YAHAMM Yet Another Hamming Encoder and Decoder

Design

Nicola De Simone (ndesimone@opencores.org) Version 0.1

Contents

1	General structure	2
2	matrix_pkg	3
3	Encoder	3
4	Decoder	3
5	yahamm_pkg	5

The present document assumes that the reader is familiar with the Specification Document and with the references $Hamming \ code \ [1]$ and Hamming(7,4) [2] and with the terminology used therein. No additional knowledge is needed, apart from basic matrix algebra. Information already included in those documents are not be duplicated.

1 General structure

The user connects the encoder entity in yahamm_enc to the decoder entity yahamm_dec, as described by the specification document. No other logic is needed. The amount of code in those two entities is kept to the minimal by choice. In the encoder the core functionality is in the synchronous logic:

```
code_sys <= to_slv(xor_multiply_vec(G, data_i_padded));</pre>
```

corresponding to the math operation:

$code_sys = G \ data_i_padded$

where G is the code generator matrix in systematic form, data_i_padded the input data and code_sys the code word in systematic form.

Similarly, in the decoder the core functionality is in the synchronous logic:

syndrome <= xor_multiply_vec(H, code_nonsys);</pre>

corresponding to the math operation:

syndrome = H code_nonsys

where H is the parity-check matrix in non-systematic form, code_non_sys the input data in non-systematic form and syndrome the error syndrome vector that identifies the patterns of errors.

There is some more logic in the decoder entity yahamm_dec to implement the counters of errors corrected or detected and the position of the error.

The higher complexity is hidden inside the package yahamm_pkg where there are the functions to create the code generator matrix and the paritycheck-matrix, to calculate the number of parity bits, block length, to swap between systematic and non-systematic form, to multiply two matrices or matrix and vector. matrix_pkg contains some help functions for yahamm_pkg.

One parity bit If the encoder and the decoder are configured with the generic ONE_PARITY_BIT set to true, their behavior change to a simple one parity bit encoder and decoder. This is still described and handled with same matrix formalism of the Hamming code, so all math functions accept a parameter ONE_PARITY_BIT and behave differently in this case.

Additional parity bit (SECDED) Hamming codes can be extended by an extra parity bit. This way, it is possible to increase the minimum distance of the Hamming code to 4, which allows the decoder to distinguish between single bit errors and two-bit errors. Thus the decoder can detect and correct a single error and at the same time detect (but not correct) a double error. If the decoder does not attempt to correct errors, it can detect up to three errors [1]. EXTRA_PARITY_BIT adds an extra row and extra column to the parity-check matrix and it's handled as a special case in the construction of the code generator matrix.

Bus padding Incoming data bus data_i are zero-padded on the most significant bit to length $2^r - r - 1$, where r is the number of parity bits NPARITY_BITS specified by generic. This allow the user to use a data bus of any width, ideally the smallest necessary in order to economize routing resources, while the logic for the Hamming code can operate with the standard block length for any given number of parity bits.

2 matrix_pkg

File matrix_pkg.vhd.

3 Encoder

See Fig. 1. Entity yahamm_enc, file yahamm_enc.vhd. Latency 1.

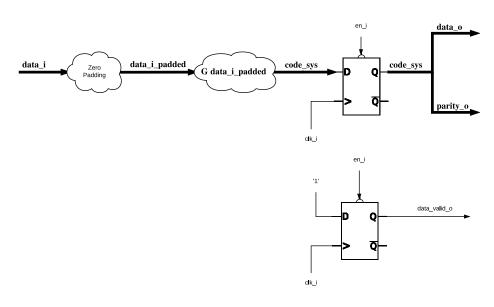


Figure 1: Encoder structure.

Input data data_i are zero-padded, then multiplied by the code generator matrix **G** in systematic form (see Sec. 5) to compute the code word in systematic form. Note that the only synthesized logic up to this point are the xor operations used to perform the product with the code generator matrix.

The code word in systematic form had the data in lower significant bits, routed on the output port data_o, and the parity bits in the highest significant bits, route on the output port parity_o. data_valid_o is the synchronous clear signal en_i delayed.

4 Decoder

See Fig. 2. Entity yahamm_dec, file yahamm_dec.vhd. Latency 2.

Input parity bits parity_i together with zero-padded input data data_i form the systematic code word. This is swapped to non-systematic form

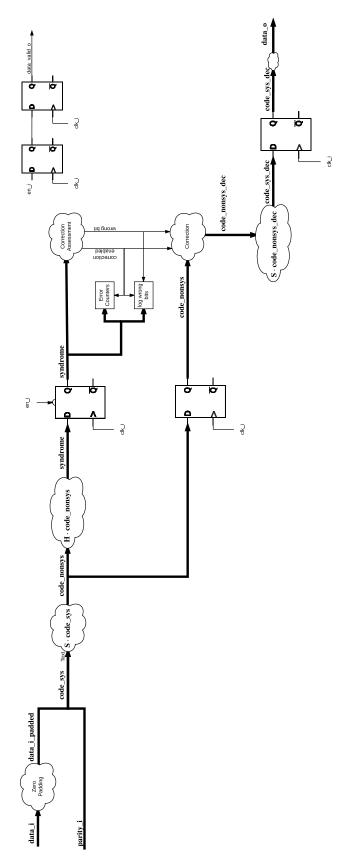


Figure 2: Decoder structure.

		CORRECT								
		false	true							
	0	Correction disabled	(SEC)							
				syndrome		0		no error		
EXTRA_PARITY_BIT						$\neq 0$	wrong_b	bit <= syndrome		
			(SECDED)							
						syndrome's MSB				
						,	'0' '1'			
	1		syndrome's I	LSBs _	0			SEC		
						110 €	no error	<pre>wrong_bit <= extra_bit</pre>		
					$\neq 0$	DED SEC				
						no cor	rection	wrong_bit <= sy	ndrome LSBs	

Table 1:

multiplying for the swapping matrix **S** (see Sec. 5). The non-systematic code word is multiplied by the parity-check matrix **H** in non-systematic form (see Sec. 5) to compute the syndrome. Note that the only synthesized logic up to this point are the xor operations used to perform the product with the parity-check matrix.

A non zero syndrome means indicates an error. There are different possibilities, depending on the user choice of the value of the generics CORRECT and EXTRA_PARITY_BIT, as show by Table 1. A combinatorial logic (see *Correction Assessment* in Fig. 2) determines if the correction has to be done (correction_en signal|) and the position of the wrong bit (wrong_bit signal). In the SECDED configuration (CORRECT true and EXTRA_PARITY_BIT 1), a double error can be detected observing that the syndrome is odd with only the extra parity bit '1', and no correction is done.

In the Single Event Detected case (SEC), and with CORRECT generic set to true, the wrong bit is then corrected in the non-systematic form of the code word. This is then swapped to systematic form and data_o data output is the least signal part of this code word.

Independently from the configuration of the generic CORRECT, Single Error and Double Error are counted (cnt_proc process). Note that it is not possible to count Double Error unless the EXTRA_PARITY_BIT generic has value 1. Counters are connected to the ports cnt_errors_corrected_o and cnt_errors_detected_o and can be synchronously cleared with the input cnt_clr.

Independently from the configuration of the generic CORRECT, the position of the wrong bit in case of Single Error is used to flip the corresponding bit in the internal log_wrong_bit_pos_data_o_nonsys that, after form swapping and slicing, is mapped to the output ports log_wrong_bit_pos_data_o and log_wrong_bit_pos_parity_o.

5 yahamm_pkg

File yahamm_pkg.vhd.

function calc_nparity_bits

```
function calc_nparity_bits (
   k : natural;
   ONE_PARITY_BIT : boolean := false)
   return natural;
```

r parity bits can cover up to $2^r - 1$ bits, including data and parity bits. That is $2^r - r - 1$ data bits. The function returns the smallest r such that $2^r - r - 1 \ge k$, where k is the message length (number of data bits). It returns 1 if ONE_PARITY_BIT is true, by definition.

 $function \ calc_block_length$

```
function calc_block_length (
   k : natural;
   ONE_PARITY_BIT : boolean := false)
   return natural;
```

Length of message bits plus parity bits. r parity bits can cover up to $2^r - 1$ bits, including data and parity bits. The function returns $2^r - 1$ where r := calc_nparity_bits(k). It returns k+1 if ONE_PARITY_BIT is true.

 $function\ calc_block_length$

```
function calc_block_length (
    k : natural;
    ONE_PARITY_BIT : boolean := false)
    return natural;
```

Length of message bits plus parity bits. r parity bits can cover up to $2^r - 1$ bits, including data and parity bits. The function returns $2^r - 1$ where $r := calc_nparity_bits(k)$. It returns k+1 if ONE_PARITY_BIT is true. Note that block length does not depend from EXTRA_PARITY_BIT; this is an arbitrary choice to simplify the code.

function check_parameters Sanity check on the generic settings for yahamm_enc and yahamm_dec entities. It works in both synthesis and simulation.

```
function get_parity_check_matrix )
```

```
function get_parity_check_matrix (
   MESSAGE_LENGTH : natural;
   EXTRA_PARITY : natural range 0 to 1 := 1;
   ONE_PARITY_BIT : boolean := false)
   return matrix_t;
```

It returns the non-systematic form of parity check matrix, built following the general algorithm described in [1].

E.g. we want to get the parity-check matrix for the code Hamming(7,4) that encodes four bits of data into seven bits by adding three parity bits. The matrix has dimension 3x7 if no extra parity bit is added. The following snippet of test-bench:

```
entity test is
end entity test;
architecture std of test is
```

```
constant MESSAGE_LENGTH
                        : natural
                                                 := 4;
constant EXTRA_PARITY_BIT : natural range 0 to 1 := 0;
constant ONE_PARITY_BIT
                        : boolean
                                                 := false;
constant NPARITY_BITS : natural := calc_nparity_bits(MESSAGE_LENGTH, ONE
constant BLOCK_LENGTH : natural := calc_block_length(MESSAGE_LENGTH, ONE
constant H : matrix_t(0 to NPARITY_BITS + EXTRA_PARITY_BIT - 1,
                      0 to BLOCK_LENGTH + EXTRA_PARITY_BIT - 1) :=
 get_parity_check_matrix(MESSAGE_LENGTH, EXTRA_PARITY_BIT, ONE_PARITY_B
```

begin

process is begin pretty_print_matrix(H); stop(0); end process;

```
end architecture std;
```

outputs the parity-check matrix **H**: in non-systematic form:

1010101 0110011 0 0 0 1 1 1 1 If in the above code, EXTRA_PARITY_BIT is 1, the output is: 1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1

A right-most column and a bottom row has been added to the previous parity-check matrix. The addition of '1' in the bottom row means that the forth parity bit encodes the parity for the entire code word. No change on the existing parity bits ('0' in the last column for those parity bits).

If in the above code, ONE_PARITY_BIT is true, the output is:

1 1 1 1 1

That means that the only parity bit encodes the parity of the entire code word.

function get_form_swap_matrix)

```
function get_form_swap_matrix (
 MESSAGE_LENGTH : natural;
  EXTRA_PARITY : natural;
  ONE_PARITY_BIT : boolean := false)
  return matrix_t;
```

Returns a $n \times n$ matrix **S** to convert a *n*-row matrix or vector from nonsystematic form \mathbf{M}_{ns} to systematic form \mathbf{M}_{bs} and vice-versa:

$$\mathbf{M}_s = \mathbf{M}_{ns} \; \mathbf{S}$$

The construction of the matrix can be understood by noticing that the systematic form of the parity-check matrix **H** for the Hamming(n, k) code is:

$$\mathbf{H} := (\mathbf{A} | \mathbf{I}_{n-k}) \tag{1}$$

where $\mathbf{I_{n-k}}$ is the $(n-k) \times (n-k)$ identify matrix . This can be obtained by swapping the columns $2^r - 1$ -th of the identify matrix \mathbf{I}_n corresponding to the position, in the non-systematic form, of the parity bits r with the column n-k+r. Note that since $\mathbf{S} = \mathbf{S}^T = \mathbf{S}^{-1}$, the matrix can be used to transform from systematic to non-systematic form and vice-versa.

Example:

```
entity test is
end entity test;
architecture std of test is
  constant MESSAGE_LENGTH
                                                   := 4;
                          : natural
  constant EXTRA_PARITY_BIT : natural range 0 to 1 := 0;
                                                   := false;
  constant ONE_PARITY_BIT : boolean
  constant NPARITY_BITS : natural := calc_nparity_bits(MESSAGE_LENGTH, ONE
  constant BLOCK_LENGTH : natural := calc_block_length(MESSAGE_LENGTH, ONE
  constant H : matrix_t(0 to NPARITY_BITS + EXTRA_PARITY_BIT - 1,
                        0 to BLOCK_LENGTH + EXTRA_PARITY_BIT - 1) :=
    get_parity_check_matrix(MESSAGE_LENGTH, EXTRA_PARITY_BIT, ONE_PARITY_B
  constant swap_matrix : matrix_t(0 to BLOCK_LENGTH + EXTRA_PARITY_BIT - 1
                                  0 to BLOCK_LENGTH + EXTRA_PARITY_BIT - 1
    get_form_swap_matrix(MESSAGE_LENGTH, EXTRA_PARITY_BIT, ONE_PARITY_BIT)
begin
  process is
```

```
begin
```

```
pretty_print_matrix(H);
pretty_print_matrix(swap_matrix);
pretty_print_matrix(xor_multiply(H, swap_matrix));
pretty_print_matrix(xor_multiply(xor_multiply(H, swap_matrix), swap_matrix));
```

```
stop(0);
end process;
```

end architecture std;

```
Outputs:
```

```
-- parity-check matrix, non-systematic form

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

-- form-swap matrix

0 0 0 0 1 0 0

0 0 0 0 1 0
```

The first three matrices are: the parity-check matrix for Hamming(7,4) in non-systematic form, the form swapping matrix, the parity-check matrix in systematic form. Note the identity matrix in the right-most columns in the systematic form of the parity-check matrix. The forth matrix is the parity-check matrix obtained by multiplying its systematic form for the form-swap matrix.

If EXTRA_PARITY_BIT is 1, the matrix has an additional column and row. Last column is the same as in the identity matrix (no swapping).

function get_code_generator_matrix

```
function get_code_generator_matrix (
   MESSAGE_LENGTH : natural;
   EXTRA_PARITY : natural range 0 to 1 := 1;
   ONE_PARITY_BIT : boolean := false)
   return matrix_t;
```

Returns the code generator matrix in systematic form. The construction algorithm, as suggested in [1], Sec. Construction of G and H, is based on the comparison of G in systematic form:

$$\mathbf{G} := (\mathbf{I}_k | \mathbf{A}^T) \tag{2}$$

with the expression of the parity-check matrix in systematic form in Eq. 2. So the left hand side of \mathbf{H} in systematic form can be transposed and combined with the \mathbf{I}_k identity matrix.

E.g. we want to get the code generator matrix for the code Hamming(7,4) that encodes four bits of data into seven bits by adding three parity bits. The matrix has dimension 7x4 if no extra parity bit is added. The following snippet of test-bench:

```
architecture std of test is
```

```
constant MESSAGE_LENGTH : natural := 4;
constant EXTRA_PARITY_BIT : natural range 0 to 1 := 0;
constant ONE_PARITY_BIT : boolean := false;
constant NPARITY_BITS : natural := calc_nparity_bits(MESSAGE_LENGTH, ONE
constant BLOCK_LENGTH : natural := calc_block_length(MESSAGE_LENGTH, ONE
constant G : matrix_t(0 to BLOCK_LENGTH + EXTRA_PARITY_BIT - 1,
```

0 to BLOCK_LENGTH - NPARITY_BITS - 1) := get_code_generator_matrix(MESSAGE_LENGTH, EXTRA_PARITY_BIT, ONE_PARITY_

begin

 $\begin{array}{cccccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}$

A bottom row has been added to the previous code generator matrix, based on the parity of the rows of the parity-check matrix.

If in the above code, ONE_PARITY_BIT is true, the output is:

 $\begin{array}{ccccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{array}$

Where the result is a row of '1' at the bottom of an identity matrix. That means that the code word is the message plus its parity bit.

References

- Wikipedia. Hamming code Wikipedia, the free encyclopedia, 2017. [Online; accessed 19-Mar-2017].
- [2] Wikipedia. Hamming(7,4) Wikipedia, the free encyclopedia, 2017.
 [Online; accessed 19-Mar-2017].