139

The X-MatchPRO 100 Mbytes/second FPGA-Based Lossless Data
Compressor.

José Luis Nufiez, Simon Jones
Electronic Systems Design Group, Loughborough University
Loughborough, Leicestershire. LE11 3TU. England.
J.L Nunez-Yanez@lboro.ac.uk, S.Jones@lboro.ac.uk

Abstract

This paper presents the X-MatchPRO lossless
data compression algorithm and its hardware
realization that enable data independent
throughputs in excess of 100 Mbytes/second
compression and decompression using
contemporary FPGA technology. A comparison
between this device and other commercially
available data compressors is made in terms of
technology, compression ratio and throughput. X-
MatchPRO shows how state-of-the-art FPGA
technology can be used to shorten the design cycle
and achieve better performance than existing ASIC
compressors.

1. Introduction

Lossless data compression, where the original

data is reconstructed exactly after decompression,
is being accepted as a tool that can bring important
benefits to an electronic system. Its applications
have been on the rise during the past years thanks
to the armrival of compression standards and a
combination of pressure for more bandwidth and
storage capacity while reducing power
consumption. Lossless data compression has been
successfully applied to storage systems (tapes,
hard disk drives, solid state storage (Flash), file
servers) and communication networks (LAN,
WAN, wireless).
One of the common factors for successful
integration of lossless data compression in these
applications is a high throughput so the
compression/decompression processes do not slow
the original system down. We have been
researching high performance lossless data
compression hardware as the means to achieve the
high throughput target [1]-[5].

The recent arrival of high density FPGA devices
[6] has allowed the migration of the X-Match
concept [4] to programmable technology with only
minor degradations in compression. The new
generation of low sub-micron ProASIC FPGA’s
[7] has paved the way for extensive algorithm and
VHDL redesign resulting in the X-MatchPRO
compressor. This chip boasts a data independent

throughput of 100 Mbytes/s, matching the
performance of the original X-Match ASIC
softcore and outperforming other currently
available lossless data compressors.

The remainder of this paper is organized as
follows: Section 2 describes the basic
characteristics of the X-MatchPRO algorithm.
Section 3 introduces some of the features present
in the X-MatchPRO hardware. Section 4 compares
the X-MatchPRO compressor with other
commercially available data compressor devices.
Finally section 5 concludes this paper.

2. The X-MatchPRO algorithm.

The X-MatchPRO algorithm uses a dictionary of
previously seen data and attempts to match the
current data element with an entry in the
dictionary. Each entry is 4 bytes wide and several
types of matches are possible where all or some of
the bytes at different positions inside the tuple
match. Those bytes that do not match are
transmitted literally. This partial match concept
gives the name to the procedure- the X referring to
‘don’t care’. At least 2 bytes have to match and
when no valid match is generated a miss is
codified adding a single bit to the literal. The
dictionary is maintained using a move to front
(MTF) strategy [8] whereby a new tuple is placed
at the front of the dictionary while the rest move
down one position. When the dictionary becomes
full the tuple placed in the last position is
discarded leaving space for a new one.

The coding function for a match is required
to code three separate fields as follows:

e The match location. It uses the binary code
associated to the matching location. Since
the dictionary has 64 entries 6 bits are used
to code each location.

e A match type. That indicates which bytes of
the incoming tuple have matched. This is
coded using a static Huffman code [9] based
on the statistics obtained through extensive
simulation.

e Any extra characters that did not match,
transmitted in literal form.

140

A data tuple (= 4 bytes) is always added to the
front of the dictionary while the rest move one
position down if a full match has not occurred.
The move-to-front technique is only applied
when dealing with full matches. In this case the
tuples from the first location down to the location
previous to the matching tuple move down one
position, while the matching tuple is placed at
the front of the dictionary. The algorithm is
given as pseudo-code in Figure 1.

Set the dictionary to its initial state;
DO
{ read in tuple T from the data stream;
search the dictionary for tuple T;
IF (full or partial hit)
{ determine the best match location
ML and the match type MT;
output ‘0;
output Binary code for ML;
output Huffman code for MT;
output any required literal

characters of T; }

ELSE
{ output ‘1’;
output tuple T; }
IF (full hit)
{move dictionary entries 0 to ML-1 by
one location;}
ELSE

{ move all dictionary entries down by
one location;}
copy tuple T to dictionary location 0; }

WHILE (more data is to be compressed);.

Figure 1. The X-MatchPRO algorithm

3. The X-MatchPRO hardware

The architecture is based around a block of
CAM to realize the dictionary [1], [4], [5]. This
is necessary since the search operation must be
done in parallel in all the entries in the dictionary
to allow high throughput. The size of the CAM is
64 words with 4 bytes/word and it has to be
selectively shiftable to be able to reorder itself
adapting to the incoming stream of data. The
selectively shiftable characteristic implies that
each word of the CAM maintains its data or
loads the data of the previous word depending on
the value of its associated bit in the vector
produced by the dictionary maintenance
functions. Initially the CAM is set to an initial
state with a pattern of common data making sure
that no two positions contain the same data. This
initial dictionary state is hardwire in the FPGA

using the clear and set control signals available
in the storage cells. The re-programability of the
FPGA allows for tuning of the initial dictionary
state depending of the type of data that is
expected in the system improving compression.
The chip supports both compression and
decompression but not simultaneously. The
reason is that the same dictionary is shared
between the compression and decompression
logic. This means that it is not possible to store
two different history windows, one for each of
the two processes. Since the CAM-Based
dictionary uses most of the logic in the system
the device has no internal resources to enable
dictionary duplication. Special attention has been
paid during the redesign process to balance the
compression and decompression critical path
delays present in the chip so they have a similar
value. This way we have avoided overoptimizing
some parts of the design and using valuable logic
and routing resources in vain. A new pipeline
scheme has been implemented to help to achieve
this objective resulting in a 3 level pipeline for
compression and 2 level pipeline for
decompression. The critical path has a value of
39 ns. This figure is based on post-layout
simulation results under worst operating
conditions and worst process using a 0.25 um
Flash-CMOS AS500K270 ProASIC [7] device
manufactured by Actel Corporation.

4. Performance comparison.

Table 1 shows a comparison among
commercially available lossless data
compression devices. Except from X-
MatchPRO all the other devices are ASIC
COmpressors.

Table 1 shows that X-MatchPRO offers a
competitive level of compression when
comparing with the other algorithms.
Compression has been defined as the ratio
output_bits/input_bits and the experiments are
based on the data set introduced in [4]
compressing 4Kbytes blocks of data. Our device
clocks at a lower frequency but it offers more
throughput because it uses its internal parallelism
to process 4 bytes per clock cycle while the rest

process one byte.
5. Conclusions
X-MatchPRO offers unprecedented level of

compression/decompression throughput in a
FPGA implementation of a lossless data

141

compression algorithm for general application.
The use of a fine granularity device like the
ProASIC where each block defines a very simple
logic function, has proven to be well suited to
implement the CAM-based dictionary that
represents around 70% of the logic present in the
device. Other FPGA architectures where the
building blocks implement mixed combinatorial
and sequential functions offer poorer utilization
ratios. The architecture is easily scalable so it can

FPGA’s with higher gate count with little effort
and since the ProASIC architecture is ASIC-style
the same RTL can be used to migrate towards
ASIC’s where throughputs in excess of 2
Gbit/second should be obtained. As future work
we are now focusing on setting up a ProASIC
verification system that will allow us to test the
device at real time. We are also studying the
possibility of improving the compression ratio by
adding run length coding techniques to the

be adapted to new algorithm.
Developers IBM [10] AHA [11] STAC DCP SDG [14]
[12] [13]
Chip ALDCI1- | AHA3521 | AHA3231 Hi/fn DCP816 | X-MatchPRO
408 9610
Process IBM 0.5 micron | 0.5 micron 0.5 1.0 0.25 micron
CMOS CMOS CMOS micron micron FLASH-
0.8 CMOS CMOS CMOS
& micron gate gate FPGA
k=) gate array/std array
g array/std cell
S cell
&l Complexity Not Not Stated | Not Stated 100 15 61 Kgates
Stated K gates Kgates
Clock 40 MHz 40 MHz 40 MHz SOMHz | 40 MHz 25 MHz
Frequency
Throughput 40 20 50 210 100 Mbytes/s
Mbytes/s | Mbytes/s Mbytes/s | Mbytes/s | Kbytes/s
Algorithm ALDC ALDC DCZL LZS GCA X-MatchPRO
External RAM NO NO NO NO YES NO
Compression 0.4425 0.4425 0.5177 0.4398 0.4701 0.53
ratio

Table 1. Comparison summary

References

[1] S.Jones, ‘100Mbit/s Adaptive Data
Compressor Design Using Selectively Shiftable
Content-Addressable Memory’, Proceedings of
IEE (part G), vol.139, no.4, pp.498-502, 1992.
[2] M. Kjelsa, M. Gooch, U. Simm, S. Jones,

> Hardware Data Compression and Memory
Management for Flash-Memory Disks’,
Proceedings ISIC-95, 6" International
Symposium on IC

Technology, Systems and Applications, IEEE
Press, pp 161-165.

[6] GateField Corporation., Fremont, CA. The
GF250F ProASIC Products DATAbook, 1997
[7] Information available from http:/www.
actel.com/products/proasic/

[8] J.L.Bentley at all, A Locally Adaptive
Data Compression Scheme’, Communications
of the ACM, vol.29, no.4, pp.320-330, 1986.
[9] D.Huffman, ‘A method for the construction
of Minimum Redundancy Codes’, Proceedings
of the LR.E, pp.1098-1101, 1958.

[10] Information available from http:// www.
chips.ibm.com/products/aldc

142

[3] J. Jiang, S.Jones, 'Parallel Design of
Arithmetic Coding', Proceedings IEE, PartE,
Vol 141, pp 327-333, November 1994.

[4] MKjelso, M.Gooch, S.Jones, ‘Design &
Performance of a Main Memory Hardware
Data Compressor’, Proceedings 22™
EuroMicro Conference, pp. 423-430,
September 1996, Prague, Czech Republic.

[5] J.Nuiiez, C. Feregrino, S.Bateman, S.Jones,
‘The X-MatchLITE FPGA-based Data
Compressor’, Proceedings 25" EuroMicro
Conference, ppl26-133, September 1999,
Milan, Italy.

[11] Information available from http:// www.
aha.com/home.asp?file=product

[12] Information available from http:// www.
hifn.com/

[13] Information available from http:// www.
datacompression.com/

[14] Information available from http:// www.
Iboro.ac.uk/departments/el/research/sys/

