
Gisselquist
Technology, LLC

WISHBONE SCOPE

SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) opencores.org

July 15, 2015



Gisselquist Technology, LLC Specification 2015/07/15

Copyright (C) 2015, Gisselquist Technology, LLC
This project is free software (firmware): you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see ¡http://www.gnu.org/licenses/¿ for a copy.

www.opencores.com Rev. 0.1 ii



Gisselquist Technology, LLC Specification 2015/07/15

Revision History
Rev. Date Author Description

0.3 6/22/2015 Gisselquist Minor updates to enhance readability
0.2 6/22/2015 Gisselquist Finished Draft
0.1 6/22/2015 Gisselquist First Draft

www.opencores.com Rev. 0.1 iii



Gisselquist Technology, LLC Specification 2015/07/15

Contents

Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Wishbone Datasheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 IO Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

www.opencores.com Rev. 0.1 iv



Gisselquist Technology, LLC Specification 2015/07/15

Tables

Table Page

3.1. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2. Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.1. Wishbone Datasheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6.1. List of IO ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

www.opencores.com Rev. 0.1 v



Gisselquist Technology, LLC Specification 2015/07/15

Preface

This project began, years ago, for all the wrong reasons. Rather than pay a high price to purchase a
Verilog simulator and then to learn how to use it, I took working Verilog code, to include a working
bus, added features and used the FPGA system as my testing platform. I arranged the FPGA to
step internal registers upon command, and to make many of those registers available via the bus.

When I then needed to make the project run in real-time, as opposed to the manually stepped
approach, I generated a scope like this one. I had already bench tested the components on the
hardware itself. Thus, testing and development continued on the hardware, and the scope helped
me see what was going right or wrong. The great advantage of the approach was that, at the end of
the project, I didn’t need to do any hardware in the loop testing. All of the testing that had been
accomplished prior to that date was already hardware in the loop testing.

When I left that job, I took this concept with me and rebuilt this piece of infrastructure using a
Wishbone Bus.

Dan Gisselquist, Ph.D.

www.opencores.com Rev. 0.1 vi



Gisselquist Technology, LLC Specification 2015/07/15

1.

Introduction

The Wishbone Scope is a debugging tool for reading results from the chip after events have taken
place. In general, the scope records data until some some (programmable) holdoff number of data
samples after a trigger has taken place. Once the holdoff has been reached, the scope stops recording
and asserts an interrupt. At this time, data may be read from the scope in order from oldest to
most recent. That’s the basics, now for two extra details.

First, the trigger and the data that the scope records are both implementation dependent. The
scope itself is designed to be easily reconfigurable from one build to the next so that the actual
configuration may even be build dependent.

Second, the scope is built to be able to run off of a separate clock from the bus that commands
and controls it. This is configurable, set the parameter “SYNCHRONOUS” to ‘1’ to run off of a
single clock. When running off of two clocks, it means that actions associated with commands issued
to the scope, such as manual triggering or being disabled or released, will not act synchronously
with the scope itself–but this is to be expected.

Third, the data clock associated with the scope has a clock enable line associated with it. De-
pending on how often the clock enable line is enabled may determine how fast the scope is PRIMED,
TRIGGERED, and eventually completes its collection.

Finally, and in conclusion, this scope has been an invaluable tool for testing, for figuring out
what is going on internal to a chip, and for fixing such things. I have fixed interactions over a PS/2
connection, Internal Configuration Access Port (ICAPE2) interfaces, mouse controller interactions,
bus errors, quad-SPI flash interactions, and more using this scope.

www.opencores.com Rev. 0.1 1



Gisselquist Technology, LLC Specification 2015/07/15

2.

Operation

So how shall one use the scope? The scope itself supports a series of states:

1. RESET

Any write to the control register, without setting the high order bit, will automatically reset
the scope. Once reset, the scope will immediately start collecting.

2. PRIMED

Following a reset, once the scope has filled its memory, it enters the PRIMED state. Once it
reaches this state, it will be sensitive to a trigger.

3. TRIGGERED

The scope may be TRIGGERED either automatically, via an input port to the core, or manually,
via a wishbone bus command. Once a trigger has been received, the core will record a user
configurable number of further samples before stopping.

4. STOPPED

Once the core has STOPPED, the data within it may be read back off.

Let’s go through that list again. First, before using the scope, the holdoff needs to be set. The
scope is designed so that setting the scope control value to the holdoff alone, with all other bits set
to zero, will reset the scope from whatever condition it was in, freeing it to run. Once running, then
upon every clock enabled clock, one sample of data is read into the scope and recorded. Once every
memory value is filled, the scope has been PRIMED. Once the scope has been PRIMED, it will then
be responsive to its trigger. Should the trigger be active on an input clock with the clock–enable
line set, the scope will then be TRIGGERED. It will then count for the number of clocks in the holdoff
before stopping collection, placing it in the STOPPED state. 1 If the holdoff is zero, the last sample
in the buffer will be the sample containing the trigger. Likewise if the holdoff is one less than the
size of the memory, the first sample in the buffer will be the one containing the trigger.

There are two further commands that will affect the operation of the scope. The first is the
MANUAL trigger command/bit. This bit may be set by writing the holdoff to the control register
while setting this bit high. This will cause the scope to trigger as soon as it is primed. If the
RESET n bit is also set so as to prevent an internal reset, and if the scope was already primed, then
manual trigger command will cause it to trigger immediately.

1You can even change the holdoff while the scope is running by writing a new holdoff value together with setting

the RESET n bit of the control register. However, if you do this after the core has triggered it may stop at some other

non–holdoff value!

www.opencores.com Rev. 0.1 2



Gisselquist Technology, LLC Specification 2015/07/15

The last command that can affect the operation of the scope is the DISABLE command/bit in
the control register. Setting this bit will prevent the scope from triggering, or if TRIGGERED, it will
prevent the scope from generating an interrupt.

Finally, be careful how you set the clock enable line. If the clock enable line leaves the clock too
often disabled, the scope might never prime in any reasonable amount of time.

So, in summary, to use this scope you first set the holdoff value in the control register. Second,
you wait until the scope has been TRIGGERED and STOPPED. Finally, you read from the data register
once for every memory value in the buffer and you can then sit back, relax, and study what took
place within the FPGA. Additional modes allow you to manually trigger the scope, or to disable the
automatic trigger entirely.

www.opencores.com Rev. 0.1 3



Gisselquist Technology, LLC Specification 2015/07/15

3.

Registers

This scope core supports two registers, as listed in Tbl. 3.1: a control register and a data register.
Each register will be discussed in detail in this chapter.

Name Address Width Access Description

CONTROL 0 32 R/W Configuration, control, and status of the scope.
DATA 1 32 R(/W) Read out register, to read out the data from

the core. Writes to this register reset the read
address to the beginning of the buffer, but are
otherwise ignored.

Table 3.1: List of Registers

3.1 Control Register

The bits in the control register are defined in Tbl. 3.2. The register has been designed so that one
need only write the holdoff value to it, while leaving the other bits zero, to get the scope going. On
such a write, the RESET n bit will be a zero, causing the scope to internally reset itself. Further,
during normal operation, the high order nibble will go from 4’h8 (a nearly instantaneous reset state)
to 4’h0 (running), to 4’h1 (PRIMED), to 4’h3 (TRIGGERED), and then stop at 4’h7 (PRIMED, TRIGGERED,
and STOPPED). Finally, user’s are cautioned not to adjust the holdoff between the time the scope
triggers and the time it stops–just to guarantee data coherency.

While this approach works, the scope has some other capabilities. For example, if you set the
MANUAL bit, the scope will trigger as soon as it is PRIMED. If you set the MANUAL bit and the RESET n

bit, it will trigger immediately if the scope was already PRIMED. However, if the RESET n bit was not
also set, a reset will take place and the scope will start over by first collecting enough data to be
PRIMED, and only then will the MANUAL trigger take effect.

A second optional capability is to disable the scope entirely. This might be useful if, for example,
certain irrelevant things might trigger the scope. By setting the DISABLE bit, the scope will not
automatically trigger. It will still record into its memory, and it will still prime itself, it will just
not trigger automatically. The scope may still be manually TRIGGERED while the DISABLE bit is set.
Likewise, if the DISABLE bit is set after the scope has been TRIGGERED, the scope will continue to its
natural stopped state–it just won’t generate an interrupt.

www.opencores.com Rev. 0.1 4



Gisselquist Technology, LLC Specification 2015/07/15

Bit # Access Description

31 R/W RESET n. Write a ‘0’ to this register to command a reset. Reading
a ‘1’ from this register means the reset has not finished crossing
clock domains and is still pending.

30 R STOPPED, indicates that all collection has stopped.
29 R TRIGGERED, indicates that a trigger has been recognized, and that

the scope is counting for holdoff samples before stopping.
28 R PRIMED, indicates that the memory has been filled, and that the

scope is now waiting on a trigger.
27 R/W MANUAL, set to invoke a manual trigger.
26 R/W DISABLE, set to disable the internal trigger. The scope may still

be TRIGGERED manually.
25 R RZERO, this will be true whenever the scope’s internal address

register is pointed at the beginning of the memory.
20–24 R LGMEMLEN, the base two logarithm of the memory length. Thus,

the memory internal to the scope is given by 1<<LGMEMLEN.
0–19 R/W Unsigned holdoff

Table 3.2: Control Register

There are two other interesting bits in this control register. The RZERO bit indicates that the
next read from the data register will read from the first value in the memory, while the LGMEMLEN

bits indicate how long the memory is. Thus, if LGMEMLEN is 10, the FIFO will be (1<<10) or 1024
words long, whereas if LGMEMLEN is 14, the FIFO will be (1<<14) or 16,384 words long.

3.2 Data Register

This is perhaps the simplest register to explain. Before the core stops recording, reads from this
register will produce reads of the bits going into the core, save only that they have not been pro-
tected from any meta-stability issues. This is useful for reading what’s going on when the various
lines are stuck. After the core stops recording, reads from this register return values from the stored
memory, beginning at the oldest and ending with the value holdoff clocks after the trigger. Fur-
ther, after recording has stopped, every read increments an internal memory address, so that after
(1<<LGMEMLEN) reads (for however long the internal memory is), the entire memory has been
returned over the bus. If you would like some assurance that you are reading from the beginning
of the memory, you may either check the control register’s RZERO flag which will be ‘1’ for the first
value in the buffer, or you may write to the data register. Such writes will be ignored, save that
they will reset the read address back to the beginning of the buffer.

www.opencores.com Rev. 0.1 5



Gisselquist Technology, LLC Specification 2015/07/15

4.

Clocks

This scope supports two clocks: a wishbone bus clock, and a data clock. If the internal parameter
“SYNCHRONOUS” is set to zero, proper transfers will take place between these two clocks. Setting
this parameter to a one will save some flip flops and logic in implementation. The speeds of the
respective clocks are based upon the speed of your device, and not specific to this core.

www.opencores.com Rev. 0.1 6



Gisselquist Technology, LLC Specification 2015/07/15

5.

Wishbone Datasheet

Tbl. 5.1 is required by the wishbone specification, and so it is included here. The big thing to notice

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Slave, Read/Write, pipeline reads sup-

ported
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering (Irrelevant)
Clock constraints None.

Signal Names

Signal Name Wishbone Equivalent
i wb clk CLK I

i wb cyc CYC I

i wb stb STB I

i wb we WE I

i wb addr ADR I

i wb data DAT I

o wb ack ACK O

o wb stall STALL O

o wb data DAT O

Table 5.1: Wishbone Datasheet

is that this core acts as a wishbone slave, and that all accesses to the wishbone scope registers
become 32–bit reads and writes to this interface. You may also wish to note that the scope supports
pipeline reads from the data port, to speed up reading the results out.

What this table doesn’t show is that all accesses to the port take a single clock. That is, if the
i wb stb line is high on one clock, the i wb ack line will be high the next. Further, the o wb stall

line is tied to zero.

www.opencores.com Rev. 0.1 7



Gisselquist Technology, LLC Specification 2015/07/15

6.

IO Ports

The ports are listed in Table. 6.1. At this point, most of these ports should have been well defined and

Port Width Direction Description

i clk 1 Input The clock the data lines, clock enable, and trigger are
synchronous to.

i ce 1 Input Clock Enable. Set this high to clock data in and out.
i trigger 1 Input An active high trigger line. If this trigger is set to one on

any clock enabled data clock cycle, once the scope has
been PRIMED, it will then enter into its TRIGGERED state.

i data 32 Input 32–wires of ... whatever you are interested in recording
and later examining. These can be anything, only they
should be synchronous with the data clock.

i wb clk 1 Input The clock that the wishbone interface runs on.
i wb cyc 1 Input Indicates a wishbone bus cycle is active when high.
i wb stb 1 Input Indicates a wishbone bus cycle for this peripheral when

high. (See the wishbone spec for more details)
i wb we 1 Input Write enable, allows indicates a write to one of the two

registers when i wb stb is also high.
i wb addr 1 Input A single address line, set to zero to access the config-

uration and control register, to one to access the data
register.

i wb data 32 Input Data used when writing to the control register, ignored
otherwise.

o wb ack 1 Output Wishbone acknowledgement. This line will go high on
the clock after any wishbone access, as long as the wish-
bone i wb cyc line remains high (i.e., no ack’s if you
terminate the cycle early).

o wb stall 1 Output Required by the wishbone spec, but always set to zero
in this implementation.

o wb data 32 Output Values read, either control or data, headed back to the
wishbone bus. These values will be valid during any read
cycle when the i wb ack line is high.

Table 6.1: List of IO ports

www.opencores.com Rev. 0.1 8



Gisselquist Technology, LLC Specification 2015/07/15

described earlier in this document. The only new things are the data clock, i clk, the clock enable
for the data, i ce, the trigger, i trigger, and the data of interest itself, i data. Hopefully these
are fairly self explanatory by this point. If not, just remember the data, i data, are synchronous to
the clock, i clk. On every clock where the clock enable line is high, i ce, the data will be recorded
until the scope has stopped. Further, the scope will stop some programmable holdoff number of
clock enabled data clocks after i trigger goes high. Further, i trigger need only be high for one
clock cycle to be noticed by the scope.

www.opencores.com Rev. 0.1 9


