
Gisselquist
Technology, LLC

WBUART32

SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) opencores.org

August 26, 2016

Gisselquist Technology, LLC Specification 2016/08/26

Copyright (C) 2016, Gisselquist Technology, LLC.
This project is free software (firmware): you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see http://www.gnu.org/licenses/ for a copy.

www.opencores.com Rev. 0.1 ii

Gisselquist Technology, LLC Specification 2016/08/26

Revision History
Rev. Date Author Description

0.1 8/26/2016 D. Gisselquist Initial Draft Specification

www.opencores.com Rev. 0.1 iii

Gisselquist Technology, LLC Specification 2016/08/26

Contents

Page

1 Introduction . 1

2 Architecture . 2

3 Operation . 4

4 Registers . 5
4.1 Setup Register . 5
4.2 RX DATA Register . 5
4.3 TX DATA Register . 6

5 Clocks . 8

6 Wishbone Datasheet . 9

7 I/O Ports . 10

www.opencores.com Rev. 0.1 iv

Gisselquist Technology, LLC Specification 2016/08/26

Figures

Figure Page

4.1. SETUP Register fields . 6
4.2. RXDATA Register fields . 6
4.3. TXDATA Register fields . 7

www.opencores.com Rev. 0.1 v

Gisselquist Technology, LLC Specification 2016/08/26

Tables

Table Page

4.1. UART Registers . 5
4.2. Parity setup . 6

5.1. Clock Requirements . 8

6.1. Wishbone Datasheet . 9

7.1. RXUART port list . 11
7.2. TXUART port list . 11

www.opencores.com Rev. 0.1 vi

Gisselquist Technology, LLC Specification 2016/08/26

Preface

It may be that building a UART is a mandatory coming of age task for any HDL designer. The
task is simple, easy, and there’s not all that much to it. This project comes out of some of my first
experiences with Verilog.

Since then, it has been augmented with a very useful capability for simulating a UART connection
when using Verilator. It is this, perhaps unusual, addition to the core set that makes this core worth
taking note of.

I hope you find it useful.

Dan Gisselquist, Ph.D.

www.opencores.com Rev. 0.1 vii

Gisselquist Technology, LLC Specification 2016/08/26

1.

Introduction

The Universal Asynchronous Serial Transport, or UART, has become quite the common protocol
between devices. It is simple to wire up, easy to use, and easy to process. This core provides one
implementation of the logic necessary to use such a communications scheme.

While you are likely to find many UART examples out there, this particular UART implementa-
tion offers something many of these other examples do not: a Verilator simulation capability. This
will allow the user to connect, via a TCP/IP port or a telnet application, to the UART of their
desired chip. As a result, full two-way interaction can be had between a simulation and a terminal
or other port. Indeed, this may even be sufficient to connect a CPU, capable of running Linux, to
a terminal to verify that yes it can truly run Linux–all within Verilator.

www.opencores.com Rev. 0.1 1

Gisselquist Technology, LLC Specification 2016/08/26

2.

Architecture

The HDL portion of the core itself consists of three files: rxuart.v, txuart.v, and wbuart-insert.v.
These are, respectively, the receive UART code, the transmit UART code, and an example of how
the receiver and transmitter may be connected to a Wishbone bus.

Each of the core files, rxuart.v and txuart.v, are fully capable. They each accept a 29–bit
setup value specifying baud rate, the number of bits per byte (between 5 and 8), whether or not
parity is used, whether that parity is even, odd, or fixed mark or fixed space. This setup register
will be discussed further in Chap.4.

A further note on the rxuart.v module is in order. This module double latches the input, in
the proper two buffer fashion to avoid problems with metastability. Then, upon the detection of the
start bit (i.e. a high to low transition), the port waits a half of a baud, and then starts its baud clock
so as to sample in the middle of every baud following. The result of this is a timing requirement:
after N + 2 baud intervals (N + 3 if parity is used), where N is the number of bits per byte, this
calculated middle sample must still lie within the associated bit period. This leaves us with the
criteria that,

∣

∣

∣

∣

(N + 2)

(

fSYS

fBAUD

− CKS

)∣

∣

∣

∣

<
fSYS

2fBAUD

, . (2.1)

where fSYS is the system clock frequency, fBAUD is the baud rate or frequency, CKS is the number of
clocks per baud as set in the configuration register, and N is the number of bits per byte. What
this means is that, for transmission rates where fBAUD approaches fSYS, the number of data rates
that can actually be synthesized becomes limited.

Connecting to either txuart.v or rxuart.v is quite simple. Both files have a data port and
a strobe. To transmit, set the data and strobe lines. Drop the strobe line as soon as the strobe
is asserted and the busy line is not. Likewise, to connect to the rxuart.v port, there is a data
and a strobe. This time, though, these two wires are outputs of the port as opposed to inputs.
When the strobe is high, the data is valid. It will only be high for one clock period. If you wish to
connect this output to a bus, a register will be needed to hold the strobe high until the data is read.
Also, while the strobe is high, the o break line will indicate whether the receiver is in a “break”
state, o frame err will indicate whether or not there was a framing error (i.e., no stop bit), and
o parity err will indicate wheher or not the parity matched.

The tx busy line may be inverted and connected to a transmit interrupt line. In a similar fashion,
the rx stb line, or the bus equivalent of rx ready, may be used for receive interrupt lines.

An example of how to put this configuration together is found in wbuart-insert.v. In this
example given, the rx data register will have only the lower eight bits set if the data is valid, higher
bits will be set upon error conditions, and cleared automatically upon the next byte read. In a

www.opencores.com Rev. 0.1 2

Gisselquist Technology, LLC Specification 2016/08/26

similar fashion, the tx data register can be written to with a byte in order to transmit that byte.
Writing bit nine will place the transmitter into a “break” condition, only cleared by writing a zero
to that bit later. Reading from the tx data register can also be used to determine if the transmitter
is busy (via polling), whether it is currently in a break condition, or even what bit is currently being
placed to the output port.

The C++ simulation portion of the code revolves around the file bench/cpp/uartsim.cpp and
its associated header. This file defines a class, UARTSIM, which can be used to connect the UART to
a TCP/IP stream. When initialized, this class takes, as input, the TCP/IP port number that the
class is to connect with. Once connected, using this is as simple as calculating the receive input bit
from the transmit output bit when the clock is low, and the core takes care of everything else.

www.opencores.com Rev. 0.1 3

Gisselquist Technology, LLC Specification 2016/08/26

3.

Operation

To use the core, a couple of steps are required. First, wire it up. The wbuart-insert.v file should
provide a good example of how to wire it up. Second, set the UART configuration register. This
is ideally set in an initial statement within the code somewhere, but can easily be set elsewhere by
writing to this register from the bus.

From a simulation standpoint, it will also need to be wired up. Somewhere, internal to the
top–level Verilator C++ simulation file, you’ll want to have a line similar to,

if (!clk)

tb->i rx = uartsim(tb->o uart, setup);

To use the transmitter, set the i stb and i data wires. Drop the strobe line any time after
(i stb)&&(!o busy).

To use the receiver, grab the data any time o stb is true.
From the standpoint of the bus, there are two ways to handle receiving and transmitting: polling

and interrupt based, although both work one character at a time. To poll, repeatedly read the
receive data register until only no bits but the bottom eight are set. This is an indication that the
byte is valid. Alternatively, you could wait until the an interrupt line is set and then read. In the
wbuart-insert.v example, the rx int line will be set, and automatically cleared upon any read. To
write, one can read from the transmit data register until the eighth bit, the tx busy bit, is cleared,
and then transmit. Alternatively, this negation of this bit may be connected to an interrupt line.
Writing to the port while idle will start it transmitting. Writing to the port while it is busy will fill
a one word buffer that will get sent as soon as the port is idle for one clock.

www.opencores.com Rev. 0.1 4

Gisselquist Technology, LLC Specification 2016/08/26

4.

Registers

The core really only has one register associated with it, which is the setup register. The format of
this register is important, although not necessarily trivial or obvious. We’ll cover two other registers
here, though, associated with the example wishbone connections from wbuart-insert.v. All three
of these registers are shown in Tbl. 4.1.

Since the connections presented are only examples, they are listed without addresses, as their
wishbone bus connectivity will be determined once they are connected.

4.1 Setup Register

The setup register is perhaps the most critical of all the registers. This is shown in Fig.4.1. It is
designed so that, for any 8N1 protocol (eight data bits, no parity, one stop bit), only the number of
clocks per baud interval needs to be set. The top two bits are unused, making this a 30–bit number.
The other fields are: N sets the number of bits per word. A value of zero corresponds to 8–bit words,
a value of one to seven bit words, and so forth up to a value of three for five bit words. S determines
the number of stop bits. Set this to one for two stop bits, or leave it clear for a single stop bit. P

determines whether or not a parity bit exists (1 for parity, 0 for none), while F determines whether
or not the parity is fixed. Tbl. ?? lists out the various values possible here.

4.2 RX DATA Register

Fig. 4.2 breaks out the various bit fields of the receive data register used in the wbuart-insert.v

example of connecting it to a bus. In particular, the B field indicates that the receive line is in a
break condition. The F and P fields indicate that a frame error or parity error were detected. These
are valid like the data word: when the strobe line is set. The S field will be false when the RWORD is
valid. Hence, if (RWORD & 0x0ff) is zero there is a word ready to be received without error.

Name Address Width Access Description

SETUP 30 R/W UART configuration/setup register.
RX DATA 12 R(/W) Read data, reads from the UART.
TX DATA 12 (R/)W Transmit data: writes send out the UART.

Table 4.1: UART Registers

www.opencores.com Rev. 0.1 5

Gisselquist Technology, LLC Specification 2016/08/26

012345678910111213141516171819202122232425262728293031

00 N S P FT Baud CLKS

Figure 4.1: SETUP Register fields

P F T Setting

1 0 0 Odd parity
1 0 1 Even parity
1 1 0 Parity bit is a Space (1’b0)
1 1 1 Parity bit is a Mark (1’b1)
0 No parity

Table 4.2: Parity setup

4.3 TX DATA Register

Fig. 4.3 breaks out the various bit fields of the transmit data register used in wbuart-insert.v.
The C field indicates whether or not the receive data line is high or low, the O field indicates the
same for the transmit line. These aren’t particularly useful or valuable, but they don’t fit in the
receive data register since they would violate the error condition detector. They’re thrown in here
for whatever useful purpose one might find. The B field, when set, sends a break condition down
the wire. Writing to the TXDATA register, clearing the B field, will clear the transmitter from
the break condition without transmitting anything. The S field is similar to the RXDATA strobe
register. It will be true whenever the transmitter is busy or a byte is waiting for it. It will be clear
only when the transmitter is idle.

To use the transmitter, simply write a byte to the TXDATA register with the upper 24–bits clear
to transmit.

012345678910111213141516171819202122232425262728293031

20’h00 B F P S RWORD

Figure 4.2: RXDATA Register fields

www.opencores.com Rev. 0.1 6

Gisselquist Technology, LLC Specification 2016/08/26

012345678910111213141516171819202122232425262728293031

2’h00 COB S TWORD

Figure 4.3: TXDATA Register fields

www.opencores.com Rev. 0.1 7

Gisselquist Technology, LLC Specification 2016/08/26

5.

Clocks

The UART has been tested with a clock as fast as 200 MHz (Tbl. 5.1). It should be able to use
slower clocks, but only subject to the ability to properly set the baud rate as shown in Eqn. (2.1)
on Page 2.

I do not recommend using this core with a baud rate greater than a quarter of the system clock
rate.

Name Source Rates (MHz) Description
Max Min

i clk (System) 200 MHz System clock

Table 5.1: Clock Requirements

www.opencores.com Rev. 0.1 8

Gisselquist Technology, LLC Specification 2016/08/26

6.

Wishbone Datasheet

Tbl. 6.1 is required by the wishbone specification in order to declare the core as wishbone compliant,

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Slave, Read/Write, pipeline reads sup-

ported
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering (Irrelevant)
Clock constraints None.

Signal Names

Signal Name Wishbone Equivalent
i wb clk CLK I

i wb cyc CYC I

i wb stb STB I

i wb we WE I

i wb addr ADR I

i wb data DAT I

o wb ack ACK O

o wb stall STALL O

o wb data DAT O

Table 6.1: Wishbone Datasheet

and so it is included here. It references the connections exemplified by wbuart-insert.v. The big
thing to notice is that this core acts as a wishbone slave, and that all accesses to the core registers
are 32–bit reads and writes to this interface.

What this table doesn’t show is that all accesses to the port take a single clock. That is, if the
i wb stb line is high on one clock, the i wb ack line will be high the next. Further, the o wb stall

line is tied to zero.
Also, this particular wishbone implementation assumes that if i wb stb, then i wb cyc will be

high as well. Hence it only checks whether or not i wb stb is true to determine if a transaction
has taken place. If your bus does not meet this requirement, you’ll need to AND i wb stb with
i wb cyc before using the core.

www.opencores.com Rev. 0.1 9

Gisselquist Technology, LLC Specification 2016/08/26

7.

I/O Ports

In it’s simplest form, the UART offers simply two I/O ports: the i rx line to receive, and the o tx

line to transmit. These lines need to be brought to the outside of your design. Within verilator,
they need to be connected inside your verilator test bench, as in:

if (!clk)

tb->i rx = uartsim(tb->o uart, setup);

A more detailed discussion of the connections associated with these modules can begin with
Tbl. 7.1, detailing the I/O ports of the UART receiver, and Tbl. 7.2, detailing the I/O ports of the
UART transmitter.

The “ports” associated with the wbuart-insert.v example may be inferred from the wishbone
data sheet.

www.opencores.com Rev. 0.1 10

Gisselquist Technology, LLC Specification 2016/08/26

Port Width Direction Description

i clk 1 Input The system clock
i reset 1 Input A positive, synchronous reset
i setup 30 Input The 30–bit setup register
i uart 1 Input The input wire from the outside world.
o wr 1 Output True if a word was received. At this time, o data,

o break, o parity err, and o frame err will also be
valid.

o data 8 Output The received data, valid if o wr

o break 1 Output True in the case of a break condition
o parity err 1 Output True if a parity error was detected
o frame err 1 Output True if a frame error was detected
o ck uart 1 Output A synchronized copy of i uart

Table 7.1: RXUART port list

Port Width Direction Description

i clk 1 Input The system clock
i reset 1 Input A positive, synchronous reset
i setup 30 Input The 30–bit setup register
i break 1 Input Set to true to place the transmit channel into a break

condition
i wr 1 Input An input strobe. Set to one when you wish to transmit

data, clear once it has been accepted
i data 8 Input The data to be transmitted, ignored unless

(i wr)&&(!o busy)

o uart 1 Output The wire to be connected to the external port
o busy 1 Output True if the transmitter is busy, false if it will receive data

Table 7.2: TXUART port list

www.opencores.com Rev. 0.1 11

	Introduction
	Architecture
	Operation
	Registers
	Setup Register
	RX_DATA Register
	TX_DATA Register

	Clocks
	Wishbone Datasheet
	I/O Ports

