
 Userguide, Using µTosNet in a project, rev.1, 26/8 2011 Page 1 of 4

 Simon Falsig, University of Southern Denmark, 2011

1 µTosNet

Compared to the TosNet framework, the idea of µTosNet is basically to cut out the TosNet network

itself, creating a single-node system, where the node contains low-level hardware interfaces on one

side, and a PC interface on the other. To create a working system, students and researchers will only

need to create the low-level hardware interfaces in the FPGA, and an application on the PC.

Everything else is provided by the framework.

By employing some of the work already done on the TosNet gateways for the µTosNet PC

interface, the hope is to create a consistency, which will make it easy to transition both knowledge

and existing modules between the two frameworks.

A number of example designs exist in the OpenCores repository, which should serve as a decent

starting point for learning to use µTosNet.

1.1 Architectural and conceptual differences compared to TosNet

The main idea of µTosNet is to provide a simplified version of TosNet that is easier to use and

understand, and that is usable on smaller FPGA chips. To achieve this, the following simplifications

have been done to TosNet:

 The TosNet core is exchanged with µTosNet, consisting of a small dual-port BlockRAM

 The network is removed, thus only a single node is supported

 No double buffering or other enforced access control

 No asynchronous channel

As only a single node and no TosNet network are present in a µTosNet system, there are of course

also no network cycles. The timing in the system is thus completely determined by the PC

application and whatever device interface is implemented in the FPGA.

Block diagrams showing the difference between TosNet and µTosNet can be seen in figure 1.

Figure 1: Examples of TosNet (left) and µTosNet (right) systems, showcasing the architectural differences

between the two.

As can be seen from the figure, µTosNet cuts out the TosNet network, and basically just attaches

devices directly to a gateway node. By reusing the same concepts as employed in TosNet, a high

level of reuse will be possible between the two frameworks.

1.2 FPGA-side interface to µTosNet

The FPGA interface to the TosNet core mainly consists of an interface to the BlockRAM holding

the registers, with some control signals added for handling commits, checking the current status of

µTosNet TosNet

D
e
v
ic

e
s

TosNet

G
a
te

w
a
y

in
te

rf
a
c
e

D
e
v
ic

e

in
te

rf
a
c
e

T
o

s
N

e
t

in
te

rf
a
c
e

D
e
v
ic

e

in
te

rf
a
c
e

T
o

s
N

e
t

in
te

rf
a
c
e

D
e
v
ic

e

in
te

rf
a
c
e

T
o

s
N

e
t

in
te

rf
a
c
e

G
a
te

w
a
y

in
te

rf
a
c
e

T
o

s
N

e
t

in
te

rf
a
c
e

G
a
te

w
a
y

in
te

rf
a
c
e

H
ig

h
-l
e

v
e
l

a
p
p
lic

a
ti
o

n

D
e
v
ic

e
s

G
a
te

w
a
y

in
te

rf
a
c
e

D
e
v
ic

e

in
te

rf
a
c
e

G
a
te

w
a
y

in
te

rf
a
c
e

G
a
te

w
a
y

in
te

rf
a
c
e

H
ig

h
-l
e

v
e
l

a
p
p
lic

a
ti
o

n

PC

FPGA-based node

µ
T

o
s
N

e
t

 Userguide, Using µTosNet in a project, rev.1, 26/8 2011 Page 2 of 4

 Simon Falsig, University of Southern Denmark, 2011

the network, and for using the asynchronous channel. For µTosNet though, all these extra control

signals are not necessary, and the interface thus only consists of an interface to the BlockRAM

block.

To make it even easier for beginners to use µTosNet, a wrapper has been made by Anders Sørensen,

which continuously runs through all registers and indexes, outputting the contents of the node‟s

input registers, and accepting new data for its output registers.

1.3 Gateways

Of the interfaces and gateways that exist for TosNet, only the Ethernet and RS232 gateways are of

interest for µTosNet.

1.3.1 Ethernet protocol

In the case of the Ethernet gateway a slightly simplified version of the version for the full TosNet is

used. The protocol remains almost the same: the address fields are reduced to be 6 bits in size, and

all flags relating to skip counters and commit signals are ignored. This can be seen in table 2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N
o
t

u
s
e
d

D
o
 r

e
a
d

N
o
t

u
s
e
d

R
e
a
d
 A

d
d
re

s
s

N
o
t

u
s
e
d

D
o
 w

ri
te

N
o
t

u
s
e
d

W
ri
te

 A
d
d
re

s
s

Table 2: The layout of the 32 bits in the control DWORD used for the generic gateway protocol for µTosNet.
The unused fields are left available for future additions.

Due to requiring a Digi embedded module, the Ethernet based gateway is not assumed to be the one

that will be used most with µTosNet. This position is instead held by the RS232 gateway, due to its

greater simplicity and ease-of-use.

1.3.2 RS232 protocol

To adapt the RS232 gateway for use with µTosNet, the protocol is modified slightly. Only the read

and write commands are now available, and with a simpler syntax:

 Read

Reads the value of a register.

Command: rRI

Response: XXXXXXXX

The register index, R, and Dword index, I, should be numbers in the range 0-7. Dword

indexes 0-3 indicate the output blocks of a specific register, while Dword indexes 4-7

indicate the input blocks. The response, XXXXXXXX, will consist of an 8-digit lower-case

hexadecimal number.

 Write

Writes a value to a register.

Command: wRI XXXXXXXX

Response: N/A

Again, the register index, R, and Dword index, I, should be numbers in the range 0-7.

Dword indexes 0-3 indicate the output blocks of a specific register, while Dword indexes

4-7 indicate the input blocks. The value to write, XXXXXXXX, should consist of an 8-digit

lower-case hexadecimal number, and must be preceded by a space character. No response

is made.

 Userguide, Using µTosNet in a project, rev.1, 26/8 2011 Page 3 of 4

 Simon Falsig, University of Southern Denmark, 2011

Just like for the full TosNet, the protocol is implemented in VHDL as an acceptor-type finite state

machine, and connected directly to the µTosNet BlockRAM.

2 Prerequisites

To use the µTosNet protocol, the following is needed:

- Xilinx ISE 9 or newer (other versions might work too, but have not been tested)

- Working Spartan3/6 board with RS232/USB or Digi Connect ME9210 interface

- VHDL files:

o uTosNet_uart.vhd OR uTosNet_spi.vhd

o uTosNet_ctrl.vhd (optional, only for UART version)

o uart_rx.vhd (from PicoBlaze UART, not included)

o uart_tx.vhd (from PicoBlaze UART, not included)

o kcuart_rx.vhd (from PicoBlaze UART, not included)

o kcuart_tx.vhd (from PicoBlaze UART, not included)

o bbfifo_16x8.vhd (from PicoBlaze UART, not included)

- CoreGen XCO files: (use the appropriate files for your device, or generate new ones)

o dataRegister.xco

As can be seen, the UART version of µTosNet depends on the PicoBlaze UART implementation by

Ken Chapman. It can be downloaded for free from Xilinx‟ webpage:

http://www.xilinx.com/products/ipcenter/picoblaze-S3-V2-Pro.htm

3 How to instantiate the µTosNet VHDL module in an existing design

To use the network implementation for a design, the following steps should be followed:

1. Add all the .vhd and .xco files to the project.

2. Add the UART tx/rx or SPI miso/mosi/enable/clk signals to the top level.

3. Connect the new top level signals to the correct pins on the FPGA device.

4. Instantiate the appropriate µTosNet module.

5. Connect the existing design to the needed BlockRAM or uTosNet_ctrl signals.

4 Interface signals

This section describes the interface signals used for communicating with the TosNet component.

The data_reg_ signals are directly connected to the BlockRAM, and thus work just like any other

memory.

4.1 dataReg_addr<5:0> (input)

This is the address bus of the memory block, and is organized as can be seen in figure 3.

5 4 3 2 1 0

Register I/O Dword

Table 3: How to address into the µTosNet memory block.

The four different parts have the following meaning:

 Register

The register to target.

 I/O

„0‟ targets output space, „1‟ targets input space.

http://www.xilinx.com/products/ipcenter/picoblaze-S3-V2-Pro.htm

 Userguide, Using µTosNet in a project, rev.1, 26/8 2011 Page 4 of 4

 Simon Falsig, University of Southern Denmark, 2011

 Dword

Specifies which 32 bit part of the 128 bit large register to target.

Unlike the full TosNet network, it is possible to ignore the I/O bit in the addressing, and use any

register for input, output or both. This is not at all encouraged though, as it will decrease portability

between µTosNet and TosNet.

With only 6 bits of addressing space, and no double buffering used, a µTosNet core will only use

256 bytes of BlockRAM, compared to the 8 kB used by the full TosNet (not including the network

register).

So if for example the bitstring “100100” is put on the address bus, it will target the first 32 bits of

the in-part of register “100”.

4.2 dataReg_dataIn<31:0> (input) / dataReg_dataOut<31:0> (output) /
dataReg_writeEnable<0:0> (input) / dataReg_clk (input)

These are the rest of the BlockRAM interface signals for the memory block. To write data to the

block, do the following:

1. The data to write is put on dataReg_dataIn, the write enable signal, dataReg_writeEnable, is

pulled high, and the address to write to is put on dataReg_addr.

2. dataReg_clk is pulled high, which performs the write.

To read data from the block, do the following:

1. The write enable signal, dataReg_writeEnable, is pulled low, and the address to read from is

put on dataReg_addr.

2. dataReg_clk is pulled high, which performs the read.

3. The read data is now available on dataReg_dataOut.

4.3 serial_in (input) / serial_out (output) OR spi_miso (output) / spi_mosi (input) /
spi_clk (input) / spi_en (input)

These are the signals from and to the transmitter components.

4.4 clk_50M (input)

This is the 50 MHz clock signal required by the TosNet core.

5 Conclusion

Realizing that the full TosNet system is overkill in many situations that only require a single low-

level hardware device to be interfaced to for instance a PC, and that the FPGA boards required to

hold the TosNet network core are quite expensive, µTosNet was created. µTosNet implements a

scaled-down, single-node version of the interfaces found in a standard TosNet system with an

RS232/USB gateway, and thus provides the same interfacing benefits at a much lower complexity

and cost.

	1 µTosNet
	1.1 Architectural and conceptual differences compared to TosNet
	1.2 FPGA-side interface to µTosNet
	1.3 Gateways
	1.3.1 Ethernet protocol
	1.3.2 RS232 protocol

	2 Prerequisites
	3 How to instantiate the µTosNet VHDL module in an existing design
	4 Interface signals
	4.1 dataReg_addr<5:0> (input)
	4.2 dataReg_dataIn<31:0> (input) / dataReg_dataOut<31:0> (output) / dataReg_writeEnable<0:0> (input) / dataReg_clk (input)
	4.3 serial_in (input) / serial_out (output) OR spi_miso (output) / spi_mosi (input) / spi_clk (input) / spi_en (input)
	4.4 clk_50M (input)

	5 Conclusion

