The X-MatchLITE FPGA-Based Data Compressor.

José Luis Nuiiez, Claudia Feregrino, Stephen Bateman*, Simon Jones
Electronic Systems Design Group, Loughborough University
Loughborough, Leicestershire. LE11 3TU. England.
*GateField Corporation, 47100 Bayside Parkway, Fremont, CA.

Abstract

This paper introduces a hardware amenable algorithm
Jor lossless data compression and a highly integrable
architecture which enables Gbit/s compression using
contemporary ASIC technology. An FPGA prototype of the
architecture is presented. A comparison between this
prototype and the full version of the system is made
together with the details of the engineering decisions
needed to successfully realize an ASIC compressor in
FPGA technology.

1. Introduction

While there has been substantial interest inlossy data
compression hardware for image and signal processing,
there has been until quite recently, relatively less interest
in lossless compression hardware where exact data
restoration occurs. However, a combination of increased
pressure on bandwidth and cost per bit in storage and data
transmission, together with the requirements to improve
power consumption by reducing data volume has resulted
in an increased interest in lossless compression hardware.
As part of this process we have been researching high
performance lossless data compression hardware for a
number of years [1], [2], [3]. A major outcome of this
work has been the X-match approach [4] which utilizes an
adaptive Content Adressable Memory (CAM) for the
dictionary storage together with dynamic coding of the
dictionary locations and associated bit packing . Such an
approach appears to offer the possibility of Gbit/s
operation with compression equivalent to the UNIX utility
Compress [5].

Extensive algorithm and VHDL design has resulted in
an X-Match soft core with a 110 Kgates complexity and
operating at 25 MHz. . For many applications such high
speed is not necessary. Furthermore, the complexity of the
full X_Match system exceeds the achievable with
contemporary FPGA technology thus missing out other
benefits included with areprogramable system. As a

1089-6503/99 $10.00 © 1999 IEEE

126

consequence of this we have developed a simplified and
redesigned version of X-Match which is suitable for FPGA
implementation with only modest compression
performance degradation.

The remainder of this paper is organized as follows:
Section 2 describes the original X-Match algorithm while
section 3 depicts its architecture. Section 4 deals with the
details of the FPGA architecture. Section 5 compares the
performance obtained by both designs. Section 6 presents
our FPGA verification methodology. Finally section 7
concludes.

2. The X-Match algorithm

2.1. Algorithm description

The X-Match algorithm uses a dictionary of previously
seen data and attempts to match the current data element
with an entry in the dictionary. Each entry is 4 bytes wide
and several types of matches are possible where all or
some of the bytes at different positions inside the tuple
match. Those bytes that do not match are transmitted
literally. This partial match concept gives the name to the
procedure- the X referring to tont care'. At least 2 bytes
have to match and when no valid match is generated a
miss is codified adding a single bit to the literal. Data
expansion is then limited to 3.125% (32 bits -> 33 bits).
The dictionary is maintained using a move to front (MTF)
strategy [6] whereby a new tuple is place at the front of the
dictionary while the rest move down one position. This
strategy generates a LRU (Least Recently Used)
replacement policy so the last dictionary_size tuples are
used as a window of history information for the
compression process. When the dictionary becomes full
the tuple placed in the last position is discarded leaving
space for a new one.

‘The coding function for a match is required to code
three separate fields as follows:

. The match location. It uses Phased Binary Code
(PBC) [7], a version of Huffman coding chosen
for its suitability for hardware implementation.
PBC is characterized by assigning smaller codes
while the dictionary grows from an initial empty
state.

. A match type. That indicates which bytes of the
incoming tuple have matched. This is codified
using a static Huffman code [8] based on the
statistics obtained through extensive simulation.

. Any extra characters that did not match
transmitted in literal form.

Initially all the entries in the dictionary are empty and
a tuple is added to the front of the dictionary while the
rest move one position down if a full match has not
occurred. The move-to-front technique is only applied
when dealing with full matches. In this casc thetuples
from the first location until the location previous to the
matching tuple move down one location, while the
matching tuple is placed at the front of the dictionary.
The number of entries in..the dictionary grows
dynamically, thus if the input data only contains a few
different tuples then the dictionary remains small. Since
the number of bits needed to code each location address
is a function of the dictionary sizg much greater
compression is obtained in comparison to the case where
a fixed size dictionary uses fixed address codes for a
partially full dictionary. Only one full match can occur at
any time in the dictionary since the algorithm makes sure
that no two entries contain the same data. Several partial
matches are possible simultaneously so the one that
produces a shorter output is sclected as valid. The
algorithm is given as pseudo-code in Figure 1.

2.2. Algorithm performance

The compression ratio achieved by the X-Match
algorithm is examined in this section. We define
compression ratio as the ratio of output bits to input bits.

All the results are obtained compressing 4Kbyte blocks.
Details on the data set used for the experiments can be
found in [4]). For comparison, we usc three well-known
algorithms as detailed below:

e Arithmetic- zero-order adaptive arithmetic coder
operating on a byte stream [9].

e Compress- the popular Compress’
available under UNIX.

e LZS- proprietary implementation of the Lempel-Ziv
algorithm used in the STAC electronics data
compressor chip [10] - a valid representative of
current high performance compression hardware.

program

127

Clear the dictionary;,
Set the next free location (NFL) to 0;
DO

{ read in tuple T from the data stream,
search the dictionary for tuple T;
IF (full or partial hit)
{ determine the best match location ML and

the match type MT;
output U}
output phased code for ML;
output Huffiman code for MT;
output any required literal characters of T;}

ELSE
{ IF (T is not the first tuple)
output ‘15
output tuple T; }
IF (full hit)
move dictionary entries 0 to ML-1 by one
location;
ELSE

{ move all dictionary entries down by one
location;
increment NFL (if dictionary is not full); }
copy tuple T to dictionary location 0;

WHILE (more data is to be compressed);.

Figure 1. The X-Match algorithm

Xman
Matlab
Global

Viabplus

n o
Q&
c o0
A2
7N »
P

Emacs
Textedit
Ghostview
Logsyn

Figure 2. Algorithn performance

It is clear that the arithmetic coder is the worst
performer while X-Match gives a reasonable
compression ratio. LZS consistently outperforms X-
Match but being a byte-oriented algorithm offers a
poorer throughput, as we will see in section 5.

3. The X-match hardware

A fuller description of the X-match hardware can be
found in [4] so here we will briefly describe its main
characteristics. The architecture is based around a block
of CAM to realize the dictionary [1]. This is necessary
since the search operation must be done in parallel in all
the entries in the dictionary to allow high throughput.
The size of the CAM is 128 words times 4 bytes/word
and it has to be selectively shiftable to be able to reorder
itself adapting to the incoming stream of data. The
selectivelyshiftable characteristic implies that each word
of the CAM maintains its data or loads the data of the
previous word depending on the value of its associated
bit in the vector produced by the dictionary maintenance
functions.

3.1. Compressor architecture

An overview of the compressor architecture is
presented in Figure 3. The tuple to be coded searches the
CAM array trying to find a match. The output of this
process is passed to the best-match decision logic that
resolves which of the possible matches (if any) is the
best. Then the match location is coded using PBC that
depends on how many entries are valid in the dictionary
as indicated by the Next-Free-Location counter (NFL)
and the match type is coded using a Huffman code. Any
needed literal characters are added and the result is
passed to the assembly logic which packs groups of 64
bits together before indicating the availability of
compressed data.

DATA N
MATCH
i o
1 TPe HUFFMAN
1 MATCH CODER ||
CAM s CODE C_DATA_ouT
. | DECISION EMBLER
ARRAY : PHASED ASS
LOGIC BINARY
z CODER
NEXT CODER
ockmon
SHIFT | @
o CONTROL
LOGKC [*maoem
MATCH
LOCATION

Figure 3. Architecture of the compressor

128

3.2. Decompressor architecture

Figure 4 shows the decompressor architecture. The
compressed data enters the decoder to produce a match

Figure 4. Architecture of the decompressor

location and a match type. The byte disassembler is used
to shift the correct number of bits of the input data as a
function of the variable-length codes found. The match
location is used to multiplex out a specific position in the
CAM array and the match type determines what literal
characters (if any) are needed to recreate the original
data. The decompressed tuple is also required to
maintain the dictionary following the same pattern used
during compression.

4. The X-match FPGA prototype
We now present the engineering decisions taken to

successfully realize the ASIC compressor X-Match in
FPGA technology.

4.1. Introduction to the FPGA prototype

Two main factors are responsible for the
modifications introduced to the initial version:

e The use of a GF250F100 ProASIC™ device
manufactured by GateField Corporation [11] that
offers around 46K usable gates out of 100K
physically present gates presents a hard limit in
terms of the amount of logic available. This device
is manufactured in a 0.6 pm FLASH-CMOS
technology and has been selected for two reasons:
Firstly, it uses the concept of flash-based
programmable elements so the downloaded design
stays in the chip when the power is off. Secondly, its
ASIC style architecture facilitates the migration to
high volume production technologies such as gate

arrays. This fine-granularity device groups its gates
into small tiles each of them ready to realize any logic
function of a maximum three inputs and one output.
The GF250F100 contains 12800 of these tiles.
Depending on the logic function the tile implements
the utilization ratio ranges from 1 gates/tile to 8
gates/tile.

The initial gate count of the gate array based X-Match
(110 Kgates) is out of range for a single-chip

implementation. Although it is possible to use a -

partitioner to split the design in several ProASIC
devices timing performance degradation makes this
option unfeasible and a cut-down single-chip version
is unavoidable.

4.2. Architectural simplification

The first step needed to fit the design into the ProASIC
device is to reduce the size of the CAM array. The original
size of the CAM is 128x4 bytes. Table 1 shows a summary
of a study done on what would be the best way of reducing
it. Since a minimum of 2 bytes has to match, reducing the
width below 3 bytes would not respect the partial match
concept.

Table 1 presents the compression ratio using different
CAM simplification alternatives. It is clear that better
compression is obtained when decreasing the dictionary
length leaving the width at 4 bytes. Our initial tests show
that the design has an area utilization ratio comparable or
slightly worse than the figure reported by GateField and
that makes the 64x4 dictionary unfeasible. We select a
32x4 dictionary size that brings about further
simplification in the coding technique for the match
locations. The simplification consists of replacing PBC by
Uniform Binary Coding (UBC). UBC allocates a

fixed size code to each location using log(max_size) bits
where max_size is the maximum number of entries in the
CAM. The original design uses PBC which is effective
when the dictionary is growing but once it is full there is
no advantage. Table 1 shows that the compression ratio
improvement is inferior to 0.4% when comparing PBC
with UBC in the 32x4 implementation. The reason is that
the smaller the dictionary, the faster it fills up losing the
advantage that PBC provides during the growing stage.
Therefore we decided to use UBC, reducing the amount of
logic needed in the coding and decoding modules and to
preload the now non-growing dictionary with common
data. The device size in Table 1 is an estimation of the
UBC implementation.

4.3. Architectural improvement

One of the major concerns when moving from gate arrays
to FPGAS is the resultant slower speed. Therefore special
attention has been paid to the critical paths trying to
compensate for the performance migration cost to this
technology. In both cases the overall critical path extends
from the search data, through the CAM array, match
decision logig shift control logic and back to the CAM
array to provide the necessary information to reorder the
dictionary. Careful study of this path reveals that the
vector that defines how the dictionary adapts to the data
can be generated much earlier at no extra cost in terms of
area. The reason is that the shift operation is only local to
some positions when a full match occurs and a full match
can only happen in one position at a time since no two
positions have exactly the same data. Therefore we do not
need to resolve the best match to know how to shift the
dictionary. If there is no full match the shift affects all the
locations and if there is a full match this is known before
accessing the best match decision logic.

Dictionary Location Coding Technique (CR) CAM size Device Size FPGA utilization
Structure PBC UBC (tiles) (tiles)
128x4 (original) 0.511 0.520 256K 30.8 K 240%
128x3 0.557 0.570 192K 244K 190%
64x4 0.527 0.533 12.8K 18K 140%
64x3 0.576 0.582 9.6 K 148K 115%
32x4 0.544 0.546 64K 11.6K 90%
32x3 0.596 0.600 48K 10K 78%

Table 1. CAM simplification design choices.

129

This change together with moving the search multiplexer
out of the way and embedding the movement generation
logic into the priority logic leaves the architecture as
shown in Figure 5. The new critical path is around 25%
faster and a throughput of over 140 Mbytes/second should
be expected in the ASIC technology.

frequency is limited to 6 MHz that implies a throughput of
24 Mbytes/second. This is considerably worse than the 25
MHz and 100 Mbytes/second of the original gate array
pre-layout design. However a speed degradation factor of
3 is to be expected [12] and we should be able to improve
this figure with the arrival of higher gate count devices so
we can eliminate some of the constrains just mentioned.

43 $ 8 |
sa‘ggi SRR §E§§§
|] A 4 Aassa
LL [] M
et - : 3:';..,.. E::';"”;“ Zi
} 4 '?z"c. Y

) .
sk __E
Match g
DICTIONARY
(32 x 4 bytes)
Move
Dictionary Data
1 S 7 9

[seLecTioN MuX seec e

32 Selected
i Tuple

l TUPLE E
inssEvBLER*

U_dataout x

Figure 5. The ProASIC X-MatchLITE architecture

5. Hardware summary and performance comparison

The simplified design (32x4 and UBC) has been
synthesized, placed and routed into the ProASIC device.
The utilization ratio is over 90% with around 38Kgates
(11640 tiles). Routing resources limitations imply that a
trade-off has to be made in terms of the amount of
buffering allowed in the high-load nets and pipelining. No
buffering allows us to include an extra level of pipelining
but the time required to drive the high-fanout nets
becomes dominant preventing any benefit. Adding a
buffering scheme forces us to eliminate the extra level of
pipelining to be able to route the device. The clock

130

Table 2 summaries the characteristics of X-Match versus
X-MatchLITE. The STAC Electronics device used for
comparison in section 2.2 achieves 50 Mbytes/second
using a 50 MHz clock and a 0.5 pm CMOS gate array
technology. Although it clocks at a higher frequency the
throughput is lower than X-Match because it operates at a
byte level while both X-Match and XMatchLITE operate
at a tuple level.

The global compression ratio obtained by X-
MatchLITE is around 5% worse than X-Match using the
same data set already shown in figure 2

6. Hardware verification

In order to be able to verify the correct functionality of
our prototype we built a test board so we could apply the
same stimulus files to the software-based X-Match and to
the ProASIC device. The interface to the test board is
done through a virtual test-bench written using the
Labview software and running on a conventional PC. The
virtual test-bench interfaces to a 96-bit parallel digital /O
DAAQ card that it is hardwired to the test-board. The same
identical vector file is applied to each stage of the design
flow allowing us to compare the output from four different
sources, namely: the original algorithm description written
in C, the RTL description of the device written in VHDL,
the back-annotated netlist and finally the real silicon.

A simple text file comprising 16 tuples (64 bytes)
forms the test vector file for compression. Although
limited by the number of pins available in the board and
the difficulties associated with routing the signals under
verification to those fixed pins the tests show no
differences among the output of each stage of the design
flow. To verify the decompression mode it is necessary to
execute again the place and routing process so the signals
associated to this operational mode can be assigned to the
pins in the board physically connected to the DAQ card.
Then, the output of the compression mode is used as the
test vector file to correctly regenerate the test vector file
used for compression.

7. Conclusions

We have shown how a complex design can be
practically implemented into an FPGA. The use of a fine
granularity device where each block defines a very simple
logic function has proven to be well suited to an
unbalanced design like the X-Match compressor where
most of the sequential logic (dictionary) and combinatorial
logic (coding and decoding functions) are clearly
separated on the silicon. Other FPGA architectures where
the building blocks implement mixed combinatorial and
sequential functions offer poorer utilization ratios. Only
routing resource limitations have prevented us from
incorporating the functionality required by a more
powerful algorithm.

The FPGA prototype while still offering good
compression ratio and speed shows that a full
implementation of X-Match would be a very useful data
compressor. We expect to be able to tackle these issues
when higher density chips become available. The device is
currently available to be incorporated into a functional
system.

Acknowledgements

The authors acknowledge with gratitude the funding
provided by the UK EPSRC under grant number GR/L
54530 and also the support provided by GateField
Corporation and the Consejo Nacional de Ciencia y
Tecnologia (CONACyT, Mexico).

X-Match X-MatchLITE
Implementation Granularity 4 bytes 4 bytes
Details Dictionary size (locations x 128 x 4 32x4
bytes/location)
Partial Match Coding Technique. Huffman Huffman
Coding Coding
Location Coding Technique Phased Binary Uniform Binary
Coding Coding
Process Feature Size 0.6 pm 0.6 pm
Details CMOS FLASH-CMOS
Technology Gate Array FPGA
Gate Count 110 Kgates 38 Kgates
Maximum Clock Frequency 25 MHZ 6 MHZ
Throughput 100 Mbytes/s 24 Mbytes/s

Table 2. Comparison of X-Match with X-MatchLITE

131

References

[1] S.Jones, 100Mbit/s Adaptative Data Compressor
Design Using Selectively Shiftable Content-Addressable
Memory; Proceedings of IEE (part G), vol.139, no.4,

pp.498-502, 1992.

[2] M. Kjelse, M. Gooch, U. Simm, S. Jones, * Hardware

Data Compression and Memory Management for Flash-
Memory Disks} Proceedings ISIC-95, 6™ International
Symposium on IC Technology, Systems and Applications,
IEEE Press, pp 161-165.

[3] J. Jiang, S.Jones, 'Parallel Design of Arithmetic
Coding', Proceedings IEE, PartE, Vol 141, pp 327-333,
November 1994.

[4] M Kjelso, M.Gooch, S.Jones, Design & Performance

of a Main Memory Hardware Data Compressor’,

Proceedings 22™ EuroMicro Conference, pp. 423-430,
September 1996, Prague, Czech Republic.

[5] S. W. Thomas, J. McKie, S.Davies, K. Turkowski, J.
A. Woods, and J. W. Orost, Compress program and
documentation available from wuarchive.wustl.edu/
/packages/compression/compress-4.1 .tar.

132

[6] J.L.Bentley at all, A Locally Adaptative Data
Compression Scheme, Communications of the ACM,
vol.29, no.4, pp.320-330, 1986.

[7} T.Bell, J.Cleary, 1. Witten, Text Compression’

(Section A.2), Published by Prentice Hall, 1990.

(8] D.Huffman, ‘A method for the construction of
Minimun Redundancy Codes’ Proceedings of the L.R.E,
pp.1098-1101, 1958.

(9] I. H. Witten, R. M. Neal, and J. G. Cleary, ‘Arithmetic
Coding for Data Compression] Communications of the
ACM, Vol. 30, pp. 520-540, June 1987.

[10] Information available from http://www_hifn.com

[11] GateField Corporation., Fremont, CA. The GF250F
ProASIC Products DATAbook, 1997

[12] V.Betz, J.Rose, “How Much Logic Should Go in an
FPGA Logic Block?, IEEE Design & Test of Computers,
pp. 10-15, January-March 1998.

