
1 | P a g e

Floating Point

Operations Supported
Only the most basic floating point operations are supported with hardware. Supported

operations include addition, subtraction, multiplication, division, absolute value, integer to float

and float to integer conversions. Also supported are comparison operations. There are also a

number of control and status instructions.

Supported Operations:

Mnemonic Precision Clocks Operation

FADD S,D 4 addition

FSUB S,D 4 subtraction

FMUL S,D 4 multiplication

FDIV S,D 12,21 division

FABS S,D 1 absolute value

FNEG S,D 1 negation

FTOI S,D 2 float to integer

ITOF S,D 2 integer to float

FSIGN S,D 1 sign of value

FMAN S,D 1 mantissa of value

FSTAT - 1 get status register

FRM - 1 set rounding mode

FTX - 1 trigger exception

TCX - 1 clear exception

TDX - 1 disable exception

FEX - 1 enable exception

FCMP S, D 1 comparison

FTST S, D 1 test against zero

2 | P a g e

Representation
The floating point format is an IEEE-754 representation for both single and double precision.

Briefly,

Double Precision Format:

63 62 61 52 51 0

SM SE Exponent Mantissa

Single Precision Format:

31 30 29 23 22 0

SM SE Exponent Mantissa

SM – sign of mantissa

SE – sign of exponent

The exponent and mantissa are both represented as two’s complement numbers, however the

sign bit of the exponent is inverted.

SeEEEEEEEEEE

11111111111 Maximum exponent

….

01111111111 exponent of zero

….

00000000000 Minimum exponent

The exponent ranges from -1024 to +1023 for double precision numbers

If the core is built with the 32 bit data-bus 64 bit double precision floating point is unavailable.

Floating point comparisons and tests are executed on the integer ALU. This allows a comparison

operation to proceed in parallel with another floating point operation.

Performance
Generally, double precision operations are just as fast as single precision operations with the

exception of the divide operation which takes multiple clock cycles.

The floating point divider uses a radix 8 division. (three bits are processed each clock cycle).

3 | P a g e

Floating Point Instruction Set

FABS – Absolute Value

Description:

This instruction takes the absolute value of a double precision floating point number contained

in a general purpose register. The sign bit of the number is cleared. The precision of the number

is not affected and the number is not rounded.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

54 Rt6 Ra6 778 Pn4 Pc4

Clock Cycles: 1

Execution Units: All Floating Point

Operation:

Rt = Ra

4 | P a g e

FABSS – Single Precision Absolute Value

Description:

This instruction takes the absolute value of a single precision floating point number contained in

a general purpose register. The sign bit of the number is cleared.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

54 Rt6 Ra6 798 Pn4 Pc4

Clock Cycles: 1

Execution Units: All Floating Point

Operation:

Rt = Ra

5 | P a g e

FADD – Floating point addition

Description:

Add two double precision floating point numbers in registers Ra and Rb and place the result into

target register Rt.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

86 Rt6 Rb6 Ra6 78h8 Pn4 Pc4

Clock Cycles: 4

Execution Units: All Floating Point

6 | P a g e

FADDS – Floating Point Single Precision addition

Description:

Add two single precision floating point numbers in registers Ra and Rb and place the result into

target register Rt.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

186 Rt6 Rb6 Ra6 78h8 Pn4 Pc4

Clock Cycles: 4

Execution Units: All Floating Point

7 | P a g e

FCMP - Float Compare

Description:

The register compare instruction compares two registers as floating point doubles and sets the

flags in the target predict register as a result. While this is a floating point operation it is

executed on the integer ALU.

Instruction Format:

3128 27 22 21 16 15 12 11 8 7 0

24 Rb6 Ra6 14 Pt4 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

if Ra < Rb

 P.lt = true

else

 P.lt = false

if mag Ra < mag Rb

 P.ltu = true

else

 P.ltu = false

if Ra = Rb

 P.eq = true

else

 P.eq = false

if unordered

 P.un = true

else

 P.un = false

8 | P a g e

FCMPS - Float Compare Single

Description:

The register compare instruction compares two registers as floating point singles and sets the

flags in the target predict register as a result. While this is a floating point operation it is

executed on the integer ALU.

Instruction Format:

3128 27 22 21 16 15 12 11 8 7 0

14 Rb6 Ra6 14 Pt4 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

if Ra < Rb

 P.lt = true

else

 P.lt = false

if mag Ra < mag Rb

 P.ltu = true

else

 P.ltu = false

if Ra = Rb

 P.eq = true

else

 P.eq = false

if unordered

 P.un = true

else

 P.un = false

9 | P a g e

FDIV – Floating point division

Description:

Divide two double precision floating point numbers in registers Ra and Rb and place the result

into target register Rt.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

Bh6 Rt6 Rb6 Ra6 78h8 Pn4 Pc4

Clock Cycles: 21

Execution Units: All Floating Point

10 | P a g e

FDIVS – Single Precision Floating point division

Description:

Divide two single precision floating point numbers in registers Ra and Rb and place the result

into target register Rt.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

1Bh6 Rt6 Rb6 Ra6 78h8 Pn4 Pc4

Clock Cycles: 12

Execution Units: All Floating Point

11 | P a g e

FCX – Clear Floating Point Exceptions

Description:

This instruction clears floating point exceptions. The Exceptions to clear are identified as the bits

set in the union of register Ra and an immediate field in the instruction. Either the immediate or

Ra should be zero.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

D4 Immed6 Ra6 798 Pn4 Pc4

Execution Units: All Floating Point

Operation:

Exceptions:

Bit Exception Enabled

0 global invalid operation clears the following:
- division of infinities
- zero divided by zero
- subtraction of infinities
- infinity times zero
- NaN comparison
- division by zero

1 overflow

2 underflow

3 divide by zero

4 inexact operation

5 summary exception

12 | P a g e

FDX – Disable Floating Point Exceptions

Description:

This instruction disables floating point exceptions. The Exceptions disabled are identified as the

bits set in the union of register Ra and an immediate field in the instruction. Either the

immediate or Ra should be zero.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

F4 Immed6 Ra6 798 Pn4 Pc4

Execution Units: All Floating Point

Operation:

Exceptions:

Bit Exception Disabled

0 invalid operation

1 overflow

2 underflow

3 divide by zero

4 inexact operation

5 reserved

13 | P a g e

FEX – Enable Floating Point Exceptions

Description:

This instruction enables floating point exceptions. The Exceptions enabled are identified as the

bits set in the union of register Ra and an immediate field in the instruction. Either the

immediate or Ra should be zero.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

E4 Immed6 Ra6 798 Pn4 Pc4

Execution Units: All Floating Point

Operation:

Exceptions:

Bit Exception Enabled

0 invalid operation

1 overflow

2 underflow

3 divide by zero

4 inexact operation

5 reserved

14 | P a g e

FTX – Trigger Floating Point Exceptions

Description:

This instruction triggers floating point exceptions. The Exceptions to trigger are identified as the

bits set in the union of register Ra and an immediate field in the instruction. Either the

immediate or Ra should be zero.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

C4 Immed6 Ra6 798 Pn4 Pc4

Execution Units: All Floating Point

Operation:

Exceptions:

Bit Exception Enabled

0 global invalid operation

1 overflow

2 underflow

3 divide by zero

4 inexact operation

5 reserved

15 | P a g e

FMAC – Floating Point Multiply Accumulate (planned)

Description:

Multiply two floating point numbers in registers Ra and Rb add a third number from register Rc

and place the result into target register Rt.

Instruction Format:

4745 44 40 39 34 33 28 27 22 21 16 15 8 7 0

~3 O5 Rt6 Rc6 Rb6 Ra6 76h8 Pn4 Pc4

Clock Cycles: 8

Execution Units: All Floating Point

O5 Precision Mnemonic Operation

8 S FMAC.S Rt = (Ra * Rb) + Rc multiply accumulate

9 S FMAS.S Rt = (Ra * Rb) - Rc multiply subtract

10 S FNMAC.S Rt = -((Ra * Rb) + Rc) negate multiply accumulate

11 S FNMAS.S Rt = -((Ra * Rb) - Rc) negate multiply subtract

16 D FMAC Rt = (Ra * Rb) + Rc multiply accumulate

17 D FMAS Rt = (Ra * Rb) - Rc multiply subtract

18 D FNMAC Rt = -((Ra * Rb) + Rc) negate multiply accumulate

19 D FNMAS Rt = -((Ra * Rb) - Rc) negate multiply subtract

16 | P a g e

FMAN – Mantissa of Number

Description:

This instruction provides the mantissa of a double precision floating point number contained in

a general purpose register as a 52 bit zero extended result. The hidden bit of the floating point

number remains hidden.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

74 Rt6 Ra6 778 Pn4 Pc4

Clock Cycles: 1

Execution Units: All Floating Point

Operation:

Rt = Ra

17 | P a g e

FMANS – Mantissa of Number

Description:

This instruction provides the mantissa of a single precision floating point number contained in a

general purpose register as a 23 bit zero extended result. The hidden bit of the floating point

number remains hidden.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

74 Rt6 Ra6 798 Pn4 Pc4

Clock Cycles: 1

Execution Units: All Floating Point

Operation:

Rt = Ra

18 | P a g e

FMOV – Move Double Precision

Description:

This instruction moves one general purpose register to another. This instruction is shorter and

uses one less register port than using the OR instruction to move between registers. See also the

MOV instruction. This instruction currently performs the same operation as the MOV

instruction.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

04 Rt6 Ra6 778 Pn4 Pc4

Clock Cycles: 1

Execution Units: All Floating Point

Operation:

Rt = Ra

19 | P a g e

FMOVS – Move Single Precision

Description:

This instruction moves one general purpose register to another. This instruction is shorter and

uses one less register port than using the OR instruction to move between registers. See also the

MOV instruction. This instruction currently performs the same operation as the MOV

instruction.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

04 Rt6 Ra6 798 Pn4 Pc4

Clock Cycles: 1

Execution Units: All Floating Point

Operation:

Rt = Ra

20 | P a g e

FMUL – Floating point multiplication

Description:

Multiply two double precision floating point numbers in registers Ra and Rb and place the result

into target register Rt.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

Ah6 Rt6 Rb6 Ra6 78h8 Pn4 Pc4

Clock Cycles: 4

Execution Units: All Floating Point

21 | P a g e

FMULS – Single Precision Floating point multiplication

Description:

Multiply two single precision floating point numbers in registers Ra and Rb and place the result

into target register Rt.

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

1Ah6 Rt6 Rb6 Ra6 78h8 Pn4 Pc4

Clock Cycles: 4

Execution Units: All Floating Point

22 | P a g e

FNEG – Negate Register

Description:

This instruction negates a double precision floating point number contained in a general

purpose register. The sign bit of the number is inverted.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

44 Rt6 Ra6 778 Pn4 Pc4

Clock Cycles: 1

Execution Units: All Floating Point

Operation:

Rt = Ra

23 | P a g e

FNEGS – Negate Single Precision

Description:

This instruction negates a single precision floating point number contained in a general purpose

register. The sign bit of the number is inverted.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

44 Rt6 Ra6 798 Pn4 Pc4

Clock Cycles: 1

Execution Units: All Floating Point

Operation:

Rt = Ra

24 | P a g e

FRM – Set Floating Point Rounding Mode

Description:

This instruction sets the rounding mode bits in the floating point control register (FPSCR). The

rounding mode bits are set to the bitwise ‘or’ of an immediate field in the instruction and the

contents of register Ra. Either Ra or the immediate field should be zero.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

D4 Imm6 Ra6 778 Pn4 Pc4

Execution Units: All Floating Point

Operation:

FPSCR.RM = Ra | Immediate

25 | P a g e

FSIGN – Sign of Number

Description:

This instruction provides the sign of a double precision floating point number contained in a

general purpose register as a floating point double result. The result is +1.0 if the number is

positive, 0.0 if the number is zero, and -1.0 if the number is negative.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

64 Rt6 Ra6 778 Pn4 Pc4

Clock Cycles: 1

Execution Units: All Floating Point

Operation:

Rt = Ra

26 | P a g e

FSIGNS – Single Precision Sign of Number

Description:

This instruction provides the sign of a single precision floating point number contained in a

general purpose register as a floating point single result. The result is +1.0 if the number is

positive, 0.0 if the number is zero, and -1.0 if the number is negative.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

64 Rt6 Ra6 798 Pn4 Pc4

Clock Cycles: 1

Execution Units: All Floating Point

Operation:

Rt = Ra

27 | P a g e

FSTAT – Get Floating Point Status and Control

Description:

The floating point status and control register may be read using the FSTAT instruction. The

format of the FPSCR register is outlined on the next page.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

C4 Rt6 ~6 778 Pn4 Pc4

Execution Units: All Floating Point

Operation:

Rt = FPSCR

28 | P a g e

Floating Point Status And Control Register Format:

Bit Symbol Description

31:29 RM rm rounding mode (unimplemented)

28 E5 inexe - inexact exception enable

27 E4 dbzxe - divide by zero exception enable

26 E3 underxe - underflow exception enable

25 E2 overxe - overflow exception enable

24 E1 invopxe - invalid operation exception enable

23 NS ns - non standard floating point indicator

Result Status
22 fractie - the last instruction (arithmetic or conversion) rounded

intermediate result (or caused a disabled overflow exception)

21 RA rawayz rounded away from zero (fraction incremented)

20 SC C denormalized, negative zero, or quiet NaN

19 SL neg < the result is negative (and not zero)

18 SG pos > the result is positive (and not zero)

17 SE zero = the result is zero (negative or positive)

16 SI inf ? the result is infinite or quiet NaN

Exception Occurrence

15 X6 swt {reserved} - set this bit using software to trigger an invalid
operation

14 X5 inerx - inexact result exception occurred (sticky)

13 X4 dbzx - divide by zero exception occurred

12 X3 underx - underflow exception occurred

11 X2 overx - overflow exception occurred

10 X1 giopx - global invalid operation exception – set if any invalid
operation exception has occurred

9 GX gx - global exception indicator – set if any enabled exception
has happened

8 SX sumx - summary exception – set if any exception could occur if it
was enabled
- can only be cleared by software

Exception Type Resolution

7 X1T cvt - attempt to convert NaN or too large to integer

6 X1T sqrtx - square root of non-zero negative

5 X1T NaNCmp - comparison of NaN not using unordered comparison
instructions

4 X1T infzero - multiply infinity by zero

3 X1T zerozero - division of zero by zero

2 X1T infdiv - division of infinities

1 X1T subinfx - subtraction of infinities

0 X1T snanx - signaling NaN

Greyed out items are not implemented.

29 | P a g e

FSUB – Floating point subtraction

Description:

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

96 Rt6 Rb6 Ra6 78h8 Pn4 Pc4

Clock Cycles: 4

Execution Units: All Floating Point

30 | P a g e

FSUBS – Single Precision Floating point subtraction

Description:

Instruction Format:

39 34 33 28 27 22 21 16 15 8 7 0

196 Rt6 Rb6 Ra6 78h8 Pn4 Pc4

Clock Cycles: 4

Execution Units: All Floating Point

31 | P a g e

FTOI – Float to Integer

Description:

This instruction converts a floating point double value to an integer value.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

24 Rt6 Ra6 77h8 Pn4 Pc4

Clock Cycles: 2

Execution Units: All Floating Point

32 | P a g e

FTOIS – Single Precision Float to Integer

Description:

This instruction converts a floating point single value to an integer value.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

24 Rt6 Ra6 79h8 Pn4 Pc4

Clock Cycles: 2

Execution Units: All Floating Point

33 | P a g e

FTST – Float Register Test Compare

Description:

The register test compare compares floating point double in a register against the value zero

and sets the predicate flags appropriately. This instruction is executed on the integer ALU.

Instruction Format:

2322 21 16 15 12 11 8 7 0

22 Ra6 04 Pt4 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

if Ra < 0

 Pt.lt = 1

else

 Pt.lt = 0

if Ra = 0

 Pt.eq = 1

else

 Pt.eq = 0

if unordered

 Pt.un = 1

else

 Pt.un = 0

Pt.ltu = 0

Exceptions: none

34 | P a g e

FTSTS – Float Single Test Compare

Description:

The register test compare compares floating point single in a register against the value zero and

sets the predicate flags appropriately. This instruction is executed on the integer ALU.

Instruction Format:

2322 21 16 15 12 11 8 7 0

12 Ra6 04 Pt4 Pn4 Pc4

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

if Ra < 0

 Pt.lt = 1

else

 Pt.lt = 0

if Ra = 0

 Pt.eq = 1

else

 Pt.eq = 0

if unordered

 Pt.un = 1

else

 Pt.un = 0

Pt.ltu = 0

Exceptions: none

35 | P a g e

ITOF – Integer to Float

Description:

This instruction converts an integer value to a double precision floating point representation.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

34 Rt6 Ra6 77h8 Pn4 Pc4

Clock Cycles: 2

Execution Units: All Floating Point

36 | P a g e

ITOFS – Integer to Float Single

Description:

This instruction converts an integer value to a single precision floating point representation.

Instruction Format:

31 28 27 22 21 16 15 8 7 0

34 Rt6 Ra6 79h8 Pn4 Pc4

Clock Cycles: 2

Execution Units: All Floating Point

