
A Pipelined RISC CPU “Aquarius” 1

A Pipelined RISC CPU

Aquarius
(SuperH-2 ISA Compatible CPU Core)

Thorn Aitch

Rev 1.1 July 21, 2003

OPENCORES.ORG

2 A Pipelined RISC CPU “Aquarius”

Copyright
Aquarius RTL codes and related documents are copyrighted by the author, but placed into

the public domain.

Designs can be altered while keeping list of modifications "the same as in GNU" No money

can be earned by selling the designs themselves, but anyone can get money by selling the

implementation of the design, such as ICs based on some cores, boards based on some

schematics or Layouts, and even GUI interfaces to text mode drivers. "The same as GPL

SW" Any update to the design should be documented and returned to the design. Any

derivative work based on the IP should be free under OpenIP License. Derivative work

means any update, change or improvement on the design. Any work based on the design

can be either made free under OpenIP license or protected by any other license. Work based

on the design means any work uses the OpenIP Licensed core as a building black without

changing anything on it with any other blocks to produce larger design. There is NO

WARRANTY on the functionality or performance of the design on the real hardware

implementation.

On the other hand, the SuperH-2 ISA (Instruction Set Architecture) executed by Aquarius

is rigidly the property of Renesas Technology Corp., which has established on April 1st, 2003

by merging semiconductor groups of Hitachi and Mitsubishi. Then you have responsibility

to judge if there are not any infringements to Renesas’s rights regarding your Aquarius

adoption into your design. By adopting Aquarius, the user assumes all responsibility for its

use.

Trademark
Aquarius is a name of 5-stages pipelined RISC CPU core that can execute SuperH-2 ISA.

Aquarius is not registered trademark. If you officially use the name of Aquarius to external

world, you have responsibility to care the legal issues.

Royalty Release
I will not request you any royalties or other financial obligation for your Aquarius adoption

to your design and production. But you have responsibility to judge the usage of SuperH-2

ISA, legally. I strongly recommend you should ask Renesas Technology Corp. when you

A Pipelined RISC CPU “Aquarius” 3

decide to adopt Aquarius into your products.

Patent Notice
I have not cared that the information contained in this document and Aquarius deliverables

cause infringement on the patent, copyright, trademark or trade secret rights of others. You

have all responsibilities for determining if your design and products infringe on the

intellectual property rights of others.

Disclaimers
Aquarius deliverables including this document are not guaranteed. They may cause any

damages to many things, for example, loss of properties, data, money, profits, life, or

business. By adopting Aquarius, the user assumes all responsibility for its use.

Aquarius deliverables are permanently preliminary, and is subject to change.

Contact to Author
After release of Aquarius onto the OpenCores Organization site, you will be able to contact

me via the organization’s site. The email address is thorn_aitch@opencores.org.

If you find any bugs and strange descriptions, please feel free to inform me.

Trademark
SuperH™ is a trademark of Renesas Technology Corp.

Virtex™ is a trademark of Xilinx, Inc.

Stratix™ is a trademark of Altera, Corp.

Each another proper noun might be a trademark of each rights holders.

4 A Pipelined RISC CPU “Aquarius”

Revision History
Rev 0.1: May 1, 2003 by Thorn Aitch Draft

 Drafting out a tentative document

Rev 1.0: July 12, 2003 by Thorn Aitch Release Version

 A First Release Version

Rev 1.1: July 21, 2003 by Thorn Aitch Addition of an application

 A Program for calculation of Circular Constant (Pi) is added.

A Pipelined RISC CPU “Aquarius” 5

Index

PART1. USING AQUARIUS... 8

1. INTRODUCTION.. 9

1.1. WHAT IS AQUARIUS .. 9

1.2. PURPOSE OF THIS PROJECT .. 10

1.3. STRUCTURE OF CHAPTERS IN THIS DOCUMENT... 11

2. SPECIFICATION OVERVIEW .. 12

2.1. AQUARIUS INSTRUCTION SET ARCHITECTURE .. 12

2.2. INTERRUPTS AND EXCEPTIONS ... 12

2.3. DIFFERENCES BETWEEN AQUARIUS AND SUPERH-2... 13

2.4. AQUARIUS BLOCK DIAGRAM... 14

2.5. EXAMPLES OF AQUARIUS BASED SOC... 16

3. PREPARATION ... 18

3.1. PC ENVIRONMENT.. 18

3.2. CYGWIN ... 18

3.3. ICARUS VERILOG .. 18

3.4. GNU ASSEMBLER AND C COMPILER FOR SUPERH-2 .. 18

3.5. FPGA DEVELOPMENT TOOL.. 20

3.6. FPGA BOARD... 20

4. DELIVERABLES ... 21

4.1. DOCUMENT .. 21

4.2. RTL RESOURCES .. 21

4.3. VERIFICATION RESOURCES .. 23

4.4. FPGA RELATED RESOURCES .. 24

5. AQUARIUS CPU INTERFACE SPECIFICATION: “CPU.V” 26

5.1. AQUARIUS CPU IN/OUT SIGNALS ... 26

5.2. SYSTEM SIGNALS ... 26

5.3. “WISHBONE” COMPLIANT BUS SIGNALS .. 27

5.4. HARDWARE EVENT SIGNALS (INTERRUPT).. 30

6 A Pipelined RISC CPU “Aquarius”

5.5. SLEEP SIGNAL FOR LOW POWER MODE ... 32

6. SIMULATION TEST BENCH ... 34

6.1. TOP LAYER: “TOP.V” .. 34

6.2. SIMULATION TEST BENCH: “TEST.V” ... 34

6.3. PARALLEL I/O PORT (PIO): “PIO.V” ... 34

6.4. SERIAL I/O (UART): “UART.V” .. 37

6.5. SYSTEM CONTROLLER (SYS): “SYS.V” ... 39

6.6. ON CHIP MEMORY: “MEMORY.V” ... 42

6.7. SIMULATION TOOLS AND FLOWS .. 43

7. FPGA IMPLEMENTATION.. 45

7.1. FPGA SYSTEM ... 45

7.2. CIRCUIT OF FPGA BOARD .. 46

7.3. CIRCUIT OF INTERFACE BOARD .. 46

7.4. FPGA CONFIGURATION .. 49

7.5. RESULTS OF FPGA CONFIGURATION .. 49

7.6. APPLICATION PROGRAMS ON THE FPGA SYSTEM ... 51

PART2. INSIDE AQUARIUS CPU .. 56

8. AQUARIUS CPU OVERVIEW... 57

8.1. AQUARIUS BLOCK DIAGRAM... 57

8.2. AQUARIUS CPU IN/OUT SIGNALS ... 59

9. OVERVIEW OF PIPELINE CONTROL... 60

9.1. PIPELINE AND STAGE ... 60

9.2. PIPELINE OF EACH INSTRUCTION ... 61

9.3. REGISTER CONFLICT .. 64

9.4. MEMORY ACCESS CONFLICT... 64

9.5. WHO ISSUES IF? WHO ISSUES ID?.. 65

10. DECODER UNIT .. 66

10.1. IN/OUT SIGNALS ... 66

A Pipelined RISC CPU “Aquarius” 7

10.2. STRUCTURE OF DECODER UNIT .. 68

10.3. SHIFTING CONTROL SIGNALS.. 72

10.4. PIPELINE STALL ... 74

10.5. REGISTER FORWARDING ... 77

10.6. EXAMPLES OF PIPELINE CONTROL.. 77

10.7. CONTROL OF PROGRAM COUNTER .. 77

11. MEMORY ACCESS CONTROL UNIT .. 82

11.1. IN/OUT SIGNALS ... 82

11.2. WISHBONE’S ACK AND AQUARIUS’ SLOT .. 82

11.3. INSTRUCTION FETCH CYCLE... 83

11.4. MEMORY ACCESS CYCLE ... 84

11.5. IF-MA CONFLICT.. 86

11.6. BUS WIDTH OF INSTRUCTION FETCH CYCLE (IF_WIDTH) 87

11.7. READ MODIFY WRITE CYCLE (FOR INSTRUCTION TAS.B) 87

11.8. STATE MACHINE OF MEMORY ACCESS CONTROL UNIT.. 88

12. DATA PATH UNIT... 90

12.1. IN/OUT SIGNAL TABLE .. 90

12.2. STRUCTURE OF DATA PATH ... 92

13. MULTIPLIER UNIT .. 95

13.1. IN/OUT SIGNAL TABLE .. 95

13.2. ALGORITHM OF MULTIPLICATION ... 95

13.3. STRUCTURE OF MULTIPLIER UNIT .. 98

13.4. CONTROL OF MULTIPLICATION UNIT .. 99

13.5. HOW TO IMPLEMENT SATURATING ACCUMULATION .. 100

14. APPENDIX: AQUARIUS INSTRUCTION CODES 105

8 A Pipelined RISC CPU “Aquarius”

Part1. Using Aquarius

A Pipelined RISC CPU “Aquarius” 9

1. Introduction
1.1. What is Aquarius
Aquarius is a Core IP (Intellectual Property) of pipelined RISC CPU and can execute

SuperH-2 instructions. Aquarius and related information are released to OpenCores

Organization web site (www.opencores.org). You can freely download all necessary

resources and latest updates from the site.

The reasons why I selected SuperH-2 ISA (Instruction Set Architecture) are as follows.

(1) SuperH is a very popular CPU core. The software development environments such as C

compiler have been well prepared. The GNU C compiler for SuperH is very famous and

easy to get. The SuperH had been developed by Hitachi, Ltd. Now, semiconductor group

of Hitachi has merged with same group of Mitsubish and new semiconductor company

“Renesas Technology Corp.” has established in April, 2003.

(2) SuperH-2 is a CPU for MCU (Micro Controller Unit). Then the CPU need not handle

complex exception recovering such as memory fault exception from MMU (Memory

Managing Unit). This means SuperH-2 has simple structure, easiness to design, and it

does not consume many logic gates and power.

(3) All SuperH-2 instructions have 16bit length. It also makes the hardware very simple.

And most important aspect from 16bit fixed length of instructions is that the object

code size compiled from C source programs becomes very small.

(4) And, I love SuperH.

Aquarius is a free and completed soft IP. So I believe that Aquarius can increase SuperH-2

ISA familiars.

Aquarius consists of RTL descriptions. The language is Verilog-HDL. You can implement

Aquarius not only in your System LSI but also in your FPGA system. The Aquarius bus

interface follows WISHBONE specification maintained by the OpenCores Organization

(www.opencores.org), so you can easily connect Aquarius to many IPs registered in

OpenCores web site.

10 A Pipelined RISC CPU “Aquarius”

During my Aquarius design, I only referred public SuperH document from Renesas such as

SH-2 Programming Manual. Of course I could not reach Renesas’ internal design

information, so the Aquarius may NOT have completely same functionality as real

SuperH-2 CPU core, however, Aquarius can execute all public instructions of SuperH-2.

The functionality of Aquarius has been verified by both methods of functional vector

simulation and long run tests on FPGA board using program codes from GNU C Compiler

and Assembler.

I have designed Aquarius without consuming money except for FPGA hardware. I have

used free simulation tools and free FPGA configuration tool. You also do not need to buy

expensive EDA tools.

I am not an expert designer of CPU core, so the current Aquarius may not have the best

performance. I think efficiency of the design such as area consumption and operation

frequency can be improved much more. If you find some improvements, please feel free to

suggest your ideas to me.

Please enjoy the exciting deep IP design world. You can modify Aquarius to make your

original system. I hope Aquarius will help system designers, university students and

electronics hobbyists.

1.2. Purpose of this Project
The main purpose of Aquarius Project is to provide everyone a pipelined RISC CPU core as

one of the IPs for System LSI and FPGA system. You can get information about how to

design actual useful RISC CPU.

The Aquarius has SuperH-2 compatible ISA, so I hope that SuperH familiarized people will

increase more and more. Many embedded system, for example Robots, Industrial Systems,

Measurement Instruments, and many kind of digital information systems controlled by

embedded micro controllers, can be realized by SuperH-2 architecture.

I provide Aquarius without any license fee and royalty. You can freely get the latest

A Pipelined RISC CPU “Aquarius” 11

Aquarius IP codes from OpenCores Organization on the internet whenever you like. And I

will introduce you the cheapest but excellent design environments via this document. You

will able to modify Aquarius and establish your original IP.

1.3. Structure of Chapters in this document
This document consists of 2 parts. The first part describes how to use Aquarius, for example,

explanation of interface signals, test bench and FPGA implementation. All readers should

read first part. The second part shows inside Aquarius which is way of thought for

designing a pipelined RISC CPU. If you want to understand the apparatus of pipelined

RISC CPU and want to design your original CPU core, you should read second part, too.

12 A Pipelined RISC CPU “Aquarius”

2. Specification Overview
2.1. Aquarius Instruction Set Architecture
Aquarius is based on SuperH-2 Instruction Set Architecture (ISA). The SuperH-2 CPU has

RISC-type instruction sets and 16 32bit-general-registers (R0-R15). All instructions have

16bits fixed length. The SuperH-2 is based on 5 stages pipelined architecture, so basic

instructions are executed in one clock cycle pitch, which dramatically improves instruction

execution speed. The CPU also has an internal 32-bit architecture for enhanced data

processing ability such as multiply and accumulation like DSP functionality.

The detail document of SuperH-2 CPU architecture can be found in Renesas web site.

 http://www.renesas.com/

Please reach to the SuperH product page and find the SH-2 related product documents.

Then search document type of “Programming Manual” and find the “SuperH RISC Engine

SH-1/SH-2/SH-DSP Programming Manual”. This manual includes explanations among

SH-1, SH2 and SH2-DSP Instruction set. Please check up only SH-2 portions from this

manual. But it does not describe about exception and interrupt. For that information, pick

up product manual such as “SH7040 series Hardware Manual” and refer to chapters

regarding Exception and Interrupt Controller.

2.2. Interrupts and Exceptions
Like SuperH-2 CPU, Aquarius can handle interrupt requests, such as NMI (non maskable

interrupt) and IRQ (interrupt request). The interrupt priority level can be set from 0 to 16.

The interrupt request whose priority level is higher than I bit (I3-I0) in SR (Status

Register) will accepted by CPU. The priority of NMI is 16, so it is always accepted. The

priority level and the vector number of IRQ can be informed from external circuit such as

interrupt controller or system controller. If the priority level is zero, such interrupt will not

be accepted. Once the interrupt is accepted, the interrupt exception will start. It copies the

interrupt request level to I bit (I3-I0) in SR ,push SR and PC onto stack, fetch the vector

address and branch to targeting interrupt service routine. To return from interrupt service

routine, use RTE, which pops PC and SR and starts from the address of popped PC.

By the 4 bit priority control scheme, the interrupt can be nested.

A Pipelined RISC CPU “Aquarius” 13

The other exceptions such as CPU address error, DMA address error, TRAP Instruction,

Illegal Instruction, Slot Illegal Instruction, Manual Reset and Power on Reset are fully

supported by Aquarius.

2.3. Differences between Aquarius and SuperH-2
Aquarius can execute all public SuperH-2 instructions. But there are some functional

differences between Aquarius and real SuperH-2 CPU.

(1) Improvement of Multiplication Cycle

Table 2.1 shows that the execution cycle of the multiplication related instructions

of Aquarius are slightly different from SuperH-2’s because I guess the structure of

connection between CPU and Multiplier is changed from real SuperH-2. You can find some

performance is improved. Especially, the pitch cycle reduction of MAC.L will improve

performance of many real time applications. The details of pipeline control will be shown in

later chapter.

Instruction Aquarius SuperH-2 Notes

MAC.W @Rm+, @Rn+ C=2, P=2, L=3 C=2, P=2, L=2

MAC.L @Rm+, @Rn+ C=2, P=2 , L=4 C=2, P=4 , L=4

MULS/U.W Rm, Rn C=1, P=1 , L=2 C=1, P=2 , L=2

DMULS/U.L Rm, Rn C=1, P=3, L=2 C=1, P=4, L=4

MUL.L Rm, Rn C=1, P=3, L=2 C=1, P=4, L=4

C (Cycle): Instruction Execution Cycle if there is no contention. This is minimum cycle.

P (Pitch): Instruction Execution Pitch cycle if same instructions are repeated.

L (Latency): Latency cycle until STS, which is located just after me, and stores MACH/MACL to Rn.

Table2.1. Differences of Instruction Execution Cycles between Aquarius and SuperH-2

(2) Detection of Illegal Instruction

The real SuperH-2 decodes all illegal instructions. But in Aquarius, only the FF-line

instructions (0xFFxx) are recognized as illegal instructions that bring up “Illegal

Instruction Exception”. Other “should-be illegal instructions” are not fully decoded, so these

operations are seemed as “Undefined”. Actually, the operation of undefined instructions will

be just same as similar code’s instruction. By this shortcut, the usage of area is reduced.

Of course, the Slot Illegal Exception (in the case that a branch instruction placed at the

14 A Pipelined RISC CPU “Aquarius”

delay slot of delayed branch) is completely detected.

Even if you want Aquarius to detect all illegal instructions, you can easily modify the

decode unit’s RTL code.

(3) Instruction Codes for Exception

Some instructions in F-line (0xFxxx) are used for launching exceptions. These are shown in

Tabel2.2, which are not defined in actual SuperH ISA. In the CPU decoder, the hardware

event, for example interrupt, exchanges a fetched instruction to another code (in Table1.2)

which launches exception, and then changes the control sequence from normal instruction’s

one to the exception’s. If these instructions exist in program code, corresponding exception

will start, but will not have correct operation, such as interrupt priority control. I

recommend you not to write the Exception Launch Instructions in program code.

Instruction Correct Code Exception Sequence Notes

0xF7xx 0xF700 Power On Rest Lower 8bit is used as vector No.

0xF6xx 0xF602 Manual Reset Lower 8bit is used as vector No.

0xF3xx 0xF30A DMA Address Error Lower 8bit is used as vector No.

0xF2xx 0xF209 CPU Address Error Lower 8bit is used as vector No.

0xF1xx 0xF10B NMI Lower 8bit is used as vector No.

0xF0xx 0xF0xx IRQ Lower 8bit is used as vector No.

0xFF04 0xFF04 General Illegal Lower 8bit is used as vector No.

0xFE06 0xFE06 SLOT Illegal Lower 8bit is used as vector No.

Table2.2 Exception Launch Instruction

(4) ICE Support Instructions

Although the actual SuperH-2 may have dedicated instructions to support the ICE (in

circuit emulator), Aquarius do not have, because those instructions are not released

generally. In the test bench of Aquarius, I have implemented the “break” function by NMI

(non maskable interrupt).

2.4. Aquarius Block Diagram
Figure 2.1 shows the block diagram of Aquarius CPU core.

A Pipelined RISC CPU “Aquarius” 15

Memory
Access

Controller

mem.v

Decoder

decode.v

Data Path

datapath.v

Wishbone
Bus

Interrupt
Address Error

IF/MA
commands SLOT

controls

status

Multiplier

mult.v

Instruction controls

Data

Address and Data

CPU

cpu.v Memory
Access

Controller

mem.v

Decoder

decode.v

Data Path

datapath.v

Wishbone
Bus

Interrupt
Address Error

IF/MA
commands SLOT

controls

status

Multiplier

mult.v

Instruction controls

Data

Address and Data

CPU

cpu.v

Figure2.1. Block Diagram of Aquarius

Top layer of Aquarius is “CPU” which has WISHBONE compliant bus signals and accepts

interruption related signals. The most important system signals such as clock and reset are

not shown in this figure.

The Memory Access Controller handles instruction fetch and data read/write access. The

operations of Memory Access Controller are fully controlled by Decoder unit. Memory

Access Controller sends fetched instruction bit fields to the Decoder unit, and interchanges

read/write data and its address with Data Path unit. Aquarius assumes the Wishbone bus

is a Non-Harvard bus, then the simultaneous instruction fetch and R/W data access makes

bus contention. Memory Access Controller handles such contention smoothly and informs

the pipeline stall caused by the bus contention to Decoder unit. Also, the Memory Access

Controller can sense each boundary of bus cycles (with wait state) from WISHBONE ACK

signal. In Aquarius architecture (may be in SuperH-2 architecture as well), such bus cycle

boundary corresponds to the pipeline’s slot edge. So the Memory Access Controller produces

the most important pipeline control signal “SLOT” indicating pipeline slot edge.

The Data Path unit has registers you can see in programmer’s model in SuperH-2 manual

such as General Registers (R0 to R15), Status Register (SR), Global Base Register (GBR),

Vector Base Register (VBR), Procedure Register (PR) and Program Counter (PC). The

Multiplication and Accumulate Registers (MACH/MACL) are found in Multiplication unit.

The Data Path unit also has necessity operation resources such as ALU (Arithmetic and

Logical operation Unit), Shifter, Divider, Comparator, temporary registers, many selectors,

16 A Pipelined RISC CPU “Aquarius”

interfaces to/from Memory Access Controller and Multiply unit, and several buses to

connect each resource. The Data Path is fully controlled by control signals from Decoder

unit.

Multiply unit has a 32bit x 16bit multiplier and its control circuits. A 16bit x 16bit multiply

operation is executed in one clock cycle. A 32 bit x 32bit multiply operation is done in two

clock cycles. Multiply unit also has the Multiplier and Accumulate Registers

(MACH/MACL). The MACH/MACL are not only the final result registers of multiply or

multiply-and-accumulation but also the temporary registers to hold the 48bit partial

multiply result from 32bit x 16bit multiplier for 32bit x 32bit operation. The multiply

instruction, for example MULS.L, clears the contents of MACH/MACL in early stage of the

instruction operation. However the multiply and accumulate instruction, for example

MAC.L, does not clear MACH/MACL before the operation. The MAC.L accumulates its own

partial multiply result to initial MACH/MACL and then finalize the operation result. The

major difference between multiply (MULS.L) and “multiply and accumulate” (MAC.L) is

whether to clear or not to clear the MACH/MACL before the operation. And also, for MAC.L

and MAC.W instruction, the accumulation adder in this unit has saturating function.

The Decoder unit is the fundamental CPU controller. It orders Memory Access Controller

fetch instructions and then receives the instruction. The Decoder Unit decodes the

instruction bit fields and judges the followed operations. Basically, the Decoder unit plays

the role only for the instruction ID stage. But it throws many control signals for following

EX, MA and WB stages toward Data Path unit, Multiplication unit, and Memory Access

Controller. These control signals are kept and shifted with its pipeline flow at each slot

edge until reaching to the target stage of the instruction. The Decoder unit detects every

conditions of pipeline stalling, and makes each unit of CPU be controlled properly. Also, it

controls not only simple 1 cycle instructions but also multi cycle instructions and

exception’s sequences such as interrupt and address error.

Detailed design description of each unit is found in Part 2.

2.5. Examples of Aquarius based SoC
Figure 2.2 shows some examples of SoC using Aquarius.

A Pipelined RISC CPU “Aquarius” 17

(1) It is a simple micro controller that has CPU, ROM, RAM and some peripherals. Each

module is connected by a common Wishbone bus.

(2) It is same as (1) except it has external bus interface. If the external bus interface is

designed properly, it can be connected any memories such as ROM, Burst ROM, SRAM,

SDRAM and, if you desire, DDR may be possible.

(3) If the bus operation frequency is high (for example, over 100MHz), one common

Wishbone bus will not catch up with the frequency because of heavy load. In such case, I

recommend you to divide the internal bus into as least two, one is the fast speed bus

with only CPU and internal fast memories, and the other one is slow speed bus with

many slow peripheral modules and external memory interface.

I provide Aquarius deliverables not only as CPU core but also as MCU like (1), which has

ROM, RAM, UART, PORT and System Controller (interrupt and exception controller) etc.

Aquarius
CPU

Wishbone Compliant Bus

ROM
(MASK ROM) RAM UART Timer PIO

Interrupt
Control

Address
Decoder

Clock
Reset

(1) Micro Controller using Aquarius

Aquarius
CPU Wishbone Compliant Bus

ROM
(option) RAM UART Timer PIO

Interrupt
Control

Address
Decoder

Clock
Reset

(2) Micro Controller using Aquarius with external bus

External
BUS

Aquarius
CPU High Speed Wishbone

ROM
(option) RAM UART Timer PIO

Interrupt
Control

Address
Decoder

Clock
Reset

(3) High Speed Micro Controller using Aquarius with external bus

External
BUS

Bus
SW Low Speed

Wishbone

Aquarius
CPU

Wishbone Compliant Bus

ROM
(MASK ROM) RAM UART Timer PIO

Interrupt
Control

Address
Decoder

Clock
Reset

(1) Micro Controller using Aquarius

Aquarius
CPU Wishbone Compliant Bus

ROM
(option) RAM UART Timer PIO

Interrupt
Control

Address
Decoder

Clock
Reset

(2) Micro Controller using Aquarius with external bus

External
BUS

Aquarius
CPU High Speed Wishbone

ROM
(option) RAM UART Timer PIO

Interrupt
Control

Address
Decoder

Clock
Reset

(3) High Speed Micro Controller using Aquarius with external bus

External
BUS

Bus
SW Low Speed

Wishbone

Figure2.2. Examples of System LSI using Aquarius

18 A Pipelined RISC CPU “Aquarius”

3. Preparation
This chapter describes my recommendations regarding necessary preparations before

starting development. You do not need any expenses except PC environment and FPGA

board.

3.1. PC environment
This is the most important tool. Any Windows machines are OK. I still use SONY VAIO

Notebook PCG-R505FR/D with Mobile PentiumIII 800MHz, 256MB RAM, and Microsoft

Windows XP. Even such machine has enough power to design Aquarius. Of course, you need

broadband internet connection such as xDSL to download many required resources.

The reason why I use Windows machine instead of Linux machine is that the most “free”

FPGA development tools from FPGA vendors such as Xilinx and Altera run on only

Windows environment.

3.2. Cygwin
The simulator of Verilog-HDL codes and the compiler/assembler of SuperH-2 run on the

UNIX environment. In order all tools to live together in Windows environment, the Cygwin

is a good selection. Download the latest Cygwin system from http://www.cygwin.com, and

full-install to your PC according to its instructions. After the Cygwin installation, many

UNIX/Linux applications and all Windows applications simultaneously run on your PC

without circumstances.

3.3. Icarus Verilog
I think the most excellent free Verilog simulator is Icarus Verilog. Download Icarus from

http://www.icarus.com/eda/verilog/index.html and install it from Cygwin console window

according to Icarus’s installation document. If you have installed Cygwin with full packages,

you will not encounter any problems.

3.4. GNU Assembler and C Compiler for SuperH-2
To make verification program and to develop application program, the SuperH-2 assembler

and compiler are necessary for you. Install them as follows.

A Pipelined RISC CPU “Aquarius” 19

(1) Download following files from ftp://ftp.gnu.org/pub/gnu/

 binutils-2.13.1.tar.gz

gcc-2.95.3.tar.gz

gdb-5.2.1.tar.gz

(2) Download following file from http://sources.redhat.com/newlib/

newlib-1.10.0.tar.gz

(3) Place these 4 files under /usr/local/src.

(4) Install GNU binutils.

cd /usr/local/src

gzip –dc binutils-2.13.1.tar.gz | tar xvf –

cd binutils-2.13.1

mkdir work

cd work

../configure –-prefix=/usr/local –-target=sh-elf

make

make install

(5) Install GNU gcc and newlib.

cd /usr/local/src

gzip –dc newlib-1.10.0.tar.gz | tar xvf –

gzip –dc gcc-2.95.3.tar.gz | tar xvf -

cd gcc-2.95.3

ln –s ../newlib-1.10.0/newlib .

mkdir work

cd work

../configure –-prefix=/usr/local –-target=sh-elf --with-gnu-as

--with-gnu-ld --with-dwarf2 --disable-multilib --enable-languages=c

--with-newlib

make

make install

(6) Install GNU gdb.

cd /usr/local/src

gzip –dc gdb-5.2.1.tar.gz | tar xvf –

20 A Pipelined RISC CPU “Aquarius”

cd gdb-5.2.1

mkdir work

cd work

../configure –-prefix=/usr/local –-target=sh-elf

make

make install

3.5. FPGA development tool
To implement your design to FPGA, you need FPGA development tool. The FPGA vendors

release excellent free development tool which has editor, logic synthesizer, static timing

analyzer, placer & router and configuration binary generator. In Aquarius project, I have

been using Xilinx free ISE Webpack 5.x. Download it from following URL site and install it

on your Windows environment. It has a nice Verilog syntax editor, so I have mainly used

the editor in “Project Navigator” of ISE during Aquarius development.

http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=ISE+WebPack

3.6. FPGA Board
To verify the logic design, implementing it to FPGA device is very good method. The FPGA

plays a role as a hardware logic emulator, so the verification speed is much faster than

vector logic simulation. And the CPU in FPGA can execute very large and long program

quickly, so the verification quality will be improved.

I bought a board which has Xilinx VirtexE-300 (XCV300E). In my case, the board vendor

name is HuMANDATA Ltd, and the product name is XSP-009-300. The site is

http://www.hdl.co.jp/ which unfortunately has only Japanese description. But this company

opens their technical documents regarding the products on their site, freely.

You can find the board schematic, which can be read even by non-Japanese people, from

http://www.hdl.co.jp/ftpdata/xsp-009/XSP009.sch.pdf .

I think you can find another good FPGA boards from many vendors around you. Or if you

can get FPGA device, making a board by “DIY” is a good choice.

I added some external circuit such as LCD display, Hex Key board and I/F to RS232C to

above board to make the verification be smooth. The detail circuit is described later.

A Pipelined RISC CPU “Aquarius” 21

4. Deliverables
This chapter shows the all deliverables of Aquarius project.

4.1. Document
Aquarius.pdf : this document (Adobe Acrobat Reader)

Aquarius.doc : this document (Microsoft Word)

4.2. RTL Resources
Verilog –HDL (RTL) of Aquarius CPU and its test bench

The set of RTL codes of Aquarius includes not only CPU RTL but also Simple MCU RTL

that comprises CPU, ROM, RAM, PIO, UART and System Controller. The RTL codes except

CPU are used as test bench of CPU. Of course, you can implement all RTL codes into your

FPGA, and verify it much more efficiently like as I did. Figure 3.1 shows RTL structure of

Aquarius MCU.

Test Bench comprises…

 timescale.v Timescale definition. All files include me.

 test.v Test Bench

 top.v Top layer of MCU

MCUcomprises…

 top.v Top layer of MCU

 pio.v Parallel IN/OUT Interface

 memory.v ROM(8KB) and RAM(8KB) for Verilog simulation.

 ROM can be initialized from S-format binary code.

 rom.v ROM description created by a converter from S-format.

 memory_fpga.v “memory.v” for Xilinx FPGA’s configuration (BlockRAM)

 All area (16KB) can be initialized by INIT constraints.

 uart.v UART (Universal Asynchronous Receiver/Transmitter)

 sasc_brg.v Baud Rate Generator

 sasc_top.v UART Body

 sasc_fifo4.v 4 step FIFO for UART Buffer

22 A Pipelined RISC CPU “Aquarius”

 sys.v System Controller that handles interrupts and exceptions

 lib.v A clock stop gate (SLEEP instruction) for Verilog sim.

 lib_fpga.v “lib.v” for Xilinx FPGA configration

 cpu.v Top layer of CPU (Aquarius)

Aquarius CPU comprises…

 cpu.v Top layer of CPU (Aquarius)

 datapath.v Data Path

 register.v General Registers R0-R15

 decode.v Instruction Decoder

 mem.v Memory Access Controller

 mult.v Multiplier

 defines.v Constant Parameters referred from CPU

The UART is based on the “Simple Asynchronous Serial Communication Device created by

Rudolf Usselmann” downloaded from http://www.opencores.org/cores/sasc/.

Micro Controller Unit (MCU) : TOP

Serial I/F : UART

Aquarius CPU Core : CPU

Test Bench
timescale.v
test.v

top.v

cpu.v
datapath.v

register.vdecode.v

mem.v
mult.v
defines.v

uart.v
sasc_brg.v

sasc_fifo4.v
sasc_top.v

sys.v
lib.v
or
lib_fpga.v

System Controller : SYS

pio.v Parallel I/O Port : PIO

: For Simulation

: For FPGA

memory.v
or
memory_fpga.v

rom.v : For Simulation

: For FPGA

On Chip Memory : MEMORY

Micro Controller Unit (MCU) : TOP

Serial I/F : UART

Aquarius CPU Core : CPU

Test Bench
timescale.v
test.v

top.v

cpu.v
datapath.v

register.vdecode.v

mem.v
mult.v
defines.v

uart.v
sasc_brg.v

sasc_fifo4.v
sasc_top.v

sys.v
lib.v
or
lib_fpga.v

System Controller : SYS

pio.v Parallel I/O Port : PIO

: For Simulation

: For FPGA

memory.v
or
memory_fpga.v

rom.v : For Simulation

: For FPGA

On Chip Memory : MEMORY

Figure 3.1 RTL Structure

A Pipelined RISC CPU “Aquarius” 23

4.3. Verification Resources
I also provide simple but useful resources for logic verification and program development.

(1) Assembler Source Programs for Verilog simulation

I provide some example programs for Verilog simulation. You can find them under the

directory “sha_testsource”.

(2) Converter from S-format object to Verilog ROM description “rom.v”

The assembler can make S-format object. But it should be linked to Aquarius Verilog test

bench. I made a simple binary converter from S-format to Verilog ROM description “rom.v”.

This converter is “genrom.c” which is C source program. Compile it on your Cygwin

console. Simply, do this.

 $ gcc –o genrom.exe genrom.c

The usage is very simple. If your S-format binary name is “test.obj”, you can convert it to

Verilog ROM description by typing as follows.

 $./genrom test.obj

This operation creates “rom.v”, which is an 8Kbyte ROM.

Note that the “genrom” supports the S-Format which has only S0 (comment), S3 (4byte

address) and S7 (end of record).

(3) Script to launch Assembler

The script named “asm” launches the GNU assembler, creates object code as an S-format

file, and converts the S-Format object to a Verilog ROM description “rom.v”. The “asm” is

very short script as follows.

__

#!/bin/bash

sh-elf-as -a $1 > lis

sh-elf-as -o a.out $1

sh-elf-objcopy -O srec --srec-forceS3 a.out obj

./genrom obj

__

The usage is also simple. If you have assemble source program named “test.src”, simply

24 A Pipelined RISC CPU “Aquarius”

type as follows.

 $./asm test.src

This operation creates Verilog ROM description “rom.v” corresponding to “test.src”.

(4) Script to launch Verilog Simulation

After creating “rom.v”, now you can simulate Aquarius. First of all, prepare a text file

“test.txt” that lists up all Verilog source files.

The script named “sim” launches the Icarus Verilog Simulator. The “sim” is very short

script as follows.

__

#!/bin/bash

iverilog –o test –c test.txt

vvp –v test

__

By the Aquarius test bench “test.v”, the simulation results is created as

“test_result.txt” which is a trace list of bus cycle and important register contents.

4.4. FPGA related Resources
To implement Aquarius into Xilinx VirtexE, I have prepared some resources.

(1) Converter from S-format object to Xilinx BlockRAM INIT Constraints

In case of FPGA implementation, ROM should be configured by BlockRAM instead of

“rom.v”, which is described by continuous “case” statements, to reduce the consumption of

logic cells. The BlockRAM can be initialized by INIT statement in user constraints file

(.ucf). So I made a converter from S-format object to INIT statement.

The converter is “genram.c”, which is also a C program, then compile it on your Cygwin

console.

 $ gcc –o genram.exe genram.c

The usage is very simple. If your S-format binary name is “test.obj”, you can convert it to

INIT description by typing as follows.

 $./genram test.obj

This operation creates “ram.dat”, which is 16Kbyte BlockRAM initialization.

A Pipelined RISC CPU “Aquarius” 25

The content of “ram.dat” is as follows.

INST "MEMORY_Mram_RAM0HH_inst_ramb_0" INIT_00 = 0000000000000000…;

INST "MEMORY_Mram_RAM0HH_inst_ramb_0" INIT_01 = 0000000000000000…;

INST "MEMORY_Mram_RAM0HH_inst_ramb_0" INIT_02 = 2121212121212121…;

INST "MEMORY_Mram_RAM0HH_inst_ramb_0" INIT_03 = 6765636100D02F2F…;

After creating “ram.dat”, add this content after the tail of your user constraints file (.ucf),

or change all old INST statement. Then, configure your FPGA.

(2) An example of User Constraints File (.ucf)

I provide an example of user constraints file (top.ucf) which corresponds to my FPGA

system described later.

(3) Some Applications for FPGA System

Following application programs are provided.

 Monitor Program shc_monitor_release_v1/

 LCD Test shc_lcdtest/

 Interrupt! Clock shc_clock/

 Calculation of Pi shc_pi/

Details are described later (FPGA Implementation)

26 A Pipelined RISC CPU “Aquarius”

5. Aquarius CPU Interface Specification: “cpu.v”
5.1. Aquarius CPU IN/OUT Signals
The Aquarius CPU (“cpu.v”)’s IN/OUT signals are shown in Table5.1. In Aquarius CPU

logic circuit, all signals are positive logic level and the changing timing is always at positive

edge of CLK.

Class Signal Name Direction Meaning Notes

CLK Input System clock System

Signals RST Input Power On Reset

CYC_O Output Cycle Output

STB_O Output Strobe Output

ACK_I Input Device Acknowledge

ADR_O[31:0] Output Address Output

DAT_I[31:0] Input Read Data

DAT_O[31:0] Output Write Data

WE_O Output Write Enable

SEL_O[3:0] Output Byte Lane Select

Wishbone

Bus

Signals

TAG0_I (IF_WIDTH) Input Fetch Width

EVENT_REQ_I[2:0] Input Event Request

EVENT_INFO_I[11:0] Input Event Information

Hardware

Event

(interrupt) EVENT_ACK_O Output Event Acknowledge

SLEEP SLP Output Sleep Pulse

Table5.1 Aquarius CPU IN/OUT Signals

5.2. System Signals
(1) CLK

The clock input [CLK] coordinates all activities for the internal logic within the

WISHBONE interconnect. All output signals are registered at the rising edge of [CLK]. All

input signals are stable before the rising edge of [CLK].

(2) RST

The reset input [RST] forces the WISHBONE interface to restart. Furthermore, all internal

A Pipelined RISC CPU “Aquarius” 27

state machines are forced into an initial state.

When system power-on (cold start), [RST] should be asserted at least for 1 cycle. The

Aquarius CPU senses [RST] asynchronously, so any glitch pulse should not be overlaid on

[RST] signal. Aquarius Flip Flops are written as follows.

 always @(posedge CLK or posedge RST)

 {

 if (RST)

 {

 }

 else

 {

 }

 }

If your in-house design rule inhibits asynchronous reset at Flip Flops, you can rewrite RTL

codes of Aquarius as follows. Aquarius CPU can operate in synchronous reset manner.

 always @(posedge CLK)

 {

 if (RST)

 {

 }

 else

 {

 }

 }

5.3. “WISHBONE” Compliant Bus Signals
The bus specification of Aquarius CPU is based on WISHBONE classic bus. It follows

“Specification for the WISHBONE System-on-Chip (SoC) Interconnection Architecture for

Portable IP Cores Revision: B.3, Released: September 7, 2002”. The detail specification

document is found in the OpenCores site.

(1) CYC_O

The cycle output [CYC_O], when asserted, indicates that a valid bus cycle is in progress.

28 A Pipelined RISC CPU “Aquarius”

The signal is asserted for the duration of all bus cycles. For example, during a Read Modify

Write cycle caused by TAS.B (test and set instruction for semaphore protocol), there are two

data transfers. The [CYC_O] signal is asserted during the first data read, and remains its

assertion until the last data write. The [CYC_O] signal is useful for bus arbiter to prevent

exchanging the current bus master to another device such as DMA controller during the

TAS.B read modify write cycle.

(2) STB_O

The strobe output [STB_O] indicates a valid data transfer cycle. It is used to qualify various

other signals on the interface such as [SEL_O]. The SLAVE module asserts either the

[ACK_I] signals in response to every assertion of the [STB_O] signal.

(3) ACK_I

The acknowledge input [ACK_I], when asserted, indicates the normal termination of a bus

cycle. The [ACK_I] creates CPU internal signal “SLOT” to indicate the edge of pipeline slot.

(4) ADR_O[31:0]

The address output array [ADR_O] is used to pass a binary address.

(5) DAT_I[31:0]

The data input array [DAT_I] is used to read binary data from external devices such as

ROM, RAM and peripheral modules.

(6) DAT_O[31:0]

The data output array [DAT_O] is used to write binary data to external devices such as

RAM and peripheral modules.

(7) WE_O

The write enable output [WE_O] indicates whether the current local bus cycle is a READ or

WRITE cycle. The signal is negated during READ cycles, and is asserted during WRITE

cycles.

(8) SEL_O[3:0]

A Pipelined RISC CPU “Aquarius” 29

The select output array [SEL_O] indicates where valid data is expected on the [DAT_I]

signal array during READ cycles, and where it is placed on the [DAT_O] signal array

during WRITE cycles. The minimum data granularity size is BYTE, so each SEL_O

corresponds to each byte lane. The data alignment position is described in detail later.

(9) TAG0_I (IF_WIDTH)

All SuperH-2 instruction has 16bit length. The memory such as ROM and RAM connected

to Aquarius CPU has 32bit data width. So, when CPU fetches its instruction from 32bit

width memory, CPU can get 2 instructions. But if the device data width is 16bit, only one

instruction can be sent to CPU at once fetch cycle. Latter case may happen when CPU

fetches its instruction from 16bit width external bus, for example.

Therefore, WISHBONE glue logic must inform CPU the instruction fetch space’s width.

If the address space is 32bit width, WISHBONE should return IF_WDTH=1, else should

return IF_WIDTH=0 before ACK_I signal is asserted.

If CPU fetches instruction from address 0x2, 0x6, 0xa, 0xe, CPU can get only 1 instruction

by the fetch cycle. But CPU knows such status, so WISHBONE need not check such case.

The WISHBONE glue logic should care only the instruction sending band width that is the

data width of accessing address space.

In other words, in case of instruction fetch, IF_WIDTH has its meaning only when lower

2bit of address is 2’b00. The IF_WIDTH informs CPU how many instructions should be

fetched. But if the lower 2bit of address is 2’b10, CPU can get only one instruction

regardless IF_WIDTH. In latter case, CPU ignores the IF_WIDTH.

[CAUTION] Aquarius CPU assumes that the internal bus width is always 32bit. If you

connect the internal WISHBONE to 16bit/8bit external bus or peripheral modules, some

glue bus control logic should be created to convert internal 32bit data to/from 8bit/6bit data

with proper wait timing controls.

(10) Data Alignment Position

Aquarius CPU is big-endian. The data width is 32 bit, memory data access granularity is

byte, and instruction fetch granularity is 16 bit.

Table5.2 shows the data alignment position on WISHBONE data bus for each access.

In WISHBONE specification data sheet, 32bit operand size is called as “DWORD”, but in

30 A Pipelined RISC CPU “Aquarius”

SuperH and Aquarius world, 32bit is called as “Long” or “Long Word”.

Note that in case of write operation, the unselected lanes have same write data as valid

lane’s one. For example, in WORD writing to address 2(2’b10), the valid lane is bit15-0, but

bit31-16 of DAT_O has same data as bit15-0.

Access Type

Size Address

Lower

2bit

Lane

[31:24]

SEL [3]

Lane

 [23:16]

SEL[2]

Lane

 [15:8]

SEL[1]

Lane

 [7:0]

SEL[0]

Notes

Data Read Long 2’b00 D[31:24] D[23:16] D[15:8] D[7:0]

2’b00 D[15:8] D[7:0] ignored ignored Data Read Word

2’b10 Ignored ignored D[15:8] D[7:0]

2’b00 D[7:0] ignored ignored ignored

2’b01 Ignored D[7:0] ignored ignored

2’b10 Ignored ignored D[7:0] ignored

Data Read Byte

2’b11 Ignored ignored ignored D[7:0]

DAT_I

Data Write Long 2’b00 D[31:24] D[23:16] D[15:8] D[7:0]

2’b00 D[15:8] D[7:0] D[15:8] D[7:0] Data Write Word

2’b10 D[15:8] D[7:0] D[15:8] D[7:0]

2’b00 D[7:0] D[7:0] D[7:0] D[7:0]

2’b01 D[7:0] D[7:0] D[7:0] D[7:0]

2’b10 D[7:0] D[7:0] D[7:0] D[7:0]

Data Write Byte

2’b11 D[7:0] D[7:0] D[7:0] D[7:0]

DAT_O

Fetch IF_WIDTH=1 2’b00 I0[15:8] I0[7:0] I1[15:8] I1[7:0]

Fetch IF_WIDTH=0 2’b00 I[15:8] I[7:0] ignored Ignored

Fetch IF_WIDTH=* 2’b10 ignored ignored I[15:8] I[7:0]

DAT_I

：Corresponding SEL_O[n] is asserted.

Table5.2 Data Alignment Position

5.4. Hardware Event Signals (Interrupt)
CPU should accept some requests from hardware events such as interrupt, address error

and manual reset. These requests are informed to CPU by EVENT_REQ[2:0] associated

A Pipelined RISC CPU “Aquarius” 31

with EVENT_INFO[11:0]. The EVENT_REQ[2:0] shows the kind of event request. The

meanings are shown in Table5.3. In case of IRQ request, EVENT_INFO[11:0] should also

be valid. The upper 4bit of EVENT_INFO shows the priority level of the requesting IRQ,

and the lower 8bit of EVENT_INFO shows its vector No. The vector address of IRQ equals

to EVENT_INFO[7:0] * 4. Also see Table5.4.

The EVENT_REQ and EVENT_INFO should be asserted and be valid at same timing. CPU

samples them at same timing (at the decode stage of pipeline). If the EVENT_REQ do not

show IRQ request, CPU ignores the EVENT_INFO. After CPU samples the EVENT_REQ

(and EVENT_INFO), CPU asserts EVENT_ACK, which shows that the CPU accepts the

hardware event request that is valid just at when EVENT_ACK is being asserted. The

EVENT_REQ should be negated or should be change to next request just after

EVENT_ACK is asserted.

If the event can not be accepted by CPU; that happens in case of lower priority IRQ than

I-bit in SR, interrupt request just after the instruction that masks interrupt (for example

LDC/LDC.L), or all hardware exception events just after delayed branch instruction; the

EVENT_ACK is not asserted until the request signals can be accepted by CPU. Of course, if

the event request is negated before CPU’s sampling, the event request can not be accepted

by CPU. The hardware event request timing is shown in Figure5.1 with internal pipeline

controls.

Hardware Event EVENT_REQ[2:0] Notes

NOP 3’b111

IRQ 3’b000 Also use EVENT_INFO[11:0]

NMI 3’b001

CPU Address Error 3’b010

DMA Address Error 3’b011

Manual Reset 3’b110

Table5.3 Hardware Event Request Signal: EVENT_REQ[2:0]

Hardware Event Information Meaning Notes

EVENT_INFO[11:8] Priority level of requesting IRQ (4bit)

EVENT_INFO[7:0] Vector No. of requesting IRQ (8bit)

Table5.4 Hardware Event Information: EVENT_INFO[11:0]

32 A Pipelined RISC CPU “Aquarius”

The priority among hardware exceptions should be determined by external circuits, which

generates EVENT_REQ and EVENT_INFO. In SuperH-2 products, the priority order of

exceptions is as follows.

 1st: Power On Reset (Triggered by RST signal.)

 2nd: Manual Reset

 3rd: CPU/DMA Address Error

 4th: NMI

 5th: IRQ

The exceptions caused by instruction (Illegal, Slot-Illegal and Trap) have the lowest priority,

but the external circuits need not to care, because the decoder unit in CPU detects them.

ID (1)

ID (2)-1 ID (2)-2

ID (3) ID_STALL

(1)IF_DR

IR *

ID (4)(event)

(2)

(2)*

* (3) *

(3)*

(4)(event)

*

SLOT

0 0 1 0 0 0INSTR_SEQ

DISPATCH

EVENT_SPL

EVENT_REQ

EVENT_ACK

EVENT_INFO validdon’t care

EVENT_INFO
ILEVEL : 4bit
VECTOR : 8bit

EVENT_REQ
111 : nop
000 : IRQ
001: NMI
010 : Address Error CPU
011 : Address Error DMAC
110 : Manual Reset

ID (1)

ID (2)-1 ID (2)-2

ID (3) ID_STALL

(1)IF_DR

IR *

ID (4)(event)

(2)

(2)*

* (3) *

(3)*

(4)(event)

*

SLOT

0 0 1 0 0 0INSTR_SEQ

DISPATCH

EVENT_SPL

EVENT_REQ

EVENT_ACK

EVENT_INFO validdon’t care

EVENT_INFO
ILEVEL : 4bit
VECTOR : 8bit

EVENT_REQ
111 : nop
000 : IRQ
001: NMI
010 : Address Error CPU
011 : Address Error DMAC
110 : Manual Reset

Figure5.1 Hardware Event Request and Sampling Timing

5.5. SLEEP signal for Low Power Mode
The SLP output is asserted by SLEEP instruction. The chip can stop its clock by SLP signal

and can go to low power mode, if you desire.

A Pipelined RISC CPU “Aquarius” 33

The SLEEP timing is shown is Figure5.2. The CLK_SRC is an original clock generated by,

for example, XTAL oscillator. The CLK is made from CLK_SRC by a gating logic and the

CLK stops during SLEEP state. Of course you can stop CLK_SRC by similar method (But,

to wake up CLK_SRC, you may need some delay timer to wait for the stable XTAL

oscillation.) And by some wakeup signal such as NMI, the CLK is waked up. At the wakeup

timing, if CPU finds a hardware event request, corresponding exception starts. Or, if there

is no hardware event, the program starts from next instruction of SLEEP.

The actual low power mode should be implemented by whole chip designer. The Aquarius

test bench includes very simple low power control logic, for your reference.

F D D

D

F

SLEEP

STOP_A

CLK_SRC

CLK

Wake Up Signal
Asynchronous input from Port

STOP_S

SLP

D

SLP & posedge CLK

Synchronized by CLK_SRC

CLK_SRC | CLK_STP_S

There is no glitch on CLK,
because negedge of CLK_STP_S
is later than posedge of CLK_SRC. E

D

D

F

Next Instruction

EVENT_REQ NMI

If you prepare the EVENT_REQ at this slot,
the next instruction of SLEEP is exchanged to the event sequence.

If not, the next instruction of SLEEP continues its operation, after the CLK wakes up.
Even in latter case, if you place the opcode for NMI -emulation
as the next instruction, you can get desired exception sequence
only by the wake-up operation.

NOP

F D D

D

F

SLEEP

STOP_A

CLK_SRC

CLK

Wake Up Signal
Asynchronous input from Port

STOP_S

SLP

D

SLP & posedge CLK

Synchronized by CLK_SRC

CLK_SRC | CLK_STP_S

There is no glitch on CLK,
because negedge of CLK_STP_S
is later than posedge of CLK_SRC. E

D

D

F

Next Instruction

EVENT_REQ NMI

If you prepare the EVENT_REQ at this slot,
the next instruction of SLEEP is exchanged to the event sequence.

If not, the next instruction of SLEEP continues its operation, after the CLK wakes up.
Even in latter case, if you place the opcode for NMI -emulation
as the next instruction, you can get desired exception sequence
only by the wake-up operation.

NOP

Figure5.2 SLEEP and Low Power Timing

34 A Pipelined RISC CPU “Aquarius”

6. Simulation Test Bench
This chapter describes the Aquarius test bench structure for the verification by the method

of vector logic simulation.

6.1. Top Layer: “top.v”
As shown in Figure3.1, “top.v” is the top layer of Aquarius MCU. It combines among CPU,

UART, System Controller, Parallel Port, and on chip memories.

In this chapter, “memory.v” and “lib.v” are assumed to be used, instead of

“memory_fpga.v” and “lib_fpga.v”.

The system address map is shown in Table6.1.The “memory.v” has 8KB ROM (“rom.v”)

and 8KB RAM. All CPU instruction should be verified in various memory access cycle and

instruction fetch size. So, the memory access cycle and instruction fetch width are

determined by its address; i.e. WISHBONE ACK and TAG0_I(IF_WIDTH) are generated in

“top.v”.

The peripheral devices such as PIO, UART and SYS are located in 0xABCDxxxx area.

The top layer ’s IN/OUT signals are shown in Table6.2. These signals correspond with

author’s FPGA configuration. There are several LCD and KEY control signals from PIO

module, and UART signals. See later chapter for detail FPGA board circuit.

6.2. Simulation Test Bench: “test.v”
The “test.v” is a test bench for Verilog simulation. It creates clock and some input signals

(stimuli). Also it generate trace list file as a simulation result named “test_result.txt”. For

your own simulation, please modify “test.v”. When you simulate instructions of CPU by

Verilog logic simulator, you need not care the operations of LCD, KEY and UART interfaces.

You should care only bus transaction, register contents and signal levels and timings, etc.

in case that your viewpoint of simulation is in Aquarius CPU operation.

6.3. Parallel I/O Port (PIO): “pio.v”
Parallel I/O Port (PIO) “pio.v” IN/OUT signals are shown in Table6.3. PIO has 2 32bit

registers to control Port Pins. Parallel I/O Port (PIO) Registers are shown in Figure6.1.

There are 4 byte-size registers for PORT Output and 4 byte-size registers for PORT Input.

A Pipelined RISC CPU “Aquarius” 35

Both registers for PORT Input and PORT Output have same address. If you read each

register, you can access PORT Input, and if you write to each register, you can access PORT

Output.

Each register is located in side-by-side address, so they can be accessed by byte, word or

long operand size. PORT Output registers are reset to 0x00 when power on reset.

Address Device Size Access

Cycle
IF Width Notes

0x00000000-0x00001FFF ROM 8KB 1cyc 32bit A

0x00002000-0x00003FFF RAM 8KB 1cyc 32bit B

0x00004000-0x0000FFFF Shadow of 0x00000000-0x00003FFF

0x00010000-0x00011FFF ROM 8KB 4cyc 32bit Shadow of A

0x00012000-0x00013FFF RAM 8KB 4cyc 32bit Shadow of B

0x00014000-0x0001FFFF Shadow of 0x00010000-0x00013FFF

0x00020000-0x00021FFF ROM 8KB 1cyc 16bit Shadow of A

0x00022000-0x00023FFF RAM 8KB 1cyc 16bit Shadow of B

0x00024000-0x0002FFFF Shadow of 0x00020000-0x00023FFF

0x00030000-0x00031FFF ROM 8KB 4cyc 16bit Shadow of A

0x00032000-0x00033FFF RAM 8KB 4cyc 16bit Shadow of B

0x00034000-0x0003FFFF Shadow of 0x00030000-0x00033FFF

0x00040000-0xABCCFFFF Shadow of 0x00000000-0x0003FFFF

0xABCD0000-0xABCD00FF PIO 256B 4cyc 32bit

0xABCD0100-0xABCD01FF UART 256B 4cyc 32bit

0xABCD0200-0xABCD02FF SYS 256B 4cyc 32bit

0xABCD0300-0xFFFFFFFF Shadow of 0x00000000-0x0003FFFF

Table6.1 Address Map of the Test Bench

36 A Pipelined RISC CPU “Aquarius”

Class Signal Name Direction Meaning Notes

CLK_SRC Input System clock System

Signals RST_n Input Power On Reset Negated

LCDRS Output LCD Register Select PO[8]

LCDRW Output LCD Read/Write PO[9]

LCDE Output LCD Enable Signal PO[10]

LCDDBO[7:0] Output LCD Data Bus Output PO[7:0]

LCDDBI[7:0] Input LCD Data Bus Input PI[7:0]

KEYYO[4:0] Output KEY Matrix Y Output PO[20:16]

Parallel

I/O Port

KEYXI[4:0] Input KEY Matrix X Input PI[20:16]

RXD Input Receive Serial Data

TXD Output Transmit Serial Data

CTS Input Clear To Send

UART

RTS Output Request To Send

Table6.2 Top Layer IN/OUT Signals

Class Signal Name Direction Meaning Notes

CLK Input System clock System

Signals RST Input Power On Reset

CE Input Chip Select (Module Select) STB

WE Input Write Enable

SEL[3:0] Input Byte Lane Select

DATI[31:0] Input Data Input (Write Data)

Wishbone

Bus

Signals

DATO[31:0] Output Data Output (Read Data)

PI[31:0] Input Port Input PORT

PO[31:0] Output Port Output

Table6.3 Parallel I/O Port (PIO) Module IN/OUT Signals

A Pipelined RISC CPU “Aquarius” 37

[PORT Output] Address=0xABCD0000 W only reserved

31(7) 30(6) 29(5) 28(4) 27(3) 26(2) 25(1) 24(0)

reserved reserved reserved reserved reserved reserved reserved reserved

[PORT Output] Address=0xABCD0001 W only KEYYO (KEY Matrix Y-axis Output)

23(7) 22(6) 21(5) 20(4) 19(3) 18(2) 17(1) 16(0)

reserved reserved reserved KY4 KY3 KY2 KY1 KY0

[PORT Output] Address=0xABCD0002 W only LCDCON (LCD Control Output)

15(7) 14(6) 13(5) 12(4) 11(3) 10(2) 9(1) 8(0)

reserved reserved reserved reserved reserved E R/W RS

[PORT Output] Address=0xABCD0003 W only LCDOUT (LCD Write Data Output)

7(7) 6(6) 5(5) 4(4) 3(3) 2(2) 1(1) 0(0)

DW7 DW6 DW5 DW4 DW3 DW2 DW1 DW0

[PORT Input] Address=0xABCD0000 R only reserved

31(7) 30(6) 29(5) 28(4) 27(3) 26(2) 25(1) 24(0)

reserved reserved reserved reserved reserved reserved reserved reserved

[PORT Input] Address=0xABCD0001 R only KEYXI (KEY Matrix X-axis Input)

23(7) 22(6) 21(5) 20(4) 19(3) 18(2) 17(1) 16(0)

reserved reserved reserved KX4 KX3 KX2 KX1 KX0

[PORT Input] Address=0xABCD0002 R only reserved

15(7) 14(6) 13(5) 12(4) 11(3) 10(2) 9(1) 8(0)

reserved reserved reserved reserved reserved E R/W RS

[PORT Input] Address=0xABCD0003 R only LCDIN (LCD Read Data Input)

7(7) 6(6) 5(5) 4(4) 3(3) 2(2) 1(1) 0(0)

DR7 DR6 DR5 DR4 DR3 DR2 DR1 DR0

Figure6.1 Parallel I/O Port (PIO) Registers

6.4. Serial I/O (UART): “uart.v”
The top layer has Serial I/O device (UART) “uart.v”, which is SASC (Simple

Asynchronous Serial Communication Device) from the opencores.org IP. The SASC is not

WISHBONE compliant IP, so some registers are added to connect SASC to WISHBONE

bus. UART IN/OUT signals are shown in Table6.4, and its registers are shown in Figure6.2.

38 A Pipelined RISC CPU “Aquarius”

Each register is located in side-by-side address, so they can be accessed by byte, word or

long operand size, but the UARTCON and UARTRXD/TXD should be accessed only by byte

operand size.

Class Signal Name Direction Meaning Notes

CLK Input System clock System

Signals RST Input Power On Reset

CE Input Chip Select (Module Select) STB

WE Input Write Enable

SEL[3:0] Input Byte Lane Select

DATI[31:0] Input Data Input (Write Data)

Wishbone

Bus

Signals

DATO[31:0] Output Data Output (Read Data)

RXD Input Receive Serial Data

TXD Output Transmit Serial Data

CTS Input Clear To Send

UART

RTS Output Request To Send

Table6.4 Serial I/O (UART) IN/OUT Signals

[UART] Address=0xABCD0100 R/W UARTBG0 (Baud rate Generator Div0)

31(7) 30(6) 29(5) 28(4) 27(3) 26(2) 25(1) 24(0)

B07 B06 B05 B04 B03 B02 B01 B00

[UART] Address=0xABCD0101 R/W UARTBG1 (Baud rate Generator Div1)

23(7) 22(6) 21(5) 20(4) 19(3) 18(2) 17(1) 16(0)

B17 B16 B15 B14 B13 B12 B11 B10

[UART] Address=0xABCD0102 R only UARTCON (TXF=full_o, RXE=empty_o)

15(7) 14(6) 13(5) 12(4) 11(3) 10(2) 9(1) 8(0)

reserved reserved Reserved reserved reserved reserved TXF RXF

[UART] Address=0xABCD0103 R only / UARTRXD, W only / UARTTXD

7(7) 6(6) 5(5) 4(4) 3(3) 2(2) 1(1) 0(0)

TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

Figure6.2 Serial I/O (UART) Registers

The UARTBG0 and UARTBG1 are the registers to determine the serial baud rate. The

A Pipelined RISC CPU “Aquarius” 39

UARTBG0 and UARTBG1 are reset to 0x00 when power on reset. The expression to

calculate the baud rate is shown below.

[]bps
BGBG

CLKf
BaudRate

)11()20(
1

4
)(

+×+
×=

Table6.5 shows some examples of baud rate setting.

Baud Rate

[bps]

f (CLK)

[MHz]

UARTBG0 UARTBG1 Notes

1200 20 0x12 (18) 0xCF (207)

2400 20 0x12 (18) 0x67 (103)

4800 20 0x12 (18) 0x33 (51)

9600 20 0x12 (18) 0x19 (25)

Table6.5 Examples of Baud Rate Settings

The UARTCON has 2 flags; TXF and RXE. The TXF is 1 when transmit buffer is full. If

TXF=0, you can write next transmit data. The RXE is 1 when receive buffer is empty. If

TXE=0, you can read receive data. The TXF and RXE correspond to full_o and empty_o of

SASC, respectively. Note that SASC has 4 byte depth FIFOs for both transmit buffer and

receive buffer. In case of this top layer, TXF and RXE are not connected as interrupt signals,

so you should poll these flags in your program. Generally, such flags should be treated as

interrupt requests. You can easily modify the Aquarius RTL codes like this.

The UARTRXD and UARTTXD are the receive buffer and transmit buffer registers, which

have same address. Read operation accesses to UARTRXD, and Write operation accesses to

UARTTXD.

6.5. System Controller (SYS): “sys.v”
The System Controller (SYS) “sys.v” has following functions.

(1) Generate Exception of Hardware Event.

- NMI (by Address Break)

- IRQ (by Interval Timer)

- CPU Address Error (by watching WISHBONE bus transaction)

(2) Emulate Exception of Hardware Event.

40 A Pipelined RISC CPU “Aquarius”

- NMI

- IRQ

- CPU Address Error

- DMA Address Error

- Manual Reset

(3) Control priority level among the requests of hardware exception.

(4) Set IRQ priority level and vector number.

(5) 12it Interval Timer to generate IRQ.

(6) Bus Address Break Function for debugging capability (NMI).

(7) Detect CPU Address Error by watching WISHBONE bus signals.

(8) SLEEP and Low Power Control, according to Figure5.2 manner.

The IN/OUT Signals of SYS are shown in Table6.6.

The SYS has 2 32bit length registers; INTCTL and BRKADR. These are shown in Figure6.3.

Both registers should be accessed only by long word operand size. The INTCTL is reset to

0x00000FFF, and the BRKADR is reset to 0x00000000 when power on reset.

Class Signal Name Direction Meaning Notes

CLK_SRC

CLK

SLP

WAKEUP

Input

Output

Input

Input

System clock Source

CLK , which stops at SLEEP

SLEEP request from CPU

Wakeup Request

System

Signals

RST Input Power On Reset

CE Input Chip Select (Module Select) STB

WE Input Write Enable

SEL[3:0] Input Byte Lane Select

ACK Input Bus Acknowledge

DATI[31:0] Input Data Input (Write Data)

DATO[31:0] Output Data Output (Read Data)

STB Input Strobe (Bus monitor to BRK)

Wishbone

Bus

Signals

ADR[31:0] Input Address (Bus monitor to BRK)

EVENT_REQ[2:0] Output Event Request

EVENT_INFO[11:0] Output Event Information (IRQ)

Hardware

Events

EVENT_ACK Input Event Acknowledge from CPU

Table6.6 System Controller (SYS) IN/OUT Signals

A Pipelined RISC CPU “Aquarius” 41

[SYS] Address=0xABCD0200 R/W INTCON (Interrupt Control)

31 30 29 28 27 26 25 24

E_NMI E_IRQ E_CER E_DER E_MRS reserved TMRON BRKON

23 22 21 20 19 18 17 16

ILVL3 ILVL2 ILVL1 ILVL0 IVEC7 IVEC6 IVEC5 IVEC4

15 14 13 12 11 10 9 8

IVEC3 IVEC2 IVEC1 IVEC0 TMR11 TMR10 TMR9 TMR8

7 6 5 4 3 2 1 0

TMR7 TMR6 TMR5 TMR4 TMR3 TMR2 TMR1 TMR0

[SYS] Address=0xABCD0204 R/W BRKADR (Break Address)

31 30 29 28 27 26 25 24

ADR31 ADR30 ADR29 ADR28 ADR27 ADR26 ADR25 ADR24

23 22 21 20 19 18 17 16

ADR23 ADR22 ADR21 ADR20 ADR19 ADR18 ADR17 ADR16

15 14 13 12 11 10 9 8

ADR15 ADR14 ADR13 ADR12 ADR11 ADR10 ADR9 ADR8

7 6 5 4 3 2 1 0

ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0

Figure6.3 System Controller (SYS) Registers

INTCTL : Interrupt Control Register

 E_NMI Emulate NMI. Write only bit. Read 0 only.

When you write 1, NMI exception sequence will start.

 E_IRQ Emulate IRQ. Write only bit. Read 0 only.

When you write 1, IRQ exception sequence will start

if the IRQ priority level is higher than I bit in SR.

The priority level and the vector number of the IRQ is specified

by ILVL3-ILVL0 and IVEC7-IVEC0 bits in INTCTL register.

 E_CER Emulate CPU Address Error. Write only bit. Read 0 only.

 When you write 1, CPU Address Error exception will start.

 E_DER Emulate DMA Address Error. Write only bit. Read 0 only.

42 A Pipelined RISC CPU “Aquarius”

 When you write 1, DMA Address Error exception will start.

 E_MRES Emulate Manual Reset. Write only bit. Read 0 only.

 When you write 1, Manual Reset exception will start.

 TMRON When 1, 12 bit Interval Timer starts.

When 0, the Interval Timer stops.

 BRKON When 1, start to compare BRKADR with WISHBONE address,

 and if these are equal, request NMI.

 ILVL3-ILVL0 IRQ priority level to be requested (makes EVENT_INFO[11:8])

 IVEC7-IVEC0 IRQ vector number to be requested (makes EVENT_INFO[7:0])

 TMR11-TMR0 12 bit Interval Timer. When 0x000, it requests IRQ.

BRKADR : Break Address Register

 ADR31-ADR0 Break address to be compared to WISHBONE address.

 It is valid only when BRKON=1.

6.6. On Chip Memory: “memory.v”
The memory module “memory.v” has 8KB ROM and 8KB RAM. The address map has been

shown in Table6.1. The bit pattern of ROM is specified by “rom.v” description. The memory

module’s IN/OUT signals are shown in Table6.7.

Class Signal Name Direction Meaning Notes

CLK Input System clock System

Signals RST Input Power On Reset

CE Input Chip Select (Module Select) STB

WE Input Write Enable

SEL[3:0] Input Byte Lane Select

ADR[13:0] Input Address

DATI[31:0] Input Data Input (Write Data)

Wishbone

Bus

Signals

DATO[31:0] Output Data Output (Read Data)

Table6.7 On-Chip Memory IN/OUT Signals

A Pipelined RISC CPU “Aquarius” 43

6.7. Simulation Tools and Flows
(1) Have you already installed all tools such as Cygwin, GNU binutils, GNU C compiler and

Aquarius deliverables for program development and Verilog simulation?

In following explanations, I assume the tool placing is like below.

 ~ (home directory)

 |----CPU (directory)

 |----*.v (Verilog Sources)

 |----test.txt (list of Verilog sources for simulation)

 |----sim (simulation launch script)

 |----asm (assembler launch script)

 |----sha_testsource (directory)

 |----testalu.src (ALU check program)

(2) To simulate instruction or program, make your assembler source file. Some examples

are located in the directory "sha_testsource" of Aquarius deliverables. In these examples,

basically, all instruction sequence to be verified are simulated on all memory space

attributes among combinations of no-wait or with-wait, and 32bit or 16bit instruction fetch

area (IF_WIDTH). Now, suppose you are trying "testalu.src" to check ALU functions.

(3) Assemble it. From your Cygwin console window, type…

 $ cd ~/CPU

 $./asm sha_testsource/testalu.src

If no errors, you will find following files.

 lis assembler list file

 obj s-format object file

 rom.v Verilog ROM description

(4) Prepare “test.txt” in which Verilog source file names are listed as follows.

// source file list

defines.v

 timescale.v

 register.v

 datapath.v

 mult.v

 decode.v

 mem.v

 cpu.v

 rom.v

 memory.v

 pio.v

44 A Pipelined RISC CPU “Aquarius”

 sasc_brg.v

 sasc_fifo4.v

 sasc_top.v

 uart.v

 lib.v

 sys.v

 top.v

 test.v

Ok, now you can simulate Aquarius Verilog RTL codes. Type...

 $./sim

If no errors, you will find following file.

 test_result.txt simulation result trace list

(5) Check this file. Are you success?

 The "test_result.txt" is like this.

COUNT# CR CSAWI SEL- ADR---- DATI---- DATO---- PC------ EVR EVI A|S-INST-Q-D-IFDR-IR--…

00000000 00 xxxxx xxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxx xxx x|x xxxx x x xxxx xxxx…

00000001 01 xxxxx xxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 111 000 1|1 f700 1 0 xxxx f700…

00000002 01 0001x xxxx xxxxxxxx 00000000 xxxxxxxx xxxxxxxx 111 000 1|1 f700 1 0 xxxx f700…

00000003 01 0001x xxxx xxxxxxxx 00000000 xxxxxxxx xxxxxxxx 111 000 0|1 f700 2 0 xxxx f700…

00000004 01 0001x xxxx xxxxxxxx 00000000 xxxxxxxx xxxxxxxx 111 000 0|1 f700 3 0 xxxx f700…

00000005 01 11101 1111 00000000 00000400 xxxxxxxx xxxxxxxx 111 000 0|1 f700 4 0 xxxx f700…

00000006 01 11101 1111 00000004 fffd0000 xxxxxxxx xxxxxxxx 111 000 0|1 f700 5 0 xxxx f700…

00000007 01 11101 1111 00000400 ee00dd01 xxxxxxxx 00000400 111 000 0|1 f700 6 1 xxxx f700…

………………

This file is created by $fdisplay() statement in test bench script "test.v", and shows

WISHBONE bus signals, CPU internal buses and registers et al. in trace list manner. You

can modify "test.v" to see other signals.

The simulation stop condition is determined by simulation clock cycle counts in "test.v"

description. This "test.v" is one of the examples for you, so you may modify it for your

favorite simulation.

A Pipelined RISC CPU “Aquarius” 45

7. FPGA Implementation
This chapter shows you my FPGA system and Aquarius implementation to FPGA.

7.1. FPGA System
As described before, I have been using existing

FPGA board XSP-009-300 manufactured by

HuMANDATA, Ltd., which has one Xilinx VirtexE

XCV300E. This board also has configuration

circuit by JTAG or FLASH ROM, and power

supply circuit. I think you can find similar FPGA

boards from many venders around you.

I made a FPGA System by connecting handmade

interface board, which has LCD display, KEY

matrix and RS-232C interface.

Figure 7.1 shows the whole view of FPGA

verification system. Figure 7.2 shows both

interface board and FPGA board. These 2 boards

are connected back to back each other. The system

block diagram is Figure7.3.

Figure7.1 FPGA Verification System

 (A) I/F board (B) I/F Board (bottom) (C) FPGA board (D) FPGA board (bottom)

Figure7.2 Picture of Each Board

46 A Pipelined RISC CPU “Aquarius”

Xilinx
VirtexE

XCV300E
PQ240

Xilinx
Config ROM

XC18V02

Power Supply
5V, 3.3V, 1.8V

FPGA
Configuration

Circuit

RS-232C
DSUB 9pin
Connector

MAX232
(ADM232AAN)

0000000012345678
Memory--12345678

74LS241

UTLRUN GET PUT RES

CC DD EE FF ADR

88 99 AA BB INC

44 55 66 77 DEC

00 11 22 33 DAT

FPGA Board XSP-009-300
(HuMANDATA, Ltd.)

Interface Board

Xilinx
VirtexE

XCV300E
PQ240

Xilinx
Config ROM

XC18V02

Power Supply
5V, 3.3V, 1.8V

FPGA
Configuration

Circuit

RS-232C
DSUB 9pin
Connector

MAX232
(ADM232AAN)

0000000012345678
Memory--12345678

74LS241

UTLRUN GET PUT RES

CC DD EE FF ADR

88 99 AA BB INC

44 55 66 77 DEC

00 11 22 33 DAT

FPGA Board XSP-009-300
(HuMANDATA, Ltd.)

Interface Board

Figure7.3 Block diagram of FPGA System

7.2. Circuit of FPGA Board
The circuit schematic of FPGA Board (XSP-009-300) is found in following URL;

http://www.hdl.co.jp/ftpdata/xsp-009/XSP009.sch.pdf. In my case, the FPGA operating

frequency is set to 20MHz.

7.3. Circuit of Interface Board
Figure 7.4 shows the circuit of Interface Board.

(1) LCD Display Interface

As LCD character display, I use SUNLIKE 16 columns x 2 rows LCD Display SC-1602B. It

operates by commands via its bus interface. You can find detail documents regarding

mechanical data, electrical characteristics, initialization methods and operation commands

from http://www.lcd-modules.com.tw/.

The bus interface is bi-direction, so, I use 74LS241 buffers to make interface with the FPGA.

Note that 100ohm resistors are inserted between 74LS241 output and FPGA input because

the FPGA don’t have 5V tolerant input buffer. Xilinx recommends using current limit

resistor at 5V signal input.

(2) RS-232C Interface

A Pipelined RISC CPU “Aquarius” 47

To implement the RS-232C Interface, I adopt the MAX232 compatible IC ANALOG

DEVICES ADM232AAN. The FPGA interface also needs 5V tolerant resistors. The DSUB-9

connector is linked supposing cross cable.

(3) KEY Matrix Interface

The Key Matrix Interface has 25 keys to input hex data, some commands and reset. The

1Kohm resistors are necessary to avoid conflict on FPGA output pins when multiple keys

are pushed. Instead of 1Kohm resisters, it is good idea that you use discrete diodes,

connecting each anode to switch and cathode to FPGA port.

(4) FPGA Pin Configuration

In case of above FPGA System, the FPGA’s pin configuration that corresponds to “top.v” is

as follows (Also refer to Table6.2). These statements should be described in User

Constraints File (.ucf) before you configure the FPGA.

__

NET "CLK_SRC" LOC = "p92";

NET "RST_n" LOC = "p42";

NET "TXD" LOC = "p46";

NET "RXD" LOC = "p47";

NET "RTS" LOC = "p48";

NET "CTS" LOC = "p49";

NET "LCDRW" LOC = "p4";

NET "LCDRS" LOC = "p3";

NET "LCDE" LOC = "p5";

NET "LCDDBO<7>" LOC = "p17";

NET "LCDDBO<6>" LOC = "p13";

NET "LCDDBO<5>" LOC = "p12";

NET "LCDDBO<4>" LOC = "p11";

NET "LCDDBO<3>" LOC = "p10";

NET "LCDDBO<2>" LOC = "p9";

NET "LCDDBO<1>" LOC = "p7";

NET "LCDDBO<0>" LOC = "p6";

NET "LCDDBI<7>" LOC = "p27";

NET "LCDDBI<6>" LOC = "p26";

NET "LCDDBI<5>" LOC = "p24";

NET "LCDDBI<4>" LOC = "p23";

NET "LCDDBI<3>" LOC = "p21";

NET "LCDDBI<2>" LOC = "p20";

NET "LCDDBI<1>" LOC = "p19";

NET "LCDDBI<0>" LOC = "p18";

NET "KEYYO<4>" LOC = "p28";

NET "KEYYO<3>" LOC = "p31";

NET "KEYYO<2>" LOC = "p33";

NET "KEYYO<1>" LOC = "p34";

NET "KEYYO<0>" LOC = "p35";

NET "KEYXI<4>" LOC = "p41";

NET "KEYXI<3>" LOC = "p40";

NET "KEYXI<2>" LOC = "p39";

NET "KEYXI<1>" LOC = "p38";

NET "KEYXI<0>" LOC = "p36"

48 A Pipelined RISC CPU “Aquarius”

p3

p4

p5

p6

p7

p9

p10

p11

p12

p13

p17

p18

p19

p20

p21

p23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

5V5V

10k
Vcc

Vss

Vo

RS

R/W

E

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

p24

p26

p27

SC
16

02
B

(L
C

D
)

100 74LS241

X
C

V
30

0E
-P

Q
24

0

74LS241

100

14
12
10
8
6
4
2

13
11
9
7
5
3
1

SC1602B PIN
TOP VIEW

p3

p4

p5

p6

p7

p9

p10

p11

p12

p13

p17

p18

p19

p20

p21

p23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

5V5V

10k
Vcc

Vss

Vo

RS

R/W

E

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

p24

p26

p27

SC
16

02
B

(L
C

D
)

100 74LS241

X
C

V
30

0E
-P

Q
24

0

74LS241

100

14
12
10
8
6
4
2

13
11
9
7
5
3
1

SC1602B PIN
TOP VIEW

14
12
10
8
6
4
2

13
11
9
7
5
3
1

SC1602B PIN
TOP VIEW

Figure7.4 Circuit of Interface Board

16

5V

0.1u

1

3
4

5

Vcc

C1+

C1-

C2+

C2-

2
6

V+

V-

0.1u

0.1u

0.1u

0.1u

T1IN T1OUT

T2IN T2OUT

R1OUT R1IN

R2OUT R2IN

11

12

10

9

14

13

7

8

M
A

X
23

2
(A

D
M

23
2A

A
N

)

4

3

1

8

6

7

5

2

9

TXD

RXD

RTS

CTS

15
GND

RS232C
DSUB-9

For Cross Cable

X
C

V
30

0E
-P

Q
24

0 p46

p47

p48

p49

100

100

16

5V

0.1u

1

3
4

5

Vcc

C1+

C1-

C2+

C2-

2
6

V+

V-

0.1u

0.1u

0.1u

0.1u

T1IN T1OUT

T2IN T2OUT

R1OUT R1IN

R2OUT R2IN

11

12

10

9

14

13

7

8

M
A

X
23

2
(A

D
M

23
2A

A
N

)

4

3

1

8

6

7

5

2

9

TXD

RXD

RTS

CTS

15
GND

RS232C
DSUB-9

For Cross Cable

X
C

V
30

0E
-P

Q
24

0 p46

p47

p48

p49

100

100

0 1 2 3

4 5 6 7

8 9 A B

C D E F

DAT

DEC

INC

ADR

UTL RUN GET PUT
RES

p36

p28

p31

p33

p34

p35

p38 p39 p40 p41

10k

3.3V

p42

10k

XCV300E-PQ240

10k 10k 10k 10k

X
C

V
30

0E
-P

Q
24

0

1k

1k

1k

1k

1k

0 1 2 3

4 5 6 7

8 9 A B

C D E F

DAT

DEC

INC

ADR

UTL RUN GET PUT
RES

p36

p28

p31

p33

p34

p35

p38 p39 p40 p41

10k

3.3V

p42

10k

XCV300E-PQ240

10k 10k 10k 10k

X
C

V
30

0E
-P

Q
24

0

1k

1k

1k

1k

1k

A Pipelined RISC CPU “Aquarius” 49

7.4. FPGA Configuration
Launch the Xilinx ISE Webpack 5.x, select the device to yours, and add following Verilog

sources to your project.

cpu.v

datapath.v

decode.v

defines.v

lib_fpga.v

mem.v

memory_fpga.v

mult.v

pio.v

register.v

sasc_brg.v

sasc_fifo4.v

sasc_top.v

sys.v

test.v

timescale.v

top.v

uart.v

Make user constraints file (top.ucf) to specify pin assignment, timing constraints and

BlockRAM initial value. In Aquarius deliverables, I prepare an example file top.ucf. To

initialize contents of BlockRAM, use "genram" utility described before and append INST

statements to top.ucf (default top.ucf already have INST statement, so you should

replace all INST statements to new ones generated by "genram".)

Ok, then compile from the “top” module, and configure your FPGA.

7.5. Results of FPGA Configuration
(1) Xilinx VirtexE (XCV300E)

Regarding the FPGA system mentioned above, Table7.1 shows the performance results by

Xilinx VirtexE XCV300E-8PQ240, which has 3072 slices. On chip memories are configured

by BlockRAM. Under the speed-priority synthesizing, total usage of logic slices is beyond

the device, unfortunately. In author’s FPGA System, although the device has been

configured by area-priority synthesis, the device operates 20MHz frequency under the

typical condition (power supply voltage and ambient temperature).

(2) Altera Stratix (EP1S10)

For technical reference, I tried to configure Aquarius into Altera Stratix EP1S10, which has

10570 logic elements. Table7.2 shows the summary. And the detail utilization of logic cells

is shown in Table7.3. In this case, on chip memories are implemented by Synchronous

SRAM components and the multiplier (in mult.v) is implemented by internal DSP unit.

50 A Pipelined RISC CPU “Aquarius”

Synthesis Top Slices Consumed Frequency Notes

top.v 2923 95% 15MHz Area

20MHz cpu.v 2635 86% 15MHz

top.v 3135 102% 25MHz XCV300E overflows Speed

20MHz cpu.v 2753 90% 21MHz

Table7.1 Results of Xilinx VertexE (XCV300E-8PQ240) with Webpack ISE 5.2i (SP3)

Synthesis Top Cells Consumed Frequency Notes

top.v 7919 75% 31MHz Normal

No constraints cpu.v 7499 71% 31MHz

Table7.2 Results of Altera Stratix (EP1S10F780C5ES) with Qualtus II 2.2 Web Edition (SP2)

Compilation Hierarchy Node

Lo
gi
c

Ce
ll
s

Re
gi

st
er

s

Me
mo
ry

Bi
ts DS
P

El
em

en
ts

DS
P
9x
9

DS
P
18

x1
8

DS
P
36

x3
6

Pi
ns

Vi
rt
ua
l

Pi
ns

LU
T-

On
ly LC
s

Re
gi

st
er

-
On

ly
 L
Cs

LU
T/

Re
gi

s
te
r
LC
s

|top 7919 (41) 1458 131072 8 0 0 1 36 0 6461 (37) 102 (1) 1356 (3)
 |cpu:CPU| 7499 (0) 1207 0 8 0 0 1 0 0 6292 (0) 31 (0) 1176 (0)
 |datapath:DATAPATH| 5309 (2508) 681 0 0 0 0 0 0 0 4628 (2370) 0 (0) 681 (138)
 |lpm_counter:PC_rtl_0| 31 (0) 31 0 0 0 0 0 0 0 0 (0) 0 (0) 31 (0)
 |alt_counter_stratix:wysi_counter| 31 (31) 31 0 0 0 0 0 0 0 0 (0) 0 (0) 31 (31)
 |register:REGISTER| 2770 (2770) 512 0 0 0 0 0 0 0 2258 (2258) 0 (0) 512 (512)
 |decode:DECODE| 827 (827) 183 0 0 0 0 0 0 0 644 (644) 26 (26) 157 (157)
 |mem:MEM| 371 (371) 179 0 0 0 0 0 0 0 192 (192) 5 (5) 174 (174)
 |mult:MULT| 992 (992) 164 0 8 0 0 1 0 0 828 (828) 0 (0) 164 (164)
 |lpm_mult:mult_422| 0 (0) 0 0 8 0 0 1 0 0 0 (0) 0 (0) 0 (0)
 |mult_lhj:auto_generated| 0 (0) 0 0 8 0 0 1 0 0 0 (0) 0 (0) 0 (0)
 |memory:MEMORY| 17 (0) 0 131072 0 0 0 0 0 0 17 (0) 0 (0) 0 (0)
 |ram:RAM| 17 (17) 0 131072 0 0 0 0 0 0 17 (17) 0 (0) 0 (0)
 |lpm_ram_dq:LPM_RAM_DQ_HH| 0 (0) 0 32768 0 0 0 0 0 0 0 (0) 0 (0) 0 (0)
 |altsyncram:altsyncram_component| 0 (0) 0 32768 0 0 0 0 0 0 0 (0) 0 (0) 0 (0)
 |lpm_ram_dq:LPM_RAM_DQ_HL| 0 (0) 0 32768 0 0 0 0 0 0 0 (0) 0 (0) 0 (0)
 |altsyncram:altsyncram_component| 0 (0) 0 32768 0 0 0 0 0 0 0 (0) 0 (0) 0 (0)
 |lpm_ram_dq:LPM_RAM_DQ_LH| 0 (0) 0 32768 0 0 0 0 0 0 0 (0) 0 (0) 0 (0)
 |altsyncram:altsyncram_component| 0 (0) 0 32768 0 0 0 0 0 0 0 (0) 0 (0) 0 (0)
 |lpm_ram_dq:LPM_RAM_DQ_LL| 0 (0) 0 32768 0 0 0 0 0 0 0 (0) 0 (0) 0 (0)
 |altsyncram:altsyncram_component| 0 (0) 0 32768 0 0 0 0 0 0 0 (0) 0 (0) 0 (0)
 |pio:PIO| 33 (33) 16 0 0 0 0 0 0 0 17 (17) 16 (16) 0 (0)
 |sys:SYS| 101 (101) 63 0 0 0 0 0 0 0 38 (38) 1 (1) 62 (62)
 |uart:UART| 228 (43) 168 0 0 0 0 0 0 0 60 (17) 53 (9) 115 (17)
 |sasc_brg:BRG| 33 (31) 25 0 0 0 0 0 0 0 8 (8) 2 (2) 23 (21)
 |lpm_counter:cnt_rtl_0| 2 (0) 2 0 0 0 0 0 0 0 0 (0) 0 (0) 2 (0)
 |alt_counter_stratix:wysi_counter| 2 (2) 2 0 0 0 0 0 0 0 0 (0) 0 (0) 2 (2)
 |sasc_top:TOP| 152 (63) 117 0 0 0 0 0 0 0 35 (20) 42 (10) 75 (33)
 |sasc_fifo4:rx_fifo| 46 (42) 37 0 0 0 0 0 0 0 9 (9) 16 (16) 21 (17)
 |lpm_counter:rp_rtl_0| 2 (0) 2 0 0 0 0 0 0 0 0 (0) 0 (0) 2 (0)
 |alt_counter_stratix:wysi_counter| 2 (2) 2 0 0 0 0 0 0 0 0 (0) 0 (0) 2 (2)
 |lpm_counter:wp_rtl_0| 2 (0) 2 0 0 0 0 0 0 0 0 (0) 0 (0) 2 (0)
 |alt_counter_stratix:wysi_counter| 2 (2) 2 0 0 0 0 0 0 0 0 (0) 0 (0) 2 (2)
 |sasc_fifo4:tx_fifo| 43 (39) 37 0 0 0 0 0 0 0 6 (6) 16 (16) 21 (17)
 |lpm_counter:rp_rtl_0| 2 (0) 2 0 0 0 0 0 0 0 0 (0) 0 (0) 2 (0)
 |alt_counter_stratix:wysi_counter| 2 (2) 2 0 0 0 0 0 0 0 0 (0) 0 (0) 2 (2)
 |lpm_counter:wp_rtl_0| 2 (0) 2 0 0 0 0 0 0 0 0 (0) 0 (0) 2 (0)
 |alt_counter_stratix:wysi_counter| 2 (2) 2 0 0 0 0 0 0 0 0 (0) 0 (0) 2 (2)

Table7.3 Detail Utilization of Logic Cells in Altera Stratix EP1S10

A Pipelined RISC CPU “Aquarius” 51

7.6. Application Programs on the FPGA System
I include some simple application programs in Aquarius deliverables. All applications are

developed by GNU C compiler for SuperH-2.

Each startup program (crt0.S) and linker script (sh.x) is located in directory “startup”

under each application directory. The “Makefile” is prepared for all applications so as to

compile and link by typing “$ make”, and to cleanup objects by typing “$ make clean”.

In my FPGA system, the BlockRAM contains several applications provided here (1), (2) and

(3). All applications are combined into one object file “ram.srec”. You can make

BlockRAM’s INIT statements by “genram” utility.

(1) Monitor Program: directory “shc_monitor_release_v1”

Using LCD display, key board and RS-232C I/F, this monitor program has very basic debug

capability such as Memory Editor, Program Loader from PC, Jumping to Program and

Debugging utilities such as Setting a Break point and Reading Registers. The source code is

“main.c”. This program is located from address 0x00000000 (here is vector table). It starts

by power on reset. Below, I simply explain an example session of the monitor. Please refer

Figure7.5.

(A) Memory Editor

(a) Startup

The top line shows memory address and its data. Left 8 hex number is address.

Right 8 hex number is data. Always shows only long-word sized data.

The bottom line has 4 byte entry space. You can enter new hex number here.

(b) Address Increment

The “INC” key increases address by 4 byte, and shows the data at new address.

(c) Address Decrement

The “DEC” key decreases address by -4 byte, and shows the data at new address.

(d) Enter Address

(e) Set Address

If you want to see another address of memory, enter new 4 byte address in bottom

line, and push “ADR” key. If your entry is not in multiples of 4, lower 2 bits of address

are cleared to 0, to avoid address error.

52 A Pipelined RISC CPU “Aquarius”

(f) Enter Data to be written

(g) Write Data and Increment Address

If you want to change data in displaying address, enter new 4 byte data in bottom

line, and push “DAT” key. Then the memory content is updated and the displayed

address increases 4 byte.

(h) Verify

Use decrement key (and also increment key) to verify the memory contents.

0000000000000400
Memory--00000400

(a) When Startup

0000000400004000
Memory--00004000

(b) “INC” Address Increment

FFFFFFFC000005D0
Memory--000005D0

(c) “DEC” Address Decrement

FFFFFFFC000005D0
Memory--00003800

(d) Enter 32bit Hex (address)

00003800FFFFFFFF
Memory--FFFFFFFF

(e) “ADR” Address Set

00003800FFFFFFFF
Memory--12345678

(f) Enter 32bit Hex (data)

00003804FFFFFFFF
Memory--FFFFFFFF

(g) “DAT” Write & increment

0000380012345678
Memory--12345678

(h) “DEC” Verify, OK!

Get S-Format(S3)
Please send.....

(i) “GET” Wait for Program Load

Get S-Format(S3)
00003190-----OK!

(j) Loading Program

0000300000003008
Memory--00003008

(k) Finish Loading Program

00003008D805480B
Memory--D805480B

(l) “ADR” Set Branch Target

00003008D805480B
Run---Good Luck!

(m) “RUN” Go !

<SuperH in FPGA>
@ABCDEFGHIJKLMNO

(n) Running Program

BRK-Func Select?
1:REG 2:BRK SET

(o) “UTL” Break Function Select

Set Break Point.
Address?00003800

(p) “1” Enter Break Address

Break Accepted.
Address?00003800

(q) “DAT” Set Break Point

0000000000000400
Memory--00003800

(r) Try to access 0x00003800

0000000000000400
NMI/BRK:Goto Mon

(s) “ADR” Access to 0x00003800

SR :00000100
PC :0000136C

(t) “UTL”-”2” Display Registers

R0 :0000069C
R1 :0000136C

(u) Continue to Hit any key

0000000000000400
Memory--00000400

(a) When Startup

0000000400004000
Memory--00004000

(b) “INC” Address Increment

FFFFFFFC000005D0
Memory--000005D0

(c) “DEC” Address Decrement

FFFFFFFC000005D0
Memory--00003800

(d) Enter 32bit Hex (address)

00003800FFFFFFFF
Memory--FFFFFFFF

(e) “ADR” Address Set

00003800FFFFFFFF
Memory--12345678

(f) Enter 32bit Hex (data)

00003804FFFFFFFF
Memory--FFFFFFFF

(g) “DAT” Write & increment

0000380012345678
Memory--12345678

(h) “DEC” Verify, OK!

Get S-Format(S3)
Please send.....

(i) “GET” Wait for Program Load

Get S-Format(S3)
00003190-----OK!

(j) Loading Program

0000300000003008
Memory--00003008

(k) Finish Loading Program

00003008D805480B
Memory--D805480B

(l) “ADR” Set Branch Target

00003008D805480B
Run---Good Luck!

(m) “RUN” Go !

<SuperH in FPGA>
@ABCDEFGHIJKLMNO

(n) Running Program

BRK-Func Select?
1:REG 2:BRK SET

(o) “UTL” Break Function Select

Set Break Point.
Address?00003800

(p) “1” Enter Break Address

Break Accepted.
Address?00003800

(q) “DAT” Set Break Point

0000000000000400
Memory--00003800

(r) Try to access 0x00003800

0000000000000400
NMI/BRK:Goto Mon

(s) “ADR” Access to 0x00003800

SR :00000100
PC :0000136C

(t) “UTL”-”2” Display Registers

R0 :0000069C
R1 :0000136C

(u) Continue to Hit any key

Figure7. 5 Example Session of the Monitor Program

A Pipelined RISC CPU “Aquarius” 53

 (B) Program Loader

(i) Program Loading from PC

(j) Now Loading

(k) Finish Loading

You can download S-Format(S3) object file (ASCII Text file) from PC via RS-232C

line. In default, 1200bps, 8bit non-parity. You can change the baud rate by changing

monitor program source. (Or directly change UARTBRG0 and UARTBRG1 register by

the monitor function.)

The acceptable S-Format records are only S0 (comment), S3 (actual object), S7 (end

of record). If you use “asm” script for assembler, or “Makefile” for C program in

Aquarius deliverables, they make suitable S-Format object file (*.srec) for this

monitor. After preparing object file on your PC, push “GET” key, them the FPGA system

waits for sending data. Send object by ASCII file from any proper terminal application

in your PC. During transfer, LCD shows top address of every record and the result of

check sum test. If the monitor finds checksum error, the transfer will stop. When the

monitor receives S7 record, it stops program loading, and shows the address of first

record which have been received.

For convenience of explanation, please suppose you downloaded

“shc_lcdtest/main.srec”, which is LCD test program.

(C) Run

(l) Set Target Address

(m) Go to program

(n) Now, running program

 The top address of LCD test program is 0x00003000. But the top address has

vector table. The actual start address is 0x00003008, so, set address to this. Then push

“RUN” key, the program will start. This “RUN” function is implemented by JSR

instruction. So, if your program ends by RST instruction, the control will return to the

monitor. Of course, if you want to stop your program, push “RES” key for reset, any

time.

(D) Debug Utility

(o) Select Break Function

54 A Pipelined RISC CPU “Aquarius”

(p) Enter Break Address

(q) Set Break Point

(r) Try a Break

(s) Break happens

If you want to set break point, push “UTL” key and “2”. And enter the break address

you want. To confirm the break operation, push “DAT”. Suppose you set 0x00003800 as

break point. Now let’s access 0x00003800 by the monitor. The monitor reports BRK has

happened. If you push any key, the control will return to monitor.

 The break happens only when the WISHBONE address is just equal to the address

you set as break point.

 Once break happens, the break setting is cleared (the break address that is set in

register “BRKADR” is kept but “BRKON” bit in “INTCON” register is cleared).

(t) Select Register Reading

(u) Check all Registers in CPU

You can examine register contents just when the break happens. By “UTL”-“1” key,

you can see all CPU registers.

(2) LCD Test: directory “shc_lcdtest”

 Display all characters on LCD display. It is a very simple program. The source code

is “main.c”. This program is located from address 0x00003000 (here is reset vector). To

start it, jump to 0x00003008 by monitor program.

(3) Interrupt! Clock: directory “shc_clock”

 This is a digital clock. The time base is interrupt (IRQ) from interval timer. The

timer requests IRQ in every 50 x 2^12 [ns] @20MHz operation. The IRQ service routine

controls internal software counter, and displays time. The source code is “main.c”. This

program is located from address 0x00002000 (here is vector table). To start it, jump to

0x00002400 by monitor program.

 You can adjust the clock. Push “DAT” key, enter hour. Again push “DAT”, enter

minute. Again “DAT”, enter second. Finally push “DAT”, then, clock starts.

A Pipelined RISC CPU “Aquarius” 55

(4) Calculation of Circular Constant (Pi) : directory “shc_pi”

 This is a program for calculating the Circular Constant (Pi). This source program

can make 1024 figures after the decimal fraction. If you have large memory space, you can

expand figures to be calculated only by changing the definition of MAXFIGURE.

This program is also a good verification of Aquarius quality.

This program uses the following Matin's formula.

)
239
1

arctan()
5
1

arctan(4
4

−×=
π

...
7

1
5

1
3

11
)

1
arctan(753 +−+−=

ppppp

To calculate 1024 figures, it approximately takes 4.5sec at 20MHz. (Aquarius don't have

RTC (real time clock) yet, so accurate speed can not be measured.)

Load the s-format object by the Aquarius monitor, and run it from the address 0x00002008.

This program displays the result on LCD display on the Aquarius FPGA System, like as

follows. Hit any key to page.

Constant Pi = 3.
1415926535897932
3846264338327950

2884197169399375
1058209749445923

0781640628620899
8628034825342117

0679821480865132
8230664709384460

9550582231725359
4081284811174502

8410270193852110
5559644622948954

9303819644288109
7566593344612847

5648233786783165
2712019091456485

6692346034861045
4326648213393607

2602491412737245
8700660631558817

4881520920962829
2540917153643678

9259036001133053
0548820466521384

1469519415116094
3305727036575959

1953092186117381
9326117931051185

4807446237996274
9567351885752724

8912279381830119
4912983367336244

0656643086021394
9463952247371907

0217986094370277
0539217176293176

7523846748184676
6940513200056812

7145263560827785
7713427577896091

7363717872146844
0901224953430146

5495853710507922
7968925892354201

9956112129021960
8640344181598136

2977477130996051
8707211349999998

3729780499510597
3173281609631859

5024459455346908
3026425223082533

4468503526193118
8171010003137838

7528865875332083
8142061717766914

7303598253490428
7554687311595628

6388235378759375
1957781857780532

1712268066130019
2787661119590921

6420198938095257
2010654858632788

56 A Pipelined RISC CPU “Aquarius”

Part2. Inside Aquarius CPU

A Pipelined RISC CPU “Aquarius” 57

8. Aquarius CPU Overview
This chapter shows overview of CPU, again.

8.1. Aquarius Block Diagram
Figure 8.1 shows the block diagram of Aquarius CPU core.

Memory
Access

Controller

mem.v

Decoder

decode.v

Data Path

datapath.v

Wishbone
Bus

Interrupt
Address Error

IF/MA
commands SLOT

controls

status

Multiplier

mult.v

Instruction controls

Data

Address and Data

CPU

cpu.v Memory
Access

Controller

mem.v

Decoder

decode.v

Data Path

datapath.v

Wishbone
Bus

Interrupt
Address Error

IF/MA
commands SLOT

controls

status

Multiplier

mult.v

Instruction controls

Data

Address and Data

CPU

cpu.v

Figure8.1. Block Diagram of Aquarius

Top layer of Aquarius is “CPU” which has WISHBONE compliant bus signals and accepts

interruption related signals. The most important system signals such as clock and reset are

not shown in this figure.

The Memory Access Controller handles instruction fetch and data read/write access. The

operations of Memory Access Controller are fully controlled by Decoder unit. Memory

Access Controller sends fetched instruction bit fields to the Decoder unit, and interchanges

read/write data and its address with Data Path unit. Aquarius assumes the Wishbone bus

is a Non-Harvard bus, then the simultaneous instruction fetch and R/W data access makes

bus contention. Memory Access Controller handles such contention smoothly and informs

the pipeline stall caused by the bus contention to Decoder unit. Also, the Memory Access

58 A Pipelined RISC CPU “Aquarius”

Controller can sense each boundary of bus cycles (with wait state) from Wishbone ACK

signal. In Aquarius architecture (may be in SuperH-2 architecture as well), such bus cycle

boundary corresponds to the pipeline’s slot edge. So the Memory Access Controller produces

the most important pipeline control signal “SLOT” indicating pipeline slot edge.

The Data Path unit has registers you can see in programmer’s model in SuperH-2 manual

such as General Registers (R0 to R15), Status Register (SR), Global Base Register (GBR),

Vector Base Register (VBR), Procedure Register (PR) and Program Counter (PC). The

Multiplication and Accumulate Registers (MACH/MACL) are found in Multiplication unit.

The Data Path unit also has necessity operation resources such as ALU (Arithmetic and

Logical operation Unit), Shifter, Divider, Comparator, temporary registers, many selectors,

interfaces to/from Memory Access Controller and Multiply unit, and several buses to

connect each resource. The Data Path is fully controlled by control signals from Decoder

unit.

Multiply unit has a 32bit x 16bit multiplier and its control circuits. A 16bit x 16bit multiply

operation is executed in one clock cycle. A 32 bit x 32bit multiply operation is done in two

clock cycles. Multiply unit also has the Multiplier and Accumulate Registers

(MACH/MACL). The MACH/MACL are not only the final result registers of multiply or

multiply-and-accumulation but also the temporary registers to hold the 48bit partial

multiply result from 32bit x 16bit multiplier for 32bit x 32bit operation. The multiply

instruction, for example MULS.L, clears the contents of MACH/MACL in early stage of the

instruction operation. However the multiply and accumulate instruction, for example

MAC.L, does not clear MACH/MACL before the operation. The MAC.L accumulates its own

partial multiply result to initial MACH/MACL and then finalize the operation result. The

major difference between multiply (MULS.L) and “multiply and accumulate” (MAC.L) is

whether to clear or not to clear the MACH/MACL before the operation. And also, for MAC.L

and MAC.W instruction, the accumulation adder in this unit has saturating function.

The Decoder unit is the fundamental CPU controller. It orders Memory Access Controller

fetch instructions and then receives the instruction. The Decoder Unit decodes the

instruction bit fields and judges the followed operations. Basically, the Decoder unit plays

the role only for the instruction ID stage. But it throws many control signals for following

A Pipelined RISC CPU “Aquarius” 59

EX, MA and WB stages toward Data Path unit, Multiplication unit, and Memory Access

Controller. These control signals are kept and shifted with its pipeline flow at each slot

edge until reaching to the target stage of the instruction. The Decoder unit detects every

conditions of pipeline stalling, and makes each unit of CPU be controlled properly. Also, it

controls not only simple 1 cycle instructions but also multi cycle instructions and

exception’s sequences such as interrupt and address error.

8.2. Aquarius CPU IN/OUT Signals
The Aquarius CPU (“cpu.v”)’s IN/OUT signals are shown in Table8.1.

Class Signal Name Direction Meaning Notes

CLK Input System clock System

Signals RST Input Power On Reset

CYC_O Output Cycle Output

STB_O Output Strobe Output

ACK_I Input Device Acknowledge

ADR_O[31:0] Output Address Output

DAT_I[31:0] Input Read Data

DAT_O[31:0] Output Write Data

WE_O Output Write Enable

SEL_O[3:0] Output Byte Lane Select

Wishbone

Bus

Signals

TAG0_I (IF_WIDTH) Input Fetch Width

EVENT_REQ_I[2:0] Input Event Request

EVENT_INFO_I[11:0] Input Event Information

Hardware

Event

(interrupt) EVENT_ACK_O Output Event Acknowledge

SLEEP SLP Output Sleep Pulse

Table8.1 Aquarius CPU IN/OUT Signals

60 A Pipelined RISC CPU “Aquarius”

9. Overview of Pipeline Control
This chapter describes the basis of pipeline controls in Aquarius CPU.

9.1. Pipeline and Stage
The CPU executes its instructions with pipelined controls as shown in Figure9.1.

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

Instruction-1

Instruction-2

Instruction-3

Instruction-4

Instruction-5

Instruction-6

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

Instruction-1

Instruction-2

Instruction-3

Instruction-4

Instruction-5

Instruction-6

Figure9.1 CPU Pipeline

The pipeline has following 5 stages, basically.

(1) IF : Instruction Fetch (“F”)

It fetches instruction code from memory. If the bus width is 32bit and the lower

2bit of accessing address is 2’b00, the IF stage can fetch 2 instructions, because the length

of each instructions is fixed in 16bit. If the bus width is 16bit or the lower 2bit of accessing

address is not 2’b00, the IF stage can fetch only 1 instruction.

(2) ID : Decode (“D”)

It decodes fetched instruction code and controls whole CPU operation. The ID is

the most important stage because all operations in each block of CPU are fully controlled by

ID. The ID stage asserts many control signals to EX (datapath.v), MA (mem.v), and WB

(datapath.v). Of course if the instruction code is multiplication related one, the ID

activates multiplication unit (mult.v). Each control signal is shifted along with pipeline

and activates each stage.

The ID also issues coming IF stage, and the IF forwards new instruction to ID

stage. Then the CPU operation can continue.

A Pipelined RISC CPU “Aquarius” 61

If the hardware event signal is asserted, the ID samples it and switches its

operation from fetched instruction’s to the sequence of the hardware event exception.

(3) EX : Execute

According to controls from ID stage, the EX stage executes register-register

operation, or address calculation for next MA stage. It can also issue multiplication related

commands to multiplier unit (mult.v).

(4) MA : Memory Access

According to controls from ID stage, the MA stage reads/writes data from/to

memory. The Aquarius CPU has non-Harvard bus, so the simultaneous IF and MA raise the

bus contention. In this case, MA has the higher priority, so the IF is stalled by the MA.

(5) WB : Write Back

According to controls from ID stage, the WB writes back the memory read data to

the register Rn. The WB is located at the pipeline tail of memory load instruction.

9.2. Pipeline of each Instruction
All instructions do not always have 5 stages. Figure9.2 shows some pipeline examples of

typical instructions.

(1) ALU Operation

The instruction of register-register operation has only 3 stages; IF, ID and EX. The

register-register operation is executed in EX stage, including register read, ALU operation,

and register write.

(2) Memory Store

The instruction of store to memory has 4 stages; IF, ID, EX and MA. The memory

access address is calculated in EX stage, and the write data is also prepared in EX stage.

(3) Memory Load

The instruction of load from memory has 5 stages; IF, ID, EX, MA and WB. The

memory access address is calculated in EX stage. The load data is stored to register in WB

stage. If the register to be written back is NOT same as the register which is used in

following instruction, there is no contention, so the pipeline flows without stall.

The EX stage in the later instruction, which uses the written back data in the WB, can

be executed at same timing as the WB by the grace of the forwarding apparatus.

62 A Pipelined RISC CPU “Aquarius”

(4) Memory Load with Register Contention

If the register to be written back is SAME as the register which is used in following

instruction, the register contention happens. The ID stage of following instruction is

stalled.

(5) Branch Operation

The branch instruction has multiple cycles. In the red square of Figure9.2 (5), you can

find 3 pipelines. This means the BT (taken) instruction executes in 3 cycles. Generally, the

multiple cycle instructions consist of multiple pipelines. In case of BT, the 1st pipeline

calculates the address of branch target, the 2nd pipeline issues instruction fetch of branch

target and increments PC, and the 3rd pipeline issues fetch of the next instruction of branch

target and increments PC. The details of PC control are described later.

The previous instruction of BT has issued a instruction fetch, but the fetched code will

be overwritten by the IF (of branch target) issued by the 2nd pipeline of the BT before

sending to ID stage of target instruction. This extra instruction fetch is called “overrun

fetch”. The codes fetched by overrun fetch are ignored.

(6) Delayed Branch

The delayed branch has 2 pipelines. The 1st pipeline calculates the address of branch

target, the 2nd pipeline issues instruction fetch of branch target and increments PC.

The IF of instruction in delay slot, which has been issued by the previous instruction

of the delayed branch, does not disappear (is not overwritten), then the instruction in delay

slot is executed correctly before the branch target instruction.

The branch instruction which consists of 2 pipelines becomes delayed branch with

delayed slot, and the branch which has 3 pipelines becomes normal branch.

(7) Multiplication

The multiplication related instructions have multiplier stage (“m”) on the pipeline tail.

If the result register MACH/MACL does not conflict with followed instruction, there is no

pipeline stall. The details of pipeline of multiplication are described in later chapter.

(8) Multiplication with Register Contention

If the result registers MACH/MACL conflict with followed instruction, pipeline stall

happens. The details of contention of multiplication related instructions are described in

later chapter.

A Pipelined RISC CPU “Aquarius” 63

F D E

F D E

F D E

MOV R0, R1

ADD R1, R2

TST R2, R3

F D E

F D E M

F D E

SUB R0, R1

MOV.L R1, @R3

ADD #4, R3

(1) ALU Operation (2) Memory Store

F D E

F D E M W

F D E

F D E

SUB R0, R1

MOV.L @R1, R2

ADD #4, R1

TST R2, R3

forwarding

F D E

F D E M W

F

SUB R0, R1

MOV.L @R1, R2

ADD R2, R3

TST R3, R4

forwarding

(D) ED

F D E

(3) Memory Load (w/o stall) (4) Register Contention
by Memory Load (w/ stall)

F D E

F D E

F D E

CMP/EQ R0, R1

BT disp8

(target) MOV R1, R2

(5) Branch Operation

D E

D E

F(overrun fetch)

F D E

F D E

BRA disp12

(target) MOV R1, R2

(6) Delayed Branch Operation

D E

F(delay slot) ADD R0, R1

F D ESUB R2, R3

D E-

F D ESUB R2, R3

FDMULS.L R0, R2 D E m m

F D E M W

F D E

F D E

MOV.L @R1, R2

SUB R2, R3

MOV R3, R4

FDMULS.L R0, R2 D E m m

F (D) (D)

F D E

F D

STS MACL, R2

SUB R2, R3

MOV R3, R4

D E

(7) Multiplication (8) Multiplication (w/ stall)

F D E

F D E

F D E

MOV R0, R1

ADD R1, R2

TST R2, R3

F D E

F D E M

F D E

SUB R0, R1

MOV.L R1, @R3

ADD #4, R3

(1) ALU Operation (2) Memory Store

F D E

F D E M W

F D E

F D E

SUB R0, R1

MOV.L @R1, R2

ADD #4, R1

TST R2, R3

forwarding

F D E

F D E M W

F

SUB R0, R1

MOV.L @R1, R2

ADD R2, R3

TST R3, R4

forwarding

(D) ED

F D E

(3) Memory Load (w/o stall) (4) Register Contention
by Memory Load (w/ stall)

F D E

F D E

F D E

CMP/EQ R0, R1

BT disp8

(target) MOV R1, R2

(5) Branch Operation

D E

D E

F(overrun fetch)

F D E

F D E

BRA disp12

(target) MOV R1, R2

(6) Delayed Branch Operation

D E

F(delay slot) ADD R0, R1

F D ESUB R2, R3

D E-

F D ESUB R2, R3

FDMULS.L R0, R2 D E m m

F D E M W

F D E

F D E

MOV.L @R1, R2

SUB R2, R3

MOV R3, R4

FDMULS.L R0, R2 D E m m

F (D) (D)

F D E

F D

STS MACL, R2

SUB R2, R3

MOV R3, R4

D E

(7) Multiplication (8) Multiplication (w/ stall)

Figure9.2 Pipeline of each Instruction

64 A Pipelined RISC CPU “Aquarius”

9.3. Register Conflict
As described previous section, the memory load instruction may cause register contention.

See Figure9.2 (3) and (4).

9.4. Memory Access Conflict
The Aquarius CPU has non-Harvard bus, so the simultaneous IF and MA raise the bus

contention, as shown in Figure9.3.

If the bus width is 32bit and the lower 2bit of accessing address is 2’b00, the IF stage can

fetch 2 instructions, and the following IF stage does not need to produce actual memory

read cycle. The IF stage, which issues actual bus cycle, is shown as “F”, and the IF stage,

which does not issue real bus cycle and take the instruction from internal buffer, is shown

as “f” in the figure. The simultaneous “M” and “F” cause the contention and the pipeline is

stalled, but “M” and “f” does not conflict.

Note that, if you locate load/store instruction at long word boundary (address=4n), the MA

stage of the instruction does not conflict with IF of post instruction (Figure9.3 (1)),

otherwise (address=4n+2), it conflicts (Figure9.3 (2)).

f D E

F D E M W

f D E

F D E

SUB R0, R1

MOV.L @R1, R2

ADD #4, R1

TST R2, R3

forwarding

(1) Not conflict MA and IF

f D EOR R4, R5

F D E

f D E M W

F D E

f D E

SUB R0, R1

MOV.L @R1, R2

ADD #4, R1

TST R2, R3

(2) MA-IF Conflict (w/ stall)

F D EOR R4, R5

-

(D)

F D E

f D E M W

F D E

f D E

SUB R0, R1

MOV.L @R1, R2

ADD #4, R2

TST R2, R3

(3) Register Conflict and MA-IF Conflict (w/ stall)

F D EOR R4, R5

-

(D)
forwarding

F

f

Fetch 2 instructions from 32bit bus.
Send 1st instruction to decoder.

Fetch 2nd instruction from internal buffer.
Send it to decoder.

f D E

F D E M W

f D E

F D E

SUB R0, R1

MOV.L @R1, R2

ADD #4, R1

TST R2, R3

forwarding

(1) Not conflict MA and IF

f D EOR R4, R5

F D E

f D E M W

F D E

f D E

SUB R0, R1

MOV.L @R1, R2

ADD #4, R1

TST R2, R3

(2) MA-IF Conflict (w/ stall)

F D EOR R4, R5

-

(D)

F D E

f D E M W

F D E

f D E

SUB R0, R1

MOV.L @R1, R2

ADD #4, R2

TST R2, R3

(3) Register Conflict and MA-IF Conflict (w/ stall)

F D EOR R4, R5

-

(D)
forwarding

F

f

Fetch 2 instructions from 32bit bus.
Send 1st instruction to decoder.

Fetch 2nd instruction from internal buffer.
Send it to decoder.

Figure9.3 Conflict between MA and IF

A Pipelined RISC CPU “Aquarius” 65

9.5. Who issues IF? Who issues ID?
The ID stage fundamentally controls whole CPU operations. No one issues ID stage. ID

stage continues by itself.

The ID stage issues not only EX, MA and WB stages, but also the IF stage of followed

instruction as shown in Figure9.4. After the power on reset, at the last sequence of power

on reset exception, the IF stages of 1st instruction and 2nd instruction are issued by the last

two decode stages in the exception sequence. Each IF stage of all followed instructions is

issued by similar manner.

 By the issued IF, the corresponding ID stage can get next instruction so that each

ID can keep its continuance.

D

D

F

F

D

D

E

E M W

F D E

F D E

F D E M W

F

Power on Reset
Exception Sequence

1st Instruction

2nd Instruction

D

D

F

F

D

D

E

E M W

F D E

F D E

F D E M W

F

Power on Reset
Exception Sequence

1st Instruction

2nd Instruction

Figure9.4 IF Issue

66 A Pipelined RISC CPU “Aquarius”

10. Decoder Unit
This chapter describes the details of decoder unit (decode.v).

10.1. IN/OUT Signals
Table10.1 shows all in/out signals of decoder unit.

Class Direction Name From / To Meaning Notes
input CLK EXTERNAL clock

input RST EXTERNAL reset

Pipeline Slot input SLOT mem.v pipeline slot

output IF_ISSUE mem.v fetch request

output IF_JP mem.v fetch caused by jump

input [15:0] IF_DR mem.v fetched instruction

input IF_BUS mem.v fetch access done to extenal bus

input IF_STALL mem.v fetch and memory access contention

output MA_ISSUE mem.v memory access request

output KEEP_CYC mem.v request read-modify-write (To be issued on
READ-CYC to keep CYC_O on)

output MA_WR mem.v memory access kind : Write(1)/Read(0)

output [1:0] MA_SZ mem.v memory access size : 00 byte, 01 word, 10
long, 11 inhibitted

output MULCOM1 mult.v Mult M1 Latch Command

output [7:0] MULCOM2 mult.v Mult M2 Latch Command

output WRMACH, WRMACL mult.v Write MACH/MACL

input MAC_BUSY mult.v multiplier busy signal (negate at final
operation state)

output RDREG_X datapath.v read REG to X

output RDREG_Y datapath.v read REG to Y

output WRREG_Z datapath.v write REG from Z

output WRREG_W datapath.v write REG from W

output [3:0] REGNUM_X datapath.v specify REG number reading to X

output [3:0] REGNUM_Y datapath.v specify REG number reading to Y

output [3:0] REGNUM_Z datapath.v specify REG number writing from Z

output [3:0] REGNUM_W datapath.v specify REG number writing from W

ALU output [4:0] ALUFUNC datapath.v ALU function

output WRMAAD_Z datapath.v write MAAD from Z

output WRMADW_X datapath.v write MADW from X

output WRMADW_Y datapath.v write MADW from Y

output RDMADR_W datapath.v read MADR to W

General
Register
Controls

Memory
Access Data

System
Signals

Instruction
Fetch
Controls

Memory
Access
Controls

Multiply
Controls (1)

Table10.1 Decoder IN/OUT signals (1)

A Pipelined RISC CPU “Aquarius” 67

Class Direction Name From / To Meaning Notes
output [1:0] MACSEL1 datapath.v MAC Selecter 1

output [1:0] MACSEL2 datapath.v MAC Selecter 2

output RDMACH_X datapath.v read MACH to X

output RDMACL_X datapath.v read MACL to X

output RDMACH_Y datapath.v read MACH to Y

output RDMACL_Y datapath.v read MACL to Y

output RDSR_X datapath.v read SR to X-bus

output RDSR_Y datapath.v read SR to Y-bus

output WRSR_Z datapath.v write SR from Z-bus

output WRSR_W datapath.v write SR from W-bus

Latch S bit output MAC_S_LATCH datapath.v latch S bit before MAC operation

output RDGBR_X datapath.v read GBR to X-bus

output RDGBR_Y datapath.v read GBR to Y-bus

output WRGBR_Z datapath.v write GBR from Z-bus

output WRGBR_W datapath.v write GBR from W-bus

output RDVBR_X datapath.v read VBR to X-bus

output RDVBR_Y datapath.v read VBR to Y-bus

output WRVBR_Z datapath.v write VBR from Z-bus

output WRVBR_W datapath.v write VBR from W-bus

output RDPR_X datapath.v read PR to X-bus

output RDPR_Y datapath.v read PR to Y-bus

output WRPR_Z datapath.v write PR from Z-bus

output WRPR_W datapath.v write PR from W-bus

output WRPR_PC datapath.v write PR from PC

output RDPC_X datapath.v read PC to X

output RDPC_Y datapath.v read PC to Y

output WRPC_Z datapath.v write PC from Z

output INCPC datapath.v increment PC

output IFADSEL datapath.v IF_AD selecter

output [15:0] CONST_IFD datapath.v Constant Value from Instruction Field

output CONST_ZERO4 datapath.v Const = unsigned lower 4bit

output CONST_ZERO42 datapath.v Const = unsigned lower 4bit * 2

output CONST_ZERO44 datapath.v Const = unsigned lower 4bit * 4

output CONST_ZERO8 datapath.v Const = unsigned lower 8bit

output CONST_ZERO82 datapath.v Const = unsigned lower 8bit * 2

output CONST_ZERO84 datapath.v Const = unsigned lower 8bit * 4

output CONST_SIGN8 datapath.v Const = signed lower 8bit

output CONST_SIGN82 datapath.v Const = signed lower 8bit * 2

output CONST_SIGN122 datapath.v Const = signed lower 12bit * 2

output RDCONST_X datapath.v read CONST to X

output RDCONST_Y datapath.v read CONST to Y

output REG_FWD_X datapath.v forward REG from W to X

output REG_FWD_Y datapath.v forward REG from W to Y

Immediate
and

Displacemen
t Controls

Forwarding

GBR
Controls

VBR
Controls

PR Controls

PC Controls

Multiply
Controls (2)

SR Controls

Table10.1 Decoder IN/OUT signals (2)

68 A Pipelined RISC CPU “Aquarius”

Class Direction Name From / To Meaning Notes
Compare
Controls

output [2:0] CMPCOM datapath.v define comparator operation (command)

output [4:0] SFTFUNC datapath.v Shifter Function

output RDSFT_Z datapath.v read SFTOUT to Z-BUS

input T_BCC datapath.v T value for Bcc judgement

output T_CMPSET datapath.v reflect comparator result to T

output T_CRYSET datapath.v reflect carry/borrow out to T

output T_TSTSET datapath.v reflect tst result to T

output T_SFTSET datapath.v reflect shifted output to T

output QT_DV1SET datapath.v reflect DIV1 result to Q and T

output MQT_DV0SET datapath.v reflect DIV0S result to M, Q and T

output T_CLR datapath.v clear T

output T_SET datapath.v set T

output MQ_CLR datapath.v clear M and Q

output RDTEMP_X datapath.v read TEMP to X-bus

output WRTEMP_Z datapath.v write to TEMP from Z-bus

output WRMAAD_TEMP datapath.v output MAAD from TEMP

input [2:0] EVENT_REQ EXTERNAL event request

output EVENT_ACK EXTERNAL event acknowledge

input [11:0] EVENT_INFO EXTERNAL event information
(ILEVEL[3:0],VECTOR[7:0])

output RST_SR datapath.v reset SR

input [3:0] IBIT datapath.v I bit in SR

output [3:0] ILEVEL datapath.v IRQ Level

output WR_IBIT datapath.v Write ILEVEL to I bit in SR

SLEEP output SLP EXTERNAL Sleep output

Hardware
Events

SR and I bit
Controls

Shifter
Controls

T bit
Q Bit
M bit
Controls

TEMP
Register
Controls

Table10.1 Decoder IN/OUT signals (3)

10.2. Structure of Decoder Unit
Figure10.1 shows whole structure of decoder unit. The huge truth table generates all

control signals for each block in CPU. The huge truth table (combinational circuit) receives

2 input signal groups. One is INSTR_STATE[15:0] and the other is INSTR_SEQ[3:0].

The INSTR_STATE[15:0] shows the instruction code that should be processed in decoder

unit. The IR register is reset by RST signal, so that the initial state of INSTR_STATE[15:0]

is set to `POWER_ON_RESET(16’hF700).

The INSTR_STATE[15:0] is basically same as IF_DR, which is fetched instruction code. But

if interrupt or hardware exception event is detected, the INSTR_STATE[15:0] is replaced to

corresponding exception code according to EVENT_REQ[2:0] and EVENT_INFO[11:0] ,

A Pipelined RISC CPU “Aquarius” 69

then the signal IF_DR_EVT[15:0] is created. Here, the some necessary controls for masking

interrupt or hardware exception are performed, that is,

(1) All exceptions are masked after delayed branch (i.e. the instruction in branch slot is

never replaced to exception sequence) using DELAY_SLOT signal which comes from the

huge truth table..

(2) Some specific instructions such as LDC/LDC.L mask interrupt (i.e. an instruction just

after the instruction which masks interrupt is never replaced to interrupt sequence) using

MASKINT signal from huge truth table.

(3) If the priority level of IRQ is less than I bit in SR, the interrupt request should be

ignored.

The IF_DR is updated by memory controller regardless of instruction sequence because the

decoder itself requests IF as its own operation. So, IF_DR (IF_DR_EVT) should be latched

to IR register, if the instruction needs multiple cycles (including memory waits and pipeline

stalls).

The INSTR_SEQ[3:0] has its meanings only when the executing instruction has multiple

cycles. Its default value is 4’b0000, and the multi-cycle instruction increments INSTR_SEQ

to make multiple pipelines as shown in, for example, Figure9.2 (BT, BRA).

The reset state of INSTR_SEQ (when RST asserted) is set to 4’b0001 to begin power on

reset sequence, because the value 4’b0000 has specific meaning for the control of the

decoder’s state machine, as shown in later (Table10.2).

The combination of INSTR_STATE and INSTR_SEQ specify whole control signal states via

the huge truth table. This combinational circuit also outputs a signal DISPATCH. Its

assertion indicates that the pipeline stage of instruction is final. If the DISPATCH is

asserted, INSTR_STATE should be updated according to IF_DR or proper exception code

(IF_DR_EVT), and INSTR_SEQ should be reset to zero.

The detail state controls are shown in Table10.2. The way of controls depends on status of

pipeline stall. The signals NEXT_ID_STALL and ID_STALL indicate the status of pipeline

stall. The signal meanings are describes in later section.

70 A Pipelined RISC CPU “Aquarius”

Figure10.2 shows a operation image of the decoder state machine. And Figure10.3 shows a

basic example of ID stage operation.

IF_DR

EVENT_REQ
EVENT_INFO

IF_DR_EVT

IR

0 1

INSTR_STATE[15:0]

INSTR_STATE_SEL

Combinational
Logic DELAY_SLOT

MASKINT
IBIT

INSTR_SEQ[3:0]

INSTR_SEQ

+1

4’b0000

Huge Truth Table

Control Signals

Init=4’b0001

DISPATCH
1 0

DISPATCH

Init=`POWER_ON_RESET

IF_DR

EVENT_REQ
EVENT_INFO

IF_DR_EVT

IR

0 1

INSTR_STATE[15:0]

INSTR_STATE_SEL

Combinational
Logic DELAY_SLOT

MASKINT
IBIT

INSTR_SEQ[3:0]

INSTR_SEQ

+1

4’b0000

Huge Truth Table

Control Signals

Init=4’b0001

DISPATCH
1 0

DISPATCH

Init=`POWER_ON_RESET

Figure10.1 State Machine in Decoder Unit

A Pipelined RISC CPU “Aquarius” 71

Power on
Reset

Exception

Instruction
A

Instruction
B

1 2

0 1

0

INSTR_STATE INSTR_SEQ

3 4 5

Instruction
C 0 21

6

RST

n : DISPATCH=1
At next slot cycle,
Change INSTR_STATE according to IF_DR,
And clear INSTR_SEQ to zero.

Power on
Reset

Exception

Instruction
A

Instruction
B

1 2

0 1

0

INSTR_STATE INSTR_SEQ

3 4 5

Instruction
C 0 21

6

RST

n : DISPATCH=1
At next slot cycle,
Change INSTR_STATE according to IF_DR,
And clear INSTR_SEQ to zero.

Figure10.2 State Transition

ID (1)

ID (2)-1 ID (2)-2

ID (3) ID_STALL

(1)IF_DR

IR *

ID (4)

(2)

(2)*

* (3) *

(3)*

(4)

*

SLOT

0 0 1 0 0 0INSTR_SEQ

ID (1)

ID (2)-1 ID (2)-2

ID (3) ID_STALL

(1)IF_DR

IR *

ID (4)

(2)

(2)*

* (3) *

(3)*

(4)

*

SLOT

0 0 1 0 0 0INSTR_SEQ

Figure10.3 Basic Operation of State Machine in Decoder Unit

72 A Pipelined RISC CPU “Aquarius”

Output
SL

OT
NE

XT
_I

D_
ST

AL
L

ID
_S

TA
LL

DI
SP

AT
CH

IN
ST

R_
SE

Q

IN
ST
R_
ST
AT
E

IN
ST

R_
SE

Q

IR

0 * * * * IR Keep Keep Not Changed
1 0 0 0 >=0001 IR +1 Keep During Multi-Cycle Instruction
1 0 0 0 ==0000 IF_DR_EVT +1 IF_DR_EVT First ID Stage of Multi-Cycle Instruction
1 0 0 1 >=0001 IR Clear0 Keep Final ID Stage of Multi-Cycle Instruction
1 0 0 1 ==0000 IF_DR_EVT Clear0 IF_DR_EVT ID Stage of Single Cycle Instruction
1 0 1 0 >=0001 IR +1 Keep Stalled Last Slot during Multi-Cycle Instruction
1 0 1 0 ==0000 IR +1 Keep Stalled Last Slot of first ID stage of Multi-Cycle Instruction
1 0 1 1 >=0001 IR Clear0 Keep Stalled Last Slot of Final ID Stage of Multi-Cycle Instruction
1 0 1 1 ==0000 IR Clear0 Keep Stalled Last Slot of ID Stage of Single Cycle Instruction
1 1 0 0 >=0001 IR Keep Keep Stalled First Slot during Multi-Cycle Instruction
1 1 0 0 ==0000 IF_DR_EVT Keep IF_DR_EVT Stalled First Slot of first ID stage of Multi-Cycle Instruction
1 1 0 1 >=0001 IR Keep Keep Stalled First Slot of Final ID Stage of Multi-Cycle Instruction
1 1 0 1 ==0000 IF_DR_EVT Keep IF_DR_EVT Stalled First Slot of ID Stage of Single Cycle Instruction
1 1 1 0 >=0001 IR Keep Keep Stalling Slot during Multi-Cycle Instruction
1 1 1 0 ==0000 IR Keep Keep Stalling Slot of first ID stage of Multi-Cycle Instruction
1 1 1 1 >=0001 IR Keep Keep Stalling Slot of Final ID Stage of Multi-Cycle Instruction
1 1 1 1 ==0000 IR Keep Keep Stalling Slot of ID Stage of Single Cycle Instruction

Input @Next Slot

Notes

Table10.2 State Controls of Decoder Unit

10.3. Shifting Control Signals
The decoder unit makes many control signals to control whole CPU blocks. These control

signals are generated by the huge truth table as described above. The output timing of all

control signals is always on ID stage. But these signals should control not only ID stage

operations but also EX, MA and WB stage operations. So the signals which control EX or

WB should be shifted as shown in Figure10.4. Actually, the flip-slops shown in Figure10.5

are used to shift each control signal.

Note that MA controls are performed in EX stage because how to issue the MA can be

determined in EX stage, in which address of MA is calculated and write data is prepared.

A Pipelined RISC CPU “Aquarius” 73

D1 E1 M1 W1

D2 E2

E3 M3
E

X
_e

ee ee
e

D3
W

B
_w

w
w

WB1_www WB2_www

w
w

w

ID
_d

dd
D1 E1 M1 W1

D2 E2

E3 M3
E

X
_e

ee ee
e

D3
W

B
_w

w
w

WB1_www WB2_www

w
w

w

ID
_d

dd

Figure10.4 Shifting Control Signals

Decoder

EX controls WB controls

CLK&SLOT CLK&SLOT

CLK&SLOT

CLK&SLOT

EX_eee

eee

WB_www

WB1_www

WB2_www

www

ID controls

ID_ddd

Decoder

EX controls WB controls

CLK&SLOT CLK&SLOT

CLK&SLOT

CLK&SLOT

EX_eee

eee

WB_www

WB1_www

WB2_www

www

ID controls

ID_ddd

Figure10.5 Shifting Circuit

74 A Pipelined RISC CPU “Aquarius”

10.4. Pipeline Stall
The pipeline is stalled by following 4 reasons.

[1] Wait States on Instruction Fetch (IF) or Data Access (MA)

 All pipeline slots are synchronized to memory access. The signal SLOT from mem.v

indicates the each slot edge. If there is no memory access or there is memory access without

wait state, the pipeline slot do not stalls (SLOT=1). If there is memory access with wait

state, the pipeline stalls (SLOT=0) until SLOT signal is asserted (it means the wait state

finishes). So the clock inputs of whole flip-flops for controls are gated by SLOT signal. Only

by this clock gating, such kind of pipeline stall is fully controlled. See Figure10.6.

STB

bus cycle

ACK

bus cycle bus cycle

SLOT

W
IS

H
B

O
N

E

IF ID EX

IF ID

IF

STB

bus cycle

ACK

bus cycle bus cycle

SLOT

W
IS

H
B

O
N

E

IF ID EX

IF ID

IF

Figure10.6 Bus Wait State and Slot control

[2] Conflict IF and MA

 As you know, the simultaneous IF and MA conflicts and make the pipeline stalls as

shown in Figure9.3. The memory access controller (mem.v) detects IF-MA conflicts and

informs the events to decoder unit using a signal IF_STALL. The circuit for conflict

detection receives IF_STALL, then controls pipeline stalling.

[3] Multiplication Contention

 As shown in, for example, Figure9.2 (8), the multiplication related instruction may

A Pipelined RISC CPU “Aquarius” 75

cause pipeline stall. This is controlled by using MAC_BUSY signal from mult.v and

signals WB_MAC_BUSY, EX_MAC_BUSY and MAC_STALL_SENSE from the huge truth

table in decoder unit. By the methods described in later section, the multiplication related

stall signal MAC_STALL is generated. The circuit for conflict detection receives

MAC_STALL, then controls pipeline stalling.

[4] Register Contention

 Memory load instruction may cause register contention with followed instruction

which uses the write back data of the previous load instruction. The circuit for conflict

detection watches pipeline control signals as shown in Figure10.7 and make a conflict

indicate signal REG_CONF. In this case, MOV.L @R0,R1 and ADD R1, R2 cause R1 conflict.

At the ID stage of ADD, the control signal to read R1 (EX_RDREG_X or EX_RDREG_Y) for

ADD instruction and the shifted control signal to write back to R1 (WB1_WRREG_W) for

MOV.L instruction are asserted simultaneously. This means there is R1 confliction, so the

ID stage of ADD should be stalled.

D1 E1 M1 W1

D2 E2

E3 M3

R
ea

d
R

1

D3

W
rit

e
to

 R
1

Write
to R1

ID
_d

dd

MOV.L @R0, R1

ADD R1, R2

Detect
Register
Conflict

(D2)

R
ea

d
R

1

Forced to NOP

NEXT_ID_STALL ID_STALL

REG_CONF
IF_STALL

MAC_STALL

D1 E1 M1 W1

D2 E2

E3 M3

R
ea

d
R

1

D3

W
rit

e
to

 R
1

Write
to R1

ID
_d

dd

MOV.L @R0, R1

ADD R1, R2

Detect
Register
Conflict

(D2)

R
ea

d
R

1

Forced to NOP

NEXT_ID_STALL ID_STALL

REG_CONF
IF_STALL

MAC_STALL

Figure10.7 Detecting Register Conflict

Regarding above [2] [3] [4], IF_STALL, MAC_STALL and REG_CONF are ored and the

NEXT_ID_STALL is created.

76 A Pipelined RISC CPU “Aquarius”

The NEXT_ID_STALL means that the ID stall continues by at least next slot.

Note that the ID stage with NEXT_ID_STALL=1 should force to NOP the control signals for

each CPU block because the stage has no meanings regarding execution of the instruction.

If NEXT_ID_STALL is asserted, the ID_STALL should be asserted at the next slot.

See Figure10.8 regarding some examples of the stall control.

The meanings of combination of NEXT_ID_STALL and ID_STALL are shown in Table10.3.

NEXT_ID_STALL ID_STALL Meanings Control

Signals

0 0 No Pipeline Stalls Active

0 1 ID is stalled. The stalled slot is final one. Active

1 0 ID is stalled. The stalled slot is first one. Force to NOP

1 1 ID is stalled. The stalled slot will continue. Force to NOP

Table10.3 Combination of NEXT_ID_STALL and ID_STALL

F D E M W

Load Contention

F D E M W

f D E

F D E

f D E

F D E M W

F D E

F D E

F D E

IF-MA Contention

- -

Load & IF-MA Contention

F D E M W

F D E

F D E

F D E

-

REG_CONF

ID_STALL

IF_STALL

Slot

NEXT_ID_STALL

This ID submits commands to data path.
This ID don’t submit any commands to data path.

F D E M W

Load Contention

F D E M W

f D E

F D E

f D E

F D E M W

F D E

F D E

F D E

IF-MA Contention

- -

Load & IF-MA Contention

F D E M W

F D E

F D E

F D E

-

REG_CONF

ID_STALL

IF_STALL

Slot

NEXT_ID_STALL

This ID submits commands to data path.
This ID don’t submit any commands to data path.

Figure10.8 Controls of ID stall

A Pipelined RISC CPU “Aquarius” 77

10.5. Register Forwarding
As shown in Figure9.2 and Figure9.3, register forwarding should be implemented not to

reduce CPU cycle performance. After the memory load instruction, the register forwarding

may be needed. This situation can be detected by watching some control signals. This is

very similar to the detection of register conflict. If register content should be forwarded

from Write Back Bus (W-BUS) to Register Read Bus X (X-BUS) in the data path unit, the

signal REGFWD_X is asserted. If register content should be forwarded from W-BUS to

Register Read Bus Y (Y-BUS), the signal REGFWD_Y is asserted. Actual forwarding

transfer is performed in data path unit. Also see the chapter of data path unit.

Some examples are described in next section.

10.6. Examples of Pipeline Control
From Figure10.9 to Figure10.11 shows some examples of pipeline controls including stall

control and register forwarding.

(1) Memory Load Contention (Figure10.9)

The Slot4 detects register contention, then REG_CONF is asserted. The ID at slot4

(ADD) is stalled. The Slot6 forwards write back data of MOV.L to EX stage of ADD.

(2) Contention of IF and MA (Figure10.10)

The EX of MOV.L asserts MA_ISSUE, and the IF of ADD asserts IF_ISSUE. This

means the IF-MA confliction. Then, the memory access controller returns IF_STALL at

slot4 and the ID in slot4 (ADD) is stalled.

(3) Delayed Branch (Figure10.11)

The 1st EX of BRA (slot4) makes fetch address of SUB (target), and 2nd EX make fetch

address of AND.

10.7. Control of Program Counter
As described in last chapter, the ID stage issues IF stage. This is rigidly true. But the

timing of changing PC has 2 cases.

[1] When program runs straight forward, the PC is incremented at ID stage.

[2] When program branches, the PC is changed at EX stage.

Figure10.12 shows good example of PC controls including exception sequence and branch

operation.

78 A Pipelined RISC CPU “Aquarius”

Memory Load Contention

MOV.L @R0, R1 IF ID EX MA WB

ADR

DAT_I

WE

STB

ACK

W
IS

H
B

O
N

E

Fetch
Read

Decode
IF Issue A

LU Memory
Read

if ID EXADD R1, R2 (ID)

Fetch
Read Decode

PC

PC A
LU

W
B

IF IDSUB R3, R4 EX

Fetch
Read

Decode
IF Issue

PC A
LU

if IDAND R5, R6

Fetch
Read

Decode
IF Issue

PC

IF
_A

D

IF
_D

R

R
E

G

M
A

_A
D

M
A

_D
R

R
E

G

PC

IF
_A

D

IF
_D

R

R
EGPC

IF
_A

D

IF
_D

R

R
E

G

PC

IF
_D

R

R
E

G

PC A
D

R

IF
_D

R

R
EG

MOV ADD SUB MA AND

REG_CONF

NEXT_ID_STALL

ID_STALL fo
rw

ar
di

ng

REG_FWD_X/Y

IR
Decode
IF Issue

IF
_A

D

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

Memory Load Contention

MOV.L @R0, R1 IF ID EX MA WB

ADR

DAT_I

WE

STB

ACK

W
IS

H
B

O
N

E

Fetch
Read

Decode
IF Issue A

LU
A

LU Memory
Read

if ID EXADD R1, R2 (ID)

Fetch
Read Decode

PCPC

PCPC A
LU

A
LU

W
B

W
B

IF IDSUB R3, R4 EX

Fetch
Read

Decode
IF Issue

PCPC A
LU

A
LU

if IDAND R5, R6

Fetch
Read

Decode
IF Issue

PCPC

IF
_A

D

IF
_D

R

R
E

G

M
A

_A
D

M
A

_D
R

R
E

G

PC

IF
_A

D

IF
_D

R

R
EGPC

IF
_A

D

IF
_D

R

R
E

G

PC

IF
_D

R

R
E

G

PC A
D

R

IF
_D

R

R
EG

MOV ADD SUB MA AND

REG_CONF

NEXT_ID_STALL

ID_STALL fo
rw

ar
di

ng

REG_FWD_X/Y

IR
Decode
IF Issue

IF
_A

D

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

Figure10.9 Memory Load Contention

A Pipelined RISC CPU “Aquarius” 79

Contention of IF and MA

MOV.L R0, @R1 IF ID EX MA

ADR

DAT_I

WE

STB

ACK

W
is

hb
on

e

Fetch
Read

Decode
IF Issue A

L
U

Memory
Write

IF ID EXADD R1, R2 (ID)

Fetch
Read

Decode
IF Issue

A
LI

G
N

P
C

P
C

A
L

U
IF IDSUB R3, R4 EX

Fetch
Read

Decode
IF Issue

P
C

A
L

U
IF IDAND R5, R6

Fetch
Read

Decode
IF Issue

P
C

IF
_A

D

IF
_D

R

R
E

G

M
A

_A
D

PC

IF
_A

D

IF
_D

R

R
EGPC

IF
_A

D

IF
_D

R

R
EGPC

R
EG

IF
_D

R

R
EG

PC A
D

R

IF
_A

D

R
EG

M
OV

ADD SUB MA AND

M
A

_D
R

R
E

G

DAT_O MA

IF_STALL

NEXT_ID_STALL

ID_STALL

MA_ISSUE

IF_ISSUE

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

IF
_D

R
IR

Decode
IF Issue

Contention of IF and MA

MOV.L R0, @R1 IF ID EX MA

ADR

DAT_I

WE

STB

ACK

W
is

hb
on

e

Fetch
Read

Decode
IF Issue A

L
U

A
L

U

Memory
Write

IF ID EXADD R1, R2 (ID)

Fetch
Read

Decode
IF Issue

A
LI

G
N

A
LI

G
N

P
C

P
C

P
C

P
C

A
L

U
A

L
U

IF IDSUB R3, R4 EX

Fetch
Read

Decode
IF Issue

P
C

P
C

A
L

U
A

L
U

IF IDAND R5, R6

Fetch
Read

Decode
IF Issue

P
C

P
C

IF
_A

D

IF
_D

R

R
E

G

M
A

_A
D

PC

IF
_A

D

IF
_D

R

R
EGPC

IF
_A

D

IF
_D

R

R
EGPC

R
EG

IF
_D

R

R
EG

PC A
D

R

IF
_A

D

R
EG

MOV ADD SUB MA AND

M
A

_D
R

R
E

G

DAT_O MA

IF_STALL

NEXT_ID_STALL

ID_STALL

MA_ISSUE

IF_ISSUE

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

IF
_D

R
IR

Decode
IF Issue

Figure10.10 Contention of IF and MA

80 A Pipelined RISC CPU “Aquarius”

SLOT(ADD R1, R2)

TARGET(SUB R3, R4)

Delayed Branch

BRA disp12 IF ID EX

Fetch
Read Decode A

LU

IF ID EX

Fetch
Read

Decode
IF Issue

PC

PC

A
L

U

IF ID EX

Fetch
Read

Decode
IF Issue A

LU

IF IDAND R5, R6

Fetch
Read

Decode
IF Issue

PC

IF
_A

D

IF
_D

R

R
E

G

PCPC

IF
_A

D

IF
_D

R

R
E

G

PC

IF
_A

D

IF
_D

R

R
E

G

R
E

G

R
E

G

PC

IF
_A

D

IF
_D

R

R
E

G

ID EX

Decode
IF Issue PC

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

IR
IF

_D
R

SLOT(ADD R1, R2)

TARGET(SUB R3, R4)

Delayed Branch

BRA disp12 IF ID EX

Fetch
Read Decode A

LU
A

LU

IF ID EX

Fetch
Read

Decode
IF Issue

PCPC

PCPC

A
L

U
A

L
U

IF ID EX

Fetch
Read

Decode
IF Issue A

LU
A

LU

IF IDAND R5, R6

Fetch
Read

Decode
IF Issue

PCPC

IF
_A

D

IF
_D

R

R
E

G

PCPC

IF
_A

D

IF
_D

R

R
E

G

PC

IF
_A

D

IF
_D

R

R
E

G

R
E

G

R
E

G

PC

IF
_A

D

IF
_D

R

R
E

G

ID EX

Decode
IF Issue PC

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

IR
IF

_D
R

Figure10.11 Control of Delayed Branch

A Pipelined RISC CPU “Aquarius” 81

1 Power On Reset
2

3
4

5
INC
PC

WR
PC

IF INC
PC

: ID stage

BRA

WR
PC

1

: ID stage with IF issue

IFslot
INC
PC

IF

IF

Bcc

WR
PC

INC
PC

1
INC
PC

IF

IF

TRAPA

0
1

2
3

4
5

INC
PC

WR
PC

EXMA

IF
IF

INC
PC

INC
PCNext next …

EXMA
EXMA

Stack SR
Stack PC

Read Vector

The PC changes at
either ID or EX.

Next Instruction

1 Power On Reset
2

3
4

5
INC
PC

WR
PC

IF INC
PC

: ID stage

BRA

WR
PC

1

: ID stage with IF issue

IFslot
INC
PC

IF

IF

Bcc

WR
PC

INC
PC

1
INC
PC

IF

IF

TRAPA

0
1

2
3

4
5

INC
PC

WR
PC

EXMA

IF
IF

INC
PC

INC
PCNext next …

EXMA
EXMA

Stack SR
Stack PC

Read Vector

The PC changes at
either ID or EX.

Next Instruction

Figure10.12 PC Controls

82 A Pipelined RISC CPU “Aquarius”

11. Memory Access Control Unit
This chapter describes the details of memory access control unit (mem.v).

11.1. IN/OUT Signals
Table11.1 shows all in/out signals of memory access control unit.

(Although a signal IF_BUS goes to decoder unit, it is not used.)

Class Direction Name From / To Meaning Notes
input CLK EXTERNAL clock

input RST EXTERNAL reset

output CYC EXTERNAL cycle output

output STB EXTERNAL strobe

input ACK EXTERNAL external memory ready

output [31:0] ADR EXTERNAL external address

input [31:0] DATI EXTERNAL external data read bus

output [31:0] DATO EXTERNAL external data write bus

output WE EXTERNAL external write/read

output [3:0] SEL EXTERNAL external valid data position

input IF_WIDTH EXTERNAL external fetch space width (IF_WIDTH)

SLOT output SLOT ALL in CPU pipeline slot edge

input IF_ISSUE decode.v fetch request

input IF_JP decode.v fetch caused by jump

input [31:0] IF_AD datapath.v fetch address

output [15:0] IF_DR datapath.v fetched instruction

output IF_BUS decode.v fetch access done to extenal bus

output IF_STALL decode.v fetch and memory access contention

input MA_ISSUE decode.v memory access request

input KEEP_CYC decode.v request read-modify-write (Asserted on
READ-CYC to keep CYC_O=1)

input MA_WR decode.v memory access kind : Write(1)/Read(0)

input [1:0] MA_SZ decode.v memory access size
00 byte, 01 word, 10 long, 11 inhibitted

input [31:0] MA_AD datapath.v memory access address

input [31:0] MA_DW datapath.v memory write data

output [31:0] MA_DR datapath.v memory read data

Memory
Access

Commands

System
Signals

WISHBONE
Bus Signals

Instruction
Fetch

Commands

Table11.1 Memory Access Control Unit IN/OUT Signals

11.2. WISHBONE’s ACK and Aquarius’ SLOT
As described last chapter, the signal SLOT indicates the pipeline slot edges, and is created

from WISHBONE’s ACK signal in the memory access control unit. The clocks of each

A Pipelined RISC CPU “Aquarius” 83

flip-flop in Aquarius CPU are gated by SLOT signal, so that the pipeline stall derived from

memory access cycle is easily controlled.

The waveform of SLOT is very similar to ACK, except that the SLOT is asserted if there is

no memory access cycle, as shown in Figure11.1’s second slot. If external memory is

accessed, the waveform of SLOT follows to ACK signal.

STB

IF cycle

ACK

IF cycle MA cycle

SLOT

W
IS

H
B

O
N

E

IF ID EX

if ID

IF

MA

EX

ID

no cycle

if

STB

IF cycle

ACK

IF cycle MA cycle

SLOT

W
IS

H
B

O
N

E

IF ID EX

if ID

IF

MA

EX

ID

no cycle

if

Figure11.1 WISHBONE’s ACK and Aquarius’ SLOT

11.3. Instruction Fetch Cycle
The decoder unit requests instruction fetch to the memory access control unit. Some

examples of instruction fetch controls are shown in Figure11.2.

The instruction fetch starts at next slot of IF_ISSUE=1. When IF_ISSUE=1, IF_AD[31:0]

and IF_JP should be valid state. IF_AD[31:0] shows the address of instruction which the

decoder unit want to get.

If external bus width is 32bit (IF_WIDTH=1), 2 instructions are fetched simultaneously.

This means the memory access control unit creates actual memory access for instruction

fetch every two slots, using internal fetch buffer. But if the instruction fetch is created by

Jump or Branch, the fetch should actually access the memory even if the internal fetch

buffer has been valid. So, Jumping operation by instruction or exception sequence should

84 A Pipelined RISC CPU “Aquarius”

inform such state to memory access control unit by asserting IF_JP with IF_ISSUE.

The fetched instruction IF_DR[15:0] is valid at next slot of corresponding IF cycle.

STB

IF cycle

ACK

IF cycle IF cycle

SLOT

W
IS

H
B

O
N

E

if(1) ID EX

IF(2) ID

IF(3)

EX

ID

no cycle

if(4) ID

EX

IF_ISSUE

Internal IF

IF(2) IF(3)ADR

IF(5)

IF(5)

IF(2) IF(3)DAT_I IF(5)

EX

BRA

slot -

target

ID

IF_JP

IF_AD IF(2) IF(3) IF(4) IF(5)

IF_BUS

IF(2) IF(3) IF(4)IF_DR IF(1)

STB

IF cycle

ACK

IF cycle IF cycle

SLOT

W
IS

H
B

O
N

E

if(1) ID EX

IF(2) ID

IF(3)

EX

ID

no cycle

if(4) ID

EX

IF_ISSUE

Internal IF

IF(2) IF(3)ADR

IF(5)

IF(5)

IF(2) IF(3)DAT_I IF(5)

EX

BRA

slot -

target

ID

IF_JP

IF_AD IF(2) IF(3) IF(4) IF(5)

IF_BUS

IF(2) IF(3) IF(4)IF_DR IF(1)

Figure11.2 Instruction Fetch Cycle

11.4. Memory Access Cycle
Figure11.3 shows memory access control. Similar to instruction fetch, MA starts at next

slot of MA_ISSUE=1. Some attribute information such as access size MA_SZ[1:0], access

A Pipelined RISC CPU “Aquarius” 85

direction MA_RW, address MA_AD[31:0] and, if write access, write data MA_WD[31:0]

should be valid when IF_ISSUE=1.

The write data in MA_DW[31:0] should be valid in its LSB side when access size is smaller

than long word. The read data MA_DR[31:0] is valid with sign extended at next slot of

corresponding MA cycle.

STB

IF cycle

ACK

IF cycle IF cycle

SLOT

W
IS

H
B

O
N

E

IF(1) ID EX

Internal IF

MA_ISSUE

MA cycle
Internal IF

IF(1) IF(3)ADR IF(5)

IF(1) IF(3)DAT_I

MOV (load)

MA_WR / MA_SZ
MA_AD / MA_DW

MA(1) WB

if(2) ID EX

IF(3) ID EX

if(4) ID EX

IF(5) ID

if(6)

Internal IF

MA(1)

MA(1) IF(5)

MA(1)or DAT_O

No conflict

MA(1)

MA(1)

MA(1)

In case of WRITE : MA_DW

In case of READ : MA_DR

STB

IF cycle

ACK

IF cycle IF cycle

SLOT

W
IS

H
B

O
N

E

IF(1) ID EX

Internal IF

MA_ISSUE

MA cycle
Internal IF

IF(1) IF(3)ADR IF(5)

IF(1) IF(3)DAT_I

MOV (load)

MA_WR / MA_SZ
MA_AD / MA_DW

MA(1) WB

if(2) ID EX

IF(3) ID EX

if(4) ID EX

IF(5) ID

if(6)

Internal IF

MA(1)

MA(1) IF(5)

MA(1)or DAT_O

No conflict

MA(1)

MA(1)

MA(1)

In case of WRITE : MA_DW

In case of READ : MA_DR

Figure11.3 Memory Access Cycle

86 A Pipelined RISC CPU “Aquarius”

11.5. IF-MA Conflict
Figure 11.4 shows the IF-MA conflict. At 3rd slot, IF_ISSUE and MA_ISSUE are asserted at

same time. If the IF should get a instruction from external memory (not from internal

instruction buffer), IF_ISSUE=1 & MA_ISSUE1 means IF-MA contention.

When IF and MA conflict, the memory access control unit asserts the signal IF_STALL and

inform such situation to the decoder unit. The memory access control unit starts MA cycle

first, and after the MA, it begins IF cycle.

STB

Internal IF

ACK

Internal IF IF cycle

SLOT

W
IS

H
B

O
N

E

if(1) ID EX

IF Cycle

IF_ISSUE

MA cycle

IF(2)ADR IF(4)

IF(2)DAT_I

MOV (load) MA(1) WB

IF(2) ID EX

if(3) ID EX

IF(4) ID

if(5)

Internal IF

MA(1)

MA(1) IF(4)

MA(1)or DAT_O

(ID)

-

Conflicted

MA_ISSUE

IF_STALL

NEXT_ID_STALL

ID_STALL

STB

Internal IF

ACK

Internal IF IF cycle

SLOT

W
IS

H
B

O
N

E

if(1) ID EX

IF Cycle

IF_ISSUE

MA cycle

IF(2)ADR IF(4)

IF(2)DAT_I

MOV (load) MA(1) WB

IF(2) ID EX

if(3) ID EX

IF(4) ID

if(5)

Internal IF

MA(1)

MA(1) IF(4)

MA(1)or DAT_O

(ID)

-

Conflicted

MA_ISSUE

IF_STALL

NEXT_ID_STALL

ID_STALL

Figure11.4 IF -MA Conflict

A Pipelined RISC CPU “Aquarius” 87

11.6. Bus Width of Instruction Fetch Cycle (IF_WIDTH)
If data width of instruction fetch space is 32bit, the WISHBONE bus should return

IF_WIDTH=1, or it should return IF_WIDTH=0. If IF_WIDTH=0, internal fetch buffer of

the memory access control unit can get only one instruction, so next instruction fetch

requested by decoder unit should produce actual memory access, as shown in Figure11.5.

Note that IF_WIDTH has its meaning only when lower 2bit of fetch address is 2’b00 as

described in Part1.

STB

IF cycle

ACK

IF cycle IF cycle

SLOT

W
IS

H
B

O
N

E

IF(1) ID EX

Internal IF IF cycle

IF(1) IF(3)ADR IF(5)

IF(1) IF(3)DAT_I

if(2) ID EX

IF(3) ID EX

IF(4) ID EX

IF(5) ID

if(6)

Internal IF

IF(4)

IF(4) IF(5)

IF_WIDTH (TAG0_I)

STB

IF cycle

ACK

IF cycle IF cycle

SLOT

W
IS

H
B

O
N

E

IF(1) ID EX

Internal IF IF cycle

IF(1) IF(3)ADR IF(5)

IF(1) IF(3)DAT_I

if(2) ID EX

IF(3) ID EX

IF(4) ID EX

IF(5) ID

if(6)

Internal IF

IF(4)

IF(4) IF(5)

IF_WIDTH (TAG0_I)

Figure11.5 Bus Width of Instruction Fetch Cycle (IF_WIDTH)

11.7. Read Modify Write Cycle (for Instruction TAS.B)
The specification of WISHBONE bus has read-modify-write cycle, in which no bus

arbitration is granted between read and write. During read-modify-write cycle, the bus

master should keep CYC signal high. The TAS.B (test and set) instruction requires such

88 A Pipelined RISC CPU “Aquarius”

read-modify-write cycle. To achieve this, the memory access control unit receives

KEEP_CYC signal from decoder unit, as shown in Figure11.6.

IF ID EX

ID

ID EX

MA

MA

ID EX

TAS.B

if ID- - -

CYC

IF cycle No cycle No cycleInternal IF MA READ MA WRITE

ACK

STB

MA_ISSUE

KEEP_CYC

IF ID EX

ID

ID EX

MA

MA

ID EX

TAS.B

if ID- - -

CYC

IF cycle No cycle No cycleInternal IF MA READ MA WRITE

ACK

STB

MA_ISSUE

KEEP_CYC

Figure11.6 Read Modify Write Cycle

11.8. State Machine of Memory Access Control Unit
Table11.2 shows state definition of memory access control unit. Table11.3 shows key signals

regarding instruction fetch. And Table11.4 shows state transitions.

This memory access control unit assumes the CPU bus (WISHBONE) is non-Harvard bus.

If you want to modify Aquarius to support Harvard bus, what you should do is (1) modifying

the memory access control unit to connect both instruction bus and data bus, and (2)

making decoder unit inform to memory access controller if the MA cycle is PC relative or

not. Note that, even if you adopt Harvard bus with Aquarius, the PC relative instructions

(MOV.L/W @(disp, PC), Rn) must access to instruction space, so this access conflicts to IF

cycle. The memory controller for Harvard bus should still return IF_STALL to decoder.

A Pipelined RISC CPU “Aquarius” 89

State Symbol Meaning

S0 S_IDLE Idle state

S1 S_IFEX Instruction fetch with external memory read access

S2 S_MAEX Data access with external memory read/write access

S3 S_MAEX_IFPD Data access with pending instruction fetch (IF-MA conflict)

S4 S_IDLE_IFKP Idle state but internal instruction buffer keeps a instruction

S5 S_IFIN Instruction fetch from internal instruction buffer

S6 S_MAEX_IFKP Data access with keeping a instruction in the buffer

S7 S_MAEX_IFIN Data access from memory and Instruction fetch from buffer

Table11.2 State definition of memory access control unit

Signal Meaning

IF_KEEP Instruction fetch from long boundary address & IF_WIDTH=1 (32bit width)

IF_FORCE Next instruction fetch is from long boundary | IF_JP=1

Table11.3 Key signals regarding instruction fetch control

Now Next Now Next
S0 no event S0 n/a
S1 by fetch request S1 by fetch request; IF_FORCE=1
S2 by data access request S2 n/a
S3 by both fetch request and data access request S3 by both fetch request and data access request; IF_FORCE=1
S4 n/a S4 no event
S5 n/a S5 by fetch request; IF_FORCE=0
S6 n/a S6 by data access request
S7 n/a S7 by both fetch request and data access request; IF_FORCE=0
S0 no event; IF_KEEP=0 S0 no event
S1 by fetch request; IF_FORCE=1 or IF_KEEP=0 S1 by fetch request
S2 by data access request; IF_KEEP=0 S2 by data access request
S3 by both fetch and data access request; IF_KEEP=0 S3 by both fetch request and data access request
S4 no event; IF_KEEP=1 S4 n/a
S5 by fetch request; IF_FORCE=0 and IF_KEEP=1 S5 n/a
S6 by data access request; IF_KEEP=1 S6 n/a
S7 by both fetch and data access request; IF_KEEP=1 S7 n/a
S0 no event S0 n/a
S1 by fetch request S1 by fetch request; IF_FORCE=1
S2 by data access request S2 n/a
S3 by both fetch request and data access request S3 by both fetch request and data access request; IF_FORCE=1
S4 n/a S4 no event
S5 n/a S5 by fetch request; IF_FORCE=0
S6 n/a S6 by data access request
S7 n/a S7 by both fetch request and data access request; IF_FORCE=0
S0 n/a S0 no event
S1 always S1 by fetch request
S2 n/a S2 by data access request
S3 n/a S3 by both fetch request and data access request
S4 n/a S4 n/a
S5 n/a S5 n/a
S6 n/a S6 n/a
S7 n/a S7 n/a

State Reason for state transition

S4

S5

S6

S7

S2

S3

State Reason for state transition

S0

S1

Table11.4 State transition of memory access control unit

90 A Pipelined RISC CPU “Aquarius”

12. Data Path Unit
This chapter describes the details of data path unit (datapath.v).

12.1. IN/OUT Signal Table
Table12.1 shows all in/out signals of data path unit.

Class Direction Name From / To Meaning Notes
input CLK EXTERNAL clock

input RST EXTERNAL reset

SLOT input SLOT mem.v cpu pipe slot

input RDREG_X decode.v read Rn to X-bus

input RDREG_Y decode.v read Rn to Y-bus

input WRREG_Z decode.v write Rn from Z-bus

input WRREG_W decode.v write Rn from W-bus

input [3:0] REGNUM_X decode.v register number to read to X-bus

input [3:0] REGNUM_Y decode.v register number to read to Y-bus

input [3:0] REGNUM_Z decode.v register number to write from Z-bus

input [3:0] REGNUM_W decode.v register number to write from W-bus

ALU input [4:0] ALUFUNC decode.v ALU function

output [31:0] MA_AD datapath.v memory access address

output [31:0] MA_DW datapath.v memory write data

input [31:0] MA_DR datapath.v memory read data

input WRMAAD_Z decode.v output MA_AD from Z-bus

input WRMADW_X decode.v output MA_DW from X-bus

input WRMADW_Y decode.v output MA_DW from Y-bus

input RDMADR_W decode.v input MA_DR to W-bus

output [31:0] MACIN1 datapath.v data1 to mult.v

output [31:0] MACIN2 datapath.v data2 to mult.v

input [1:0] MACSEL1 decode.v select data of MACIN1
(00:from X, 01:from Z, 1?:from W)

input [1:0] MACSEL2 decode.v select data of MACIN2
(00:from Y, 01:from Z, 1?:from W)

input [31:0] MACH datapath.v physical data of MACH

input [31:0] MACL datapath.v physical data of MACL

input RDMACH_X decode.v read MACH to X-bus

input RDMACL_X decode.v read MACL to X-bus

input RDMACH_Y decode.v read MACH to Y-bus

input RDMACL_Y decode.v read MACL to Y-bus

System
Signals

General
Register
Controls

Memory
Access

Controls

Multiplier
Controls

Table12.1 Data Path Unit IN/OUT Signals (1)

A Pipelined RISC CPU “Aquarius” 91

Class Direction Name From / To Meaning Notes
input RDSR_X decode.v read SR to X-bus

input RDSR_Y decode.v read SR to Y-bus

input WRSR_Z decode.v write SR from Z-bus

input WRSR_W decode.v write SR from W-bus

output MAC_S mult.v latched S bit in SR (= SR[S])

input MAC_S_LATCH decode.v latch command of S bit in SR

input RDGBR_X decode.v read GBR to X-bus

input RDGBR_Y decode.v read GBR to Y-bus

input WRGBR_Z decode.v write GBR from Z-bus

input WRGBR_W decode.v write GBR from W-bus

input RDVBR_X decode.v read VBR to X-bus

input RDVBR_Y decode.v read VBR to Y-bus

input WRVBR_Z decode.v write VBR from Z-bus

input WRVBR_W decode.v write VBR from W-bus

input RDPR_X decode.v read PR to X-bus

input RDPR_Y decode.v read PR to Y-bus

input WRPR_Z decode.v write PR from Z-bus

input WRPR_W decode.v write PR from W-bus

input WRPR_PC decode.v write PR from PC

input RDPC_X decode.v read PC to X-bus

input RDPC_Y decode.v read PC to Y-bus

inout WRPC_Z decode.v write PC from Z-bus

input INCPC decode.v increment PC (PC+2->PC)

input IFADSEL decode.v select IF_AD output
from INC(0) or Z-bus(1)

output [31:0] IF_AD mem.v instruction fetch address

input [15:0] CONST_IFD decode.v instruction fetch data to make constant

input CONST_ZERO4 decode.v take constant from lower 4 bit as unsigned value

input CONST_ZERO42 decode.v take constant from lower 4 bit as unsigned value * 2

input CONST_ZERO44 decode.v take constant from lower 4 bit as unsigned value * 4

input CONST_ZERO8 decode.v take constant from lower 8 bit as unsigned value

input CONST_ZERO82 decode.v take constant from lower 8 bit as unsigned value * 2

input CONST_ZERO84 decode.v take constant from lower 8 bit as unsigned value * 4

input CONST_SIGN8 decode.v take constant from lower 8 bit as signed value

input CONST_SIGN82 decode.v take constant from lower 8 bit as signed value * 2

input CONST_SIGN122 decode.v take constant from lower 12 bit as signed value * 2

input RDCONST_X decode.v read constant to X-bus

input RDCONST_Y decode.v read constant to Y-bus

Program
Counter
Controls

Constant
Value

Controls

Status
Register
Controls

GBR
Controls

VBR
Controls

Procedure
Register
Controls

Table12.1 Data Path Unit IN/OUT Signals (2)

92 A Pipelined RISC CPU “Aquarius”

Class Direction Name From / To Meaning Notes
input REG_FWD_X decode.v register forward from W-bus to X-bus

input REG_FWD_Y decode.v register forward from W-bus to Y-bus

Comparator input [2:0] CMPCOM decode.v define comparator operation (command)

input [4:0] SFTFUNC decode.v Shifter Function

input RDSFT_Z decode.v read SFTOUT to Z-BUS

output T_BCC decode.v T value for Bcc judgement

input T_CMPSET decode.v reflect comparator result to T

input T_CRYSET decode.v reflect carry/borrow out to T

input T_TSTSET decode.v reflect tst result to T

input T_SFTSET decode.v reflect shifted output to T

input QT_DV1SET decode.v reflect DIV1 result to Q and T

input MQT_DV0SET decode.v reflect DIV0S result to M, Q and T

input T_CLR decode.v clear T

input T_SET decode.v set T

input MQ_CLR decode.v clear M and Q

input RDTEMP_X decode.v read TEMP to X-bus

input WRTEMP_Z decode.v write to TEMP from Z-bus

input WRMAAD_TEMP decode.v output MAAD from TEMP

input RST_SR decode.v reset SR

output [3:0] IBIT decode.v I bit in SR

input [3:0] ILEVEL decode.v IRQ Level

input WR_IBIT decode.v Write ILEVEL to I bit in SR

T bit
Q bit
M bit

Controls

TEMP
Register
Controls

SR and I bit
Controls

Forwarding

Shifter
Controls

Table12.1 Data Path Unit IN/OUT Signals (3)

12.2. Structure of Data Path
Figure12.1 shows the block diagram of data path unit. It also shows basic relationship

among data path, decoder, multiplier and memory access controller. In data path RTL

description (datapath.v), the general registers R0-R15 (register.v) are located in

under data path layer. Data path has 4 internal buses.

 X-bus : Data from each register resource

 Y-bus : Data from each register resource

 Z-bus : Data from results of ALU or Shifter

 W-bus : Data from memory load (to be written back to each register resource)

In the data path, all resources are fully controlled by decoder unit. So, there are no state

machines in data path unit.

The register forwarding paths are shown in top of Figure12.1 as direct paths from W to X

and W to Y.

The T bit, Q bit and M bit in Status Register (SR) are created from several signals as shown

in Figure12.2, Figure12.3 and Figure12.4.

A Pipelined RISC CPU “Aquarius” 93

16

R0

R1

X Y

R15

ALU

Z

ADR

DATO

Aligner
M

em
or

y

MA_DR

AlignerSign
Extend

EX MA WB

W

M1

M2 ADD
64bit

Shifter
Sign Ex

M
A

C
H

If 16bit saturate operation,
saturate result 32’h0001
is ored to MACH. M

A
C

L

16MUL
32*16

mem.v

mulｔ.v

IF_AD
MA_AD

MA_DW

IF_DR

MAC.L

MA_DR

PC

+2

INC
sign8
zero8
zero4

sign12

decode.v

CONST

CONST

SR

VBR

PR

GBR

MACIN1

MACIN2

SFT

CMP

R0 or WBUS
CONST

@(R0,Rn)
@(disp,GBR)

TEMP

16

R0

R1

X Y

R15

ALU

Z

ADR

DATO

Aligner
M

em
or

y

MA_DR

AlignerSign
Extend

EX MA WB

W

M1

M2 ADD
64bit

Shifter
Sign Ex

M
A

C
H

If 16bit saturate operation,
saturate result 32’h0001
is ored to MACH. M

A
C

L

16MUL
32*16

mem.v

mulｔ.v

IF_AD
MA_AD

MA_DW

IF_DR

MAC.L

MA_DR

PC

+2

INC
sign8
zero8
zero4

sign12

decode.v

CONST

CONST

SR

VBR

PR

GBR

MACIN1

MACIN2

SFT

CMP

R0 or WBUS
CONST

@(R0,Rn)
@(disp,GBR)

TEMP

Figure12.1 Block Diagram of Data Path Unit

94 A Pipelined RISC CPU “Aquarius”

T
SR[0]

CMPRESULT T_CMPSET

CRYO T_CRYSET

TSTO T_TSTSET

SFTO T_SFTSET

T_DIV1 T_DV1SET

1’b0 T_CLR

1’b1 T_SET

WBUS[0] WRSR_W

ZBUS[0] WRSR_Z

CMP/xx

ADDC/SUBC/ADDV/SUVV

TST/TST.B

SHxx/ROTxx

DIV1

CLRT/DIV0U

SETT

LDC.L

LDC

T_DIV0S T_DV0SETDIV0S

T
SR[0]

CMPRESULT T_CMPSET

CRYO T_CRYSET

TSTO T_TSTSET

SFTO T_SFTSET

T_DIV1 T_DV1SET

1’b0 T_CLR

1’b1 T_SET

WBUS[0] WRSR_W

ZBUS[0] WRSR_Z

CMP/xx

ADDC/SUBC/ADDV/SUVV

TST/TST.B

SHxx/ROTxx

DIV1

CLRT/DIV0U

SETT

LDC.L

LDC

T_DIV0S T_DV0SETDIV0S

Figure12.2 Generating T bit

Q
SR[8]

Q_DIV1
Q_DV1SET

1’b0
Q_CLR

WBUS[8] WRSR_W

ZBUS[8] WRSR_Z

DIV1

DIV0U

LDC.L

LDC

DIV0S ALUX[31]
Q_DV0SET

Q
SR[8]

Q_DIV1
Q_DV1SET

1’b0
Q_CLR

WBUS[8] WRSR_W

ZBUS[8] WRSR_Z

DIV1

DIV0U

LDC.L

LDC

DIV0S ALUX[31]
Q_DV0SET

Figure12.3 Generating Q bit

M
SR[9]

ALUY[31] M_DV0SET

1’b0
M_CLR

WBUS[9] WRSR_W

ZBUS[9] WRSR_Z

DIV0S

DIV0U

LDC.L

LDC

M
SR[9]

ALUY[31] M_DV0SET

1’b0
M_CLR

WBUS[9] WRSR_W

ZBUS[9] WRSR_Z

DIV0S

DIV0U

LDC.L

LDC

Figure12.4 Generating M bit

A Pipelined RISC CPU “Aquarius” 95

13. Multiplier Unit
This chapter describes the details of multiplier unit (mult.v).

13.1. IN/OUT Signal Table
Table13.1 shows all in/out signals of multiplier unit.

Class Direction Name From / To Meaning Notes
input CLK clock

input RST reset

SLOT input SLOT cpu pipe slot

input MULCOM1 M1 latch command

input [7:0] MULCOM2 M2 latch and mult engage command

NOP 0 0000000 00

DMULS.L 1 0111101 BD

DMULU.L 1 0110101 B5

MAC.L 1 0001111 8F

MAC.W 1 1001111 CF

MUL.L 1 0000111 87

MULS.W 1 0101111 AF

MULU.W 1 0101110 AE

S bit input MAC_S S-bit in SR

input WRMACH, WRMACL write MACH and MACL directly from data path

input [31:0] MACIN1 input data 1

input [31:0] MACIN2 input data 2

output [31:0] MACH output MACH

output [31:0] MACL output MACL

Status output MAC_BUSY busy signal (negate at final operation state)

System
Signals

Mult
Commands

Data
Interface

Table13.1 Multiplier Unit IN/OUT Signals

13.2. Algorithm of Multiplication
Basically, this multiplier design assumes that it is implemented by using Macro Module of

Multiplier for FPGA. So, existence of unsigned 32bit x 16bit (or similar) multiplier is

supposed. Now, let me define some symbols to explain.

 As[N-1:0] = Assumed as Signed N bit

 Au[N-1:0] = Assumed as Unsigned N bit Au[x]=As[x] (each bit is same)

 Bs[N-1:0] = Assumed as Signed N bit

 Bu[N-1:0] = Assumed as Unsigned N bit Bu[x]=Bs[x] (each bit is same)

96 A Pipelined RISC CPU “Aquarius”

(1) Signed 32bit x 32bit

]0:30[]31[2]0:31[

]0:30[]31[2]0:31[
31

31

BuBuBs

AuAuAs

+×−=

+×−=

54321
]0:15[]0:30[

]16:30[]0:30[2

]0:30[]31[2

]0:30[]31[2

]31[]31[2

]0:30[]0:30[
]0:30[]31[2

]0:30[]31[2

]31[]31[2

]0:31[]0:31[

16

31

31

62

31

31

62

PPPPP
BuAu

BuAu

AuBu

BuAu

BuAu

BuAu
AuBu

BuAu

BuAu

BsAs

++−−=
×+

××+

××−

××−

××=

×+
××−

××−

××=

×

(2) Unsigned 32bit x 32bit

]0:30[]31[2]0:31[

]0:30[]31[2]0:31[
31

31

BuBuBu

AuAuAu

+×+=

+×+=

54321
]0:15[]0:30[

]16:30[]0:30[2

]0:30[]31[2

]0:30[]31[2

]31[]31[2

]0:30[]0:30[
]0:30[]31[2

]0:30[]31[2

]31[]31[2

]0:31[]0:31[

16

31

31

62

31

31

62

PPPPP
BuAu

BuAu

AuBu

BuAu

BuAu

BuAu
AuBu

BuAu

BuAu

BuAu

++++=
×+

××+

××+

××+

××=

×+
××+

××+

××=

×

]0:15[]0:30[5
]16:30[]0:30[24

]0:30[]31[23

]0:30[]31[22

]31[]31[21

16

31

31

62

BuAuP
BuAuP

AuBuP

BuAuP

BuAuP

×=
××=

××=

××=

××=

]0:15[]0:30[5
]16:30[]0:30[24

]0:30[]31[23

]0:30[]31[22

]31[]31[21

16

31

31

62

BuAuP
BuAuP

AuBuP

BuAuP

BuAuP

×=
××=

××=

××=

××=

A Pipelined RISC CPU “Aquarius” 97

(3) Signed 16bit x 16bit

]0:14[]15[2]0:15[

]0:14[]15[2]0:15[
15

15

BuBuBs

AuAuAs

+×−=

+×−=

4321
]0:14[]0:14[

]0:14[]15[2

]0:14[]15[2

]15[]15[2

]0:15[]0:15[

15

15

30

PPPP
BuAu

AuBu

BuAu

BuAu

BsAs

+−−=
×+

××−

××−

××=

×

(4) Unsigned 16bit x 16bit

]0:14[]15[2]0:15[

]0:14[]15[2]0:15[
15

15

BuBuBu

AuAuAu

+×+=

+×+=

4321
]0:14[]0:14[

]0:14[]15[2

]0:14[]15[2

]15[]15[2

]0:15[]0:15[

15

15

30

PPPP
BuAu

AuBu

BuAu

BuAu

BuAu

+++=
×+

××+

××+

××=

×

Pn are partial result to be accumulated.

Gathering above way of thoughts, Figure13.1 shows the methods of multiplication. The bit

size of multiplication macro module should be at least 31bit x 16bit.

In case of 32bit multiplication, the calculation needs 2 steps. In first step, P4 is

accumulated to MAC with preparing P2+P3, and in second step, P1, P2 and P3 are

accumulated to MAC with 16bits shifting.

In case of 16bit multiplication, the calculation needs only 1 step. In the step, P1, P2, P3 and

P4 are accumulated to MAC at once.

]0:14[]0:14[4
]0:14[]15[23

]0:14[]15[22

]15[]15[21

15

15

30

BuAuP
AuBuP

BuAuP

BuAuP

×=
××=

××=

××=

]0:14[]0:14[4
]0:14[]15[23

]0:14[]15[22

]15[]15[21

15

15

30

BuAuP
AuBuP

BuAuP

BuAuP

×=
××=

××=

××=

98 A Pipelined RISC CPU “Aquarius”

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

62
P1

P2
61 31

P3
61 31

P4 (=31bit * 15bit)
61 16

P5 (=31bit * 16bit)
46 0

Unsigned : do add
Signed : do sub

32bit * 32bit

P1

P2
29 15

P3
29 15

P4 (=15bit * 15bit)
29 0

30

16bit * 16bit

(+/-)

(+/-)

(+/-)

(+/-)

Unsigned : do add
Signed : do sub

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

62
P1

P2
61 31

P3
61 31

P4 (=31bit * 15bit)
61 16

P5 (=31bit * 16bit)
46 0

Unsigned : do add
Signed : do sub

32bit * 32bit

P1

P2
29 15

P3
29 15

P4 (=15bit * 15bit)
29 0

30

16bit * 16bit

(+/-)

(+/-)

(+/-)

(+/-)

Unsigned : do add
Signed : do sub

Figure13.1 Algorithm of Multiplication

13.3. Structure of Multiplier Unit
According to algorithm shown in Figure13.1, the multiplication unit has designed as shown

in Fugure13.2. The some control signals are created by internal state machine as shown in

Table13.2. The 64bit accumulation adder should have saturation capability. It is described

later.

 SIZE SIGN SHIFT Notes

1st step 1 1 0 Signed

32bit 2nd step 1 1 1

1st step 1 0 0 Unsigned

32bit 2nd step 1 0 1

Signed 16bit 0 1 0

Unsigned 16bit 0 0 0

Table13.2 Control Signals in Multiplication Unit

A Pipelined RISC CPU “Aquarius” 99

MB A(31)

B(31)

B[15:0]

1’b0:B[30:16]

BH
(16)

MUL
31
x

16

ADD
64
+
64

16

M
A

C
H

M
A

C
L

MACH
MACL

C

D

M1

M2

M1

M2

PM
(48)

ADDRESULT

If MACH had not initialized at the operation beginning,
The lower 32bit of D should be zeros.

33
+/-
33

ADD
32
+
32

ABH
(47)

P2

P3

P2 and P3 are Zero except for…
if SHIFT P2 = 1’b0:A[31] & B[30:0]
if ~SIZE P2 = 17’h00000:A[15] & B[14:0]
if SHIFT P3 = 1’b0:B[31] & A[30:0]
if ~SIZE P3 = 17’h00000:B[15] & A[14:0]

If ~SIZE 17’h00000:P1:ABH[29:15]
if ~SHIFT 1’b0:ABH[46:15]
if SHIFT 1’b0:P1:ABH[45:15]

if ~SIGN, add
if SIGN, sub

ABH[14:0]

if SHIFT

if ~SHIFT

1’b0:B[14:0]

AH
(31)

A[30:0]

16’h0000:A[14:0]

ABH2
(33)

MB A(31)

B(31)

B[15:0]

1’b0:B[30:16]

BH
(16)

MUL
31
x

16

ADD
64
+
64

16

M
A

C
H

M
A

C
L

MACH
MACL

C

D

M1

M2

M1

M2

PM
(48)

ADDRESULT

If MACH had not initialized at the operation beginning,
The lower 32bit of D should be zeros.

33
+/-
33

ADD
32
+
32

ABH
(47)

P2

P3

P2 and P3 are Zero except for…
if SHIFT P2 = 1’b0:A[31] & B[30:0]
if ~SIZE P2 = 17’h00000:A[15] & B[14:0]
if SHIFT P3 = 1’b0:B[31] & A[30:0]
if ~SIZE P3 = 17’h00000:B[15] & A[14:0]

If ~SIZE 17’h00000:P1:ABH[29:15]
if ~SHIFT 1’b0:ABH[46:15]
if SHIFT 1’b0:P1:ABH[45:15]

if ~SIGN, add
if SIGN, sub

ABH[14:0]

if SHIFT

if ~SHIFT

1’b0:B[14:0]

AH
(31)

A[30:0]

16’h0000:A[14:0]

ABH2
(33)

Figure13.2 Block Diagram of Multiplier Unit

13.4. Control of Multiplication Unit
The decoder unit sends two kinds of multiplication command to multiplication unit.

One is MULCOM1 which is latch signal of input data MACIN1[31:0]. Another is

MULCOM2[7:0] which has 2 meanings; latch signal of input data MACIN2[31:0] and

operation class. The MULCOM2[7] means latch signal. And MULCOM2[6:0] is same as

{INSTR_STATE[14:12], INSTR_STATE[3:0]}. If MULCOM2[7]=0, it is NOP. Figure13.3 to

Figure13.6 shows the timing position of each command. “M1” is MULCOM1, “M2” is

MULCOM2. In the figures, the MAC value is determined at timing position with “MAC”

and an arrow.

The instructions related to multiplication execute in multi cycles. So, if post instruction

uses the result of MAC, it may be stalled.

Each multiplication instruction’s decode stage asserts EX_MAC_BUSY or WB_MAC_BUSY

to indicate busy state of MAC register.

On the other hand, each multiplication related instruction asserts MAC_STALL_SENSE at

100 A Pipelined RISC CPU “Aquarius”

decode stage to declare that it will use MAC resources.

In the decoder unit, MAC_STALL signal is created from each “pipeline shifted”

xx_MAC_BUSY signal, MAC_STALL_SENSE and MAC_BUSY (from multiplier unit which

indicates second “m” stage from the last). The MAC_STALL is used in decoder unit to

control pipeline stall as shown in Figure10.7. Figure13.3 to Figure13.6 also shows how

many stall cycle is necessary in the MAC conflict situation.

By the way, for example in Figure13.3, the stall counts of DMULxL / MUL.L / MULx.W can

be reduced to 2 from 3, but such reduction has no meaning because the results (MACx) of

these instructions should be stored to registers or memories once.

Note that the S bit in SR should be latched at second ID stage of instruction MAC.x, to

avoid changing S during MAC operation. (The instruction after MAC may change S bit.)

13.5. How to implement Saturating Accumulation
In Figure13.2, the 64 bit adder ADDRESULT = MAC + C should have saturating function

for MAC.W and MAC.L (S=1). If S=1, MAC.W should saturate between 32’h80000000 to

32’h7FFFFFFF, and MAC.L should saturate between 64’hFFFF800000000000 to

64’h00007FFFFFFFFFFF. To simplify explanation, consider only latter case.

MAC_STALL

MAC.W F D E M

M mult mult

M1 M2 MAC

D E

(D) ESTS MACx, Rn

STS.L MACx, @-Rn (D) E M

(D) (D) D

(D) (D) D

LDS Rm, MACx / CLRMAC (D) E(D) (D) D

(D) E M(D) (D) DLDS.L @Rm+, MACx W

MAC.W D E M M mult mult

MAC.L D E M M mult mult mult

DMULx.L / MUL.L

MULx.W

(D) mult multE(D) (D)

(D) multE(D) (D)

D

D

xx=WBxx_MAC_BUSY WB1 WB2 WB3

MAC_STALL

MAC.W F D E M

M mult mult

M1 M2 MAC

D E

(D) ESTS MACx, Rn

STS.L MACx, @-Rn (D) E M

(D) (D) D

(D) (D) D

LDS Rm, MACx / CLRMAC (D) E(D) (D) D

(D) E M(D) (D) DLDS.L @Rm+, MACx W

MAC.W D E M M mult mult

MAC.L D E M M mult mult mult

DMULx.L / MUL.L

MULx.W

(D) mult multE(D) (D)

(D) multE(D) (D)

D

D

xx=WBxx_MAC_BUSY WB1 WB2 WB3

Figure13.3 Conflict MAC.W and its post instruction

A Pipelined RISC CPU “Aquarius” 101

MAC.L F D E M

M mult mult

M1 M2 MAC

D E

(D) ESTS MACx, Rn

STS.L MACx, @-Rn (D) E M

(D) (D) (D)

(D) (D) (D)

LDS Rm, MACx / CLRMAC (D) E(D) (D) (D)

(D) E M(D) (D) (D)LDS.L @Rm+, MACx W

MAC.W D E M M mult mult

MAC.L

mult

D E M M mult mult mult

D

D

D

D

DMULx.L / MUL.L

MULx.W

(D) mult multE

mult(D) E

(D) (D) (D) D

(D) (D) (D) D

MAC_STALL

xx=WBxx_MAC_BUSY WB1 WB2 WB3
MAC_BUSY

MAC.L F D E M

M mult mult

M1 M2 MAC

D E

(D) ESTS MACx, Rn

STS.L MACx, @-Rn (D) E M

(D) (D) (D)

(D) (D) (D)

LDS Rm, MACx / CLRMAC (D) E(D) (D) (D)

(D) E M(D) (D) (D)LDS.L @Rm+, MACx W

MAC.W D E M M mult mult

MAC.L

mult

D E M M mult mult mult

D

D

D

D

DMULx.L / MUL.L

MULx.W

(D) mult multE

mult(D) E

(D) (D) (D) D

(D) (D) (D) D

MAC_STALL

xx=WBxx_MAC_BUSY WB1 WB2 WB3
MAC_BUSY

Figure13.4 Conflict MAC.L and its post instruction

MAC_BUSY

DMULx.L
MUL.L F D mult mult

M1 & M2 MAC

E

(D) ESTS MACx, Rn

STS.L MACx, @-Rn (D) E M

(D) D

(D) D

LDS Rm, MACx / CLRMAC (D) E(D) D

(D) E M(D) DLDS.L @Rm+, MACx W

MAC.W D E M M mult mult

MAC.L

DMULx.L / MUL.L

MULx.W

D E M M mult mult mult

(D) mult multE(D) D

(D) multE(D) D

MAC_STALL

xx=EXxx_MAC_BUSY EX1

MAC_BUSY

DMULx.L
MUL.L F D mult mult

M1 & M2 MAC

E

(D) ESTS MACx, Rn

STS.L MACx, @-Rn (D) E M

(D) D

(D) D

LDS Rm, MACx / CLRMAC (D) E(D) D

(D) E M(D) DLDS.L @Rm+, MACx W

MAC.W D E M M mult mult

MAC.L

DMULx.L / MUL.L

MULx.W

D E M M mult mult mult

(D) mult multE(D) D

(D) multE(D) D

MAC_STALL

xx=EXxx_MAC_BUSY EX1

Figure13.5 Conflict DMULx.L / MUL.L and its post instruction

102 A Pipelined RISC CPU “Aquarius”

MULx.W

F mult

M1&M2 MAC

D E

(D) ESTS MACx, Rn

STS.L MACx, @-Rn (D) E M

D

D

LDS Rm, MACx / CLRMAC (D) ED

(D) E MDLDS.L @Rm+, MACx W

MAC.W D E M M mult mult

MAC.L

DMULx.L / MUL.L

MULx.W

D E M M mult mult mult

D mult multE

multD E

(D)

(D)

MAC_STALL

xx=EXxx_MAC_BUSY EX1

MULx.W

F mult

M1&M2 MAC

D E

(D) ESTS MACx, Rn

STS.L MACx, @-Rn (D) E M

D

D

LDS Rm, MACx / CLRMAC (D) ED

(D) E MDLDS.L @Rm+, MACx W

MAC.W D E M M mult mult

MAC.L

DMULx.L / MUL.L

MULx.W

D E M M mult mult mult

D mult multE

multD E

(D)

(D)

MAC_STALL

xx=EXxx_MAC_BUSY EX1

Figure13.6 Conflict MULx.W and its post instruction

One of the simplest implementation of saturation is only to cut carry chain in adder circuit

at proper position. But in this case, if the initial value has already been out of saturating

value, the final result will not correct one. So, we should consider the initial accumulator

value may be any value.

Figure13.7 shows way of thought for correct saturation. The angle is accumulator’s value =

MAC. 0 degree means 64’0000000000000000, 180 degrees means 64’7FFFFFFFFFFFFFFF.

Now, the desired saturation values is shown as +S and –S. And this plane is divided into 4

regions; P, P’, M and M’. In this plane, we want to do operation add. If we add positive value

(+C), the angle of MAC moves counterclockwise; if we add negative value (-C), the angle of

MAC moves clockwise.

Table13.3 shows all combinations of MAC angle movement. And from Table13.4 to

table13.7 shows the compaction process of combinations. I implemented saturating

operation according to Table13.7.

A Pipelined RISC CPU “Aquarius” 103

0000000000000000
FFFFFFFFFFFFFFFF

7FFFFFFFFFFFFFFF
8000000000000000

00
00
7F
FF
FF
FF
FF
FF

FFFF800000000000

Region P’

Region M’

Region P

Region M

+S

-S

+C

-C

0000000000000000
FFFFFFFFFFFFFFFF

7FFFFFFFFFFFFFFF
8000000000000000

00
00
7F
FF
FF
FF
FF
FF

FFFF800000000000

Region P’

Region M’

Region P

Region M

+S

-S

+C

-C

Figure13.7 Way of thought for Saturating Accumulation

Initial MAC C(Rotation) MAC+C ADDRESULT Notes
P + P OK
P + P' 00007FFF
P + M' 00007FFF
P + M 00007FFF
P' + P 00007FFF Impossible
P' + P' 00007FFF
P' + M' 00007FFF
P' + M 00007FFF
M' + P OK
M' + P' 00007FFF Imposible
M' + M' FFFF8000
M' + M OK
M + P OK
M + P' 00007FFF
M + M' 00007FFF Impossible
M + M OK
P - P OK
P - P' FFFF8000 Impossible
P - M' FFFF8000
P - M OK
P' - P OK
P' - P' 00007FFF
P' - M' FFFF8000 Impossible
P' - M OK
M' - P FFFF8000
M' - P' FFFF8000
M' - M' FFFF8000
M' - M FFFF8000 Impossible
M - P FFFF8000
M - P' FFFF8000
M - M' FFFF8000
M - M OK

Table13.3 All combinations of angle movement (1)

104 A Pipelined RISC CPU “Aquarius”

Initial MAC C(Rotation) MAC+C ADDRESULT Notes
P /M +/- P /M OK
P /M +/- P'/M' 00007FFF/FFFF8000
P /M +/- M'/P' 00007FFF/FFFF8000
P /M +/- M /P 00007FFF/FFFF8000
P'/M' +/- P /M Impossible Don't care
P'/M' +/- P'/M' 00007FFF/FFFF8000
P'/M' +/- M'/P' 00007FFF/FFFF8000
P'/M' +/- M /P 00007FFF/FFFF8000
M'/P' +/- P /M OK
M'/P' +/- P'/M' Impossible Don't care
M'/P' +/- M'/P' FFFF8000/00007FFF Caution!
M'/P' +/- M /P OK
M /P +/- P /M OK
M /P +/- P'/M' 00007FFF/FFFF8000
M /P +/- M'/P' Impossible Don't care
M /P +/- M /P OK

Table13.4 All combinations of angle movement (2)

Initial MAC C(Rotation) MAC+C ADDRESULT Notes
P /M +/- P /M OK
P /M +/- P'/M' 00007FFF/FFFF8000
P /M +/- - /+ 00007FFF/FFFF8000
P'/M' +/- P /M Impossible Don't care
P'/M' +/- P'/M' 00007FFF/FFFF8000
P'/M' +/- - /+ 00007FFF/FFFF8000
M'/P' +/- P /M OK
- /+ +/- M'/P' FFFF8000/00007FFF Caution!
M'/P' +/- M /P OK
M /P +/- P /M OK
- /+ +/- P'/M' 00007FFF/FFFF8000
M /P +/- M /P OK

Table13.5 Compressed combinations of angle movement (1)

Initial MAC C(Rotation) MAC+C ADDRESULT Notes
+ /- +/- P /M OK
+ /- +/- P'/M' 00007FFF/FFFF8000
+ /- +/- - /+ 00007FFF/FFFF8000
- /+ +/- P /M OK
- /+ +/- M'/P' FFFF8000/00007FFF Caution!
- /+ +/- M /P OK
- /+ +/- P'/M' 00007FFF/FFFF8000

Table13.6 Compressed combinations of angle movement (2)

Initial MAC C(Rotation) MAC+C ADDRESULT Notes
* /* +/- P /M OK
* /* +/- P'/M' 00007FFF/FFFF8000
+ /- +/- - /+ 00007FFF/FFFF8000
- /+ +/- M'/P' FFFF8000/00007FFF Caution!
- /+ +/- M /P OK

Table13.7 Compressed combinations of angle movement (3)

A Pipelined RISC CPU “Aquarius” 105

14. Appendix: Aquarius Instruction Code
Aquarius instruction codes are compatible to SuperH-2.
Table14.1 shows all instruction codes and their controls.

Class Mnemonic Code Binary Code Hex Step X Y Z ALU CMP SFT Others

ALU STC SR,Rn 0 0 0 0 n n n n 0 0 0 0 0 0 1 0 0 ## 0 2 SR Rn THRUY
ALU STC GBR,Rn 0 0 0 0 n n n n 0 0 0 1 0 0 1 0 0 ## 1 2 GBR Rn THRUY
ALU STC VBR,Rn 0 0 0 0 n n n n 0 0 1 0 0 0 1 0 0 ## 2 2 VBR Rn THRUY
BRA BSRF Rm 0 0 0 0 m m m m 0 0 0 0 0 0 1 1 0 ## 0 3 Rm PC PC ADD CurPC->PR
BRA BSRF Rm 0 0 0 0 m m m m 0 0 0 0 0 0 1 1 0 ## 0 3 IFADSEL,IF_JP
BRA BRAF Rm 0 0 0 0 m m m m 0 0 1 0 0 0 1 1 0 ## 2 3 Rm PC PC ADD
BRA BRAF Rm 0 0 0 0 m m m m 0 0 1 0 0 0 1 1 0 ## 2 3 IFADSEL,IF_JP
Store MOV.B Rm,@(R0,Rn) 0 0 0 0 n n n n m m m m 0 1 0 0 0 ## ## 4 Rn Rm MAAD ADDR0 R0+Rn->MAAD, Rm->MADW,WR.B
Store MOV.W Rm,@(R0,Rn) 0 0 0 0 n n n n m m m m 0 1 0 1 0 ## ## 5 Rn Rm MAAD ADDR0 R0+Rn->MAAD, Rm->MADW,WR.W
Store MOV.L Rm,@(R0,Rn) 0 0 0 0 n n n n m m m m 0 1 1 0 0 ## ## 6 Rn Rm MAAD ADDR0 R0+Rn->MAAD, Rm->MADW,WR.L
MULT MUL.L Rm,Rn 0 0 0 0 n n n n m m m m 0 1 1 1 0 ## ## 7 Rn->M1,Rm->M2,MUL.L
ALU CLRT 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 8 0->T
ALU SETT 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 8 1->T
ALU CLRMAC 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2 8 0-MACH/MACL
ALU NOP 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 9 NOP
ALU DIV0U 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 9 DIV0U
ALU MOVT Rn 0 0 0 0 n n n n 0 0 1 0 1 0 0 1 0 ## 2 9 Rn ADD if T=1, 0+1->Rn else 0->Rn
ALU STS MACH,Rn 0 0 0 0 n n n n 0 0 0 0 1 0 1 0 0 ## 0 10 MACH Rn THRUY
ALU STS MACL,Rn 0 0 0 0 n n n n 0 0 0 1 1 0 1 0 0 ## 1 10 MACL Rn THRUY
ALU STS PR,Rn 0 0 0 0 n n n n 0 0 1 0 1 0 1 0 0 ## 2 10 PR Rn THRUY
BRA RTS 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 11 1st PR PC THRUY
BRA RTS 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 11 2nd IFADSEL,IF_JP
SLEEP SLEEP 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 11 multi SLEEP sequence
RTE RTE 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 2 11 multi RTE sequence
Load MOV.B @(R0,Rm),Rn 0 0 0 0 n n n n m m m m 1 1 0 0 0 ## ## 12 Rm MAAD ADDR0 R0+Rm->MAAD, RD.B,MADR->Rn
Load MOV.W @(R0,Rm),Rn 0 0 0 0 n n n n m m m m 1 1 0 1 0 ## ## 13 Rm MAAD ADDR0 R0+Rm->MAAD, RD.W,MADR->Rn
Load MOV.L @(R0,Rm),Rn 0 0 0 0 n n n n m m m m 1 1 1 0 0 ## ## 14 Rm MAAD ADDR0 R0+Rm->MAAD, RD.L,MADR->Rn
MULT MAC.L @Rm+,@Rn+ 0 0 0 0 n n n n m m m m 1 1 1 1 0 ## ## 15 1st Rn 4 Rn ADD Rn->MAAD,RD.L,MADR->M1
MULT MAC.L @Rm+,@Rn+ 0 0 0 0 n n n n m m m m 1 1 1 1 0 ## ## 15 2nd Rm 4 Rm ADD Rm->MAAD,RD.L,MADR->M2,MAC.L
Store MOV.L Rm,@(disp,Rn)0 0 0 1 n n n n m m m m d d d d 1 ## ## ## Rn Rm MAAD ADDCN 0d*4+Rn->MAAD, Rm->MADW,WR.L
Store MOV.B Rm,@Rn 0 0 1 0 n n n n m m m m 0 0 0 0 2 ## ## 0 Rn Rm MAAD THRUX Rm->MADW,WR.B
Store MOV.W Rm,@Rn 0 0 1 0 n n n n m m m m 0 0 0 1 2 ## ## 1 Rn Rm MAAD THRUX Rm->MADW,WR.W
Store MOV.L Rm,@Rn 0 0 1 0 n n n n m m m m 0 0 1 0 2 ## ## 2 Rn Rm MAAD THRUX Rm->MADW,WR.L
Store MOV.B Rm,@-Rn 0 0 1 0 n n n n m m m m 0 1 0 0 2 ## ## 4 Rn -1 Rn/MAADADD Rm->MADW,WR.B
Store MOV.W Rm,@-Rn 0 0 1 0 n n n n m m m m 0 1 0 1 2 ## ## 5 Rn -2 Rn/MAADADD Rm->MADW,WR.W
Store MOV.L Rm,@-Rn 0 0 1 0 n n n n m m m m 0 1 1 0 2 ## ## 6 Rn -4 Rn/MAADADD Rm->MADW,WR.L
ALU DIV0S Rm,Rn 0 0 1 0 n n n n m m m m 0 1 1 1 2 ## ## 7 DIV0S
ALU TST Rm,Rn 0 0 1 0 n n n n m m m m 1 0 0 0 2 ## ## 8 Rn Rm AND result->T
ALU AND Rm,Rn 0 0 1 0 n n n n m m m m 1 0 0 1 2 ## ## 9 Rn Rm Rn AND
ALU XOR Rm,Rn 0 0 1 0 n n n n m m m m 1 0 1 0 2 ## ## 10 Rn Rm Rn XOR
ALU OR Rm,Rn 0 0 1 0 n n n n m m m m 1 0 1 1 2 ## ## 11 Rn Rm Rn OR
ALU CMP/STR Rm,Rn 0 0 1 0 n n n n m m m m 1 1 0 0 2 ## ## 12 Rn Rm CMP/STR result->T
ALU XTRCT Rm,Rn 0 0 1 0 n n n n m m m m 1 1 0 1 2 ## ## 13 Rn Rm Rn XTRCT
MULT MULU.W Rm,Rn 0 0 1 0 n n n n m m m m 1 1 1 0 2 ## ## 14 Rn->M1,Rm->M2,MULU.W
MULT MULS.W Rm,Rn 0 0 1 0 n n n n m m m m 1 1 1 1 2 ## ## 15 Rn->M1,Rm->M2,MULS.W
ALU CMP/EQ Rm,Rn 0 0 1 1 n n n n m m m m 0 0 0 0 3 ## ## 0 Rn Rm CMP/EQ result->T
ALU CMP/HS Rm,Rn 0 0 1 1 n n n n m m m m 0 0 1 0 3 ## ## 2 Rn Rm CMP/HS result->T
ALU CMP/GE Rm,Rn 0 0 1 1 n n n n m m m m 0 0 1 1 3 ## ## 3 Rn Rm CMP/GE result->T
ALU DIV1 Rm,Rn 0 0 1 1 n n n n m m m m 0 1 0 0 3 ## ## 4 DIV1
MULT DMULU.L Rm,Rn 0 0 1 1 n n n n m m m m 0 1 0 1 3 ## ## 5 Rn->M1,Rm->M2,DMULU.L
ALU CMP/HI Rm,Rn 0 0 1 1 n n n n m m m m 0 1 1 0 3 ## ## 6 Rn Rm CMP/HI result->T
ALU CMP/GT Rm,Rn 0 0 1 1 n n n n m m m m 0 1 1 1 3 ## ## 7 Rn Rm CMP/GT result->T
ALU SUB Rm,Rn 0 0 1 1 n n n n m m m m 1 0 0 0 3 ## ## 8 Rn Rm Rn SUB
ALU SUBC Rm,Rn 0 0 1 1 n n n n m m m m 1 0 1 0 3 ## ## 10 Rn Rm Rn SUBC
ALU SUBV Rm,Rn 0 0 1 1 n n n n m m m m 1 0 1 1 3 ## ## 11 Rn Rm Rn SUBV
ALU ADD Rm,Rn 0 0 1 1 n n n n m m m m 1 1 0 0 3 ## ## 12 Rn Rm Rn ADD
MULT DMULS.L Rm,Rn 0 0 1 1 n n n n m m m m 1 1 0 1 3 ## ## 13 Rn->M1,Rm->M2,DMULS.L
ALU ADDC Rm,Rn 0 0 1 1 n n n n m m m m 1 1 1 0 3 ## ## 14 Rn Rm Rn ADDC
ALU ADDV Rm,Rn 0 0 1 1 n n n n m m m m 1 1 1 1 3 ## ## 15 Rn Rm Rn ADDV

Table14.1 Aquarius Instruction Codes (1)

106 A Pipelined RISC CPU “Aquarius”

Class Mnemonic Code Binary Code Hex Step X Y Z ALU CMP SFT Others

ALU SHLL Rn 0 1 0 0 n n n n 0 0 0 0 0 0 0 0 4 ## 0 0 Rn Rn SHLL
ALU DT Rn 0 1 0 0 n n n n 0 0 0 1 0 0 0 0 4 ## 1 0 Rn -1 Rn ADD result->T
ALU SHAL Rn 0 1 0 0 n n n n 0 0 1 0 0 0 0 0 4 ## 2 0 Rn Rn SHAL
ALU SHLR Rn 0 1 0 0 n n n n 0 0 0 0 0 0 0 1 4 ## 0 1 Rn Rn SHLR
ALU CMP/PZ Rn 0 1 0 0 n n n n 0 0 0 1 0 0 0 1 4 ## 1 1 Rn CMP/PZ result->T
ALU SHAR Rn 0 1 0 0 n n n n 0 0 1 0 0 0 0 1 4 ## 2 1 Rn Rn SHAR
Store STS.L MACH,@-Rn 0 1 0 0 n n n n 0 0 0 0 0 0 1 0 4 ## 0 2 Rn -4 Rn/MAADADD MACH->MADW,WR.L
Store STS.L MACL,@-Rn 0 1 0 0 n n n n 0 0 0 1 0 0 1 0 4 ## 1 2 Rn -4 Rn/MAADADD MACL->MADW,WR.L
Store STS.L PR,@-Rn 0 1 0 0 n n n n 0 0 1 0 0 0 1 0 4 ## 2 2 Rn -4 Rn/MAADADD PR->MADW,WR.L
STC STC.L SR, @-Rn 0 1 0 0 n n n n 0 0 0 0 0 0 1 1 4 ## 0 3 multi Rn -4 Rn/MAADADD SR->MADW,WR.L
STC STC.L GBR, @-Rn 0 1 0 0 n n n n 0 0 0 1 0 0 1 1 4 ## 1 3 multi Rn -4 Rn/MAADADD GBR->MADW,WR.L
STC STC.L VBR, @-Rn 0 1 0 0 n n n n 0 0 1 0 0 0 1 1 4 ## 2 3 multi Rn -4 Rn/MAADADD VBR->MADW,WR.L
ALU ROTL Rn 0 1 0 0 n n n n 0 0 0 0 0 1 0 0 4 ## 0 4 Rn Rn ROTL
ALU ROTCL Rn 0 1 0 0 n n n n 0 0 1 0 0 1 0 0 4 ## 2 4 Rn Rn ROTCL
ALU ROTR Rn 0 1 0 0 n n n n 0 0 0 0 0 1 0 1 4 ## 0 5 Rn Rn ROTR
ALU CMP/PL Rn 0 1 0 0 n n n n 0 0 0 1 0 1 0 1 4 ## 1 5 Rn CMP/PL result->T
ALU ROTCR Rn 0 1 0 0 n n n n 0 0 1 0 0 1 0 1 4 ## 2 5 Rn Rn ROTCR
Load LDS.L @Rm+,MACH 0 1 0 0 m m m m 0 0 0 0 0 1 1 0 4 ## 0 6 Rm 4 Rm ADD Rm->MAAD,RD.L,MADR->MACH
Load LDS.L @Rm+,MACL 0 1 0 0 m m m m 0 0 0 1 0 1 1 0 4 ## 1 6 Rm 4 Rm ADD Rm->MAAD,RD.L,MADR->MACL
Load LDS.L @Rm+,PR 0 1 0 0 m m m m 0 0 1 0 0 1 1 0 4 ## 2 6 Rm 4 Rm ADD Rm->MAAD,RD.L,MADR->PR
LDC(IM)LDC.L @Rm+,SR 0 1 0 0 m m m m 0 0 0 0 0 1 1 1 4 ## 0 7 multi Rm 4 Rm ADD Rm->MAAD,RD.L,MADR->SR
LDC LDC.L @Rm+,GBR 0 1 0 0 m m m m 0 0 0 1 0 1 1 1 4 ## 1 7 multi Rm 4 Rm ADD Rm->MAAD,RD.L,MADR->GBR
LDC LDC.L @Rm+,VBR 0 1 0 0 m m m m 0 0 1 0 0 1 1 1 4 ## 2 7 multi Rm 4 Rm ADD Rm->MAAD,RD.L,MADR->VBR
ALU SHLL2 Rn 0 1 0 0 n n n n 0 0 0 0 1 0 0 0 4 ## 0 8 Rn Rn SHLL2
ALU SHLL8 Rn 0 1 0 0 n n n n 0 0 0 1 1 0 0 0 4 ## 1 8 Rn Rn SHLL8
ALU SHLL16 Rn 0 1 0 0 n n n n 0 0 1 0 1 0 0 0 4 ## 2 8 Rn Rn SHLL16
ALU SHLR2 Rn 0 1 0 0 n n n n 0 0 0 0 1 0 0 1 4 ## 0 9 Rn Rn SHLR2
ALU SHLR8 Rn 0 1 0 0 n n n n 0 0 0 1 1 0 0 1 4 ## 1 9 Rn Rn SHLR8
ALU SHLR16 Rn 0 1 0 0 n n n n 0 0 1 0 1 0 0 1 4 ## 2 9 Rn Rn SHLR16
ALU LDS Rm,MACH 0 1 0 0 m m m m 0 0 0 0 1 0 1 0 4 ## 0 10 Rm Rm->MACH
ALU LDS Rm,MACL 0 1 0 0 m m m m 0 0 0 1 1 0 1 0 4 ## 1 10 Rm Rm->MACL
ALU LDS Rm,PR 0 1 0 0 m m m m 0 0 1 0 1 0 1 0 4 ## 2 10 Rm PR THRUX
BRA JSR @Rm 0 1 0 0 m m m m 0 0 0 0 1 0 1 1 4 ## 0 11 1st Rm PC THRUX CurPC->PR
BRA JSR @Rm 0 1 0 0 m m m m 0 0 0 0 1 0 1 1 4 ## 0 11 2nd IFADSEL,IF_JP
RMW TAS.B @Rn 0 1 0 0 n n n n 0 0 0 1 1 0 1 1 4 ## 1 11 1st Rn MAAD THRUX RD.B
RMW TAS.B @Rn 0 1 0 0 n n n n 0 0 0 1 1 0 1 1 4 ## 1 11 2nd MADR 080 MADW AND CMP/Z WR.B,result->T
BRA JMP @Rm 0 1 0 0 m m m m 0 0 1 0 1 0 1 1 4 ## 2 11 1st Rm PC THRUX
BRA JMP @Rm 0 1 0 0 m m m m 0 0 1 0 1 0 1 1 4 ## 2 11 2nd IFADSEL,IF_JP
ALU(IM)LDC Rm,SR 0 1 0 0 m m m m 0 0 0 0 1 1 1 0 4 ## 0 14 Rm SR THRUX
ALU(IM)LDC Rm,GBR 0 1 0 0 m m m m 0 0 0 1 1 1 1 0 4 ## 1 14 Rm GBR THRUX
ALU(IM)LDC Rm,VBR 0 1 0 0 m m m m 0 0 1 0 1 1 1 0 4 ## 2 14 Rm VBR THRUX
MULT MAC.W @Rm+,@Rn+ 0 1 0 0 n n n n m m m m 1 1 1 1 4 ## ## 15 1st Rn 4 Rn ADD Rn->MAAD,RD.W,MADR->M1
MULT MAC.W @Rm+,@Rn+ 0 1 0 0 n n n n m m m m 1 1 1 1 4 ## ## 15 2nd Rm 4 Rm ADD Rm->MAAD,RD.W,MADR->M2,MAC.W
Load MOV.L @(disp,Rm),Rn0 1 0 1 n n n n m m m m d d d d 5 ## ## ## Rm MAAD ADDCN 0d*4+Rm->MAAD, RD.L,MADR->Rn
Load MOV.B @Rm, Rn 0 1 1 0 n n n n m m m m 0 0 0 0 6 ## ## 0 Rm MAAD THRUY RD.B,MADR->Rn
Load MOV.W @Rm, Rn 0 1 1 0 n n n n m m m m 0 0 0 1 6 ## ## 1 Rm MAAD THRUY RD.W,MADR->Rn
Load MOV.L @Rm, Rn 0 1 1 0 n n n n m m m m 0 0 1 0 6 ## ## 2 Rm MAAD THRUY RD.L,MADR->Rn
ALU MOV Rm,Rn 0 1 1 0 n n n n m m m m 0 0 1 1 6 ## ## 3 Rm Rn THRUY
Load MOV.B @Rm+,Rn 0 1 1 0 n n n n m m m m 0 1 0 0 6 ## ## 4 Rm 1 Rm ADD Rm->MAAD,RD.B,MADR->Rn
Load MOV.W @Rm+,Rn 0 1 1 0 n n n n m m m m 0 1 0 1 6 ## ## 5 Rm 2 Rm ADD Rm->MAAD,RD.W,MADR->Rn
Load MOV.L @Rm+,Rn 0 1 1 0 n n n n m m m m 0 1 1 0 6 ## ## 6 Rm 4 Rm ADD Rm->MAAD,RD.L,MADR->Rn
ALU NOT Rm,Rn 0 1 1 0 n n n n m m m m 0 1 1 1 6 ## ## 7 Rm Rn NOT
ALU SWAP.B Rm,Rn 0 1 1 0 n n n n m m m m 1 0 0 0 6 ## ## 8 Rn Rm Rn SWAPB
ALU SWAP.W Rm,Rn 0 1 1 0 n n n n m m m m 1 0 0 1 6 ## ## 9 Rn Rm Rn SWAPW
ALU NEGC Rm,Rn 0 1 1 0 n n n n m m m m 1 0 1 0 6 ## ## 10 Rm Rn NEGC
ALU NEG Rm,Rn 0 1 1 0 n n n n m m m m 1 0 1 1 6 ## ## 11 Rm Rn NEG
ALU EXTU.B Rm,Rn 0 1 1 0 n n n n m m m m 1 1 0 0 6 ## ## 12 Rm Rn EXTUB
ALU EXTU.W Rm,Rn 0 1 1 0 n n n n m m m m 1 1 0 1 6 ## ## 13 Rm Rn EXTUW
ALU EXTS.B Rm,Rn 0 1 1 0 n n n n m m m m 1 1 1 0 6 ## ## 14 Rm Rn EXTSB
ALU EXTS.W Rm,Rn 0 1 1 0 n n n n m m m m 1 1 1 1 6 ## ## 15 Rm Rn EXTSW

Table14.1 Aquarius Instruction Codes (2)

A Pipelined RISC CPU “Aquarius” 107

Class Mnemonic Code Binary Code Hex Step X Y Z ALU CMP SFT Others

ALU ADD #imm,Rn 0 1 1 1 n n n n i i i i i i i i 7 ## ## ## Rn si Rn ADD
Store MOV.B R0,@(disp,Rn)1 0 0 0 0 0 0 0 n n n n d d d d 8 0 ## ## Rn R0 MAAD ADDCN 0d*1+Rn->MAAD, R0->MADW,WR.B
Store MOV.W R0,@(disp,Rn)1 0 0 0 0 0 0 1 n n n n d d d d 8 1 ## ## Rn R0 MAAD ADDCN 0d*2+Rn->MAAD, R0->MADW,WR.W
Load MOV.B @(disp,Rm),R01 0 0 0 0 1 0 0 m m m m d d d d 8 4 ## ## Rm MAAD ADDCN 0d*1+Rm->MAAD, RD.B,MADR->R0
Load MOV.W @(disp,Rm),R01 0 0 0 0 1 0 1 m m m m d d d d 8 5 ## ## Rm MAAD ADDCN 0d*2+Rm->MAAD, RD.W,MADR->R0
ALU CMP/EQ #imm R0 1 0 0 0 1 0 0 0 i i i i i i i i 8 8 ## ## R0 si CMP/EQ result->T
Bcc BT disp 1 0 0 0 1 0 0 1 d d d d d d d d 8 9 ## ## 1st PC sd*2 PC ADD if ~T then NOP and DISPATCH
Bcc BT disp 1 0 0 0 1 0 0 1 d d d d d d d d 8 9 ## ## 2nd IFADSEL,IF_JP
Bcc BT disp 1 0 0 0 1 0 0 1 d d d d d d d d 8 9 ## ## 3rd NOP operation
Bcc BF disp 1 0 0 0 1 0 1 1 d d d d d d d d 8 11 ## ## 1st PC sd*2 PC ADD if T then NOP and DISPATCH
Bcc BF disp 1 0 0 0 1 0 1 1 d d d d d d d d 8 11 ## ## 2nd IFADSEL,IF_JP
Bcc BF disp 1 0 0 0 1 0 1 1 d d d d d d d d 8 11 ## ## 3rd NOP operation
Bcc/S BT/S disp 1 0 0 0 1 1 0 1 d d d d d d d d 8 13 ## ## PC sd*2 PC ADD if result
Bcc/S BF/S disp 1 0 0 0 1 1 1 1 d d d d d d d d 8 15 ## ## PC sd*2 PC ADD if result
Load MOV.W @(disp,PC),Rn1 0 0 1 n n n n d d d d d d d d 9 ## ## ## PC 0d*2 MAAD ADD RD.L,MADR->Rn
BRA BRA disp 1 0 1 0 d d d d d d d d d d d d 10 ## ## ## 1st PC sd*2 PC ADD
BRA BRA disp 1 0 1 0 d d d d d d d d d d d d 10 ## ## ## 2nd IFADSEL,IF_JP
BRA BSR disp 1 0 1 1 d d d d d d d d d d d d 11 ## ## ## 1st PC sd*2 PC ADD CurPC->PR
BRA BSR disp 1 0 1 1 d d d d d d d d d d d d 11 ## ## ## 2nd IFADSEL,IF_JP
Store MOV.B R0,@(disp,GBR)1 1 0 0 0 0 0 0 d d d d d d d d 12 0 ## ## GBR R0 MAAD ADDCN 0d*1+GRB->MAAD, R0->MADW,WR.B
Store MOV.W R0,@(disp,GBR)1 1 0 0 0 0 0 1 d d d d d d d d 12 1 ## ## GBR R0 MAAD ADDCN 0d*2+GRB->MAAD, R0->MADW,WR.W
Store MOV.L R0,@(disp,GBR)1 1 0 0 0 0 1 0 d d d d d d d d 12 2 ## ## GBR R0 MAAD ADDCN 0d*4+GRB->MAAD, R0->MADW,WR.L
TRAP TRAPA #imm 1 1 0 0 0 0 1 1 i i i i i i i i 12 3 ## ## multi PC 0i*4 PC ADD TRAPA sequence
Load MOV.B @(disp,GBR),R01 1 0 0 0 1 0 0 d d d d d d d d 12 4 ## ## GBR MAAD ADDCN 0d*1+GRB->MAAD, RD.B,MADR->R0
Load MOV.W @(disp,GBR),R01 1 0 0 0 1 0 1 d d d d d d d d 12 5 ## ## GBR MAAD ADDCN 0d*2+GRB->MAAD, RD.W,MADR->R0
Load MOV.L @(disp,GBR),R01 1 0 0 0 1 1 0 d d d d d d d d 12 6 ## ## GBR MAAD ADDCN 0d*4+GRB->MAAD, RD.L,MADR->R0
ALU MOVA @(disp,PC),R0 1 1 0 0 0 1 1 1 d d d d d d d d 12 7 ## ## PC&FC 0d*4 R0 ADD
ALU TST #imm,R0 1 1 0 0 1 0 0 0 i i i i i i i i 12 8 ## ## R0 0i AND result->T
ALU AND #imm,R0 1 1 0 0 1 0 0 1 i i i i i i i i 12 9 ## ## R0 0i R0 AND
ALU XOR #imm,R0 1 1 0 0 1 0 1 0 i i i i i i i i 12 10 ## ## R0 0i R0 XOR
ALU OR #imm,R0 1 1 0 0 1 0 1 1 i i i i i i i i 12 11 ## ## R0 0i R0 OR
RMW TST.B #imm,@(R0,GBR)1 1 0 0 1 1 0 0 i i i i i i i i 12 12 ## ## 1st GBR R0 MAAD ADD RD.B

2nd MADR 0i AND result->T
RMW AND.B #imm,@(R0,GBR)1 1 0 0 1 1 0 1 i i i i i i i i 12 13 ## ## 1st GBR R0 MAAD ADD RD.B

2nd MADR 0i MADW AND WR.B
RMW XOR.B #imm,@(R0,GBR)1 1 0 0 1 1 1 0 i i i i i i i i 12 14 ## ## 1st GBR R0 MAAD ADD RD.B

2nd MADR 0i MADW XOR WR.B
RMW OR.B #imm,@(R0,GBR)1 1 0 0 1 1 1 1 i i i i i i i i 12 15 ## ## 1st GBR R0 MAAD ADD RD.B

2nd MADR 0i MADW OR WR.B
Load MOV.L @(disp,PC),Rn1 1 0 1 n n n n d d d d d d d d 13 ## ## ## PC&FC 0d*4 MAAD ADD RD.L,MARD->Rn
ALU MOV #imm,Rn 1 1 1 0 n n n n i i i i i i i i 14 ## ## ## si Rn THRUY
EVENT Illegal Instruction1 1 1 1 1 1 1 1 * * * * * * * * 15 15 ## ## multi
EVENT Slot Illegal 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 15 14 0 6 multi
EVENT IRQ 1 1 1 1 0 0 1 0 * * * * * * * * 15 2 ## ## multi
EVENT NMI 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 15 3 0 11 multi
EVENT Address Error (CPU)1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 15 4 0 9 multi
EVENT Address Error (DMAC)1 1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 15 5 0 10 multi
EVENT Manual Reset 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 15 6 0 2 multi
EVENT Power on Reset 1 1 1 1 0 1 1 1 * * * * * * * * 15 7 ## ## multi

Table14.1 Aquarius Instruction Codes (3)

