 32 Two Register. This is intended to store the value 0x2.31  
R1 96 Return Value The software shall store the return value from a function 

here. 31 
R2.x 32 Return Address The software shall store the return address in this register. 

31  
R2.y 32  The scale used for fixed point arithmetic. 31 
R2.z 32 Multi thread 

Control 
Control Register. See table <TBD> for details. 
0:   -> Multithread enabled. 
8:1  -> Thread 1 Code Offset 

R3.x* 32 OFFSET register The OFFSET used for the direct addressing mode with 
displacement and the indirect addressing mode with 
displacement. 31 

R3.y* 32 Previous 
OFFSET 

The previous value of the OFFSET. 31 

R3.z 32 Index Register 
SCALE 

Index Register used by the software to dereference arrays. 

R4 – R9 96 Function 
parameters 

The software shall store up to the first 6 function input 
parameters in the registers R24 – R29. 38 

                                                           
36

 This number might change, depending on the performance analysis. 
37

 This is about 3 kilobytes, perhaps we can bring down this number to 128 register which is around 1.5kB. 
38

 This is a software convention; there is no hardware which enforces this convention. 
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R10 – R63 96 General 
purpose 

Used by the compiler to store program variables and 
arrays. 

 

The Registers marked with an ‘*’ in Table 44 are shadowed. See next sections for details on this. 

 

7.1.1. Zero register – R0.  
 

As mentioned earlier, the compiler assumes that the register R0 has the value (0, 1, 2). This is a software 

convention, but it is very important for the compiler. Consider the following example: 

 

//Assign a value 

R7 = R8; 

 

//Do a simple increment  

R1.y++;   

 

 

//Assign a value 

ADD R7 R8, R0.xxx 

 

//Do a simple increment 

ADD R1.y R1 R0.yyy 

Figure 51 Using the R0 register 

In the previous code, the compiler first uses the register R0 in order to copy the value from R8 into R7. 

Since the VP does not have a “COPY” opcode, the compilers achieves the copy operation simply by using 

an addition in the form R7 = R8 + 0. This is done by using the swizzled register R0.xxx which is assumed 

by the compiler to have the value (0, 0, 0). 

After doing the operation R = R8, the code from Figure 51 does a unitary increment R1.y++. To do this 

increment, the compiler uses the swizzled register R0.yyy, which is assumed to have the value (1, 1, 1), 

so is effectively doing R1.y = R1.xyz + (1, 1, 1); 

It is important to mention that R0 (and in fact all of the general purpose registers) are readable and 

writable by the user. This means that nothing prevents the user from changing the values of R0, and this 

is fine for programs written in the THEIA assembly language, but for the high level language, 

unpredictable behavior may happen when the values of R0 are changed. 
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7.1.2. Return address register – R2.x  
 

The R2.x register is used by the compiler to store the return address before making function calls. When 

the called function returns, the value in R2.x is used as an indirect address to return to the caller 

function. This illustrated in the next code. 

//main calls MyFunction 

function main 

{ 

 GenerateRay(); 

} 

 

 

 

//   GenerateRay(); 

//store return address 

24: 8001 2702 0 1c                //ADD R2.xyz I(1c) 0 

//store current frame offset 

25: 1 203 a03 a00                 //ADD R3._y_ R3.xxx R0.xxx 

//displace next frame offset by the number of auto variables in current frame 

26: 8001 403 0 2                 //ADD R3.x__ I(2) R[DST] 

//call the function 

27: 201 @GenerateRay 0         //ADD <BRANCH.ALWAYS> @GenerateRay.___ R0.xyz R0.xyz 

Figure 52 Using the R2 register 

7.1.3. Offset registers – R3.x, R2.y 
 

The Offset registers are used by the compiler to implement the function “stack frame”. The function 

stack frame is used to allocate space for the automatic39 variables. Since the VP has no direct access to 

external memory locations, the space for auto variables is simply allocated by providing an offset into 

the register file (RF). The SPR R3.x is used as a pointer to the first memory location of the current stack 

frame40. Each time a function gets called, the R3.x register is updated by adding the number of local auto 

variables in the current frame. Also the previous frame offset is stored in R2.y; this is used so that when 

the subroutine returns, the previous function frame is restored. The next figure illustrated these 

concepts. 

                                                           
39

 See T-Language specification document for more details. 
40

 Each memory location is a word, this is 96 bits. 
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Figure 53 Example of using the offset register R30 to allocate memory for automatic variables. 

 

7.2. Shadowed GPRs 
 

As previously mentioned each VP has a set of general purpose registers (GPRs). Some of these GPRs 

have special meanings for the compiler. Also, some of the GPRs have special behaviors and under 

certain scenarios, certain VP blocks may have a need to read from a GPR “without having to access the 

RF directly”.  

Let’s illustrate this with an example, let’s suppose that the IIU is decoding an instruction that has direct 

addressing mode with displacement. Since the displacement is used the IIU would need to read the 

Offset register (R3.x) from the RF, but it would also needs to read the SRC0 and SRC1 values from the RF. 

The RF is a dual read channel RAM, meaning that the IIU can simultaneously read from 2 memory 

locations in the RF, but for this particular example it would need to read from 3 RF locations in the same 

clock cycle (which is not possible). In order to be able to read from certain special GPRs without using 

one of the two data address lines from the RF, a special “shadow register” topology is used for a small 

number of the GPRs such as R3. 

R1 = foo 

R2 = bar 

 

 

 

 

 

R3.x = 0 

R2.y = ?? 

function F1() 

{ 

  auto foo, bar; 

  F2( ); 

} 

  

 

function F2() 

{ 

  auto A, B, C ; 

} 

 

R3.x = 2 

R2.y = 0 R1 = foo 

R2 = bar 

R3 = A 

R4 = B 

R5 = C 

 

F1 

Frame 

F1 

Frame 

F2 

Frame 
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Figure 54 Example of an SPR shadowing R30 

Figure 54 shows how R3 is present in the RF but it is also replicated outside of the RF, in a separate set 

of flops. When the EUs write into R3, the values are written to both the R3 location in the RF and also to 

the copy of R3 in the external flops. This allows the IIU to read the value of R3.x from the external flops 

instead using one of the two address lines to read from the RF, so that it can simultaneously read R3.x 

together with other two values from the RF during the same clock cycle. 

7.3. Special purpose registers (SPRs) 
 

These are special registers outside of the GPR space. This section is TBD. 

Table 45 List of special purpose registers 

Name  Position in RF Size Description 

CONFIG TBD TBD  
ALUERR TBD TBD The VP error registers. See table <>. 
WDT TBD TBD The watch dog timer. When the specified bit of the 

WDT is set, then an interrupt is generated. 

 

The next table provides a description of the Control register. 

Table 46 Control register (CNTREG) 

Field  Range Description 

IIU 

SMU 

RS 

EU == 

Write Address 

Offset 

Scale 

R3.xx R3.yx R3.zx 

Register file 

Index 
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RESERVED 23:0 The scale used for the input operand scaling.41 See 
section 3.13. 

EXCEN 24 Enable exception handling. 
WDTEN 25 Watch dog timer enabled 
WDTSEL 30:26 WDT select bit. 

 

The next table provides a description of the Error register. 

Table 47 Arithmetic error register 

Field  Range Description 

XYZ 2:0 This field indicates if the current error is related to 
the x, y or z block. 
 
000: Unknown: the machine has no information 
regarding the x, y or blocks which generated the 
error. 
 
001: Current error generated by the operation z 
block. 
 
010: Last operation had division by zero on the Y 
block. 
 
011: Current error generated by the operation’s Y 
block and the Z block. 
 
100: Current error generated by the operations X 
block. 
 
101: Current error generated by the operations X 
block and the Z block. 
 
110: Current error generated by the operations X 
block and the Y block. 
 
111: Current error generated by the operations X 
block, Y block and the Z block. 
 

Division by zero42 3 Division by zero. The block specified by the XYZ field 
generated the error. 

Arithmetic overflow 7:4 RSID of the RS causing the arithmetic overflow. The 
block specified by the XYZ field generated the error. 

                                                           
41

 Even if this scale gets changed, the SQRT always expects SCALE = 17. See section 3.10 
42

 Fixed point arithmetic allows infinity divisions. 
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Scale overflow 11:8 RSID of the RS causing the scale overflow. The block 
specified by the XYZ field generated the error. 

Scale underflow 12 A scale underflow occurred in the IIU. 
Unknown square root 13 The value send into the SQRT unit was not found in 

the LUT. See section 3.10 for details. 
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8. Control Processor architecture (CP) 
 

The control processor (CP) is an in-order processor with a simple 3 stage pipeline. The CP instructions 

are stored in 32x<tbd> a single read channel RAM called InstructionRam. Each instructions is 32bit wide. 

A dual read channel RAM called DataRam serves as a simple register file. One instruction is fetched on 

every clock cycle, except for the branch family of instructions which take 2 clock cycles. Given the 

simplicity of the instruction format, the decode and execution logic is merged into a single pipe stage. 

The following figure illustrates the basic building blocks of the CP. 

 

Figure 55 Control processor CP 

 

8.1. CP Instruction set 
 

The CP features a very simple instruction set. As mentioned earlier the CP has a very limited set of 

arithmetic operations and the instruction set is more focused towards control related tasks. 

Nevertheless the CP can still do operations such as additions, subtractions and simple bitwise logic  

operations. Each instruction is 32 bit wide; the following figure illustrates a CP instruction. 

 

Instruction Fetch 

 

Decode/Execution

InstructionRam

Register File (RF)

IO
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Figure 56 CP Instruction format  

As shown in previous figure, the CP instruction is divided into 4 fields: The OP field has the actual 

operation to be executed; the DST field indicates the destination of the current operation in the register 

file, the SRC1 and SCR0 fields are arguments for the current operation and represent addresses in the 

register file. For the copy block command the SRC0 is further divided in subfields as shown next. 

 

 
Figure 57 SR0 special fields for copy block operations 

 

 

The following table summarizes the CP instruction set. 
 

Table 48 CP Instruction set 

OP Value 
43 

DST SRC1 SCR0 Description 

NOP  0 n/a n/a n/a No operation 
DELIVER_CO
MMAND 

1    This instruction delivers a command 
into the CCB (Control command Bus). 
 
The command is formed as follows: 
CCB =  
{ DST[7:0], SRC1[7:0],SRC0[15:0] } 
 
No data is written into the CP RF as 
result of this operation. 

                                                           
43

 In decimal 

OP DST 

32 bits 

SRC1 SRC0 

31:24 23:16 15:8 7:0 

SRC0

BLK_LEN TAG DSTOFF 
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ADD 2 Destination 

of 
operation 

First 
operand 

Second 
operand 

Addition. 
RF[ DST ] = SRC1 + SCR0 

SUB 3 Destination 
of 
operation 

First 
operand 

Second 
operand 

Subtraction (2 complement). 
RF[ DST ] = SRC1 – SCR0 

AND 4 Destination 
of 
operation 

First 
operand 

Second 
operand 

Bitwise AND. 
RF[ DST ] = SRC1 & SCR0 
 

OR 5 Destination 
of 
operation 

First 
operand 

Second 
operand 

Bitwise OR. 
RF[ DST ] = SRC1 | SRC0 

BRANCH 6 Next PC n/a n/a Unconditional branch. 
NextPC = DST 
 

BEQ 7 Next PC First 
operand 

Second 
operand 

Branch if equal. 
 
If (SRC1 == SRC0) 
  NextPC = DST 
Else 
   NextPC = NextPC + 1 

BNE 8 Next PC First 
operand 

Second 
operand 

Branch if not equal 
 
If (SRC1 != SRC0) 
  NextPC = DST 
Else 
   NextPC = NextPC + 1 

BG 9 Next PC First 
operand 

Second 
operand 

Branch if greater than 
 
If (SRC1 > SRC0) 
  NextPC = DST 
Else 
   NextPC = NextPC + 1 

BL 10 Next PC First 
operand 

Second 
operand 

Branch if less than 
 
If (SRC1 < SRC0) 
  NextPC = DST 
Else 
   NextPC = NextPC + 1 

BGE 11 Next PC First 
operand 

Second 
operand 

Branch if grater of equal than 
 
If (SRC1 >= SRC0) 
  NextPC = DST 
Else 
   NextPC = NextPC + 1 
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BLE 12 Next PC First 
operand 

Second 
operand 

Branch if less of equal than 
 
If (SRC1 <= SRC0) 
  NextPC = DST 
Else 
   NextPC = NextPC + 1 

ASSIGN 13 Destination 
of 
operation 

First 
operand 

Second 
operand 

 
Moves a literal value to the Register 
file position RF[ DST ] 
RF[ DST ] = Instruction[15:0] 

COPYBLOCK 14    This instruction issues a block copy 
command into the MCU. The Copy 
block command is formed of the 
concatenation of various fields (see 
Figure 57 ) as shown next: 
 
CopyBlockCommand =  
{ 
CP_SPR_BLOCK_DST[15:0]44, 
SRC1, 
SRC0[TAG_BIT], 
SRC0[BLKLEN], 
SRC0[DSTOFF] 
} 
 
No data is written into the CP RF as 
result of this operation. 
  

EXIT 15  n/a n/a Marks the end of a CP program 
execution 

NOT 16    Bitwise Not 
SHL 17    Shift left 

 
RF[ DST ] = SRC1 << SRC0 

SHR 18    Shift Right 
 
RF[ DST ] = SRC1 >> SRC0 

 

 

8.2. CP Special purpose registers (SPRs) 
 

                                                           
44

 See next section for details on this special purpose register 
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Table 49 CP Special purpose registers 

Name Offset Description 

CP_SPR_STATUS 2 Bit 0: MCU pending operations: . Zero means that 
there are no operations pending in the MCU. 

CP_SPR_BLOCK_DST 3 Bits 15:0 
This register stores the destination ID that 
subsequent block copy operations will use. 
For example the next high level statement that issues 
a block copy command 
 

   
   

 

 

 

CP_SPR_STATUS 2 

Bit 0: MCU pending operations: . Zero means that there are no operations pending in the MCU. The CP 

can check for pending block copy operations using a code like the one in the following example. 

 

 

//wait until queued block transfers are complete 

  while ( block_transfer_in_progress ) {} 

 

Figure 58 CP block transfer high level syntax 

The reserved keyword “block_transfer_in_progress” returns 1 if CP_SPR_STATUS[0] is zero meaning 

there a no pending block copy operations, otherwise returns 0. 

 

CP_SPR_BLOCK_DST 3 [15:0] 

This register stores the destination ID that subsequent block copy operations will use. 

For example the next high level statement that issues a block copy command 

 

 

copy_data_block< CoredId, DstOffsetAndLen, SrcOffset>; 
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Figure 59 CP copy data block high level syntax 

 

Translates into the next sequence of instructions: 

 

//Setting destination ID SPR for Copy data block 

14: 2030a00  //ADD R3 R10 R0 

//Copy data block 

15: e000b0c  //COPYBLOCK DstId: R0 SrcOffset: R11 

Figure 60 

 Notice how the R3 (CP_SPR_BLOCK_DST) is written and then COPYBLOCK command is issued. 

 

8.3. CP Branching  
 

 

The branch operation takes 1 extra clock cycle to decide the next instruction to fetch. 

The compiler automatically inserts a NOP operation after each branch operation as shown in the 

following control processor code listing. 
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17: d890001  //ASSIGN R137 I(1 ) 

18: 7150289  //BEQ R21 R2 R137 

//branch delay 

19: 110000  //NOP R0 R0 R0 

//while loop goto re-eval boolean 

20: 6110000  //BRANCH R17 R0 R0 

//branch delay 

21: 110000  //NOP R0 R0 R0 

//  start <2>;  

//Start 

22: 1020000  //DELIVERCOMMAND R2 R0 R0 
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9. Internal Memory Controller (MCU) Architecture 
 

10. Appendix A: VP Issue unit encoding table 
 

 



Op C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0 

NOP 0 0 0 0 0 0 0 0 0 0 0 
    NOP 0 0 0 0 0 0 0 0 0 0 1 
    NOP 0 0 0 0 0 0 0 0 0 1 0 
    NOP 0 0 0 0 0 0 0 0 0 1 1 
    NOP 0 0 0 0 0 0 0 0 1 0 0 
    NOP 0 0 0 0 0 0 0 0 1 0 1 
    NOP 0 0 0 0 0 0 0 0 1 1 0 
    NOP 0 0 0 0 0 0 0 0 1 1 1 
    NOP 0 0 0 0 0 0 0 1 0 0 0 
    NOP 0 0 0 0 0 0 0 1 0 0 1 
    NOP 0 0 0 0 0 0 0 1 0 1 0 
    NOP 0 0 0 0 0 0 0 1 0 1 1 
    NOP 0 0 0 0 0 0 0 1 1 0 0 
    NOP 0 0 0 0 0 0 0 1 1 0 1 
    NOP 0 0 0 0 0 0 0 1 1 1 0 
    NOP 0 0 0 0 0 0 0 1 1 1 1 
    Operation C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0 

ADD 0 0 0 1 0 0 1 0 0 0 0 
   

1 

ADD 0 0 0 1 0 0 1 0 0 0 1 
  

1 
 ADD 0 0 0 1 0 0 1 0 0 1 0 

   
1 

ADD 0 0 0 1 0 0 1 0 0 1 1 
    ADD 0 0 0 1 0 0 1 0 1 0 0 
   

1 

ADD 0 0 0 1 0 0 1 0 1 0 1 
  

1 
 ADD 0 0 0 1 0 0 1 0 1 1 0 

   
1 

ADD 0 0 0 1 0 0 1 0 1 1 1 
    ADD 0 0 0 1 0 0 1 1 0 0 0 
   

1 

ADD 0 0 0 1 0 0 1 1 0 0 1 
  

1 
 ADD 0 0 0 1 0 0 1 1 0 1 0 

   
1 

ADD 0 0 0 1 0 0 1 1 0 1 1 
    ADD 0 0 0 1 0 0 1 1 1 0 0 
   

1 

ADD 0 0 0 1 0 0 1 1 1 0 1 
  

1 
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ADD 0 0 0 1 0 0 1 1 1 1 0 
   

1 

ADD 0 0 0 1 0 0 1 1 1 1 1 
    Operation C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0 

DIV 0 0 1 0 0 1 0 0 0 0 0 
  

1 1 

DIV 0 0 1 0 0 1 0 0 0 0 1 
  

1 1 

DIV 0 0 1 0 0 1 0 0 0 1 0 
  

1 1 

DIV 0 0 1 0 0 1 0 0 0 1 1 
  

1 1 

DIV 0 0 1 0 0 1 0 0 1 0 0 
    DIV 0 0 1 0 0 1 0 0 1 0 1 
    DIV 0 0 1 0 0 1 0 0 1 1 0 
    DIV 0 0 1 0 0 1 0 0 1 1 1 
    DIV 0 0 1 0 0 1 0 1 0 0 0 
  

1 1 

DIV 0 0 1 0 0 1 0 1 0 0 1 
  

1 1 

DIV 0 0 1 0 0 1 0 1 0 1 0 
  

1 1 

DIV 0 0 1 0 0 1 0 1 0 1 1 
  

1 1 

DIV 0 0 1 0 0 1 0 1 1 0 0 
    DIV 0 0 1 0 0 1 0 1 1 0 1 
    DIV 0 0 1 0 0 1 0 1 1 1 0 
    DIV 0 0 1 0 0 1 0 1 1 1 1 
    Operation C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0 

MUL 0 0 1 1 0 1 1 0 0 0 0 
 

1 
  MUL 0 0 1 1 0 1 1 0 0 0 1 

 
1 

  MUL 0 0 1 1 0 1 1 0 0 1 0 
 

1 
  MUL 0 0 1 1 0 1 1 0 0 1 1 

 
1 

  MUL 0 0 1 1 0 1 1 0 1 0 0 
 

1 
  MUL 0 0 1 1 0 1 1 0 1 0 1 

 
1 

  MUL 0 0 1 1 0 1 1 0 1 1 0 
 

1 
  MUL 0 0 1 1 0 1 1 0 1 1 1 

 
1 

  MUL 0 0 1 1 0 1 1 1 0 0 0 
    MUL 0 0 1 1 0 1 1 1 0 0 1 
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MUL 0 0 1 1 0 1 1 1 0 1 0 
    MUL 0 0 1 1 0 1 1 1 0 1 1 
    MUL 0 0 1 1 0 1 1 1 1 0 0 
    MUL 0 0 1 1 0 1 1 1 1 0 1 
    MUL 0 0 1 1 0 1 1 1 1 1 0 
    MUL 0 0 1 1 0 1 1 1 1 1 1 
    Operation C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0 

SQRT 0 1 0 0 1 0 0 0 0 0 0 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 0 0 0 1 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 0 0 1 0 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 0 0 1 1 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 0 1 0 0 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 0 1 0 1 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 0 1 1 0 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 0 1 1 1 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 1 0 0 0 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 1 0 0 1 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 1 0 1 0 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 1 0 1 1 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 1 1 0 0 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 1 1 0 1 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 1 1 1 0 
 

1 
 

1 

SQRT 0 1 0 0 1 0 0 1 1 1 1 
 

1 
 

1 

Operation C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0 

LOGIC 0 1 0 1 1 0 1 0 0 0 0 
 

1 1 
 LOGIC 0 1 0 1 1 0 1 0 0 0 1 

 
1 1 

 LOGIC 0 1 0 1 1 0 1 0 0 1 0 
 

1 1 
 LOGIC 0 1 0 1 1 0 1 0 0 1 1 

 
1 1 

 LOGIC 0 1 0 1 1 0 1 0 1 0 0 
 

1 1 
 LOGIC 0 1 0 1 1 0 1 0 1 0 1 

 
1 1 
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LOGIC 0 1 0 1 1 0 1 0 1 1 0 
 

1 1 
 LOGIC 0 1 0 1 1 0 1 0 1 1 1 

 
1 1 

 LOGIC 0 1 0 1 1 0 1 1 0 0 0 
 

1 1 
 LOGIC 0 1 0 1 1 0 1 1 0 0 1 

 
1 1 

 LOGIC 0 1 0 1 1 0 1 1 0 1 0 
 

1 1 
 LOGIC 0 1 0 1 1 0 1 1 0 1 1 

 
1 1 

 LOGIC 0 1 0 1 1 0 1 1 1 0 0 
 

1 1 
 LOGIC 0 1 0 1 1 0 1 1 1 0 1 

 
1 1 

 LOGIC 0 1 0 1 1 0 1 1 1 1 0 
 

1 1 
 LOGIC 0 1 0 1 1 0 1 1 1 1 1 

 
1 1 

 Operation C3 C2 C1 C0 BUSY6 BUSY5 BUSY4 BUSY3 BUSY2 BUSY1 BUSY0 RS3 RS2 RS1 RS0 

IO 0 1 1 1 1 1 0 0 0 0 0 
    IO 0 1 1 1 1 1 0 0 0 0 1 
    IO 0 1 1 1 1 1 0 0 0 1 0 
    IO 0 1 1 1 1 1 0 0 0 1 1 
    IO 0 1 1 1 1 1 0 0 1 0 0 
    IO 0 1 1 1 1 1 0 0 1 0 1 
    IO 0 1 1 1 1 1 0 0 1 1 0 
    IO 0 1 1 1 1 1 0 0 1 1 1 
    IO 0 1 1 1 1 1 0 1 0 0 0 
    IO 0 1 1 1 1 1 0 1 0 0 1 
    IO 0 1 1 1 1 1 0 1 0 1 0 
    IO 0 1 1 1 1 1 0 1 0 1 1 
    IO 0 1 1 1 1 1 0 1 1 0 0 
    IO 0 1 1 1 1 1 0 1 1 0 1 
    IO 0 1 1 1 1 1 0 1 1 1 0 
    IO 0 1 1 1 1 1 0 1 1 1 1 
    IO 0 1 1 1 1 1 1 0 0 0 0 
    IO 0 1 1 1 1 1 1 0 0 0 1 
    



 

Theia architecture specification 

 

4 

4 Theia architecture specification 

IO 0 1 1 1 1 1 1 0 0 1 0 
    IO 0 1 1 1 1 1 1 0 0 1 1 
    IO 0 1 1 1 1 1 1 0 1 0 0 
    IO 0 1 1 1 1 1 1 0 1 0 1 
    IO 0 1 1 1 1 1 1 0 1 1 0 
    IO 0 1 1 1 1 1 1 0 1 1 1 
    IO 0 1 1 1 1 1 1 1 0 0 0 
    IO 0 1 1 1 1 1 1 1 0 0 1 
    IO 0 1 1 1 1 1 1 1 0 1 0 
    IO 0 1 1 1 1 1 1 1 0 1 1 
    IO 0 1 1 1 1 1 1 1 1 0 0 
    IO 0 1 1 1 1 1 1 1 1 0 1 
    IO 0 1 1 1 1 1 1 1 1 1 0 
    IO 0 1 1 1 1 1 1 1 1 1 1 
    IO 0 1 1 1 0 0 0 0 0 0 0 
 

1 1 1 

IO 0 1 1 1 0 0 0 0 0 0 1 
 

1 1 1 

IO 0 1 1 1 0 0 0 0 0 1 0 
 

1 1 1 

IO 0 1 1 1 0 0 0 0 0 1 1 
 

1 1 1 

IO 0 1 1 1 0 0 0 0 1 0 0 
 

1 1 1 

IO 0 1 1 1 0 0 0 0 1 0 1 
 

1 1 1 

IO 0 1 1 1 0 0 0 0 1 1 0 
 

1 1 1 

IO 0 1 1 1 0 0 0 0 1 1 1 
 

1 1 1 

IO 0 1 1 1 0 0 0 1 0 0 0 
 

1 1 1 

IO 0 1 1 1 0 0 0 1 0 0 1 
 

1 1 1 

IO 0 1 1 1 0 0 0 1 0 1 0 
 

1 1 1 

IO 0 1 1 1 0 0 0 1 0 1 1 
 

1 1 1 

IO 0 1 1 1 0 0 0 1 1 0 0 
 

1 1 1 

IO 0 1 1 1 0 0 0 1 1 0 1 
 

1 1 1 

IO 0 1 1 1 0 0 0 1 1 1 0 
 

1 1 1 

IO 0 1 1 1 0 0 0 1 1 1 1 
 

1 1 1 
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dsdsdsds 

11. Appendix B: VP addressing mode examples 
 

This section gives several examples and use cases of the VP addressing modes from Table 17. The 

examples are provided from a software/compiler perspective, so knowledge of the T-Language and GPU 

assembly language is assumed. 

 

Direct (0 000): The Indexes from SCR1, SRC0 and DST are directly used to calculate the corresponding 

addresses in the RF.  

DSTADDR  =  DSTINDEX 

SRC1      =  R[ SRC1INDEX ] 

SRC0      =  R[ SRC0INDEX ] 

 

Example: 

//Simple addition 

R1 = R2 + R3; 

 

 

Becomes: 

ADD R1.xyz R2.xyz R3.xyz 

 

DSTADDR 1 

SRC1 R[2] 

SRC0 R[3] 

 

 

Direct with displacement (0 001): SRC0INDEX is added OFFSET and then used to calculate SRC0ADDR in 

RF. 

DSTADDR  =  DSTINDEX  

SRC1      =  R[ SCR1INDEX ] 

SRC0      =  R[ SRC0INDEX + OFFSET ] 

Example: 
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//Simple addition using offset for index0 

function foo() 

{ 

  vector LocalVec = (1,2,3); 

  R1 = R2 + LocalVec; 

} 

 

 

Becomes: 

ADD R1.xyz R2.xyz R[8+offset].xyz45 

 

DSTADDR 1 

SRC1 R[2] 

SRC0 R[8+offset] 

 

 

 

0 010 Direct with displacement: SRC1INDEX is added OFFSET and then used to calculate SRC1ADDR in 
RF. 
 
DSTADDR  =  DSTINDEX  
SRC1      =  R[ SCR1INDEX + OFFSET] 
SRC0      =  R[ SRC0INDEX ] 
 
Example: 

//Simple addition using offset for index0 

function foo() 

{ 

  vector LocalVec = (1,2,3); 

  R1 = LocalVec + R2; 

                                                           
45

 8 is the RF address where the local variables for the current function frame are allocated. 
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} 

 

 
Becomes: 

ADD R1.xyz R2.xyz R[8+offset].xyz46 

 

DSTADDR 1 

SRC1 R[8+offset] 

SRC0 R[2] 

 

 
 
 
 
 

0 011 Direct with displacement: SRC1INDEX is added OFFSET and then used to calculate SRC1ADDR in 
RF. SRC0INDEX is added OFFSET and then used to calculate SRC0ADDR in RF. 
 
 
DSTADDR  =  DSTINDEX 
SRC1      =  R[ SCR1INDEX + OFFSET] 
SRC0      =  R[ SRC0INDEX + OFFSET] 
 
Example: 

//Simple addition using offset for index0 

function foo() 

{ 

  vector A = (1,2,3),B=(4,5,6); 

  R1 = LocalVec + B; 

} 

 

 
Becomes: 

                                                           
46

 8 is the RF address where the local variables for the current function frame are allocated. 
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ADD R1.xyz R[9+offset].xyz R[8+offset].xyz47 

 

DSTADDR 1 

SRC1 R[8+offset] 

SRC0 R[9+offset] 

 

 
 

0 100 Direct with displacement:  DSTINDEX is added OFFSET and then used to calculate DSTADDR in 
RF. 
 
DSTADDR  =  DSTINDEX + OFFSET 
SRC1      =  R[ SCR1INDEX ] 
SRC0      =  R[ SRC0INDEX ] 
Example: 
 

//Simple addition using offset for index0 

function foo() 

{ 

  vector  Result; 

  Result = R1 + R2; 

} 

 

 
Becomes: 

ADD R[8+offset].xyz R1.xyz R2.xyz48 

 

DSTADDR 8+offset 

SRC1 R[1] 

SRC0 R[2] 

 

 
 
 

0 101 Direct with displacement: DSTINDEX is added OFFSET and then used to calculate DSTADDR in RF. 
SRC0INDEX is added OFFSET and then used to calculate SRC0ADDR in RF. 
 
 

                                                           
47

 8 is the RF address where the local variables for the current function frame are allocated. 
48

 8 is the RF address where the local variables for the current function frame are allocated. 
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DSTADDR  =  DSTINDEX + OFFSET 
SRC1      =  R[ SCR1INDEX ] 
SRC0      =  R[ SRC0INDEX + OFFSET] 
Example: 
 

//Simple addition using offset for index0 

function func() 

{ 

  vector  Result, foo = (1,2,3); 

  Result = R1 + foo; 

} 

 

 
Becomes: 

ADD R[8+offset].xyz R1.xyz R[9+offset].xyz49 

 

DSTADDR 8+offset 

SRC1 R[1] 

SRC0 9+offset 

 

 
 

0 110 Direct with displacement: DSTINDEX is added OFFSET and then used to calculate DSTADDR in RF. 
SRC1INDEX is added OFFSET and then used to calculate SRC1ADDR in RF. 
 
 
DSTADDR  =  DSTINDEX + OFFSET 
SRC1      =  R[ SCR1INDEX + OFFSET ] 
SRC0      =  R[ SRC0INDEX ] 
Example: 
 

//Simple addition using offset for index0 

function func() 

{ 

  vector  Result, foo = (1,2,3); 

                                                           
49

 8 is the RF address where the local variables for the current function frame are allocated. 
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  Result = foo + R1; 

} 

 

 
Becomes: 

ADD R[8+offset].xyz R[9+offset].xyz R1.xyz 50 

 

DSTADDR 8+offset 

SRC1 9+offset  

SRC0 R[1] 

 

 
 
 

0 111 Direct with displacement: All the indexes from SRC1, SRC0 and DST are displaced by the OFFSET. 
 
DSTADDR  =  DSTINDEX + OFFSET  
SRC1      =  R[ SCR1INDEX + OFFSET  ] 
SRC0      =  R[ SRC0INDEX + OFFSET ] 
 
Example: 
 

//Simple addition using offset for index0 

function func() 

{ 

  vector  Result, foo = (1,2,3), bar = (4,5,6); 

  Result = foo + bar; 

} 

 

 
Becomes: 

ADD R[8+offset].xyz R[9+offset].xyz R[a+offset].xyz 

51 

 

DSTADDR 8+offset 

SRC1 R[9+offset]  

                                                           
50

 8 is the RF address where the local variables for the current function frame are allocated. 
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SRC0 R[a+offset] 

 

 
 

1 000 Direct with IMMV: The 32-bit immediate (literal) value IMMV is used as SRC1, the value of the 
register pointed by DSTINDEX is used as SRC0. 
 
DSTADDR = DSTINDEX 
SRC1.x = IMMV 
SRC1.y = IMMV 
SRC1.z = IMMV 
SRC0 = R[DSTINDEX] 
 
Example: 

//Cummulative addition 

R1 += 5; 

 

 
Becomes: 

ADD R1 IMM( 5 ) R1 

 

DSTADDR 1 

SRC1 (5,5,5) 

SRC0 R[1] 

 

 
 

1 001 Direct with IMMV and offset:  
 
DSTADDR  =  DSTINDEX  
SRC1.x = IMMV 
SRC1.y = IMMV 
SRC1.z = IMMV 
SRC0.x = 0 
SRC0.y = 0 
SRC0.z = 0 
 
Example: 

//Literal increment 

                                                                                                                                                                                           
51

 8 is the RF address where the local variables for the current function frame are allocated. 
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vector foo; 

foo += 0xcafe; 

 

 
Becomes: 

ADD R[8+offset]  IMM( 

0xcafe ) R[8+offset] 

 

DSTADDR 8+offset 

SRC1 (0xcafe,0xcafe,0xcafe) 

SRC0 R[8+offset] 

 

 
 

1 100 Direct with IMMV and clear SRC0: Similar to the previous case except that SRC0 always takes the 
value of zero instead of the value of R[DSTINDEX] 
 
DSTADDR  =  DSTINDEX  
SRC1.x = IMMV 
SRC1.y = IMMV 
SRC1.z = IMMV 
SRC0.x = 0 
SRC0.y = 0 
SRC0.z = 0 
 
Example: 

//Literal Assignment 

R1 = 0xcafe; 

 

 
Becomes: 

ADD R1.0 IMM( 0xcafe ) 0x0 

 

DSTADDR 1 

SRC1 (0xcafe,0xcafe,0xcafe) 

SRC0 (0,0,0) 
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