

THEIA GPU
Open Source multicore programmable GPU

Problem Statement

●Develop an open source 3D Graphic Processor (GPU).

●Develop a high level language to program the GPU.

●Provide all of the necessary tools, test-bench and regressions.

●Should be different from current state-of-the-art (at least a little
different).

What kind of GPU?

● Vector Processing.

● Multiple hardware threads.

● Multiple cores.

● Out-of-order execution.

● And many other funky stuff...

VECTOR PROCESSING ADDS DATA LEVEL PARALELISM

Reservation Station 0

Array1[0]

Array1[1]

Array1[2]

Array1[3]

Array1[4]

Array1[n]

• Instructions operates on
“Ranges” of registers
instead of operating on
single registers.

• Example
• R3[50:10] = R1[50:10] + R2[50:10]

Array2[0]

Array2[1]

Array2[2]

Array2[3]

Array2[4]

Array2[n]

Execution Unit

3 Data LANES adds further parallelism to vector operations

Reservation Station 0

Array1.x[4]

Array1.x[n]

Each Execution unit is
replicated three times for
parallel execution .

Memory locations are
logically divided into x, y
and z components (32
bits each)

Execution Unit X

Array2.x[4]

Array2.x[n]

Array1.x[3]

Array1.x[2]

Array1.x[1]

Array1.x[0]

Array1.y[4]

Array1.y[3]

Array1.y[2]

Array1.y[1]

Array1.y[0]

Array1.z[4]

Array1.z[3]

Array1.z[2]

Array1.z[1]

Array1.z[0]

Array1.y[n] Array1.z[n]

Array2.x[3]

Array2.x[2]

Array2.x[1]

Array2.x[0]

Array2.y[4]

Array2yx[n]

Array2.y[3]

Array2.y[2]

Array2.y[1]

Array2.y[0]

Array2.z[4]

Array2.z[n]

Array2.z[3]

Array2.z[2]

Array2.z[1]

Array2.z[0]

Execution Unit Y Execution Unit Z

More parallelism: Out of order execution of the
vector operations

Reservation Station 0 Reservation Station 1 Reservation Station k

...

vector array1[10],array2[10];

vector result[10],result[10],result3[10];

 result1 = array1 / array2;

 result1 = array1 + array2;

result1 = array1 * array2;

Vectors operations can be executed
out of order as long as as there are
available reservation stations.
Register renaming is used
(Tomasulu's algorithm)

Thread N:

Simultaneous multi-threading (SMT)

Only 1 thread can
issue at a given point
in time (in-order-
issue).
Operations can start
executing whenever
RS become available
(out-of-order
execution)

Reservation Station 0 Reservation Station 1 Reservation Station k

...

Thread 1:
result1 = array1 / array2;

result1 = array1 + array2;

 result1 = array1 / array2;

 result1 = array1 + array2;
...

Core0

Multiple Vector processing Cores

RS0 RSk

Thread 1

...

Thread N...

CoreM

RS0 RSk

Thread 1

...

Thread N...
...

Multiple vector processing cores operate in parallel. Each core vector
processing core executes multiple threads in parallel.

Control processor handles Load and resource
distribution of the system

Core0
Thread 0 Thread N

Control Processor
 (CP)

CoreM
Thread 0 Thread N

...

* The CP allows the user to
programmatically control the resource
allocation and the workload distribution of
the GPU.

* Instead of implementing complex dynamic
hardware based scheduling algorithms, the
CP allows for these algorithms to be
implemented in software.

The control processor

#include "theia.thh"
#include "code_block_header.thh"

scalar DstOffsetAndLen,SrcOffset,CoredId;
//First send the data into cores

SrcOffset = 0;
DstOffsetAndLen = (0x0 | (CORE_INPUT_AREA_SIZE << 20));

 while (CoredId <= THEIA_CAPABILTIES_MAX_CORES)
 {

copy_data_block< CoredId, DstOffsetAndLen, SrcOffset>;
SrcOffset += INPUT_DATA_LEN;
CoredId++;

}

 //wait until enqueued block transfers are complete
 while (block_transfer_in_progress) {}

 SrcOffset = SIMPLE_RENDER_OFFSET;
 DstOffsetAndLen = (0x0 | SIMPLE_RENDER_SIZE | VP_DST_CODE_MEM);
 copy_data_block < ALLCORES , DstOffsetAndLen ,SrcOffset>;

 start <ALLCORES>;

 exit ;

The CP controls the global execution
of the system

The CP does not process data, it only
schedules the data processing that
will occur in the VPS

 The CP is a simple but fully
programmable processor.

 A special extension of the high level
language has been developed
specifically for the CP.

The CP controls the interface between
the VP cores and the GPU memory

Memories and the memory controller

Core0
Thread 0 Thread N

Control Processor
 (CP)

CoreM
Thread 0 Thread N

...

Cross bar

Texture memory (TMEM)

OM0

OMK

...

External memory

Memory controller

The memory controller

Core0
Thread

0
Thread

N

Control Processor
 (CP)

CoreM
Thread

0
Thread

N...

Cross bar

Texture memory (TMEM)

OM0

OMK

...

External memory

Memory controller
Takes care of transferring data

from the “external memory” to
the Texture memory or the
vector processors.

The CP controls the memory
controller, issuing asynchronous
block transfer commands

The external memory

Core0
Thread

0
Thread

N

Control Processor
 (CP)

CoreM
Thread

0
Thread

N...

Cross bar

Texture memory (TMEM)

...

External memory

Memory controller

OM0

OMK

...

Used by the CPU in order to read
or read data for the GPU to
process.

Can store GPU code or data

Is not part of the GPU, per-se.

Conceptually a large RAM.

GPU can only access this
memory via the Memory
controller.

The texture memory

Core0
Thread

0
Thread

N

Control Processor
 (CP)

CoreM
Thread

0
Thread

N...

Cross bar

Texture memory (TMEM)

OM0

OMK

...

External memory

Memory controller

Read-Only from the vector
processor perspective.

Multiple VPs can simultaneously
read using a full mesh cross bar.

Only Memory controller can write
into TMEM.

Default store location for texture
data (although the CP code can
decide to store anything in there)

The output memories

Core0
Thread

0
Thread

N

Control Processor
 (CP)

CoreM
Thread

0
Thread

N...

Cross bar

Texture memory (TMEM)

OM0

OMK

...

External memory

Memory controller

Write-Only from the vector
processor perspective.

Each VP can only write into a
single and unique OM.

Each OM is “owned” a VP to do
write operations, the OM cannot
be shared.

Default store location for
program result data. The CP can
request the OM data to be
transfer back into the external
memory, or into the graphics
frame buffer

Programming the GPU

* Has a high level programming language called “T-
Language”.

* Reminds of C but designed for 3D operations.

* Clean exposes the features of the hardware with no need for
the user to know about low-level details.

* User writes separate code for the CP and the VP (grammar
is similar, but features change)

How does the VP code looks like?

How does the VP code looks like?

T-Language allows thread
declaration as part of the
grammar.

Variables are declared as
“Vector” data types, 3D vectors
divided into x, y and z.

Allows subroutines, variable
stacks, arrays and many other
things

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

