RONE
g%“@%@m

A Pipelined RISC CPU

Aqguarius

(SuperH-2 ISA Compatible CPU Core)

Thorn Aitch

Rev 1.0 July 12, 2003

OPENCORES.ORG

A Pipelined RISC CPU “Aquarius” 1

Copyright

Aguarius RTL codes and related documents are copyrighted by the author, but placed into
the public domain.

Designs can be altered while keeping list of modifications "the same as in GNU" No money
can be earned by selling the designs themselves, but anyone can get money by selling the
implementation of the design, such as ICs based on some cores, boards based on some
schematics or Layouts, and even GUI interfaces to text mode drivers. "The same as GPL
SW" Any update to the design should be documented and returned to the design. Any
derivative work based on the IP should be free under OpenlP License. Derivative work
means any update, change or improvement on the design. Any work based on the design
can be either made free under OpenlP license or protected by any other license. Work based
on the design means any work uses the OpenlP Licensed core as a building black without
changing anything on it with any other blocks to produce larger design. There is NO
WARRANTY on the functionality or gerformance of the design on the real hardware

implementation.

On the other hand, the SuperH-2 ISA (Instruction Set Architecture) executed by Aquarius
is rigidly the property of Renesas Technology Corp., which has established on April 1st, 2003
by merging semiconductor groups of Hitachi and Mitsubishi. Then you have responsibility
to judge if there are not any infringements to Renesas'’s rights regarding your Aguarius
adoption into your design. By adopting Aquarius, the user assumes all responsibility for its

use.

Trademark
Aquarius is a name of 5-stages pipelined RISC CPU core that can execute SuperH-2 ISA.
Aguarius is not registered trademark. If you officially use the name of Aquarius to external

world, you have responsibility to care the legal issues.

Royalty Release
I will not request you any royalties or other financial obligation for your Aquarius adoption
to your design and production. But you have responsibility to judge the usage of SuperH-2

ISA, legally. | strongly recommend you should ask Renesas Technology Corp. when you

2 A Pipelined RISC CPU “Aquarius”

decide to adopt Aquarius into your products.

Patent Notice

I have not cared that the information contained in this document and Aquarius deliverables
cause infringement on the patent, copyright, trademark or trade secret rights of others. You
have all responsibilities for determining if your design and products infringe on the

intellectual property rights of others.

Disclaimers

Aquarius deliverables including this document are not guaranteed. They may cause any
damages to many things, for example, loss of properties, data, money, profits, life, or
business. By adopting Aquarius, the user assumes all responsibility for its use.

Agquarius deliverables are permanently preliminary, and is subject to change.

Contact to Author
After release of Aquarius onto the OpenCores Organization site, you will be able to contact
me via the organization’s site. The email address is thorn_aitch@opencores.org.

If you find any bugs and strange descriptions, please feel free to inform me.

Trademark

SuperH™ is a trademark of Renesas Technology Corp.
Virtex™ is a trademark of Xilinx, Inc.

Stratix™ is a trademark of Altera, Corp.

Each another proper noun might be a trademark of each rights holders.

A Pipelined RISC CPU “Aquarius” 3

Revision History
Rev 0.1: May 1, 2003 by Thorn Aitch Draft

Drafting out a tentative document

Rev 1.0: July 9, 2003 by Thorn Aitch Release Version
A First Release Version

4 A Pipelined RISC CPU “Aquarius”

Index

PARTL. USING AQUARIUS ... e 8
L. INT RODU CT ION . e e e e e ettt aaees 9
1.1, VWHAT ISAQUARIUS ..eteetete e et e et e et e e et e e st s e st s e st s e st sa st sasbnsanstnssnssnannns 9
1.2, PURPOSE OF THIS P ROJIECT cutuiiiiiii et e e e e e et e et e et et s e st s it st s asanes 10
1.3. STRUCTURE OF CHAPTERS IN THIS DOCUMENT ..uutuiinitniteieeeieeeeasstsaeanssssnsnnssnaes 11
2. SPECIFICATION OVERVIEW ... et 12
2.1. AQUARIUS INSTRUCTION SET ARCHITECTURE ..uuuittiiniiiieteiee e eee e e e aae e e e aneans 12
2.2. INTERRUPTS AND EXCEPTIONS .. ettt et e et e et e et s st e s st s e e e e ans 12
2.3. DIFFERENCES BETWEEN AQUARIUS AND SUPERH-2 ..o, 13
2.4, AQUARIUS BLOCK DIAGRAM.....ituiitt ettt et et e et e e e e e e e et e e et r e s e s e eaeens 14
2.5. EXAMPLES OF AQUARIUS BASED SOC ...u.iiiiiiiiiie e e e e e e e 16
3. PRE P AR AT ION e e s 18
G T T o O = N AV 4 1= T 1Y = i 18
G T G711, | N 18
TG T Fo7-N =8 STV 4 =1 =T | I T 18
3.4. GNUASSEMBLER AND C COMPILER FOR SUPERH-2 ..., 18
3.5, FPGA DEVELOPMENT TOOL .. iuituitututntnitnttneeneeaeenstneenssnsansanssstssnssnsssssssssnssaeraesnssns 20
B0, P G A B O ARD . et 20
4, DELIVERABLES ... e 21
L I I T Y1 U1V 1 = N 21
L I I = =X Y0 18] =T =X 21
4.3. VERIFICATION RESOURCES ...iuuitiitiitietiieieieie et iete it et ra et saetesa et sa et saetsaeraeaeans 23
4.4, FPGARELATED RESOURCEScitiitiitiii ittt e et e s e s e et s et s s e e e e e e eans 24
5. AQUARIUS CPU INTERFACE SPECIFICATION: “CPU.V”o 26
5.1. AQUARIUS CPU IN/OUT SIGNALS «.etietiie ettt e et e e e s e s e s e aaeens 26
LT = s =Y B] 1] N - 26
5.3. “WISHBONE” COMPLIANT BUS SIGNALScuiitiiiii e e e e e e ans 27
5.4. HARDWARE EVENT SIGNALS (INTERRUPT) ..uuuiiiieiirieeiiiinieeeeeeeeeteinnseeeeeeensnnnnnnaeaaeeees 30

A Pipelined RISC CPU “Aquarius” 5

5.5. SLEEP SIGNAL FOR LOW POWER IMODEcuuiiiiiiiiee e 32

6. SIMULATION TEST BENGCH ..ottt e et 34
(ST T o] = 1N =1 = S T = AV 34
6.2. SIMULATION TEST BENCH: “TEST.V eitiiiiii it e e e e e s e e et e e e e aeans 34
6.3. PARALLEL /O PORT (PlO): “PIO.V ittt e e e 34
6.4. SERIAL I/O (UART) “UART.V oottt e e eeee ettt e e e et et e e e e e e ettt s s e e e e e eeaeaanaaeaeeeees 37
6.5. SYSTEM CONTROLLER (SY S): SY SV iiiiititiii i i e e ee ettt e et e e e e e e 39
6.6. ON CHIP MEMORY: “MEMORY.V ..euitiiiiiie e ee e e e e e e et et e st s e e et e e e e aeans 42
6.7. SIMULATION TOOLS AND FLOWS ...t e e e 43

7. FPGA IMPLEMEN T T AT ION . ..ottt et aeeas 45
. L. P G A SY STEM ittt e e e e e e et aas 45
7.2. CIRCUIT OF FPGABOARD ..uieuiitiiiie ettt e e e et et e e st e st s e e e aeans 46
7.3. CIRCUIT OF INTERFACE BOARD ...uiiiiii et e e e 46
T4, FPGA CONFIGURATION ..ttt et e e et e et e st e e st s e st sa s s sasanssstnsaernsaneens 49
7.5. RESULTS OF FPGA CONFIGURATION ...tuitutttiiieeeeieeeteeeasesasasansassnsassnssssnesneans 49
7.6. APPLICATION PROGRAMS ON THE FPGASYSTEM ..uuiiiiiii i 51

PART2. INSIDE AQUARIUS CPUo e 55

8. AQUARIUS CPU OVERVIEW. ... e 56
8.1. AQUARIUS BLOCK DIAGRAM. .. cuitiiite ettt e e e e e e e e e et e e e e eans 56
8.2. AQUARIUS CPU IN/OUT SIGNALS «.etietiie ettt e e et e e e s e s e s e eaeens 58

9. OVERVIEW OF PIPELINE CONTROL ...ttt ittt ettt e e 59
0.1, PIPELINE AND STAGE ..euituituiinittietitae e ie et e et e st e st e e st sa st st s s st st ssstnsasrneaeens 59
9.2. PIPELINE OF EACH INSTRUGCTION ..euiuiiuitniitiii i ee e ee et e ts s aeasansasssasansasrneaneens 60
LS JRC T = d =l e 1oy 1 = = G0 N =1 I [0 63
9.4, MEMORY A CCESS CONF LICT tiuituituitnitnttnete et e et et et e et s st s s st sastssstnsserneaeens 63
9.5, WHO ISSUES IF? WHO ISSUES ID?...e i 64

10. DE C O D ER UNI T i e e e et 65
10.1. LN T L I ST [T N < 65

6 A Pipelined RISC CPU “Aquarius”

10.2. STRUCTURE OF DECODER UNIT uiiiiiiiiiii et e et s e st e st s s eanaanas 67

10.3. SHIFTING CONTROL SIGNALS ...ttt et et et et s et st e st e it st sasasassnssasrnaenns 71
10.4. L 1= I 1N 3 7 73
10.5. REGISTER FORWARDING ...cuittiiniiiiete e e et s et s et s et s s e st e it st s e st s e eaneaneans 76
10.6. EXAMPLES OF PIPELINE CONTROL .uuituitnitititeteeeieeetssetssetssesssssssesnssnasnees 76
10.7. CONTROL OF PROGRAM COUNTER ..tuittitiiiiie e e et e et s ts s st sasasansasansssanaenns 76
11. MEMORY ACCESS CONTROL UNIT .. 81
11.1. LN T L I ST [T N 7 < 81
11.2. WISHBONE'SACK AND AQUARIUS ' SLOT ..o 81
11.3. INSTRUCTION FETCH CYCLE. ittt ettt e e e e e e e e e e ans 82
11.4. IMEMORY ACCESS CY CLE .uuituitiiiiiiite e e e e et et e e et et et s e et s e st sa st saeaaaasnees 83
11.5. I AV AN O] N =1 T [85
11.6. Bus WIDTH OF INSTRUCTION FETCH CYCLE (IF_WIDTH) ..., 86
11.7. READ MoDIFY WRITE CYCLE (FOR INSTRUCTION TAS.B) ..cccvvvviiiiiieeeieeeie e 86
11.8. STATE MACHINE OF MEMORY ACCESS CONTROL UNIT .euiiiiiiiiiiiieeeeeee e 87
12. DA T A PATH UNI T e e e 89
12.1. INJOUT SIGNAL TABLE ..iitiititeiet ettt e e et et e s et ettt e e e e et e et e et e et s eaesenes 89
12.2. STRUCTURE OF DATA PATH ettt e e et e e st e et e e e e aaas 91
13. MU LT IPLIER UN T oot 94
13.1. INJOUT SIGNAL TABLE ..ttt ettt et e et et e e et et s e s e e et e et e et e et e eneeenes 94
13.2. ALGORITHM OF MULTIPLICATION 1etuittitnieeiteieteieietaeesetsatetsastsssssassassstasasasees 94
13.3. STRUCTURE OF MULTIPLIER UN T 1iniitiii i e et e et et e st eaasas e eanaenas 97
13.4. CONTROL OF MULTIPLICATION UNIT ettt e et e e e e s s e e e 98
13.5. HOW TO IMPLEMENT SATURATING ACCUMULATION ...uiuniiiiiiieieeeeeeee e aeeaeaeanaes 99
14. APPENDIX: AQUARIUS INSTRUCTIONCODES ..o 104

A Pipelined RISC CPU “Aquarius” 7

Partl. Using Aquarius

A Pipelined RISC CPU “Aquarius”

1. Introduction

1.1. What is Aquarius
Aquarius is a Core IP (Intellectual Property) of pipelined RISC CPU and can execute
SuperH-2 instructions. Aquarius and related information are released to OpenCores

Organization web site (www.opencores.org). You can freely download all necessary

resources and latest updates from the site.

The reasons why | selected SuperH-2 ISA (Instruction Set Architecture) are as follows.

(1) SuperH is a very popular CPU core. The software development environments such as C
compiler have been well prepared. The GNU C compiler for SuperH is very famous and
easy to get. The SuperH had been developed by Hitachi, Ltd. Now, semiconductor group
of Hitachi has merged with same group of Mitsubish and new semiconductor company
“Renesas Technology Corp.” has established in April, 2003.

(2) SuperH-2 is a CPU for MCU (Micro Controller Unit). Then the CPU need not handle
complex exception recovering such as memory fault exception from MMU (Memory
Managing Unit). This means SuperH-2 has simple structure, easiness to design, and it
does not consume many logic gates and power.

(3) All SuperH-2 instructions have 16bit length. It also makes the hardware very simple.
And most important aspect from 16bit fixed length of instructions is that the object
code size compiled from C source programs becomes very small.

(4) And, I love SuperH.

Aquarius is a free and completed soft IP. So | believe that Aquarius can increase SuperH-2

ISA familiars.

Aquarius consists of RTL descriptions. The language is Verilog-HDL. You can implement
Aquarius not only in your System LSI but also in your FPGA system. The Aquarius bus
interface follows WISHBONE specification maintained by the OpenCores Organization

(www.opencores.org), so you can easily connect Aquarius to many IPs registered in

OpenCores web site.

A Pipelined RISC CPU “Aquarius” 9

During my Aquarius design, | only referred public SuperH document from Renesas such as
SH-2 Programming Manual. Of course | could not reach Renesas internal design
information, so the Aquarius may NOT have completely same functionality as real

SuperH-2 CPU core, however, Aquarius can execute all public instructions of SuperH-2.

The functionality of Aquarius has been verified by both methods of functional vector
simulation and long run tests on FPGA board using program codes from GNU C Compiler

and Assembler.

I have designed Aquarius without consuming money except for FPGA hardware. | have
used free simulation tools and free FPGA configuration tool. You also do not need to buy

expensive EDA tools.

I am not an expert designer of CPU core, so the current Aquarius may not have the best
performance. | think efficiency of the design such as area consumption and operation
frequency can be improved much more. If you find some improvements, please feel free to

suggest your ideas to me.

Please enjoy the exciting deep IP design world. You can modify Aquarius to make your
original system. | hope Aquarius will help system designers, university students and

electronics hobbyists.

1.2. Purpose of this Project
The main purpose of Aquarius Project is to provide everyone a pipelined RISC CPU core as
one of the IPs for System LSI and FPGA system. You can get information about how to
design actual useful RISC CPU.

The Aquarius has SuperH-2 compatible ISA, so | hope that SuperH familiarized people will
increase more and more. Many embedded system, for example Robots, Industrial Systems,
Measurement Instruments, and many kind of digital information systems controlled by

embedded micro controllers, can be realized by SuperH-2 architecture.

I provide Aquarius without any license fee and royalty. You can freely get the latest

10 A Pipelined RISC CPU “Aquarius”

Aguarius IP codes from OpenCores Organization on the internet whenever you like. And |
will introduce you the cheapest but excellent design environments via this document. You
will able to modify Aquarius and establish your original IP.

1.3. Structure of Chapters in this document

This document consists of 2 parts. The first part describes how to use Aquarius, for example,
explanation of interface signals, test bench and FPGA implementation. All readers should
read first part. The second part shows inside Aquarius which is way of thought for
designing a pipelined RISC CPU. If you want to understand the apparatus of pipelined
RISC CPU and want to design your original CPU core, you should read second part, too.

A Pipelined RISC CPU “Aqguarius” 11

2. Specification Overview

2.1. Aquarius Instruction Set Architecture

Agquarius is based on SuperH-2 Instruction Set Architecture (ISA). The SuperH-2 CPU has
RISC-type instruction sets and 16 32bit-general-registers (R0-R15). All instructions have
16bits fixed length. The SuperH-2 is based on 5 stages pipelined architecture, so basic
instructions are executed in one clock cycle pitch, which dramatically improves instruction
execution speed. The CPU also has an internal 32-bit architecture for enhanced data
processing ability such as multiply and accumulation like DSP functionality.

The detail document of SuperH-2 CPU architecture can be found in Renesas web site.

http://www. renesas.com/

Please reach to the SuperH product page and find the SH-2 related product documents.
Then search document type of “Programming Manual” and find the “SuperH RISC Engine
SH-1/SH-2/SH-DSP Programming Manual”. This manual includes explanations among
SH-1, SH2 and SH2-DSP Instruction set. Please check up only SH-2 portions from this
manual. But it does not describe about exception and interrupt. For that information, pick
up product manual such as “SH7040 series Hardware Manual” and refer to chapters

regarding Exception and Interrupt Controller.

2.2. Interrupts and Exceptions

Like SuperH-2 CPU, Aquarius can handle interrupt requests, such as NMI (non maskable
interrupt) and IRQ (interrupt request). The interrupt priority level can be set from 0O to 16.
The interrupt request whose priority level is higher than | bit (13-10) in SR (Status
Register) will accepted by CPU. The priority of NMI is 16, so it is always accepted. The
priority level and the vector number of IRQ can be informed from external circuit such as
interrupt controller or system controller. If the priority level is zero, such interrupt will not
be accepted. Once the interrupt is accepted, the interrupt exception will start. It copies the
interrupt request level to | bit (13-10) in SR ,push SR and PC onto stack, fetch the vector
address and branch to targeting interrupt service routine. To return from interrupt service
routine, use RTE, which pops PC and SR and starts from the address of popped PC.

By the 4 bit priority control scheme, the interrupt can be nested.

12 A Pipelined RISC CPU “Aquarius”

The other exceptions such as CPU address error, DMA address error, TRAP Instruction,
Illegal Instruction, Slot lllegal Instruction, Manual Reset and Power on Reset are fully
supported by Aquarius.

2.3. Differences between Aquarius and SuperH-2
Aquarius can execute all public SuperH-2 instructions. But there are some functional

differences between Aquarius and real SuperH-2 CPU.

(1) Improvement of Multiplication Cycle

Table 2.1 shows that the execution cycle of the multiplication related instructions
of Aquarius are slightly different from SuperH-2's because | guess the structure of
connection between CPU and Multiplier is changed from real SuperH-2. You can find some
performance is improved. Especially, the pitch cycle reduction of MAC.L will improve
performance of many real time applications. The details of pipeline control will be shown in

later chapter.

Instruction Aquarius SuperH-2 Notes
MAC.W @Rm+, @Rn+ C=2,P=2,L=3 C=2,P=2,L=2
MAC.L @Rm+, @Rn+ C=2,P=2,L=4 C=2,P=4,L=4
MULS/U.W Rm, Rn C=1,P=1,L=2 C=1, P=2,L=2
DMULS/U.L Rm, Rn C=1, P=3,L=2 C=1,P=4,L=4
MUL.L Rm, Rn C=1, P=3,L=2 C=1,P=4,L=4

C (Cycle): Instruction Execution Cycle if there is no contention. This is minimum cycle.
P (Pitch): Instruction Execution Pitch cycle if same instructions are repeated.

L (Latency): Latency cycle until STS, which is located just after me, and stores MACH/MACL to Rn.

Table2.1. Differences of Instruction Execution Cycles between Aquarius and SuperH-2

(2) Detection of Illegal Instruction

The real SuperH-2 decodes all illegal instructions. But in Aquarius, only the F~-line
instructions (OxFFxx) are recognized as illegal instructions that bring up “lllegal
Instruction Exception”. Other “should-be illegal instructions” are not fully decoded, so these
operations are seemed as “Undefined”. Actually, the operation of undefined instructions will
be just same as similar code’s instruction. By this shortcut, the usage of area is reduced.

Of course, the Slot Illegal Exception (in the case that a branch instruction placed at te

A Pipelined RISC CPU “Aqguarius” 13

delay slot of delayed branch) is completely detected.
Even f you want Aquarius to detect all illegal instructions, you can easily modify the
decode unit’s RTL code.

(3) Instruction Codes for Exception

Some instructions in F-line (OxFxxx) are used for launching exceptions. These are shown in
Tabel2.2, which are not defined in actual SuperH ISA. In the CPU decoder, the hardware
event, for example interrupt, exchanges a fetched instruction to another code (in Tablel.2)
which launches exception, and then changes the control sequence from normal instruction’s
one to the exception’s. If these instructions exist in program code, corresponding exception
will start, but will not have correct operation, such as interrupt priority control. |

recommend you not to write the Exception Launch Instructions in program code.

Instruction Correct Code Exception Sequence Notes

OXF7xx 0xF700 Power On Rest Lower 8bit is used as vector No.
OxF6xx 0xF602 Manual Reset Lower 8bit is used as vector No.
OxF3xx OxF30A DMA Address Error Lower 8bit is used as vector No.
OxF2xx 0xF209 CPU Address Error Lower 8bit is used as vector No.
OxF1xx OxF10B NMI Lower 8bit is used as vector No.
OxFOxx 0xFOxx IRQ Lower 8bit is used as vector No.
OxFF04 OxFF04 General lllegal Lower 8bit is used as vector No.
OxFEO06 OxFEO06 SLOT lllegal Lower 8bit is used as vector No.

Table2.2 Exception Launch Instruction

(4) 1CE Support Instructions

Although the actual SuperH-2 may have dedicated instructions to support the ICE (in
circuit emulator), Aquarius do not have, because those instructions are not released
generally. In the test bench of Aquarius, | have implemented the “break” function by NMI

(non maskable interrupt).

2.4. Aquarius Block Diagram

Figure 2.1 shows the block diagram of Aquarius CPU core.

14 A Pipelined RISC CPU “Aquarius”

CPU
v AddressandData
cpu. Memory i
Wishbone _ R Access
Bus @ > Controller
Multiplier | pga
mem-v DataPath
mult.v
7 datapath.v
IFIMA .
commands Instruction S.oT controls
controls
Decoder
status
Interrupt decodev
Address Error "

Figure2.1. Block Diagram of Aquarius

Top layer of Agquarius is “CPU” which has WISHBONE compliant bus signals and accepts
interruption related signals. The most important system signals such as clock and reset are

not shown in this figure.

The Memory Access Controller handles instruction fetch and data read/write access. The
operations of Memory Access Controller are fully controlled by Decoder unit. Memory
Access Controller sends fetched instruction bit fields to the Decoder unit, and interchanges
read/write data and its address with Data Path unit. Aquarius assumes the Wishbone bus
is a Non-Harvard bus, then the simultaneous instruction fetch and R/W data access makes
bus contention. Memory Access Controller handles such contention smoothly and informs
the pipeline stall caused by the bus contention to Decoder unit. Also, the Memory Access
Controller can sense each boundary of bus cycles (with wait state) from WISHBONE ACK
signal. In Aquarius architecture (may be in SuperH-2 architecture as well), such bus cycle
boundary corresponds to the pipeline’s slot edge. So the Memory Access Controller produces

the most important pipeline control signal “SLOT” indicating pipeline slot edge.

The Data Path unit has registers you can see in programmer’s model in SuperH-2 manual
such as General Registers (RO to R15), Status Register (SR), Global Base Register (GBR),
Vector Base Register (VBR), Procedure Register (PR) and Program Counter (PC). The
Multiplication and Accumulate Registers (MACH/MACL) are found in Multiplication unit.
The Data Path unit also has necessity operation resources such as ALU (Arithmetic and

Logical operation Unit), Shifter, Divider, Comparator, temporary registers, many selectors,

A Pipelined RISC CPU “Aqguarius” 15

interfaces to/from Memory Access Controller and Multiply unit, and several buses to
connect each resource. The Data Path is fully controlled by control signals from Decoder

unit.

Multiply unit has a 32bit x 16bit multiplier and its control circuits. A 16bit x 16bit multiply
operation is executed in one clock cycle. A 32 bit x 32bit multiply operation is done in two
clock cycles. Multiply unit also has the Multiplier and Accumulate Registers
(MACH/MACL). The MACH/MACL are not only the final result registers of multiply or
multiply-and-accumulation but also the temporary registers to hold the 48bit partial
multiply result from 32bit x 16bit multiplier for 32bit x 32bit operation. The multiply
instruction, for example MULS.L, clears the contents of MACH/MACL in early stage of the
instruction operation. However the multiply and accumulate instruction, for example
MAC.L, does not clear MACH/MACL before the operation. The MAC.L accumulates its own
partial multiply result to initial MACH/MACL and then finalize the operation result. The
major difference between multiply (MULS.L) and “multiply and accumulate” (MAC.L) is
whether to clear or not to clear the MACH/MACL before the operation. And also, for MAC.L

and MAC.W instruction, the accumulation adder in this unit has saturating function.

The Decoder unit is the fundamental CPU controller. It orders Memory Access Controller
fetch instructions and then receives the instruction. The Decoder Unit decodes the
instruction bit fields and judges the followed operations. Basically, the Decoder unit plays
the role only for the instruction ID stage. But it throws many control signals for following
EX, MA and WB stages toward Data Path unit, Multiplication unit, and Memory Access
Controller. These control signals are kept and shifted with its pipeline flow at each slot
edge until reaching to the target stage of the instruction. The Decoder unit detects every
conditions of pipeline stalling, and makes each unit of CPU be controlled properly. Also, it
controls not only simple 1 cycle instructions but also multi cycle instructions and

exception’s sequences such as interrupt and address error.

Detailed design description of each unit is found in Part 2.

2.5. Examples of Aquarius based SoC

Figure 2.2 shows some examples of SoC using Aquarius.

16 A Pipelined RISC CPU “Aquarius”

(1) Itis asimple micro controller that has CPU, ROM, RAM and some peripherals. Each
module is connected by a common Wishbone bus.

(2) It is same as (1) except it has external bus interface. If the external bus interface is
designed properly, it can be connected any memories such as ROM, Burst ROM, SRAM,
SDRAM and, if you desire, DDR may be possible.

(3) If the bus operation frequency is high (for example, over 100MHz), one common
Wishbone bus will not catch up with the frequency because of heavy load. In such case, |
recommend you to divide the internal bus into as least two, one is the fast speed bus
with only CPU and internal fast memories, and the other one is slow speed bus with

many slow peripheral modules and external memory interface.

I provide Aquarius deliverables not only as CPU core but also as MCU like (1), which has
ROM, RAM, UART, PORT and System Controller (interrupt and exception controller) etc.

ROM
(MASK ROM)

A
Aquarius
CPU ¢ .
Wishbone Compliant Bus

Interrupt Address Clock
Control Decoder Reset

RAM UART Timer PIO

(1) Micro Controller using Aquarius

ROM
(option)

A I I 1 1
Aquarius I \
cru Wishbone Compliant Bus

Interrupt Address Clock External
Control Decoder Reset BUS 1 I

(2) Micro Controller using Aquarius with externa bus

RAM UART Timer PIO

ROM]
(option) RAM UART||Timer || PIO
A 4 A
Aquarius [Bus [
CPU < " ; SW L
High Speed Wishbone ow Speed
Wishbone
Interrupt Address Clock External
Control Decoder Reset BUS

(3) High Speed Micro Controller using Aquarius with external bus

Figure2.2. Examples of System LSI using Aquarius

A Pipelined RISC CPU “Aquarius” 17

3. Preparation

This chapter describes my recommendations regarding necessary preparations before
starting development. You do not need any expenses except PC environment and FPGA

board.

3.1. PC environment

This is the most important tool. Any Windows machines are OK. I still use SONY VAIO
Notebook PCG-R505FR/D with Mobile Pentiumlll 800MHz, 256MB RAM, and Microsoft
Windows XP. Even such machine has enough power to design Aquarius. Of course, you need
broadband internet connection such as xDSL to download many required resources.

The reason why | use Windows machine instead of Linux machine is that the most “free”
FPGA development tools from FPGA vendors such as Xilinx and Altera run on only

Windows environment.

3.2. Cygwin
The simulator of Verilog-HDL codes and the compiler/assembler of SuperH-2 run on the
UNIX environment. In order all tools to live together in Windows environment, the Cygwin

is a good selection. Download the latest Cygwin system from http://www.cygwin.com, and

full-install to your PC according to its instructions. After the Cygwin installation, many
UNIX/Linux applications and all Windows applications simultaneously run on your PC

without circumstances.

3.3. Icarus Verilog

I think the most excellent free Verilog simulator is Icarus Verilog. Download Icarus from

http://www.icarus.com/eda/verilog/index.html and install it from Cygwin console window
according to Icarus’s installation document. If you have installed Cygwin with full packages,

you will not encounter any problems.

3.4. GNU Assembler and C Compiler for SuperH-2
To make verification program and to develop application program, the SuperH-2 assembler

and compiler are necessary for you. Install them as follows.

18 A Pipelined RISC CPU “Aquarius”

(1) Download following files from ftp://ftp.gnu.org/pub/gnu/
binutils-2.13.1.tar.gz
gcc-2.95.3.tar. gz
gdb-5.2. 1. tar.gz

(2) Download following file from http://sources.redhat.com/newlib/
new ib-1.10.0.tar.gz

(3) Place these 4 files under / usr/ | ocal / src.

(4) Install GNU binutils.

cd /usr/local/src

gzip —dc binutils-2.13.1.tar.gz | tar xvf -
cd binutils-2.13.1
nmkdi r work
cd work
../lconfigure —prefix=/usr/local —target=sh-elf
make
make install
(5) Install GNU gcc and newlib.
cd /usr/local/src
gzip —dc newib-1.10.0.tar.gz | tar xvf —
gzip —dc gcc-2.95.3.tar.gz | tar xvf -
cd gcc-2.95.3
In —s ../newib-1.10.0/newWib .

nmkdi r work

cd work

../configure —prefix=/usr/local —-target=sh-elf --wi th-gnu-as
--with-gnu-1d --with-dwarf2 --disable-multilib --enable-|anguages=c
--with-newib

make

make install

(6) Install GNU gdb.
cd /usr/local/src
gzip —dc gdb-5.2.1.tar.gz | tar xvf -

A Pipelined RISC CPU “Aqguarius” 19

cd gdb-5.2.1

nmkdi r work

cd work

..lconfigure —prefix=/usr/local —target=sh-elf
make

make install

3.5. FPGA development tool

To implement your design to FPGA, you need FPGA development tool. The FPGA vendors
release excellent free development tool which has editor, logic synthesizer, static timing
analyzer, placer & router and configuration binary generator. In Aquarius project, | have
been using Xilinx free ISE Webpack 5.x. Download it from following URL site and install it
on your Windows environment. It has a nice Verilog syntax editor, so I have mainly used
the editor in “Project Navigator” of ISE during Aquarius development.

http://www.xilinx.com/xInx/xil_prodcat landingpage.jsp?title=ISE+WebPack

3.6. FPGA Board

To verify the logic design, implementing it to FPGA device is very good method. The FPGA
plays a role as a hardware logic emulator, so the verification speed is much faster than
vector logic simulation. And the CPU in FPGA can execute very large and long program
quickly, so the verification quality will be improved.

I bought a board which has Xilinx VirtexE-300 (XCV300E). In my case, the board vendor
name is HUMANDATA Ltd, and the product name is XSP-009-300. The site is

http://www.hdl.co.jp/ which unfortunately has only Japanese description. But this company

opens their technical documents regarding the products on their site, freely.
You can find the board schematic, which can be read even by non-Japanese people, from
http://www.hdl.co.jp/ftpdata/xsp-009/XSP009.sch.pdf .

I think you can find another good FPGA boards from many vendors around you. Or if you

can get FPGA device, making a board by “DIY” is a good choice.
I added some external circuit such as LCD display, Hex Key board and I/F to RS232C to

above board to make the verification be smooth. The detail circuit is described later.

20 A Pipelined RISC CPU “Aquarius”

4. Deliverables

This chapter shows the all deliverables of Aquarius project.

4.1. Document
Aquari us. pdf :this document (Adobe Acrobat Reader)

Aquari us. doc : this document (Microsoft Word)

4.2. RTL Resources

Verilog —HDL (RTL) of Aquarius CPU and its test bench

The set of RTL codes of Aquarius includes not only CPU RTL but also Simple MCU RTL
that comprises CPU, ROM, RAM, PIO, UART and System Controller. The RTL codes except
CPU are used as test bench of CPU. Of course, you can implement all RTL codes into your
FPGA, and verify it much more efficiently like as | did. Figure 3.1 shows RTL structure of
Aquarius MCU.

Test Bench comprises...

timescal e. v Timescale definition. All files include me.

test.v Test Bench
top.v Top layer of MCU
MCUcomprises...
top.v Top layer of MCU
pi 0.V Parallel IN/OUT Interface
menory. v ROM(8KB) and RAM(8KB) for Verilog simulation.

ROM can be initialized from S-format binary code.
romv ROM description created by a converter from S-format.
menory_f pga. v “menory. v” for Xilinx FPGA's configuration (BlockRAM)
All area (16KB) can be initialized by INIT constraints.
uart.v UART (Universal Asynchronous Receiver/Transmitter)
sasc_brg.v Baud Rate Generator
sasc_top.v UART Body
sasc_fifo4.v 4step FIFO for UART Buffer

A Pipelined RISC CPU “Aqguarius” 21

Sys. Vv System Controller that handles interrupts and exceptions

lib.v A clock stop gate (SLEEP instruction) for Verilog sim.
lib_fpga.v “I'i b. v” for Xilinx FPGA configration
Cpu. v Top layer of CPU (Aguarius)

Aquarius CPU comprises...

Cpu. v Top layer of CPU (Agquarius)
dat apath. v Data Path
register.v General Registers RO-R15

decode. v Instruction Decoder

mem v Memory Access Controller

mult.v Multiplier

defines.v Constant Parameters referred from CPU

The UART is based on the “Simple Asynchronous Serial Communication Device created by

Rudolf Usselmann” downloaded from http://www.opencores.org/cores/sasc/.

. Test Bench
timescale.v

test.v Micro Controller Unit (MCU) : TOP

top.v —
Aquarius CPU Core: CPU

—— cpu.v—]
— datapath.v
— decode.v _l— register.v

— mem.v
— mult.v
L— defines.v

— uartvV—— Serial I/F : UART
——sasc_brg.v

L sasc_top.v
_|— sasc_fifod.v

— SyS.V- System Controller : SYS
lib.v : For Simulation
or

lib_fpgav : For FPGA

I piov Parallel 1/0 Port : PIO

On Chip Memory : MEMORY

— memory.v — rom.v : For Simulation
or
memory_fpgav : For FPGA

Figure 3.1 RTL Structure

22 A Pipelined RISC CPU “Aquarius”

4.3. Verification Resources

I also provide simple but useful resources for logic verification and program development.

(1) Assembler Source Programs for Verilog simulation
I provide some example programs for Verilog simulation. You can find them under the
directory “sha_t est sour ce”.

(2) Converter from S-format object to Verilog ROM description “rom v”
The assembler can make S-format object. But it should be linked to Aguarius Verilog test
bench. I made a simple binary converter from S-format to Verilog ROM description “rom v™.
This converter is “genrom c¢” which is C source program. Compile it on your Cygwin
console. Simply, do this.

$ gcc —0 genrom exe genromc
The usage is very simple. If your S-format binary name is “t est . obj ”, you can convert it to
Verilog ROM description by typing as follows.

$./genrom test. obj
This operation creates “r om v”, which is an 8Kbyte ROM.
Note that the “genr onT supports the S-Format which has only SO (comment), S3 (4byte

address) and S7 (end of record).

(3) Script to launch Assembler
The script named “asnf launches the GNU assembler, creates object code as an S-format
file, and converts the S-Format object to a Verilog ROM description “rom v”. The “asnf is

very short script as follows.

#! / bi n/ bash

sh-elf-as -a $1 > lis
sh-elf-as -0 a.out $1
sh-el f -obj copy -O srec --srec-forceS3 a.out obj

./ genrom obj

The usage is also simple. If you have assemble source program named “test.src”, simply

A Pipelined RISC CPU “Aqguarius” 23

type as follows.
$./asmtest.src

This operation creates Verilog ROM description “r om v” corresponding to “t est . src™.

(4) Script to launch Verilog Simulation

After creating “rom v”, now you can simulate Aquarius. First of all, prepare a text file
“t est . t xt” that lists up all Verilog source files.

The script named “si ni’ launches the Icarus Verilog Simulator. The “si nf is very short

script as follows.

#!/ bi n/ bash

iverilog —o test —c test.txt

VVp —Vv test

By the Aquarius test bench “test.v”, the simulation results is created as

“t est _resul t.txt”which is a trace list of bus cycle and important register contents.

4.4. FPGA related Resources

To implement Aquarius into Xilinx VirtexE, | have prepared some resources.

(1) Converter from S-format object to Xilinx BlockRAM INIT Constraints
In case of FPGA implementation, ROM should be configured by BlockRAM instead of
“rom v”, which is described by continuous “case” statements, to reduce the consumption of
logic cells. The BlockRAM can be initialized by INIT statement in user constraints file
(. ucf). So I made a converter from S-format object to INIT statement.
The converter is “genr am c¢”, which is also a C program, then compile it on your Cygwin
console.

$ gcc —0 genram exe genramc
The usage is very simple. If your S-format binary name is “t est . obj ”, you can convert it to
INIT description by typing as follows.

$./genram test. obj

This operation creates “r am dat ”, which is 16Kbyte BlockRAM initialization.

24 A Pipelined RISC CPU “Aquarius”

The content of “r am dat " is as follows.

I NST " MEMORY_M am RAMDHH i nst_ramb_0" I NI T_00 = 0000000000000000..;
I NST " MEMORY_M am RAMDHH i nst_ramb_0" I NIT_01 = 0000000000000000..;
I NST " MEMORY_M am RAMDHH i nst_ramb_0" INIT_02 = 2121212121212121..;
I NST " MEMORY_M am RAMDHH i nst_ramb_0" I NI T_03 = 6765636100D02F2F..;

After creating “r am dat ”, add this content after the tail of your user constraints file (. ucf),

or change all old INST statement. Then, configure your FPGA.

(2) An example of User Constraints File (. ucf)
I provide an example of user constraints file (t op. ucf) which corresponds to my FPGA

system described later.

(3) Some Applications for FPGA System

Following application programs are provided.

Monitor Program shc_nonitor _rel ease vl1/
LCD Test shc | cdtest/
Interrupt! Clock shc_cl ock/

Details are described later (FPGA Implementation)

A Pipelined RISC CPU “Aqguarius” 25

5. Aquarius CPU Interface Specification: “cpu.v”

5.1. Aquarius CPU IN/OUT Signals
The Aquarius CPU (‘cpu. v”)'s IN/OUT signals are shown in Table5.1. In Aquarius CPU

logic circuit, all signals are positive logic level and the changing timing is always at positive

edge of CLK.
Class Si gnal Nane Direction Meaning Notes
System CLK Input System clock
Signals RST Input Power On Reset
Wishbone CYC O Output Cycle Output
Bus STB O Output Strobe Output
Signals ACK I Input Device Acknowledge
ADR (J 31: 0] Output Address Output
DAT_I[31: 0] Input Read Data
DAT_(31: 0] Output Write Data
VE_O Output Write Enable
SEL_(3: 0] Output Byte Lane Select
TAQ | (I F_W DTH) Input Fetch Width
Hardware EVENT_REQ |[2: 0] Input Event Request
Event EVENT_INFO_I[11: 0] Input Event Information
(interrupt) EVENT_ACK_O Output Event Acknowledge
SLEEP SLP Output Sleep Pulse

Table5.1 Aquarius CPU IN/OUT Signals

5.2. System Signals

(1) CLK

The clock input [CLK] coordinates all activities for the internal logic within the
WISHBONE interconnect. All output signals are registered at the rising edge of [CLK]. All
input signals are stable before the rising edge of [CLK].

(2) RST
The reset input [RST] forces the WISHBONE interface to restart. Furthermore, all internal

26 A Pipelined RISC CPU “Aquarius”

state machines are forced into an initial state.
When system power-on (cold start), [RST] should be asserted at least for 1 cycle. The
Agquarius CPU senses [RST] asynchronously, so any glitch pulse should not be overlaid on
[RST] signal. Aquarius Flip Flops are written as follows.

al ways @ posedge CLK or posedge RST)

{
if (RST)
{
}
el se
{
}
}

If your in-house design rule inhibits asynchronous reset at Flip Flops, you can rewrite RTL
codes of Aquarius as follows. Aquarius CPU can operate in synchronous reset manner.

al wvays @ posedge CLK)

{
if (RST)
{
}
el se
{
}
}

5.3. “WISHBONE” Compliant Bus Signals

The bus specification of Aquarius CPU is based on WISHBONE classic bus. It follows
“Specification for the WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores Revision: B.3, Released: September 7, 2002”. The detail specification

document is found in the OpenCores site.

(1) cyc_o
The cycle output [CYC_O], when asserted, indicates that a valid bus cycle is in progress.

A Pipelined RISC CPU “Aquarius” 27

The signal is asserted for the duration of all bus cycles. For example, during a Read Modify
Write cycle caused by TAS.B (test and set instruction for semaphore protocol), there are two
data transfers. The [CYC_O] signal is asserted during the first data read, and remains its
assertion until the last data write. The [CYC_QO] signal is useful for bus arbiter to prevent
exchanging the current bus master to another device such as DMA controller during the
TAS.B read modify write cycle.

(2) STB_O
The strobe output [STB_O] indicates a valid data transfer cycle. It is used to qualify various
other signals on the interface such as [SEL_O]. The SLAVE module asserts either the

[ACK _I] signals in response to every assertion of the [STB_O] signal.

(3) ACK_I
The acknowledge input [ACK_I], when asserted, indicates the normal termination of a bus

cycle. The [ACK_I] creates CPU internal signal “SLOT” to indicate the edge of pipeline slot.

(4) ADR_O[31:0]

The address output array [ADR_O] is used to pass a binary address.

(5) DAT_I[31:0]
The data input array [DAT_I] is used to read binary data from external devices such as
ROM, RAM and peripheral modules.

(6) DAT_OJ[31:0]
The data output array [DAT_O] is used to write binary data to external devices such as

RAM and peripheral modules.

(7) WE_O
The write enable output [WE_O] indicates whether the current local bus cycle is a READ or
WRITE cycle. The signal is negated during READ cycles, and is asserted during WRITE

cycles.

(8) SEL_O[3:0]

28 A Pipelined RISC CPU “Aquarius”

The select output array [SEL_O] indicates where valid data is expected on the [DAT_I]
signal array during READ cycles, and where it is placed on the [DAT_O] signal array
during WRITE cycles. The minimum data granularity size is BYTE, so each SEL_O

corresponds to each byte lane. The data alignment position is described in detail later.

(9) TAGO_I (IF_WIDTH)

All SuperH-2 instruction has 16bit length. The memory such as ROM and RAM connected
to Aquarius CPU has 32bit data width. So, when CPU fetches its instruction from 32bit
width memory, CPU can get 2 instructions. But if the device data width is 16bit, only one
instruction can be sent to CPU at once fetch cycle. Latter case may happen when CPU
fetches its instruction from 16bit width external bus, for example.

Therefore, WISHBONE glue logic must inform CPU the instruction fetch space’s width.

If the address space is 32bit width, WISHBONE should return IF_WDTH=1, else should
return IF_WIDTH=0 before ACK_I signal is asserted.

If CPU fetches instruction from address 0x2, 0x6, Oxa, Oxe, CPU can get only 1 instruction
by the fetch cycle. But CPU knows such status, so WISHBONE need not check such case.
The WISHBONE glue logic should care only the instruction sending band width that is the
data width of accessing address space.

In other words, in case of instruction fetch, IF_WIDTH has its meaning only when lower
2bit of address is 2b00. The IF_WIDTH informs CPU how many instructions should be
fetched. But if the lower 2bit of address is 2b10, CPU can get only one instruction
regardless IF_WIDTH. In latter case, CPU ignores the IF_WIDTH.

[CAUTION] Aquarius CPU assumes that the internal bus width is always 32bit. If you
connect the internal WISHBONE to 16bit/8bit external bus or peripheral modules, some
glue bus control logic should be created to convert internal 32bit data to/from 8bit/6bit data

with proper wait timing controls.

(10) Data Alignment Position

Agquarius CPU is big-endian. The data width is 32 bit, memory data access granularity is
byte, and instruction fetch granularity is 16 bit.

Table5.2 shows the data alignment position on WISHBONE data bus for each access.

In WISHBONE specification data sheet, 32bit operand size is called as “DWORD?”, but in

A Pipelined RISC CPU “Aqguarius” 29

SuperH and Aquarius world, 32bit is called as “Long” or “Long Word”.

Note that in case of write operation, the unselected lanes have same write data as valid
lane’s one. For example, in WORD writing to address 2(2'b10), the valid lane is bit15-0, but
bit31-16 of DAT_O has same data as bit15-0.

Access Type Lane Lane Lane Lane Notes
Size Address | [31:24] [23:16] [15:8] [7:0]
Lower SEL [3] SEL[2] SEL[1] SELJO]
2bit
Data Read Long 2'b00 D[31:24] DJ[23:16] DJ[15:8] D[7:0]
Data Read Word 2'b00 D[15:8] D[7:0] ignored ignored
2'b10 Ignored ignored | D[15:8] D[7:0]
Data Read Byte 2'b00 D[7:0] ignored ignored ignored | DAT_I
2'b01 Ignored | D[7:0] ignored ignored
2'b10 Ignored ignored | D[7:0] ignored
2'bll Ignored ignored ignored | D[7:0]
Data Write Long 2'b00 D[31:24] DJ[23:16] DJ[15:8] D[7:0]
Data Write Word 2'b00 D[15:8] D[7:0] D[15:8] D[7:0]
2'b10 D[15:8] D[7:0] D[15:8] D[7:0]
Data Write Byte 2'b00 D[7:0] D[7:0] D[7:0] D[7:0] DAT_O
2'b01 D[7:0] D[7:0] D[7:0] D[7:0]
2'b10 D[7:0] D[7:0] D[7:0] D[7:0]
2'b11 D[7:0] D[7:0] D[7:0] D[7:0]
Fetch IF_ WIDTH=1 2'b00 10[15:8] 10[7:0] 11[15:8] 11][7:0]
Fetch IF_ WIDTH=0 2'b00 1[15:8] 1[7:0] ignored Ignored | DAT_I
Fetch IF_ WIDTH=* 2'b10 ignored ignored | 1[15:8] 1[7:0]

Corresponding SEL_O[n] is asserted.

Table5.2 Data Alignment Position

5.4. Hardware Event Signals (Interrupt)
CPU should accept some requests from hardware events such as interrupt, address error
and manual reset. These requests are informed to CPU by EVENT_REQ[2:0] associated

30 A Pipelined RISC CPU “Aquarius”

with EVENT_INFO[11:0]. The EVENT_REQJ2:0] shows the kind of event request. The
meanings are shown in Table5.3. In case of IRQ request, EVENT_INFO[11:0] should also
be valid. The upper 4bit of EVENT_INFO shows the priority level of the requesting IRQ,
and the lower 8bit of EVENT _INFO shows its vector No. The vector address of IRQ equals
to EVENT_INFO[7:0] * 4. Also see Table5.4.

The EVENT_REQ and EVENT_INFO should be asserted and be valid at same timing. CPU
samples them at same timing (at the decode stage of pipeline). If the EVENT_REQ do not
show IRQ request, CPU ignores the EVENT_INFO. After CPU samples the EVENT_REQ
(and EVENT_INFO), CPU asserts EVENT_ACK, which shows that the CPU accepts the
hardware event request that is valid just at when EVENT_ACK is being asserted. The
EVENT_REQ should be negated or should be change to next request just after
EVENT_ACK is asserted.

If the event can not be accepted by CPU; that happens in case of lower priority IRQ than
I-bit in SR, interrupt request just after the instruction that masks interrupt (for example
LDC/LDC.L), or all hardware exception events just after delayed branch instruction; the
EVENT_ACK is not asserted until the request signals can be accepted by CPU. Of course, if
the event request is negated before CPU's sampling, the event request can not be accepted

by CPU. The hardware event request timing is shown in Figure5.1 with internal pipeline

controls.

Hardware Event EVENT_REQJ2:0] Notes

NOP 3'b111

IRQ 3’b000 Also use EVENT_INFO[11:0]

NMI 3'b001

CPU Address Error 3'b010

DMA Address Error 3'b011

Manual Reset 3'b110

Table5.3 Hardware Event Request Signal: EVENT_REQ[2:0]

Hardware Event Information | Meaning Notes
EVENT_INFO[11:8] Priority level of requesting IRQ (4bit)
EVENT_INFO[7:0] Vector No. of requesting IRQ (8bit)

Table5.4 Hardware Event Information: EVENT _INFOJ[11:0]

A Pipelined RISC CPU “Aquarius” 31

The priority among hardware exceptions should be determined by external circuits, which
generates EVENT_REQ and EVENT_INFO. In SuperH-2 products, the priority order of
exceptions is as follows.

1st: Power On Reset (Triggered by RST signal.)

2nd: Manual Reset

3rd: CPU/DMA Address Error

4th: NMI

5th: IRQ
The exceptions caused by instruction (lllegal, Slot-l1llegal and Trap) have the lowest priority,

but the external circuits need not to care, because the decoder unit in CPU detects them.

||
ID (1)
ID (2)-1 ID (2)-2
ID(3) |ID STALL
ID (4)(event)
I I
IF DRl (1) 2 - (3 L (4)(event)
IR * | EVENT_REQ * ©)] *
— 111 : nop
.ot 000 IRQ /|
INSTR_SEQ 0 | 00L: NMI 0 0 0
- _X 010 : Address Error CPU
DISPATCH 011 : Address Error DMAC
—] 110 : Manual Reset
EVENT_sPL |
/7/|/| |
EVENT_REQ | = | EVENT_INFO \
ILEVEL : 4bit
EVENT_ACK VECTOR : 8bit
7
EVENT_INFO ki don't ¢are vakd |

Figure5.1 Hardware Event Request and Sampling Timing

5.5. SLEEP signal for Low Power Mode
The SLP output is asserted by SLEEP instruction. The chip can stop its clock by SLP signal

and can go to low power mode, if you desire.

32 A Pipelined RISC CPU “Aquarius”

The SLEEP timing is shown is Figure5.2. The CLK_SRC is an original clock generated by,
for example, XTAL oscillator. The CLK is made from CLK_SRC by a gating logic and the
CLK stops during SLEEP state. Of course you can stop CLK_SRC by similar method (But,
to wake up CLK_SRC, you may need some delay timer to wait for the stable XTAL
oscillation.) And by some wakeup signal such as NMI, the CLK is waked up. At the wakeup
timing, if CPU finds a hardware event request, corresponding exception starts. Or, if there
is no hardware event, the program starts from next instruction of SLEEP.

The actual low power mode should be implemented by whole chip designer. The Aquarius

test bench includes very simple low power control logic, for your reference.

Weake Up Signal
SLP & posedge CLK Asynchronous input from Port

csee [1] |||||Fl7|_|;”l_||_|
sTop.A [T

STOP_S Synchronized by CLK_SRC | il
SLP
[

}
!

CLK L LT LT L lcksrcjok ses /?}'—|_|_L
Thereisno glitch on CLK, ~

because negedge of CLK_STP_S

D E is later than posedge of CLK_SRC.
SLEEP F D D D D
Next Instruction F : ::: D
E
EVENT_REQ NOP X M

If you prepare the EVENT_REQ at thisslot, /
the next instruction of SLEEP is exchanged to the event sequence.

If not, the next instruction of SLEEP continuesiits operation, after the CLK wakes up.
Even in latter case, if you place the opcode for NMI -emulation

asthe next instruction, you can get desired exception sequence

only by the wake-up operation.

Figure5.2 SLEEP and Low Power Timing

A Pipelined RISC CPU “Aqguarius” 33

6. Simulation Test Bench

This chapter describes the Aquarius test bench structure for the verification by the method

of vector logic simulation.

6.1. Top Layer: “top.v”

As shown in Figure3.1, “t op. v” is the top layer of Aquarius MCU. It combines among CPU,
UART, System Controller, Parallel Port, and on chip memories.

In this chapter, “nmenmory.v” and “lib.v” are assumed to be used, instead of
“menory_f pga.v’and“l i b_f pga. v”.

The system address map is shown in Table6.1.The “menory. v’ has 8KB ROM (‘rom v”)
and 8KB RAM. All CPU instruction should be verified in various memory access cycle and
instruction fetch size. So, the memory access cycle and instruction fetch width are
determined by its address; i.e. WISHBONE ACK and TAGO_I(IF_WIDTH) are generated in
“t op. v".

The peripheral devices such as PIO, UART and SYS are located in OXABCDxxxx area.

The top layer’s IN/OUT signals are shown in Table6.2. These signals correspond with
author’s FPGA configuration. There are several LCD and KEY control signals from PI1O

module, and UART signals. See later chapter for detail FPGA board circuit.

6.2. Simulation Test Bench: “test.v”

The “t est . v” is a test bench for Verilog simulation. It creates clock and some input signals
(stimuli). Also it generate trace list file as a simulation result named “test_result.txt”. For
your own simulation, please modify “t est . v”. When you simulate instructions of CPU by
Verilog logic simulator, you need not care the operations of LCD, KEY and UART interfaces.
You should care only bus transaction, register contents and signal levels and timings, etc.

in case that your viewpoint of simulation is in Aquarius CPU operation.

6.3. Parallel 1/0 Port (P10): “pio.v”
Parallel 1/0 Port (P10) “pi 0. v” IN/OUT signals are shown in Table6.3. PIO has 2 32bit

registers to control Port Pins. Parallel 1/0 Port (P10) Registers are shown in Figure6.1.

There are 4 byte-size registers for PORT Output and 4 byte-size registers for PORT Input.

34 A Pipelined RISC CPU “Aquarius”

Both registers for PORT Input and PORT Output have same address. If you read each

register, you can access PORT Input, and if you write to each register, you can access PORT

Output.

Each register is located in side-by-side address, so they can be accessed by byte, word or

long operand size. PORT Output registers are reset to 0x00 when power on reset.

Addr ess

0x00000000- 0x00001FFF

0x00002000- 0XxO0003FFF

0x00004000- 0OXO000FFFF

0x00010000- 0x00011FFF

0x00012000- 0x00013FFF

0x00014000- 0x0001FFFF

0x00020000- 0x00021FFF

0x00022000- 0x00023FFF

0x00024000- 0x0002FFFF

0x00030000- 0x00031FFF

0x00032000- 0x00033FFF

0x00034000- 0OX0003FFFF

0x00040000- 0x ABCCFFFF

0xABCDO000- Ox ABCDOOFF

O0xABCD0100- 0OXABCDO1FF

0xABCD0200- 0XxABCDO2FF

0xABCD0300- OXxFFFFFFFF

A Pipelined RISC CPU “Aqguarius”

Devi ce

ROM

RAM

Shadow

ROM

RAM

Shadow

ROM

RAM

Shadow

ROM

RAM

Shadow

Shadow

PI O

UART

SYS

Shadow

Size Access |F Wdth Notes
8KB lcyc 32bi t A
8KB lcyc 32bi t B

of 0x00000000- 0x00003FFF
8KB 4cyc 32bi t Shadow
8KB 4cyc 32bi t Shadow
of 0x00010000- 0x00013FFF
8KB lcyc 16bi t Shadow
8KB 1cyc 16bi t Shadow
of 0x00020000- 0x00023FFF
8KB 4cyc 16bi t Shadow
8KB 4cyc 16bi t Shadow
of 0x00030000- 0x00033FFF

of 0x00000000- OXO003FFFF

256B 4cyc 32bi t
256B 4cyc 32bi t
256B 4cyc 32bi t

of 0x00000000- 0OXO0003FFFF

Table6.1 Address Map of the Test Bench

of

of

of

of

of

of

35

Class Si gnal Name Direction Meaning Notes
System CLK_SRC Input System clock
Signals RST_n Input Power On Reset Negated
Parallel LCDRS Output LCD Register Select POI[8]
1/0 Port LCDRW Output LCD Read/Write PO[9]
LCDE Output LCD Enable Signal PO[10]
LCDDBQ] 7: 0] Output LCD Data Bus Output PO[7:0]
LCDDBI [7: 0] Input LCD Data Bus Input PI[7:0]
KEYY(4: 0] Output KEY Matrix Y Output PO[20:16]
KEYXI [4: 0] Input KEY Matrix X Input PI1[20:16]
UART RXD Input Receive Serial Data
TXD Output Transmit Serial Data
CTs Input Clear To Send
RTS Output Request To Send
Table6.2 Top Layer IN/OUT Signals
Class Si gnal Nanme Direction Meaning Notes
System CLK Input System clock
Signals RST Input Power On Reset
Wishbone CE Input Chip Select (Module Select) STB
Bus VE Input Write Enable
Signals SEL[3: 0] Input Byte Lane Select
DATI [31: 0] Input Data Input (Write Data)
DAT(31: 0] Output Data Output (Read Data)
PORT PI [31: 0] Input Port Input
PJ 31: 0] Output Port Output
Table6.3 Parallel 1/O Port (P1O) Module IN/OUT Signals
36 A Pipelined RISC CPU “Aquarius”

[PORT Output] Address=0xABCD0000

31(7)

30(6)

29(5)

28(4)

27(3)

W only reserved

26(2)

25(1)

24(0)

reserved

reserved

reserved

reserved

reserved

reserved

reserved

reserved

[PORT Output] Address=0xABCDO0001

23(7)

22(6)

21(5)

20(4)

19(3)

18(2)

17(1)

W only KEYYO (KEY Matrix Y-axis Output)

16(0)

reserved

reserved

reserved

KY4

KY3

KY2

KY1

KYO

[PORT Output] Address=0xABCD0002

15(7)

14(6)

13(5)

12(4)

11(3)

10(2)

9(1)

W only LCDCON (LCD Control Output)

8(0)

reserved

reserved

reserved

reserved

reserved

E

R/W

RS

[PORT Output] Address=0xABCDO0003

W only LCDOUT (LCD Write Data Output)

7(7) 6(6) 5(5) 4(4) 3(3) 2(2) 1(1) 0(0)

DW7 DW6 DW5 DW4 DW3 DW2 DW1 DWO0
[PORT Input] Address=0xABCDO0000 Ronly reserved

31(7) 30(6) 29(5) 28(4) 27(3) 26(2) 25(1) 24(0)
reserved | reserved | reserved | reserved | reserved | reserved | reserved | reserved

[PORT Input] Address=0xABCDO0001

Ronly KEYXI (KEY Matrix X-axis Input)

23(7) 22(6) 21(5) 20(4) 19(3) 18(2) 17(1) 16(0)
reserved | reserved | reserved KX4 KX3 KX2 KX1 KX0
[PORT Input] Address=0xABCD0002 Ronly reserved

15(7) 14(6) 13(5) 12(4) 11(3) 10(2) 9(1) 8(0)
reserved | reserved | reserved | reserved | reserved E R/W RS

[PORT Input] Address=0xABCDO0003

7(7)

6(6)

5(5)

4(4)

3(3)

2(2)

1(1)

Ronly LCDIN (LCD Read Data Input)

0(0)

DR7

DR6

DR5

DR4

DR3

DR2

DR1

DRO

Figure6.1Parallel 1/0 Port (PI1O) Registers

6.4. Serial 1/0 (UART): “vart.v”
The top I/0 device (UART)

Asynchronous Serial Communication Device) from the opencores.org IP. The SASC is not

layer has Serial “uart.v”, which is SASC (Simple
WISHBONE compliant IP, so some registers are added to connect SASC to WISHBONE

bus. UART IN/OUT signals are shown in Table6.4, and its registers are shown in Figure6.2.

A Pipelined RISC CPU “Aquarius” 37

Each register is located in side-by-side address, so they can be accessed by byte, word or
long operand size, but the UARTCON and UARTRXD/TXD should be accessed only by byte

operand size.

Class Si gnal Nane Direction Meaning Notes
System CLK Input System clock
Signals RST Input Power On Reset
Wishbone CE Input Chip Select (Module Select) STB
Bus WE Input Write Enable
Signals SEL[3: 0] Input Byte Lane Select
DATI [31: 0] Input Data Input (Write Data)
DAT(31: 0] Output Data Output (Read Data)
UART RXD Input Receive Serial Data
TXD Output Transmit Serial Data
CTS Input Clear To Send
RTS Output Request To Send

Table6.4 Serial 1/0 (UART) IN/OUT Signals

[UART] Address=0xABCD0100 R/W UARTBGO (Baud rate Generator Div0)
31(7) 30(6) 29(5) 28(4) 27(3) 26(2) 25(1) 24(0)
BO7 B06 B0O5 B04 BO3 B02 BO1 BOO
[UART] Address=0XxABCD0101 R/W UARTBG1 (Baud rate Generator Divl)
23(7) 22(6) 21(5) 20(4) 19(3) 18(2) 17(1) 16(0)
B17 B16 B15 B14 B13 B12 B11 B10
[UART] Address=0xABCD0102 Ronly UARTCON (TXF=full o, RXE=empty 0)
15(7) 14(6) 13(5) 12(4) 11(3) 10(2) 9(1) 8(0)
reserved | reserved | Reserved | reserved | reserved | reserved TXF RXF
[UART] Address=0xABCD0103 R only / UARTRXD, W only / UARTTXD
7(7) 6(6) 5(5) 4(4) 3(3) 2(2) 1(2) 0(0)
TR7 TR6 TR5 TR4 TR3 TR2 TR1 TRO

Figure6.2 Serial 1/0 (UART) Registers

The UARTBGO and UARTBG1 are the registers to determine the serial baud rate. The

38 A Pipelined RISC CPU “Aquarius”

UARTBGO and UARTBG1 are reset to 0x00 when power on reset. The expression to
calculate the baud rate is shown below.

f (CLK), 1 lbps]
4 (BGO+2) (BGl+1)

Table6.5 shows some examples of baud rate setting.

BaudRate =

Baud Rate f(CLK) UARTBGO UARTBG1

[bps] [MHZ]

1200 20 0x12 (18) OXCF (207)
2400 20 0x12 (18) 0x67 (103)
4800 20 0x12 (18) 0x33 (51)

9600 20 0x12 (18) 0x19 (25)

Table6.5 Examples of Baud Rate Settings

The UARTCON has 2 flags; TXF and RXE. The TXF is 1 when transmit buffer is full. If
TXF=0, you can write next transmit data. The RXE is 1 when receive buffer is empty. If
TXE=0, you can read receive data. The TXF and RXE correspond to full_o and empty_o of
SASC, respectively. Note that SASC has 4 byte depth FIFOs for both transmit buffer and
receive buffer. In case of this top layer, TXF and RXE are not connected as interrupt signals,
so you should poll these flags in your program. Generally, such flags should be treated as
interrupt requests. You can easily modify the Aquarius RTL codes like this.

The UARTRXD and UARTTXD are the receive buffer and transmit buffer registers, which
have same address. Read operation accesses to UARTRXD, and Write operation accesses to
UARTTXD.

6.5. System Controller (SYS): “sys.v”
The System Controller (SYS) “sys. v” has following functions.
(1) Generate Exception of Hardware Event.
- NMI (by Address Break)
- IRQ (by Interval Timer)
- CPU Address Error (by watching WISHBONE bus transaction)

(2) Emulate Exception of Hardware Event.

A Pipelined RISC CPU “Aqguarius” 39

- NMI
- IRQ
- CPU Address Error
- DMA Address Error
- Manual Reset
(3) Control priority level among the requests of hardware exception.
(4) Set IRQ priority level and vector number.
(5) 12it Interval Timer to generate IRQ.
(6) Bus Address Break Function for debugging capability (NMI).
(7) Detect CPU Address Error by watching WISHBONE bus signals.
(8) SLEEP and Low Power Control, according to Figure5.2 manner.
The IN/OUT Signals of SYS are shown in Table6.6.
The SYS has 2 32bit length registers; INTCTL and BRKADR. These are shown in Figure6.3.
Both registers should be accessed only by long word operand size. The INTCTL is reset to
0x00000FFF, and the BRKADR is reset to 0x00000000 when power on reset.

Class Si gnal Nane Direction Meaning Notes
System CLK_SRC Input System clock Source
Signals CLK Output CLK , which stops at SLEEP
SLP Input SLEEP request from CPU
WAKEUP Input Wakeup Request
RST Input Power On Reset
Wishbone CE Input Chip Select (Module Select) STB
Bus WE Input Write Enable
Signals SEL[3: 0] Input Byte Lane Select
ACK Input Bus Acknowledge
DATI [31: 0] Input Data Input (Write Data)
DAT(31: 0] Output Data Output (Read Data)
STB Input Strobe (Bus monitor to BRK)
ADR[31: 0] Input Address (Bus monitor to BRK)
Hardware EVENT_REQ 2: 0] Output Event Request
Events EVENT_I NFC[11: 0] Output Event Information (IRQ)
EVENT_ACK Input Event Acknowledge from CPU

Table6.6 System Controller (SYS) IN/OUT Signals

40 A Pipelined RISC CPU “Aquarius”

[SYS] Address=0xABCD0200 R/W INTCON (Interrupt Control)

31 30 29 28 27 26 25 24
E_NMI E_IRQ E CER | E.DER | E_MRS | reserved | TMRON | BRKON
23 22 21 20 19 18 17 16
ILVL3 ILVL2 ILVL1 ILVLO IVEC7 IVEC6 IVECS5 IVEC4
15 14 13 12 11 10 9 8
IVEC3 IVEC2 IVEC1 IVECO TMR11 TMR10 TMR9 TMRS8
7 6 5 4 3 2 1 0
TMR7 TMR6 TMR5 TMR4 TMR3 TMR2 TMR1 TMRO

[SYS] Address=0xABCD0204 R/W BRKADR (Break Address)

31 30 29 28 27 26 25 24
ADR31 ADR30 ADR29 ADR28 ADR27 ADR26 ADR25 ADR24
23 22 21 20 19 18 17 16
ADR23 ADR22 ADR21 ADR20 ADRI19 ADR18 ADR17 ADR16
15 14 13 12 11 10 9 8
ADR15 ADR14 ADR13 ADR12 ADR11 ADRI10 ADR9 ADRS
7 6 5 4 3 2 1 0

ADRY7 ADRG6 ADRS5 ADR4 ADRS3 ADR?2 ADR1 ADRO

Figure6.3 System Controller (SYS) Registers

INTCTL : Interrupt Control Register
E_NMI

E_IRQ

E_CER

E_DER

Emulate NMI. Write only bit. Read 0 only.
When you write 1, NMI exception sequence will start.

Emulate IRQ. Write only bit. Read 0 only.

When you write 1, IRQ exception sequence will start

if the IRQ priority level is higher than I bit in SR.
The priority level and the vector number of the IRQ is specified
by ILVL3-ILVLO and IVEC7-IVECO bits in INTCTL register.
Emulate CPU Address Error. Write only bit. Read 0 only.
When you write 1, CPU Address Error exception will start.
Emulate DMA Address Error. Write only bit. Read 0 only.

A Pipelined RISC CPU “Aqguarius”

41

When you write 1, DMA Address Error exception will start.

E_MRES Emulate Manual Reset. Write only bit. Read 0 only.
When you write 1, Manual Reset exception will start.
TMRON When 1, 12 bit Interval Timer starts.
When 0, the Interval Timer stops.
BRKON When 1, start to compare BRKADR with WISHBONE address,

and if these are equal, request NMI.
ILVL3-ILVLO IRQ priority level to be requested (makes EVENT_INFO[11:8])
IVEC7-IVECO IRQ vector number to be requested (makes EVENT_INFO[7:0])
TMR11-TMRO 12 bit Interval Timer. When 0x000, it requests IRQ.

BRKADR : Break Address Register
ADR31-ADRO Break address to be compared to WISHBONE address.
It is valid only when BRKON=L1.

6.6. On Chip Memory: “memory.v”
The memory module “nrenor y. v’ has 8KB ROM and 8KB RAM. The address map has been
shown in Table6.1. The bit pattern of ROM is specified by “r om v” description. The memory

module’s IN/OUT signals are shown in Table6.7.

Class Si gnal Name Direction Meaning Notes
System CLK Input System clock
Signals RST Input Power On Reset
Wishbone CE Input Chip Select (Module Select) STB
Bus WE Input Write Enable
Signals SEL[3: 0] Input Byte Lane Select

ADR[13: 0] Input Address

DATI [31: 0] Input Data Input (Write Data)

DAT(31: 0] Output Data Output (Read Data)

Table6.7 On-Chip Memory IN/OUT Signals

42 A Pipelined RISC CPU “Aquarius”

6.7. Simulation Tools and Flows
(1) Have you already installed all tools such as Cygwin, GNU binutils, GNU C compiler and
Aquarius deliverables for program development and Verilog simulation?
In following explanations, | assume the tool placing is like below.
~ (home directory)
|----CPU (directory)
[----*.v (Verilog Sources)
|----test.txt (listof Verilog sources for simulation)
[----sim (simulation launch script)
|----asm (assembler launch script)
| ----sha_testsource (directory)
|----testalu.src (ALU check program)

(2) To simulate instruction or program, make your assembler source file. Some examples
are located in the directory "sha_t est sour ce" of Aquarius deliverables. In these examples,
basically, all instruction sequence to be verified are simulated on all memory space
attributes among combinations of no-wait or with-wait, and 32bit or 16bit instruction fetch
area (IF_WIDTH). Now, suppose you are trying "t est al u. sr c" to check ALU functions.

(3) Assemble it. From your Cygwin console window, type...
$ cd ~/ CPU
$./asmsha_testsource/testalu.src
If no errors, you will find following files.
lis assembler list file
obj s-format object file

romv Verilog ROM description

(4) Prepare “t est . t xt ” in which Verilog source file names are listed as follows.

/1 source file list dat apat h. v cpu. v
defines.v mult.v romyv
timescale.v decode. v menory. v
register.v nmem v pi 0.v

A Pipelined RISC CPU “Aquarius” 43

sasc_brg.v uart.v top.v
sasc _fifo4.v lib.v test.v

sasc_top.v Sys. Vv

Ok, now you can simulate Aquarius Verilog RTL codes. Type...
$./sim

If no errors, you will find following file.
test result.txt simulation result trace list

(5) Check this file. Are you success?
The "test result.txt"islike this.

COUNT# CR CSAW SEL- ADR---- DATl---- DATO--- PG----- EVR EVI AIS INST-QDIFDRIR - ...
00000000 00 XXXXX XXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXX XXX X|X XXXX X X XXXX XXXX...
00000001 01 XXXXX XXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXxxX 111 000 1|1 f700 1 0 xxxx f700...
00000002 01 0001x xxxx Xxxxxxxx 00000000 xxxxxxxx Xxxxxxxxx 111 000 1|1 f700 1 0 xxxx f700...
00000003 01 0001x xxxx Xxxxxxxx 00000000 xxxxxxxx Xxxxxxxx 111 000 O] 1 f700 2 0 xxxx f700...
00000004 01 0001x xxxx Xxxxxxxx 00000000 xxxxxxxx Xxxxxxxxx 111 000 0|1 f700 3 0 xxxx f700...
00000005 01 11101 1111 00000000 00000400 XXXXXXXX XXXXXXXX 111 000 0|1 f700 4 0 xxxx f700...
00000006 01 11101 1111 00000004 fffdOOOO xxxxxxxx Xxxxxxxx 111 000 O] 1 f700 5 0 xxxx f700...

00000007 01 11101 1111 00000400 ee00ddOl xxxxxxxx 00000400 111 000 O] 1 f700 6 1 xxxx f700...

This file is created by $f di spl ay() statement in test bench script 't est. v", and shows
WISHBONE bus signals, CPU internal buses and registers et al. in trace list manner. You
can modify "t est . v" to see other signals.

The simulation stop condition is determined by simulation clock cycle counts in 'test. v"
description. This 't est. v" is one of the examples for you, so you may modify it for your

favorite simulation.

44 A Pipelined RISC CPU “Aquarius”

7. FPGA Implementation

This chapter shows you my FPGA system and Aquarius implementation to FPGA.

7.1. FPGA System

As described before, I have been using existing
FPGA board XSP-009-300 manufactured by
HUMANDATA, Ltd., which has one Xilinx VirtexE
XCV300E. This board also has configuration
circuit by JTAG or FLASH ROM, and power
supply circuit. | think you can find similar FPGA
boards from many venders around you.

I made a FPGA System by connecting handmade
interface board, which has LCD display, KEY
matrix and RS-232C interface.

Figure 7.1 shows the whole view of FPGA
verification system. Figure 7.2 shows both
interface board and FPGA board. These 2 boards
are connected back to back each other. The system

block diagram is Figure7.3.

(A) I/F board (B) I/F Board (bottom) (C) FPGA board

Figure7.2 Picture of Each Board

A Pipelined RISC CPU “Aquarius”

(D) FPGA board (bottom)

45

RS-232C
DSUB 9pin

Connector
Power Supply
5V, 3.3V, 1.8V MAX232
(ADM232AAN)
FPGA il
Configuration Config ROM 0000000012345678
Circuit pelgz Memory--12345678
i m 745241 |

Xilinx ,
Virtexg |
XCV300E |
PQ240 I

FPGA Board X SP-009-300 Interface Board
(HUMANDATA, Ltd))

Figure7.3 Block diagram of FPGA System

7.2. Circuit of FPGA Board

The circuit schematic of FPGA Board (XSP-009-300) is found in following URL;
http://www.hdl.co.jp/ftpdata/xsp-009/XSP009.sch.pdf. In my case, the FPGA operating
frequency is set to 20MHz.

7.3. Circuit of Interface Board

Figure 7.4 shows the circuit of Interface Board.

(1) LCD Display Interface

As LCD character display, | use SUNLIKE 16 columns x 2 rows LCD Display SC-1602B. It
operates by commands via its bus interface. You can find detail documents regarding

mechanical data, electrical characteristics, initialization methods and operation commands

from http://www.lcd-modules.com.tw/.

The bus interface is bi-direction, so, | use 74LS241 buffers to make interface with the FPGA.
Note that 1000hm resistors are inserted between 74L.S241 output and FPGA input because

the FPGA don’t have 5V tolerant input buffer. Xilinx recommends using current limit

resistor at 5V signal input.

(2) RS-232C Interface

46 A Pipelined RISC CPU “Aquarius”

To implement the RS-232C Interface, | adopt the MAX232 compatible IC ANALOG
DEVICES ADM232AAN. The FPGA interface also needs 5V tolerant resistors. The DSUB-9

connector is linked supposing cross cable.

(3) KEY Matrix Interface

The Key Matrix Interface has 25 keys to input hex data, some commands and reset. The
1Kohm resistors are necessary to avoid conflict on FPGA output pins when multiple keys
are pushed. Instead of 1IKohm resisters, it is good idea that you use discrete diodes,

connecting each anode to switch and cathode to FPGA port.

(4) FPGA Pin Configuration

In case of above FPGA System, the FPGA's pin configuration that corresponds to “t op. v”is
as follows (Also refer to Table6.2). These statements should be described in User
Constraints File (. ucf) before you configure the FPGA.

NET "CLK_SRC' LOC = "p92"; NET " LCDDBI <6>" LOC = "p26";
NET "RST_n" LOC = "p42"; NET "LCDDBI <5>" LOC = "p24";
NET "TXD' LOC = "p46"; NET "LCDDBI <4>" LOC = "p23";
NET "RXD' LOC = "p47"; NET "LCDDBI <3>" LOC = "p21";
NET "RTS' LOC = "p48"; NET "LCDDBI <2>" LOC = "p20";
NET "CTS' LOC = "p49"; NET "LCDDBI <1>" LOC = "pl9";
NET "LCDRW LOC = "p4"; NET "LCDDBI <0>" LOC = "p18";
NET "LCDRS" LOC = "p3"; NET " KEYYO<4>" LOC = "p28";
NET "LCDE' LOC = "p5"; NET "KEYYO<3>" LOC = "p31";
NET "LCDDBO<7>" LOC = "pl7"; NET "KEYYO<2>" LOC = "p33";
NET "LCDDBO<6>" LOC = "p13"; NET "KEYYO<1>" LOC = "p34";
NET "LCDDBO<5>" LOC = "pl2"; NET "KEYYO<0>" LOC = "p35";
NET "LCDDBO<4>" LOC = "pl1"; NET "KEYXI <4>" LOC = "p4l";
NET "LCDDBO<3>" LOC = "pl0"; NET "KEYXI <3>" LOC = "p40";
NET "LCDDBO<2>" LOC = "p9"; NET "KEYXI <2>" LOC = "p39";
NET "LCDDBO<1>" LOC = "p7"; NET "KEYXI <1>" LOC = "p38";
NET " LCDDBO<0>" LOC = "p6"; NET "KEYXI <0>" LOC = "p36"

NET " LCDDBI <7>" LOC = "p27";

A Pipelined RISC CPU “Aquarius” 47

Figure7.4 Circuit of Interface Board

5v b5V
Vce
10k 1
Vss
A
Vo
3
4
5
e
@)
="
e
8 2
—
9 &
10
11
12
§ p13 \{ * 13
oy > 251 14
X 100
p18 -
SC1602B PIN
p19 FAANV = TOPVIEW
149 0 43
P20 -AME<— 120 01
100 69
p21 - 80 @7
60 O 5
23 | 40 @ 3
p23 FAWV 5o 9
p24 [\
p26 VWV
p27 |
100 745241
LT
74L.S241
48

g P

a7

XCV 300E-
5

16 0.1u
c14 1 ZW——I_
OluJ: z 6
: <
Lals 2 Tou
0.1 8 §
L1U <
Tos 286 | P
=<
D
TXD v |11 >O 14| 11007
/1\?\?\/RX Drour|12 O< 13 ‘
’ 6
RTS T2N 10 » 7 T20UT :D
_,\1/?;\’/CTS o] 9 O< 8| ron ngﬁszg
15

3.3V

GND

2_

For Cross Cable

XCV300E-PQ240
2 B B
= 2]

B

1 1 b
lgkLé 10ké 10k § 10k § 10k§_ 10k§

B

1K
VW :?.UTL-(ﬁ?UN’ r'GET.(r'l'JUT @sl
i S
.,_r’c 'r'D "E l|r?'F VF’/’ADR
1K
AW
‘,_r's ‘r'g ‘fA ‘fB -(?I_NC
1K
.,_r'4 ’r‘s 'rfG .{“:ﬁ)EC
1K
o
;r'o (fl .rfz l|l(r's .rfbAT
p36 p38 p39 pi0 pal p42
X CV300E-PO240

A Pipelined RISC CPU “Aquarius”

7.4. FPGA Configuration
Launch the Xilinx ISE Webpack 5.x, select the device to yours, and add following Verilog

sources to your project.

cpu. v menmory_f pga. v sasc_top.v
dat apath. v mult.v Sys. Vv
decode. v pi 0.V test.v
defines.v register.v timescale.v
lib_fpga.v sasc_brg.v top.v

mem v sasc _fifo4.v uart.v

Make user constraints file (op. ucf) to specify pin assignment, timing constraints and
BlockRAM initial value. In Aquarius deliverables, | prepare an example file t op. ucf. To
initialize contents of BlockRAM, use 'genr ant utility described before and append INST
statements to t op. ucf (default top. ucf already have INST statement, so you should
replace all INST statements to new ones generated by “genr ant'.)

Ok, then compile from the “top” module, and configure your FPGA.

7.5. Results of FPGA Configuration

(1) Xilinx VirtexE (XCV300E)

Regarding the FPGA system mentioned above, Table7.1 shows the performance results by
Xilinx VirtexE XCV300E-8PQ240, which has 3072 slices. On chip memories are configured
by BlockRAM. Under the speed-priority synthesizing, total usage of logic slices is beyond
the device, unfortunately. In author's FPGA System, although the device has been
configured by area-priority synthesis, the device operates 20MHz frequency under the

typical condition (power supply voltage and ambient temperature).

(2) Altera Stratix (EP1S10)

For technical reference, | tried to configure Aquarius into Altera Stratix EP1S10, which has
10570 logic elements. Table7.2 shows the summary. And the detail utilization of logic cells
is shown in Table7.3. In this case, on chip memories are implemented by Synchronous
SRAM components and the multiplier (in nul t . v) is implemented by internal DSP unit.

A Pipelined RISC CPU “Aquarius” 49

Synthesis Top Slices Consumed Frequency Notes

Area top.v 2923 95% 15MHz
20MHz cpu.v 2635 86% 15MHz

Speed top.v 3135 102% 25MHz XCV300E overflows
20MHz cpu.v 2753 90% 21MHz

Table7.1 Results of Xilinx VertexE (XCV300E-8PQ240) with Webpack ISE 5.2i (SP3)

Synthesis Top Cells Consumed Frequency
Normal top.v 7919 75% 31MHz
No constraints cpu.v 7499 71% 31MHz

Table7.2 Results of Altera Stratix (EP1S10F780C5ES) with Qualtus Il 2.2 Web Edition (SP2)

Conpi | ation Hi erarchy Node oa o >0 %f @ £ Q a z2[>8 8 B
23 o Ea [PEIP B |2 |= |E<|B° R i
38 iz slg |7 |7 =7 | i g5
=) — o o > 5 55 5~
& u 2 |8 - & 2
top 7919 (41) 1458| 131072 8 0 0 | 36 0[6461 (37) 102 (1) |1356 (3)
| cpu: CPU| 7499 (0) 1207 0 8 0 0 1 0 06292 (0) 31 (0) [1176 (0)
| dat apat h: DATAPATH| 5309 (2508) | 681 0 0 0 0 0 0 04628 (2370) o (0) 681 (138)
| I pm counter:PC rtl 0| 31 (0) 31 0f 0 0 0f 0 0 0]0 (0) 0 (0) 31 (0)
|alt_counter_stratix:wysi_counter| 31 (31) 31 0f 0 0 0f 0 0 0]0 (0) 0 (0) 31 (31)
| r egi st er : REGl STER]| 2770 (2770) | 512 0 0 0 0 0 0 of2258 (2258) [o (0) [512 (512)
[decode: DECODE] 827 (827) 183 0 0 0 0 0 0 0[644 (644) 26 (26) |157 (157)
| mem NEM 371 (371) 179 0 0 0 0 0 0 0]192 (192) 5 (5) 174 (174)
| mul t: MULT| 992 (992) 164 0 8 0 0 1 0 0]828 (828) 0 (0) 164 (164)
[T pm mul t: nul t_422] 0 (0) 0 o 8 0 o 1 0 oo (0) 0 (0) [0 (0)
| mul t _| hj : aut o_gener at ed| 0 (0) 0 0 8 0 0 1 0 ofo (0) 0 (0) [o (0)
| meror y: MEMORY| 17 (0) o| 131072 0 0 of 0 0 ol17 (0) 0 (0) 0 (0)
[ram RAM 17 (17) 0] 131072 0 0 0 0 0 of17 (17) 0 (0) 0 (0)
| I pm ram dg: LPM_RAM DQ HH| 0 (0) 0] 32768 0 0 0 0 0 oo (0) 0 (0) 0 (0)
| al t syncranmt al t syncram conponent | 0 (0) 0] 32768 0 0 0f 0 0 0jo (0) 0 (0) 0 (0)
[Tpmram dq. LPM_RAM DQ HL| 0 (0) 0| 32768 0 0 0 0 0 0o[0 (0) 0 (0) [0 (0)
| al t syncram al t syncram conponent | 0 (0) 0] 32768 0 0 0f 0 0 0jo (0) 0 (0) 0 (0)
|| pm ram dg: LPM RAM DQ LH| 0 (0) o] 32768 0 0 0 0 0 ojo (0) 0 (0) 0 (0)
| al tsyncram al t syncram conponent | 0 (0) 0] 32768 0 0 0f 0 0 0]0 (0) 0 (0) 0 (0)
| I pm ram dq: LPM_RAM DQ LL| 0 (0) o] 32768 0 0 0 0 0 ofo (0) 0 (0) [o (0)
| al t syncram al t syncram conponent | 0 (0) 0] 32768 0 0 0f 0 0 0jo (0) 0 (0) 0 (0)
[pio: PO 33 (33) 16 0f 0 0 0f 0 0 o[i7 (17) 16 (16) [0 (0)
| sys: SYS| 101 (101) 63 0 0 0 0 0 0 038 (38) 1(1) 62 (62)
| uar t : UART| 228 (43) 168 o o 0 ol o 0 of60 (17) 53 (9) [115 (17)
[sasc_brg: BRG 33 (31) 25 0 0 0 0 0 0 o[8 (8) 2 (2) |23 (20)
|1 pm counter:cnt_rtl_0OJ 2 (0) 2 0f 0 0 0f 0 0 0jo (0) 0 (0) 2 (0)
Jalt _counter_stratix:wysi_counter| 2 (2) 2 0f 0 0 0f 0 0 0]0 (0) 0 (0) 2 (2)
['sasc_top: TOP| 152 (63) 117 0 0 0 0 0 0 0[35 (20) 42 (10) |75 (33)
|'sasc_fifod:rx fifol 46 (42) 37 o o 0 ol o 0 ofs (9) 16 (16) [21 (17)
|| pm counter:rp_rtl _OJ 2 (0) 2 0f 0 0 0f 0 0 0jo (0) 0 (0) 2 (0)
|alt _counter_stratix:wysi_counter| 2 (2) 2 0f 0 0 0f 0 0 0jo (0) 0 (0) 2 (2)
|| pm counter:wp_rtl 0| 2 (0) 2 0f 0 0 0f 0 0 0]0 (0) 0 (0) 2 (0)
|alt_counter_stratix:wysi_counter| 2 (2) 2 0Of 0 0 0f 0 0 0]0 (0) 0 (0) 2 (2)
[sasc_fifo4d . tx fifol 23 (39) 37 o o 0 o o 0 o[6 (6) 16 (16) |21 (17)
|| pm counter:rp_rtl _OJ 2 (0) 2 0f 0 0 0f 0 0 0jo (0) 0 (0) 2 (0)
|alt_counter_stratix:wysi_counter| 2 (2) 2 0f 0 0 0f 0 0 0jo (0) 0 (0) 2 (2)
| I pm counter:wp_rtl O] 2 (0) 2 0f 0 0 0f 0 0 0]0 (0) 0 (0) 2 (0)
|alt_counter_stratix:wysi_counter| 2 (2) 2 0Of 0 0 0f 0 0 0]0 (0) 0 (0) 2 (2)

Table7.3 Detail Utilization of Logic Cells in Altera Stratix EP1S10

50 A Pipelined RISC CPU “Aquarius”

7.6. Application Programs on the FPGA System

I include some simple application programs in Aquarius deliverables. All applications are
developed by GNU C compiler for SuperH-2.

Each startup program (crt 0. S) and linker script (sh. x) is located in directory “startup”
under each application directory. The “Makefi | e”is prepared for all applications so as to
compile and link by typing “$ nmake”, and to cleanup objects by typing “$ nake cl ean”.

In my FPGA system, the BlockRAM contains all application provided here. All applications
are combined into one object file “ram srec”. You can make BlockRAM's INIT statements
by “genr am’ utility.

(1) Monitor Program: directory “shc_nonitor _rel ease_v1”

Using LCD display, key board and RS-232C I/F, this monitor program has very basic debug
capability such as Memory Editor, Program Loader from PC, Jumping to Program and
Debugging utilities such as Setting a Break point and Reading Registers. The source code is
“mai n. ¢”. This program is located from address 0x00000000 (here is vector table). It starts
by power on reset. Below, | simply explain an example session of the monitor. Please refer
Figure7.5.

(A) Memory Editor

(a) Startup

The top line shows memory address and its data. Left 8 hex number is address.
Right 8 hex number is data. Always shows only long-word sized data.
The bottom line has 4 byte entry space. You can enter new hex number here.
(b) Address Increment

The “INC” key increases address by 4 byte, and shows the data at new address.
(c) Address Decrement

The “DEC” key decreases address by -4 byte, and shows the data at new address.
(d) Enter Address
(e) Set Address

If you want to see another address of memory, enter new 4 byte address in bottom
line, and push “ADR” key. If your entry is not in multiples of 4, lower 2 bits of address
are cleared to 0, to avoid address error.

A Pipelined RISC CPU “Aquarius” 51

(f) Enter Data to be written
(g) Write Data and Increment Address

If you want to change data in displaying address, enter new 4 byte data in bottom

line, and push “DAT” key. Then the memory content is updated and the displayed

address increases 4 byte.
(h) Verify

Use decrement key (and also increment key) to verify the memory contents.

0000000000000400 0000000400004000 FFFFFFFCO00005D0
Memory--00000400 Memory--00004000 Memory--000005D0

(a) When Startup (b) “INC” Address Increment (c) “DEC’" Address Decrement

FFFFFFFCO00005D0 00003800FFFFFFFF 00003800FFFFFFFF
Memory--00003800 Memory--FFFFFFFF Memory--12345678

(d) Enter 32bit Hex (address) (e) “ADR" Address Set (f) Enter 32bit Hex (data)

00003804FFFFFFFF 0000380012345678 Get S-Format(S3)
Memory --FFFFFFFF Memory--12345678 Please send

(9) “DAT” Write & increment (h) “DEC’ Verify, OK! (i) “GET” Wait for Program Load

Get S-Format(S3) 0000300000003008 00003008D805480B
00003190 ! Memory--00003008 Memory--D805480B

(j) Loading Program (k) Finish Loading Program (I) “ADR’ Set Branch Target

00003008D805480B <SuperH in FPGA> BRK-Func Select?
Run---Good Luck! @ABCDEFGH 1 JKLMNO 1:REG 2:BRK SET

(m) “RUN" Go'! (n) Running Program (0) “UTL" Break Function Select

Set Break Point. Break Accepted. 0000000000000400
Address?00003800 Address?00003800 Memory--00003800

(p) “ 1" Enter Break Address () “DAT" Set Break Point (r) Try to access 0x00003800

0000000000000400 SR 00000100 -0000069C
NMI/BRK:Goto Mon PC :0000136C :0000136C

(9) “ADR’ Accessto 0x00003800 (t) “UTL”-"2" Display Registers (u) Continue to Hit any key

Figure7.5 Example Session of the Monitor Program

52 A Pipelined RISC CPU “Aquarius”

(B) Program Loader
(i) Program Loading from PC
(i) Now Loading
(k) Finish Loading

You can download S-Format(S3) object file (ASCII Text file) from PC via RS-232C
line. In default, 1200bps, 8bit non-parity. You can change the baud rate by changing
monitor program source. (Or directly change UARTBRGO and UARTBRG1 register by
the monitor function.)

The acceptable S-Format records are only SO (comment), S3 (actual object), S7 (end
of record). If you use “asni script for assembler, or “Makefil e” for C program in
Agquarius deliverables, they make suitable S-Format object file (*. srec) for this
monitor. After preparing object file on your PC, push “GET” key, them the FPGA system
waits for sending data. Send object by ASCII file from any proper terminal application
in your PC. During transfer, LCD shows top address of every record and the result of
check sum test. If the monitor finds checksum error, the transfer will stop. When the
monitor receives S7 record, it stops program loading, and shows the address of first
record which have been received.

For convenience of explanation, please suppose you downloaded
“shc_I cdt est/ mai n. srec”, which is LCD test program.

(C) Run
() Set Target Address
(m) Go to program
(n) Now, running program

The top address of LCD test program is 0x00003000. But the top address has

vector table. The actual start address is 0x00003008, so, set address to this. Then push
“RUN” key, the program will start. This “RUN” function is implemented by JSR
instruction. So, if your program ends by RST instruction, the control will return to the
monitor. Of course, if you want to stop your program, push “RES” key for reset, any
time.

(D) Debug Utility

(0) Select Break Function

A Pipelined RISC CPU “Aqguarius” 53

(p) Enter Break Address
(q) Set Break Point
(r) Try aBreak
(s) Break happens
If you want to set break point, push “UTL” key and “2”. And enter the break address

you want. To confirm the break operation, push “DAT”. Suppose you set 0x00003800 as
break point. Now lets access 0x00003800 by the monitor. The monitor reports BRK has
happened. If you push any key, the control will return to monitor.

The break happens only when the WISHBONE address is just equal to the address
you set as break point.

Once break happens, the break setting is cleared (the break address that is set in
register “BRKADR” is kept but “BRKON?” bit in “INTCON?” register is cleared).

(t) Select Register Reading
(u) Check all Registers in CPU
You can examine register contents just when the break happens. By “UTL"-“1” key,

you can see all CPU registers.

(2) LCD Test: directory “shc_| cdt est”

Display all characters on LCD display. It is a very simple program. The source code
is “mai n. c”. This program & located from address 0x00003000 (here is reset vector). To

start it, jump to 0x00003008 by monitor program.

(3) Interrupt! Clock: directory “shc_cl ock”

This is a digital clock. The time base is interrupt (IRQ) from interval timer. The
timer requests IRQ in every 50 x 212 [ns] @20MHz operation. The IRQ service routine
controls internal software counter, and displays time. The source code is “mai n. ¢”. This
program is located from address 0x00002000 (here is vector table). To start it, jump to
0x00002400 by monitor program.

You can adjust the clock. Push “DAT” key, enter hour. Again push “DAT”, enter
minute. Again “DAT”, enter second. Finally push “DAT”, then, clock starts.

54 A Pipelined RISC CPU “Aquarius”

Part2. Inside Aquarius CPU

A Pipelined RISC CPU “Aqguarius”

55

8. Aquarius CPU Overview

This chapter shows overview of CPU, again.

8.1. Aquarius Block Diagram

Figure 8.1 shows the block diagram of Aquarius CPU core.

CPU
Address and Data
CpU.V Memory < Ll
Wishbone R ACC&?I
Bus > Controller
Multiplier | pata
mem.v «—r Data Path
mult.v
EIMA ‘I o <or y o datapath.v
commands| 'MStruetion \ controls
controls
Decoder
status
Interrupt > decode.v
Address Error

Figures.1. Block Diagram of Aquarius

Top layer of Agquarius is “CPU” which has WISHBONE compliant bus signals and accepts
interruption related signals. The most important system signals such as clock and reset are

not shown in this figure.

The Memory Access Controller handles instruction fetch and data read/write access. The
operations of Memory Access Controller are fully controlled by Decoder unit. Memory
Access Controller sends fetched instruction bit fields to the Decoder unit, and interchanges
read/write data and its address with Data Path unit. Aquarius assumes the Wishbone bus
is a Non-Harvard bus, then the simultaneous instruction fetch and R/W data access makes
bus contention. Memory Access Controller handles such contention smoothly and informs

the pipeline stall caused by the bus contention to Decoder unit. Also, the Memory Access

56 A Pipelined RISC CPU “Aquarius”

Controller can sense each boundary of bus cycles (with wait state) from Wishbone ACK
signal. In Aquarius architecture (may be in SuperH-2 architecture as well), such bus cycle
boundary corresponds to the pipeline’s slot edge. So the Memory Access Controller produces

the most important pipeline control signal “SLOT” indicating pipeline slot edge.

The Data Path unit has registers you can see in programmer’s model in SuperH-2 manual
such as General Registers (RO to R15), Status Register (SR), Global Base Register (GBR),
Vector Base Register (VBR), Procedure Register (PR) and Program Counter (PC). The
Multiplication and Accumulate Registers (MACH/MACL) are found in Multiplication unit.
The Data Path unit also has necessity operation resources such as ALU (Arithmetic and
Logical operation Unit), Shifter, Divider, Comparator, temporary registers, many selectors,
interfaces to/from Memory Access Controller and Multiply unit, and several buses to
connect each resource. The Data Path is fully controlled by control signals from Decoder

unit.

Multiply unit has a 32bit x 16bit multiplier and its control circuits. A 16bit x 16bit multiply
operation is executed in one clock cycle. A 32 bit x 32bit multiply operation is done in two
clock cycles. Multiply unit also has the Multiplier and Accumulate Registers
(MACH/MACL). The MACH/MACL are not only the final result registers of multiply or
multiply-and-accumulation but also the temporary registers to hold the 48bit partial
multiply result from 32bit x 16bit multiplier for 32bit x 32bit operation. The multiply
instruction, for example MULS.L, clears the contents of MACH/MACL in early stage of the
instruction operation. However the multiply and accumulate instruction, for example
MAC.L, does not clear MACH/MACL before the operation. The MAC.L accumulates its own
partial multiply result to initial MACH/MACL and then finalize the operation result. The
major difference between multiply (MULS.L) and “multiply and accumulate” (MAC.L) is
whether to clear or not to clear the MACH/MACL before the operation. And also, for MAC.L

and MAC.W instruction, the accumulation adder in this unit has saturating function.

The Decoder unit is the fundamental CPU controller. It orders Memory Access Controller
fetch instructions and then receives the instruction. The Decoder Unit decodes the
instruction bit fields and judges the followed operations. Basically, the Decoder unit plays

the role only for the instruction ID stage. But it throws many control signals for following

A Pipelined RISC CPU “Aquarius” 57

EX, MA and WB stages toward Data Path unit, Multiplication unit, and Memory Access
Controller. These control signals are kept and shifted with its pipeline flow at each slot
edge until reaching to the target stage of the instruction. The Decoder unit detects every
conditions of pipeline stalling, and makes each unit of CPU be controlled properly. Also, it
controls not only simple 1 cycle instructions but also multi cycle instructions and

exception’s sequences such as interrupt and address error.

8.2. Aquarius CPU IN/OUT Signals
The Aquarius CPU (“cpu. v”)’s IN/OUT signals are shown in Table8.1.

Class Si gnal Nane Direction Meaning Notes
System CLK Input System clock
Signals RST Input Power On Reset
Wishbone CYC O Output Cycle Output
Bus STB O Output Strobe Output
Signals ACK I Input Device Acknowledge
ADR (J 31: 0] Output Address Output
DAT_I[31: 0] Input Read Data
DAT_(31: 0] Output Write Data
VE_O Output Write Enable
SEL_d 3: 0] Output Byte Lane Select
TAG | (I F_WDTH) Input Fetch Width
Hardware EVENT_REQ I[2: 0] Input Event Request
Event EVENT_INFO_I[11: 0] Input Event Information
(interrupt) EVENT_ACK_O Output Event Acknowledge
SLEEP SLP Output Sleep Pulse

Table8.1 Agquarius CPU IN/OUT Signals

58 A Pipelined RISC CPU “Aquarius”

9. Overview of Pipeline Control

This chapter describes the basis of pipeline controls in Aquarius CPU.

9.1. Pipeline and Stage

The CPU executes its instructions with pipelined controls as shown in Figure9.1.

Instruction-1| F | D | E | M |W
Ingtruction-2| F D | E|M|W
Ingruction-3| F |D| E|M|W
Instruction4 | F|D| E|M|W
Instruction-5| F | D | E [M|W
Ingtruction-6| F [P | E|M|W

Figure9.1 CPU Pipeline

The pipeline has following 5 stages, basically.

(1) IF : Instruction Fetch (“F”)

It fetches instruction code from memory. If the bus width is 32bit and the lower
2bit of accessing address is 2'b00, the IF stage can fetch 2 instructions, because the length
of each instructions is fixed in 16bit. If the bus width is 16bit or the lower 2bit of accessing
address is not 2’b00, the IF stage can fetch only 1 instruction.

(2) ID : Decode (“D”)

It decodes fetched instruction code and controls whole CPU operation. The ID is
the most important stage because all operations in each block of CPU are fully controlled by
ID. The ID stage asserts many control signals o EX (dat apat h. v), MA (mem v), and WB
(dat apat h. v). Of course if the instruction code is multiplication related one, the ID
activates multiplication unit (nl t . v). Each control signal is shifted along with pipeline
and activates each stage.

The ID also issues coming IF stage, and the IF forwards new instruction to ID
stage. Then the CPU operation can continue.

A Pipelined RISC CPU “Aqguarius” 59

If the hardware event signal is asserted, the ID samples it and switches its
operation from fetched instruction’s to the sequence of the hardware event exception.
(3) EX : Execute

According to controls from ID stage, the EX stage executes register-register
operation, or address calculation for next MA stage. It can also issue multiplication related
commands to multiplier unit (nul t . v).
(4) MA : Memory Access

According to controls from ID stage, the MA stage reads/writes data from/to
memory. The Aquarius CPU has non-Harvard bus, so the simultaneous IF and MA raise the
bus contention. In this case, MA has the higher priority, so the IF is stalled by the MA.
(5) WB : Write Back

According to controls from ID stage, the WB writes back the memory read data to

the register Rn. The WB is located at the pipeline tail of memory load instruction.

9.2. Pipeline of each Instruction
All instructions do not always have 5 stages. Figure9.2 shows some pipeline examples of
typical instructions.

(1) ALU Operation

The instruction of register-register operation has only 3 stages; IF, ID and EX. The
register-register operation is executed in EX stage, including register read, ALU operation,
and register write.
(2) Memory Store

The instruction of store to memory has 4 stages; IF, ID, EX and MA. The memory
access address is calculated in EX stage, and the write data is also prepared in EX stage.
(3) Memory Load

The instruction of load from memory has 5 stages; IF, ID, EX, MA and WB. The
memory access address is calculated in EX stage. The load data is stored to register in WB
stage. If the register to be written back is NOT same as the register which is used in
following instruction, there is no contention, so the pipeline flows without stall.

The EX stage in the later instruction, which uses the written back data in the WB, can

be executed at same timing as the WB by the grace of the forwarding apparatus.

60 A Pipelined RISC CPU “Aquarius”

(4) Memory Load with Register Contention

If the register to be written back is SAME as the register which is used in following
instruction, the register contention happens. The ID stage of following instruction is
stalled.

(5) Branch Operation

The branch instruction has multiple cycles. In the red square of Figure9.2 (5), you can
find 3 pipelines. This means the BT (taken) instruction executes in 3 cycles. Generally, the
multiple cycle instructions consist of multiple pipelines. In case of BT, the Ist pipeline
calculates the address of branch target, the 2nd pipeline issues instruction fetch of branch
target and increments PC, and the 3rd pipeline issues fetch of the next instruction of branch
target and increments PC. The details of PC control are described later.

The previous instruction of BT has issued a instruction fetch, but the fetched code will
be overwritten by the IF (of branch target) issued by the 2nd pipeline of the BT before
sending to ID stage of target instruction. This extra instruction fetch is called “overrun
fetch”. The codes fetched by overrun fetch are ignored.

(6) Delayed Branch

The delayed branch has 2 pipelines. The 1st pipeline calculates the address of branch
target, the 2nd pipeline issues instruction fetch of branch target and increments PC.

The IF of instruction in delay slot, which has been issued by the previous instruction
of the delayed branch, does not disappear (is not overwritten), then the instruction in delay
slot is executed correctly before the branch target instruction.

The branch instruction which consists of 2 pipelines becomes delayed branch with
delayed slot, and the branch which has 3 pipelines becomes normal branch.

(7) Multiplication

The multiplication related instructions have multiplier stage (“m”) on the pipeline tail.
If the result register MACH/MACL does not conflict with followed instruction, there is no
pipeline stall. The details of pipeline of multiplication are described in later chapter.

(8) Multiplication with Register Contention

If the result registers MACH/MACL conflict with followed instruction, pipeline stall

happens. The details of contention of multiplication related instructions are described in

later chapter.

A Pipelined RISC CPU “Aquarius” 61

MOV RO,R1 | F | D

SUBRO,R1 | F| D

ADDRL,R2 | F| D MOV.LR1, @R3| F M
TSTR2R3| F | D | E ADD #4, R3 E
(1) ALU Operation (2 Memory Store
SUBRO,R1 | F|D | E SUBRO,R1 | F|D| E
MOV.L @R1L,R2| F | D |E | M |W MOV.L @R1,R2| F | D M |W _
forwarding
ADD#4,R1 | F | D forwarding ADDR2,R3 | F | D |(D) ’E
TSTR2,R3 | F | D |¥E TST R3, R4 FID|E
(3) Memory Load (w/o stall) (4) Register Contention
by Memory Load (w/ stall)
CMP/EQRO,R1| F | D F[D
BRA disp12
D D|E
BT digp8 D (delay dot) ADDRO,R1| F | - | D
D|E (target) MOV R1,R2| F
(overrunfetch)| F SUB R2, R3 E
(target) MOV R1,R2| F | D
SUB R2, R3 E
(5) Branch Operation (6) Delayed Branch Operation
DMULSLRO,R2|F |D|E|m|m DMULSLRO,R2| F|D|E|m
MOV.L@RL,R2(F |D|E M |W STSMACL,R2 | F [(D)|[(D)| D
SUBR2,R3| F|D|E SUBR2,R3 | F
MOVR3,R4 | F|D|E MOV R3, R4

(7) Multiplication

(8) Multiplication (w/ stall)

Figure9.2 Pipeline of each Instruction

62

A Pipelined RISC CPU “Aquarius”

9.3. Register Conflict
As described previous section, the memory load instruction may cause register contention.
See Figure9.2 (3) and (4).

9.4. Memory Access Conflict

The Aquarius CPU has non-Harvard bus, so the simultaneous IF and MA raise the bus
contention, as shown in Figure9.3.

If the bus width is 32bit and the lower 2bit of accessing address is 2’'b00, the IF stage can
fetch 2 instructions, and the following IF stage does not need to produce actual memory
read cycle. The IF stage, which issues actual bus cycle, is shown as “F”, and the IF stage,
which does not issue real bus cycle and take the instruction from internal buffer, is shown
as “f” in the figure. The simultaneous “M” and “F” cause the contention and the pipeline is
stalled, but “M” and “f” does not conflict.

Note that, if you locate load/store instruction at long word boundary (address=4n), the MA
stage of the instruction does not conflict with IF of post instruction (Figure9.3 (1)),
otherwise (address=4n+2), it conflicts (Figure9.3 (2)).

SUB RO, R1 f|D|E SUBRO,R1 | F| D[E
MOV.L @R1,R2| F | D | E | M |W MOV.L @RL,R2| f [D|E|M|W
ADD#4,R1 | f | D | E ||fowarding ADD#4,R1 | F | D |(D)| E
TSTR2,R3 | F | D |¥E TSTR2R3 | f |- |D
ORR4,R5| f |D | E OR R4, R5 F|D|E
(2) Not conflict MA and IF (2) MA-IF Conflict (w/ stall)
SUBRO,R1 | F|D| E
= Fetch 2 instructions from 32bit bus.
MOVL@RLR2| f |D|E|M W . Send 1% instruction to decoder.
5 Flbp (D) ‘E forwarding
ADD #4, R f Fetch 2" instruction from internal buffer.
TSTR2,R3 | f | - |D Send it to decoder.
ORR4,R5 FID|E

(3) Register Conflict and MA-IF Conflict (w/ stall)

Figure9.3 Conflict between MA and IF

A Pipelined RISC CPU “Aqguarius” 63

9.5. Who issues IF? Who issues ID?

The ID stage fundamentally controls whole CPU operations. No one issues ID stage. ID
stage continues by itself.

The ID stage issues not only EX, MA and WB stages, but also the IF stage of followed
instruction as shown in Figure9.4. After the power on reset, at the last sequence of power
on reset exception, the IF stages of 1st instruction and 2nd instruction are issued by the last
two decode stages in the exception sequence. Each IF stage of all followed instructions is

issued by similar manner.

By the issued IF, the corresponding ID stage can get next instruction so that each
ID can keep its continuance.

Power on Reset
Exception Sequence
D
D
1% Instruction =-»{iF | D
2 |nstruction*==»iF | D | E |M | W
» D|E
=»IF | D

=M iF |D|E|M|W

SN =

Figure9.4 IF Issue

64 A Pipelined RISC CPU “Aquarius”

10. Decoder Unit

This chapter describes the details of decoder unit (decode. v).

10.1. IN/OUT Signals

Tablel10.1 shows all in/out signals of decoder unit.

Class Direction Name From/To Meaning Notes
System input CLK EXTERNAL clock
Signals input RST EXTERNAL resst
Pipeline Slot input SLOT mem.v pipelinesot
output | F_I SSUE mem.v fetch request
Instruction output I F_JP mem.v fetch caused by jump
Fetch input [15:0] IF_DR mem.v fetched instruction
Controls input | F_BUS mem.v fetch access done to extenal bus
input | F STALL mem.v fetch and memory access contention
output MA | SSUE mem.v memory access request
request read-modify-write (To beissued on
X;T;)Sry output KEEP_CYC mem.v RquAD—CYC to kegln cvc(o on)
Controls output MA VR mem.v memory access k_i nd : Write(1)/Read(0)
output [1:0] MA_SZ mem, Memeneoessize; 00yt Ol ward 0
output MULCOML mult.v Mult M1 Latch Command
Multiply ~ output [7:0] MJLCOWR mult.v Mult M2 Latch Command
Controls (1) output VRMACH, WRMACL mult.v Write MACH/MACL
i nput MAC BUSY mult.v multi plier busy signal (negate at final
- operation state)
output RDREG X datapath.v read REG to X
output RDREG Y datapath.v readREGtoY
General output VWRREG Z datapath.v ~ writeREG fromz
Register output WRREG W datapath.v writeREG fromw
Controls output [3: 0] REGNUM X datapath.v specify REG number reading to X
output [3: 0] REGNUM Y datapath.v specify REG number reading to Y
output [3:0] REGNUM Z datapath.v specify REG number writing from Z
output [3: 0] REGNUM W datapath.v specify REG number writing from W
ALU output [4: 0] ALUFUNC datapath.v ALU function
output VIRVAAD Z datapath.y writeMAAD fromZ
Memory output VRVADW X datapath.v write MADW from X
Access Data output VRVADW._ Y datapath.v write MADW from Y
output RDVADR W datapath.v read MADRto W

Tablel0.1 Decoder IN/OUT signals (1)

A Pipelined RISC CPU “Aqguarius”

65

Class Direction Name From/To Meaning Notes
output [1: 0] MACSEL1 datapath.v MAC Sdlecter 1
output [1: 0] MACSELZ2 datapath.v = MAC Sdlecter 2
Multiply output RDMACH X datapath.v resd MACHtoX
Controls (2) output RDVACL_ X datapath.v read MACL to X
output RDMACH_Y datapath.v read MACHtoY
output RDVACL Y datapath.v read MACLtoY
output RDSR_X datapath.v read SRto X-bus
output RDSR_Y datapath.v read SRto Y-bus
SR Controls output VWRSR _Z datapath.v write SR from Z-bus
output VRSR W datapath.v write SR from W-bus
Latch Shit output MAC S LATCH datapath.v latch Shit before MAC operation
output RDGBR_X datapath.v read GBRto X-bus
GBR output RDGBR_Y datapath.v read GBRto Y-bus
Controls output WRGBR_Z datapath.v write GBR from Z-bus
output VWRGEBR W datapath.v write GBR from W-bus
output RDVBR_X datapath.v read VBR to X-bus
VBR output RDVBR_Y datapath.v read VBRto Y-bus
Controls output VWRVBR_Z datapath.v writeVBR from Z-bus
output VWRVBR W datapath.v _ write VBR from W-bus
output RDPR_X datapath.v read PRto X-bus
output RDPR_Y datapath.v read PRto Y-bus
PR Controls output VRPR_Z datapath.v write PR from Z-bus
output VWRPR_W datapath.v write PR from W-bus
output V\RPR PC datapath.v___ write PR from PC
output RDPC_X datapath.v read PCto X
output RDPC_Y datapath.v readPCtoY
PC Controls output WRPC 7 datapath.v writePCfromz
output | NCPC datapath.v incrementPC
output | FADSEL datapath.v IF AD sdlecter
output [15: 0] CONST_I| FD datapath.v congtant Value from Instruction Field
output CONST_ZERM datapath.v Const = unsigned lower 4bit
output CONST_ZERM42 datapath.v Const = unsigned lower 4bit * 2
output CONST_ZERO44 datapath.v Const = unsigned lower 4bit * 4
Immediate output CONST_ZERO8 datapath.v Const = unsigned lower 8hit
and output CONST_ZERCB2 datapath.v Const = unsigned lower 8bit * 2
Displacemen output CONST_ZERCB4 datapath.v Const = unsigned lower 8bit * 4
t Controls output CONST_SI G\8 datapath.v Const = signed lower 8bit
output CONST_SI GN82 datapath.v Const = signed lower 8hit * 2
output CONST_SI GN122 datapath.v Const = signed lower 12bit * 2
output RDCONST_X datapath.v read CONST to X
output RDCONST Y datapath.v read CONST to Y
Forwarding output REG FWD X datapath.v forward REG from W to X
output REG FWD Y datapath.v forward REG fromWto Y
Tablel0.1 Decoder IN/OUT signals (2)
66 A Pipelined RISC CPU “Aquarius”

Class Direction Name From/To Meaning Notes
ggg:?;f output [2:0] CwvPCOM datapath.v define comparator operation (command)
Shifter output [4:0] SFTFUNC datapath.v shifter Function
Controls output RDSFT Z datapath.v read SFTOUT to Z-BUS
input T_BCC datapath.v T valuefor Bec judgement
output T_CMPSET datapath.v reflect comparator resultto T
output T_CRYSET datapath.v reflect carry/borrow out to T
T bit output T _TSTSET datapath.v reflecttstresuitto T
Q Bit output T_SFTSET datapath.v reflect shifted output to T
M bit output Qr_DV1SET datapath.v reflect DIV1resulttoQand T
Controls output MJT_DVOSET datapath.v reflect DIVOSresult to M, Q and T
output T_CLR datapath.v dear T
output T_SET datapath.v =~ satT
output M) CLR datapath.v =~ dear M andQ
TEMP output RDTEMP_X datapath.v read TEMPto X-bus
Register output VRTEMP_Z datapath.v writeto TEMP from Z-bus
Controls output VWRMAAD TEMP datapath.v output MAAD from TEMP
input [2:0] EVENT_REQ EXTERNAL event reques
Hardware on ¢ EVENT_ACK EXTERNAL event acknowledge
Events input [11:0] EVENT_|NFO EXTERNAL &imomaion
output RST_SR datapath.v reset SR
SRand | bit input [3:0] IBIT datapath.v IbhitinSR
Controls output [3:0] ILEVEL datapath.v IRQLevel
output VR IBIT datapath.v WritelLEVEL tol hitin SR
SLEEP output SLP EXTERNAL Sleep output

Tablel0.1 Decoder IN/OUT signals (3)

10.2. Structure of Decoder Unit

Figurel0.1 shows whole structure of decoder unit. The huge truth table generates all
control signals for each block in CPU. The huge truth table (combinational circuit) receives
2 input signal groups. One is INSTR_STATE[15:0] and the other is INSTR_SEQI3:0].

The INSTR_STATE[15:0] shows the instruction code that should be processed in decoder
unit. The IR register is reset by RST signal, so that the initial state of INSTR_STATE[15:0]
is set to ' POWER_ON_RESET(16’hF700).

The INSTR_STATEJ15:0] is basically same as IF_DR, which is fetched instruction code. But
if interrupt or hardware exception event is detected, the INSTR_STATE[15:0] is replaced to
corresponding exception code according to EVENT_REQ[2:0] and EVENT_INFOJ[11:0],

A Pipelined RISC CPU “Aquarius” 67

then the signal IF_DR_EVT[15:0] is created. Here, the some necessary controls for masking
interrupt or hardware exception are performed, that is,

(1) All exceptions are masked after delayed branch (i.e. the instruction in branch slot is
never replaced to exception sequence) using DELAY_SLOT signal which comes from the
huge truth table..

(2) Some specific instructions such as LDC/LDC.L mask interrupt (i.e. an instruction just
after the instruction which masks interrupt is never replaced to interrupt sequence) using
MASKINT signal from huge truth table.

(3) If the priority level of IRQ is less than I bit in SR, the interrupt request should be

ignored.

The IF_DR is updated by memory controller regardless of instruction sequence because the
decoder itself requests IF as its own operation. So, IF_DR (IF_DR_EVT) should be latched
to IR register, if the instruction needs multiple cycles (including memory waits and pipeline

stalls).

The INSTR_SEQ[3:0] has its meanings only when the executing instruction has multiple
cycles. Its default value is 4’b0000, and the multi-cycle instruction increments INSTR_SEQ
to make multiple pipelines as shown in, for example, Figure9.2 (BT, BRA).

The reset state of INSTR_SEQ (when RST asserted) is set to 4b0001 to begin power on
reset sequence, because the value 4b0000 has specific meaning for the control of the

decoder’s state machine, as shown in later (Tablel10.2).

The combination of INSTR_STATE and INSTR_SEQ specify whole control signal states via
the huge truth table. This combinational circuit also outputs a signal DISPATCH. Its
assertion indicates that the pipeline stage of instruction is final. If the DISPATCH is
asserted, INSTR_STATE should be updated according to IF_DR or proper exception code
(IF_DR_EVT), and INSTR_SEQ should be reset to zero.

The detail state controls are shown in Tablel10.2. The way of controls depends on status of

pipeline stall. The signals NEXT_ID_STALL and ID_STALL indicate the status of pipeline

stall. The signal meanings are describes in later section.

68 A Pipelined RISC CPU “Aquarius”

Figurel0.2 shows a operation image of the decoder state machine. And Figurel0.3 shows a
basic example of ID stage operation.

V' FDR

\

EVENT_REQ

Combinational EVENT_INFO
Logic DELAY_SLOT 4'b0000

MASKINT

IBIT
IF_ DR_EVT

1 0
v DISPATCH——
VR
+1
‘ Init="POWER_ON_RESET
0 \ 4
INSTR_STATE_SEL VINSTR_SEQ
Init=4’ b0001
y
DISPATCH
INSTR_STATE[15:0] INSTR_SEQ[3:.0]]
Huge Truth Table

T 1

Control Signals

Figurel0.1 State Machine in Decoder Unit

A Pipelined RISC CPU “Aqguarius” 69

INSTR_STATE INSTR_SE

Instruction

At next dot cycle,
:DISPATCH=1 Change INSTR_STATE according to IF_DR,
And clear INSTR_SEQ to zero.

Figurel0.2 State Transition

||
ID (1
ID(2-1 | ID(-2
ID(@3) |ID STALL
I|D(4|)
IF DR I(1)I I(2)I - I(3)I - I(4)I
IR * ¥ 2) * ®) -
SLoT | /]
INSTR sEq|__ 0 0 1 0 0 0

70

Figurel0.3 Basic Operation of State Machine in Decoder Unit

A Pipelined RISC CPU “Aquarius”

| nput Qut put @ext Sl ot

2 W

=28l8 |& g
5 g | & ;ﬂ 5 <, . Not es
] el 2] o o E —
Nl al 2|2 = 9

CEE 2

g —
ol 1* 1* I* 1R Keep Keep Not Changed
1] 0] O] O]>=00011IR +1 Keep During Multi-Cycle Instruction
11 0] O] O]==0000}1 F DR EVT|+1 | F_DR _EVT|First ID Stage of Multi-Cycle Instruction
1] 0] 0] 11>=0001}JIR Cl ear 0 |Keep Final 1D Stage of Multi-Cycle Instruction
1] 0] 0] 1]==0000}I F DR EVT|d ear0 |l F DR _EVT]ID Stage of Single Cycle Instruction
1/ 0] 1] 0]>=00011IR +1 Keep Stalled Last Slot during Multi-Cycle Instruction
11 0] 1] O]==0000}I R +1 Keep Stalled Last Slot of first ID stage of Multi-Cycle Instruction
1] 0] 1] 1]>=0001}IR Cl ear 0 |Keep Stalled Last Slot of Final 1D Stage of Multi-Cycle Instruction
1] 0] 1} 1]==0000JIR Qd ear0 |Keep Stalled Last Slot of ID Stage of Single Cycle Instruction
11 11 0] O]>=00011IR Keep Keep Stalled First Siot during Multi-Cycle Instruction
1] 1] O] 0]==0000}1 F DR EVT|Keep | F DR EVT|Staled First Slot of first ID stage of Multi-Cycle Instruction
1] 1] 0] 11>=0001}JIR Keep Keep Stalled First Slot of Final 1D Stage of Multi-Cycle Instruction
1] 1] 0] 1]==0000]1 F DR EVT|Keep | F DR _EVT|Stalled First Slot of 1D Stage of Single Cycle Instruction
11 1] 1] O]>=0001}IR Keep Keep Stalling Slot during Multi-Cycle Instruction
1/ 1] 1] O]==0000}IR Keep Keep Stalling Slot of first ID stage of Multi-Cycle Instruction
1] 1] 1] 1|>=0001}IR Keep Keep Stalling Slot of Final ID Stage of Multi-Cycle Instruction
1] 2] 1] 1]==0000]IR Keep Keep Stalling Slot of ID Stage of Single Cycle Instruction

Tablel0.2 State Controls of Decoder Unit

10.3.Shifting Control Signals

The decoder unit makes many control signals to control whole CPU blocks. These control

signals are generated by the huge truth table as described above. The output timing of all

control signals is always on ID stage. But these signals should control not only ID stage

operations but also EX, MA and WB stage operations. So the signals which control EX or

WB should be shifted as shown in Figurel0.4. Actually, the flip-slops shown in Figurel0.5

are used to shift each control signal.

Note that MA controls are performed in EX stage because how to issue the MA can be

determined in EX stage, in which address of MA is calculated and write data is prepared.

A Pipelined RISC CPU “Aqguarius”

71

D1 AEl M1 Wi,y

l D2 E2
D3

E3 M3

|D_ddd

8%
o) %
daan il

Figurel0.4 Shifting Control Signals

WB www

Decoder
ID_ddd EX_eee WB_www|
CLK&SLOT CLK&SLOT
WB1 www
CLK&SLOT]
WB2_ www
CLK&SLOT]
eee
v v WWW,
ID controls EX controls WB controls

Figurel0.5 Shifting Circuit

72 A Pipelined RISC CPU “Aquarius”

10.4. Pipeline Stall

The pipeline is stalled by following 4 reasons.

[1] Wait States on Instruction Fetch (IF) or Data Access (MA)

All pipeline slots are synchronized to memory access. The signal SLOT from mem v
indicates the each slot edge. If there is no memory access or there is memory access without
wait state, the pipeline slot do not stalls (SLOT=1). If there is memory access with wait
state, the pipeline stalls (SLOT=0) until SLOT signal is asserted (it means the wait state
finishes). So the clock inputs of whole flip-flops for controls are gated by SLOT signal. Only
by this clock gating, such kind of pipeline stall is fully controlled. See Figurel0.6.

buscycle bus gycle bus cycle
L
Z | sB |
@
AT A SR VA SR T
(\ (\ (\
i S S VA

\<ﬁ 7

Figurel0.6 Bus Wait State and Slot control

[2] Conflict IF and MA
As you know, the simultaneous IF and MA conflicts and make the pipeline stalls as
shown in Figure9.3. The memory access controller frem v) detects IF-MA conflicts and

informs the events to decoder unit using a signal IF_STALL. The circuit for conflict

detection receives IF_STALL, then controls pipeline stalling.

[3] Multiplication Contention
As shown in, for example, Figure9.2 (8), the multiplication related instruction may

A Pipelined RISC CPU “Aquarius” 73

cause pipeline stall. This is controlled by using MAC_BUSY signal from mult.v and
signals WB_MAC_BUSY, EX_ MAC_BUSY and MAC_STALL_SENSE from the huge truth
table in decoder unit. By the methods described in later section, the multiplication related

stall signal MAC_STALL is generated. The circuit for conflict detection receives
MAC_STALL, then controls pipeline stalling.

[4] Register Contention

Memory load instruction may cause register contention with followed instruction
which uses the write back data of the previous load instruction. The circuit for conflict
detection watches pipeline control signals as shown in Figurel0.7 and make a conflict
indicate signal REG_CONE In this case, MOV.L @R0,R1 and ADD R1, R2 cause R1 conflict.
At the ID stage of ADD, the control signal to read R1 (EX_RDREG_X or EX_RDREG _Y) for
ADD instruction and the shifted control signal to write back to R1 (WB1_WRREG_W) for

MOV.L instruction are asserted simultaneously. This means there is R1 confliction, so the
ID stage of ADD should be stalled.

MOVL@RORL | , D1 E1 M1 Wi,
ADDRL,R2 Ul D2 (D2) AE2
=}
©
o D3 E3 M3

Writeto R1

Read R1
s
=|

Detect <
Register
Conflict

REG_CON m .
IFSTALL NEXT ID_STALL LD STALL
MAC_STAL =

Figurel0.7 Detecting Register Conflict

rny

y

Regarding above [2] [3] [4], IF_STALL, MAC_STALL and REG_CONF are ored and the
NEXT_ID_STALL is created.

74 A Pipelined RISC CPU “Aquarius”

The NEXT_ID_STALL means that the ID stall continues by at least next slot.

Note that the ID stage with NEXT_ID_STALL=1 should force to NOP the control signals for
each CPU block because the stage has no meanings regarding execution of the instruction.

If NEXT_ID_STALL is asserted, the ID_STALL should be asserted at the next slot.

See Figurel0.8 regarding some examples of the stall control.

The meanings of combination of NEXT_ID_STALL and ID_STALL are shown in Table10.3.

NEXT_ID_STALL ID _STALL Meanings Control
Signals
0 0 No Pipeline Stalls Active
0 1 ID is stalled. The stalled slot is final one. Active
1 0 ID is stalled. The stalled slot is first one. Force to NOP
1 1 ID is stalled. The stalled slot will continue. Force to NOP

Table10.3 Combination of NEXT_ID_STALL and ID_STALL

Slot

Load Contention IF-MA Contention Load & IF-MA Contention
F|{D MW FIDIE|M|W FIDIE|M|W
f - | E D| -|E D| - E
F D F D F D
f|D|E F|D|E F|D|E
REG_CONF - S I
IF_STALL N I S I
NEXT_ID_STALL
ID_STALL

This ID submits commands to data path.
This|D don’t submit any commands to data path.

Figurel0.8 Controls of ID stall

A Pipelined RISC CPU “Aquarius” 75

10.5. Register Forwarding

As shown in Figure9.2 and Figure9.3, register forwarding should be implemented not to
reduce CPU cycle performance. After the memory load instruction, the register forwarding
may be needed. This situation can be detected by watching some control signals. This is
very similar to the detection of register conflict. If register content should be forwarded
from Write Back Bus (W-BUS) to Register Read Bus X (X-BUS) in the data path unit, the
signal REGFWD_X is asserted. If register content should be forwarded from W-BUS to
Register Read Bus Y (Y-BUS), the signal REGFWD_Y is asserted. Actual forwarding
transfer is performed in data path unit. Also see the chapter of data path unit.

Some examples are described in next section.

10.6. Examples of Pipeline Control
From Figurel0.9 to Figurel0.11 shows some examples of pipeline controls including stall

control and register forwarding.

(1) Memory Load Contention (Figurel0.9)
The Slot4 detects register contention, then REG_CONF is asserted. The ID at slot4
(ADD) is stalled. The Slot6 forwards write back data of MOV.L to EX stage of ADD.

(2) Contention of IF and MA (Figurel0.10)
The EX of MOV.L asserts MA_ISSUE, and the IF of ADD asserts IF_ISSUE. This
means the IF-MA confliction. Then, the memory access controller returns IF_STALL at
slot4 and the ID in slot4 (ADD) is stalled.

(3) Delayed Branch (Figurel0.11)
The 1st EX of BRA (slot4) makes fetch address of SUB (target), and 2nd EX make fetch
address of AND.

10.7.Control of Program Counter

As described in last chapter, the ID stage issues IF stage. This is rigidly true. But the
timing of changing PC has 2 cases.

[1] When program runs straight forward, the PC is incremented at ID stage.

[2] When program branches, the PC is changed at EX stage.

Figurel0.12 shows good example of PC controls including exception sequence and branch

operation.

76 A Pipelined RISC CPU “Aquarius”

Memory Load Contention

Sot 1

MOV.L @RO, R1

i

ADR

DAT |

WE

WISHBONE

STB

ACK
\

A Pipelined RISC CPU “Aqguarius”

REG

Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7
IS D EX MA WB
ol @ [a) ad
< | Fetch | |g| | Decode| |G < |Memory| |8 | 3
ul| Read ||w||IFIssue||ag < | Read ||} = i
] _ 1 = =
\
‘\
REG_CONF / \ 2
— \ \ _g
NEXT_ID_STALL / il g
(@]
ID_STALL \ =
\}
REG_FWD_N/Y
ADDR1,R2 if v D (ID) EX
o o b
< | Fetch ||Q o | Decode o]
8 ul| Read ||uf \‘Decode = [IF Issue 2 H:J
I L 1
\ AY
SUBR3,R4 I < ID EX
| > A
o <D(| Fetch QD: ‘% Decode| |9 2
u| Read ||u &"IFlssue @ <
- »\‘ \\
AND R5, R6 S D
a N
oS < & | Fetch 1§ | Decode
m | Read | |wh|IFIssue
A)
4
MOV ADD SUB mMA XX A
| | |
| | |
| |

Figurel0.9 Memory Load Contention

REG

77

Contention of IF and MA

REG

REG

| Siot1 | Siot2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7
MOV.L RO, @R | 1= D EX MA
(&)
Ol 9,: Fetch DD: Decode 9 <
& ul| Read ||ul|IF Issue||@ <
= — 1 =| [Memory
\ :|’f| Write
) O [a)
\ L] |
V| I
A =
\
|}
\ |
IF_ISSUEY X X
\
MA_ISSUR 1\
|
IF_STALL 0 /\ \
NEXT_ID_STALL El)
\
ID_STALL | 4
ADDR1, R2 1= L 1D (ID) EX
m |
Q 9,: Fetch ||g| | Recode | |of | Decode | |G '\ o Q
l| Read 1 | = [IF1 o < X
LL] e LL| ssue ssue
]] A Y
|‘ <
SUBR3,R4 I3 A ID EX
M o] M
Fetch || “Q Decode 8 >
| Read ||uf ul | IF Issue| (o (™ <
;\ <
AND R5, R6 Y ID
o 3
0 > a g Fetch ‘% Decode
w < | Read ||uy|IF Issue
%
. 5
ADR =MOV ADD SuB ma KX AND
| oAT- W4 W4 RO 4 W
o
5| WE KX XX
<
STB XX
ACK
L 4 M 4 N 4 X 4 X 4 M
DAT O MA

Figurel0.10 Contention of IF and MA

78 A Pipelined RISC CPU “Aquarius”

Delayed Branch

Sot 1
BRA disp12

PC

A Pipelined RISC CPU “Aqguarius”

Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7
IF 1D EX
0O ad
< | Fetch | |3 8)
ol | Read |[al Decode | [l > 2 g
ID EX
Decode
o oS Q O
} IF Issue. |3 %
4_\ ||
SLOT(ADDRL,R2) | IF N ID EX
s
O 2| Feteh ||H \5 Decode |9 2 Q
= u!| Read ||uf I IF Issue &g [< @
] — i \
A N
TARGET(SUB R3, R4) ME S ID EX
gl ¥ o
< | Fetch \@ Decode 8 8
u/| Read ||l |IF Issue| | o
AN
1 \
ANDR5,R6 \F O ID
9(Fetch Decode 8
wl| Read ||uh|IF Issue||ed
N
\
\
R
Figurel0.11 Control of Delayed Branch
79

Power On Reset =

2

. 1D stage
D : 1D stage with IF issue

w
INEEEEEEEEEEEEEEE

ssnm s eepihaneses 1NE PC changes at
either 1D or EX.

ﬂOt i!-- anml I:;lé: [1 1]
1P|) o
L

INC
TTTTTT O] ——— ENEEEEEEEEEEEEEEEEE
IF| $IF| 0 [EXMA Stack SR

=
35
~Iss

o
8

: 1 EXMA] Stack PC
2 [EXMA| Read Vedior
: 3
e ¢
IF| Next Instruction ELF bc '
Next next ... 3 IFAsc] i

Figurel0.12 PC Controls

A Pipelined RISC CPU “Aquarius”

11. Memory Access Control Unit

This chapter describes the details of memory access control unit (mem v).

11.1. IN/OUT Signals
Tablell.1 shows all in/out signals of memory access control unit.
(Although a signal IF_BUS goes to decoder unit, it is not used.)

Class Direction Name From/To Meaning Notes
System input CLK EXTERNAL clock
Signals input RST EXTERNAL rest
output CyC EXTERNAL cycle output
output STB EXTERNAL strobe
input ACK EXTERNAL externa memory ready
output [31:0] ADR EXTERNAL externa address
V\B/ll.,lingSalN SEinput [31: 0] DATI EXTERNAL externa dataread bus
output [31: 0] DATO EXTERNAL external datawrite bus
output VEE EXTERNAL externa write/read
output [3:0] SEL EXTERNAL external valid data position
input | F_W DTH EXTERNAL external fetch space width (IF_ WIDTH)
SLOT output SLOT ALL in CPU pipelinesiot edge
input | F_I SSUE decode.v fetch request
Insirlction ?nput I F_JP decode.v fetch caused by jump
input [31: 0] IF_AD datapath.v fetch address
Fetch
e output [15:0] IF_DR datapath.v fetchedinstruction
output | F_BUS decode.v fetch access done to extenal bus
output | F_STALL decode.v fetch and memory access contention
input MA | SSUE decode.v memory access request
input KEEP_CYC decode.v ?&fﬁé’lﬁ:&@iﬁfeﬁtw on
Memory input MA VR decode.v memory access kind : Write(1)/Read(0)
- . memory access size
C:\nir(;:nsds Iz [T e e teode oobvt:ey,m word, 10 long, 11 inhibitted
input [31:0] MA_AD datapath.v memory access address
input [31:0] MA DW datapath.v memory write data
output [31: 0] MA DR datapath.v memory read data

Tablell.1 Memory Access Control Unit IN/OUT Signals

11.2. WISHBONE's ACK and Aquarius' SLOT
As described last chapter, the signal SLOT indicates the pipeline slot edges, and is created

from WISHBONE's ACK signal in the memory access control unit. The clocks of each

A Pipelined RISC CPU “Aquarius” 81

flip-flop in Aquarius CPU are gated by SLOT signal, so that the pipeline stall derived from
memory access cycle is easily controlled.

The waveform of SLOT is very similar to ACK, except that the SLOT is asserted if there is
no memory access cycle, as shown in Figurell.1l's second slot. If external memory is

accessed, the waveform of SLOT follows to ACK signal.

o IFcvce |, nocycle | IE cycle Mg MA lcycle .
L
Z | sB |
& O O O
Sy T\ A /
sof_] L TN T

IF ID EX MA
if IIID EIX
I I
IF ID
ilf

Figurell.l1 WISHBONESs ACK and Aquarius’ SLOT

11.3.Instruction Fetch Cycle

The decoder unit requests instruction fetch to the memory access control unit. Some
examples of instruction fetch controls are shown in Figurell.2.

The instruction fetch starts at next slot of IF_ISSUE=1. When IF_ISSUE=1, IF_ADJ[31:0]
and IF_JP should be valid state. IF_AD[31:0] shows the address of instruction which the
decoder unit want to get.

If external bus width is 32bit (IF_WIDTH=1), 2 instructions are fetched simultaneously.
This means the memory access control unit creates actual memory access for instruction
fetch every two slots, using internal fetch buffer. But if the instruction fetch is created by
Jump or Branch, the fetch should actually access the memory even if the internal fetch

buffer has been valid. So, Jumping operation by instruction or exception sequence should

82 A Pipelined RISC CPU “Aquarius”

inform such state to memory access control unit by asserting IF_JP with IF_ISSUE.

The fetched instruction IF_DR[15:0] is valid at next slot of corresponding IF cycle.

Ecvcle Jle nocvce Jle IE cycle plelaternal IF e IFcycle
rSTB
w AN a O—
§<ACK /A A /)
= | ADR x IF(2) >< X IR x IF(5)
| DAT_| Xxxx |F(2)>< XXXX IR®3) KXXX IF(5)
AY (\ < ("\ C\ (
EC) VA I SN VA S A §
BRA if(1) ID EX
B ID EX
slot IF(2) - IE) EX
target IFI(3) iR ID EX
’: if(4)
IF_ISSUE R X { \ _X__
IF_JP —__\
IF_AD IF(2 _\< :X IF(4)CL(S‘_
] \J
IF_BUS [
IF_DR (IF(1) >(IF(3) v IF(4) ><

Figurell.2 Instruction Fetch Cycle

11.4.Memory Access Cycle

Figurell.3 shows memory access control. Similar to instruction fetch, MA starts at next

slot of MA_ISSUE=1. Some attribute information such as access sze MA_SZ[1:0], access

A Pipelined RISC CPU “Aqguarius”

83

direction MA_RW, address MA_ADI[31:0] and, if write access, write data MA_WDJ[31:0]
should be valid when IF_ISSUE=1.

The write data in MA_DW][31:0] should be valid in its LSB side when access size is smaller
than long word. The read data MA_DRJ[31:0] is valid with sign extended at next slot of

corresponding MA cycle.

84

MA cycle
IE cydle | Internal IF. 1. IFcyde [l lnternal IF 1 |Fcycle d Internal IF
r
STB
o C\— O O O
L
g)acy T\ R S
m
% | ADR >(IF(1) X IF(3) MA(2) IF(5)
=
| DAT_I ><XXX IF(1) XXXX IF(3) MA(1) IF()
or DAT_O Xxxx MA(1)
0\ C\ (\ N /.\ C"\ C
st T T T T
MOV (load) IF(1) ID EX MA(1) | ws
if(2) ID EX No conflict
IF(3) ID] EX
if(4) ID EX
IF(5) ID
if(6)
MA_ISSUE _\
MA WR/MA_SZ X MA(1 X
MA_AD/MA_DW
Incase of WRITE: MA_DW A(AX
In case of READ : MA_DR)\ MA(2) X

Figurell.3 Memory Access Cycle

A Pipelined RISC CPU “Aquarius”

11.5.1F-MA Conflict
Figure 11.4 shows the IF-MA conflict. At 3rd slot, IF_ISSUE and MA_ISSUE are asserted at

same time. If the IF should get a instruction from external memory (not from internal

instruction buffer), IF_ISSUE=1 & MA_ISSUE1 means IF-MA contention.

When IF and MA conflict, the memory access control unit asserts the signal IF_STALL and

inform such situation to the decoder unit. The memory access control unit starts MA cycle

first, and after the MA, it begins IF cycle.

« Interna IF” IF Cycle ”InternaIIF ‘MAcche < IF cycle ‘Internal IE
(58 |
"] C\,— C\ (\
DR S S S
g ADR >< IF(2) >< X MA(2) IF(4)
L DAT_| mx IF(2) >< XXXX MA(2) IF(4)
or DAT_O Wx MA(1):
Y N\ Ty 7y Y Ny I
sor \ < “ T
| VAR L/ M I
MOV (load) if(1) ID EX MA@ e Conflicted
IF(2) ID (ID) EX
i1(3) - ID EX
IF(4) | ID
if(5)
IF_ISSUE [|
MA_ISSUE ___\
IF_STALL x _\
NEXT_ID_STALL /_ \ \
ID_STALL '

Figurell.4 IF-MA Conflict

A Pipelined RISC CPU “Aqguarius”

85

11.6.Bus Width of Instruction Fetch Cycle (IF_WIDTH)

If data width of instruction fetch space is 32bit, the WISHBONE bus should return
IF_WIDTH=1, or it should return IF_WIDTH=0. If IF_WIDTH=0, internal fetch buffer of
the memory access control unit can get only one instruction, so next instruction fetch
requested by decoder unit should produce actual memory access, as shown in Figurell.5.
Note that IF_WIDTH has its meaning only when lower 2bit of fetch address is 2b00 as

described in Partl.

IFcycle Linterna IF. [, IFcycde J, IFcycle J, IFcyce J lnternal |F

(STB
A A /
N e R
§<ADR >(IF(2) >< >(IF(3) IF(4) IF(5)
2 | DAT. ><XXX IF(1) >< XXXX IF(3) IF(4) IF(5)
IF WIDTH (TAGO | \ J
S 0 ® O o Q O C
L GA S G S BV G |
IF(2) ID EX
if(2) ID EX
IF(3) ID EX
IF(4) ID EX
IF(5) ID
if(6)

Figurell.5 Bus Width of Instruction Fetch Cycle (IF_WIDTH)

11.7.Read Modify Write Cycle (for Instruction TAS.B)

The specification of WISHBONE bus has read-modify-write cycle, in which no bus
arbitration is granted between read and write. During read-modify-write cycle, the bus
master should keep CYC signal high. The TAS.B (test and set) instruction requires uch

86 A Pipelined RISC CPU “Aquarius”

read-modify-write cycle. To achieve this, the memory access control unit receives

KEEP_CYC signal from decoder unit, as shown in Figurell.6.

IE cycle ‘Internal IFV No cycle”MA WRITﬂ

No cvcler ‘MA READV

<

CyC
STB
s \
Y S B
TASB IF ID
MA
EX
if ID
MA_ISSUE

KEEP_CYC

Figurell.6 Read Modify Write Cycle

11.8.State Machine of Memory Access Control Unit

Tablell.2 shows state definition of memory access control unit. Table11.3 shows key signals
regarding instruction fetch. And Tablel1.4 shows state transitions.

This memory access control unit assumes the CPU bus (WISHBONE) is non-Harvard bus.
If you want to modify Aquarius to support Harvard bus, what you should do is (1) modifying
the memory access control unit to connect both instruction bus and data bus, and (2)
making decoder unit inform to memory access controller if the MA cycle is PC relative or
not. Note that, even if you adopt Harvard bus with Aquarius, the PC relative instructions
(MOV.L/W @(disp, PC), Rn) must access to instruction space, so this access conflicts to IF
cycle. The memory controller for Harvard bus should still return IF_STALL to decoder.

A Pipelined RISC CPU “Aquarius” 87

State Symbol Meaning

SO S IDLE Idle state

S1 S_IFEX Instruction fetch with external memory read access

S2 S_MAEX Data access with external memory read/write access

S3 S_MAEX_IFPD Data access with pending instruction fetch (IF-MA conflict)

S4 S_IDLE_IFKP Idle state but internal instruction buffer keeps a instruction
S5 S_IFIN Instruction fetch from internal instruction buffer

S6 S_MAEX_IFKP Data access with keeping a instruction in the buffer

S7 S_MAEX_IFIN Data access from memory and Instruction fetch from buffer

Tablell.2 State definition of memory access control unit

Signal Meaning

IF_KEEP Instruction fetch from long boundary address & IF_WIDTH=1 (32bit width)

IF_FORCE Next instruction fetch is from long boundary | IF_JP=1

Tablel1.3 Key signals regarding instruction fetch control

—State Reason for state transition State Reason for state transition
Do INaxt Now [Next

SO no event SO nl/a

S by fetch reqiiest S hyv fetch requiest IE FORCE=1

S2 hyv . data accass reqiiact S2 n/a

S3__by both fetch request and data access reguest S3 by both fetch request and data access reguest: IF FORCE=1
S0 S4 nla 54 S4 no event

[N nla Sh hv fetch reqiiest IE FORCE=0

S6 |n/a S6 lbv data access reguest

S7 __nla S7 by hath feteh reqiiest and data access reqiiest: 1E FEORCE=0

S0 noevent IE KEEDPZQ SO na event

1 hyv fetch requiest- IE FORCEZ1 ar IE KEFFDP=0 S1 hv fetch reaiiest

2 by data access reqiiest: IE KEEDPZ(S2 hv data access reqiiest
s1 S3 |bv hoth fetch and data access request: |IF KFFP=0 | S5 S3 |bv both fetch request and data access request

S4 noevent IE KEFPZ1 S4 n/a

S by fetch request IE EORCEZQ and IE KEERZT] SB n/a

S6 |bv data access request: |IF KFFP=1 S6 |n/a

S7 by hoth fetch and data access reqiiest: IE KEEPZ] S7 n/a

SO no event SQ n/a

S hy fotch requiogt S1 bv fetch reaiiest IE FORCF=1

S2 hyv data access reqiiest Q2 nl/a

S3 by hoth fetch reauest and data access reauest S3 |bv both fetch request and data access reauest: IF FORCE=1 |
52 S4 nla S6 S4 no event

SB nla SB hv fetch reauest IE EORCE=0

SA n/a S6 hv data access reqiiest

SZ n/a S7 by hoth fetch reqiiest and data access reqiiest 1E FORCE=0 |

SO In/a S0 Inoevent

S1 alwavs S hy fetch reqiiest

S2 nla S2 bv data access reqiiest

S3 In/a S3 |bv both fetch request and data accessrequest |
S3 S4 n/a 7 S4 n/a

(N nla S8 n/a

SA n/a S6 n/a

S7 n/a S7 n/a

Tablell.4 State transition of memory access control unit

88 A Pipelined RISC CPU “Aquarius”

12. Data Path Unit

This chapter describes the details of data path unit (dat apat h. v).

12.1.IN/OUT Signal Table

Tablel2.1 shows all infout signals of data path unit.

Class Direction Name From/To Meaning Notes
System input CLK EXTERNAL dock
Signals___input RST EXTERNAL reset
SLOT __input SLOT mem.v cpu pipe Sot
input RDREG_X decode.v read Rn to X-bus
input RDREG_Y decode.v read Rnto Y-bus
input WRREG Z decode.v write Rn from Z-bus
Genera .)
Register !nput WRREG W decode.v write Rn from W-bus
Controls input [3:0] REGNUM X decode.v register number to read to X-bus
input [3:0] REGNUM Y decode.v register number to read to Y -bus
input [3:0] REGNUM zZ decode.v register number to write from Z-bus
input [3: 0] REGNUM W decode.v register number to write from W-bus
ALU input [4:0] ALUFUNC decode.v ALU function
output [31:0] MA_AD datapath.v memory access address
output [31:0] MA_DW datapath.v memory write deta
Memory input [31:0] MA DR datapath.v memory read data
Access input VWRVAAD 7 decode.v output MA_AD from Z-bus
Controls input VWRVADW X decode.v output MA_DW from X-bus
input VRVADW Y decode.v output MA_DW from Y-bus
input RDVADR W decode.v input MA DR to W-bus
output [31: 0] MACI N1 datapath.v datal tomultv
output [31: 0] MACI N2 datapath.v data2to mult.v
input [1:0] MACSEL1 decode.v (SS'O?: ;f?("g“l"ﬁfr:\‘zl B
: select dataof MACIN2
Multi p| ier Input [1 O] MACSEL2 decode.v (00:from Y, 01:from Z, 12:from W)
Controls input [31:0] MACH datapath.v physical dataof MACH
input [31: 0] MACL datapath.v physical dataof MACL
input RDMVACH_X decode.v reed MACH to X-bus
input RDMVACL_ X decode.v reed MACL to X-bus
input RDVACH Y decode.v reed MACH to Y-bus
input RDVACL Y decode.v read MACL to Y-bus

Tablel2.1 Data Path Unit IN/OUT Signals (1)

A Pipelined RISC CPU “Aqguarius” 89

Class Direction Name From/To Meaning Notes
input RDSR_X decode.v read SR to X-bus
Status ?nput RDSR Y decode.v read SR to Y -bus
Register fnput WRSR _Z decode.v write SR from Z-bus
input VRSR_W decode.v write SR from W-bus
Controls
output MAC S mult.v latched S bit in SR (= SR[S])
input MAC S LATCH decode.v latch command of Shitin SR
input RDGBR_X decode.v read GBR to X-bus
GBR input RDGBR_Y decode.v read GBR to Y -bus
Controls input WRGBR_Z decode.v write GBR from Z-bus
input WRGBR W decode.v write GBR from W-bus
input RDVBR_X decode.v red VBR to X-bus
VBR input RDVBR_Y decode.v read VBR to Y-bus
Controls input VRVBR_Z decode.v write VBR from Z-bus
input VWRVBR W decode.v write VBR from W-bus
input RDPR_X decode.v read PR to X-bus
Procedure input RDPR_Y decode.v read PRto Y -bus
Register input VWRPR_Z decode.v write PR from Z-bus
Controls input VWRPR_W decode.v write PR from W-bus
input WRPR PC decode.v write PR from PC
input RDPC_X decode.v read PC to X-bus
input RDPC_Y decode.v read PC to Y -bus
Program jnout WRPC 7 decode.v write PC from Z-bus
Counter input 1 NCPC decode.v increment PC (PC+2->PC)
RS | FADSEL decodey sl
output [31:0] IF AD mem.v instruction fetch address
input [15: 0] CONST_I FD decodev instruction fetch data to make constant
input CONST_ZERO4 decode.v take congtant from lower 4 bit as unsigned value
input CONST_ZERO42 decode.v take constant from lower 4 bit as unsigned value * 2
input CONST_ZERO44 decode.v take constant from lower 4 bit as unsigned value * 4
Constant ?nput CONST_ZERCB decode.v take congtant from lower 8 bit as unsigned value
Vale !nput CONST_ZERCB2 decode.v take constant from lower 8 bit as unsigned value * 2
Controls input CONST_ZERCB4 decode.v take constant from lower 8 bit as unsigned value * 4
input CONST_SI G\8 decode.v take congtant from lower 8 bit as signed value
input CONST_SI G\N82 decode.v take constant from lower 8 bit as signed value * 2
input CONST_SI GN122 decode.v take constant from lower 12 bit as signed value * 2
input RDCONST_X decode.v read congtant to X-bus
input RDCONST Y decode.v read congtant to Y-bus
Tablel2.1 Data Path Unit IN/OUT Signals (2)
90 A Pipelined RISC CPU “Aquarius”

Class Direction Name From/To Meanina Notes

Forwarding I nput REG FWD_X decode.v register forward from W-busto X-bus
input REG FWD Y decode.v register forward from W-busto Y-bus
Comparator input [2: 0] CMPCOV decode.v define comparator operation (command)
Shifter input [4:0] SFTFUNC decode.v Shifter Function
Controls input RDSFT Z decode.v read SETOUT to Z-BUS
output T_BCC decode.v T valuefor Bec judgement
input T_CVMPSET decode.v reflect comparator result to T
input T_CRYSET decode.v reflect carry/borrow out to T
T bit input T_TSTSET decode.v reflect tst reult to T
Qbit input T_SFTSET decode.v reflect shifted output to T
M bit input QT_DVISET decode.v reflect DIV resultto Qand T
Controls input MJT_DVOSET decode.v reflect DIVOSresult to M, Qand T
input T CLR decode.v cear T
input T_SET decode.v setT
input M) CLR decode.v clear M and Q
TEMP input RDTEMP_X decode.v read TEMP to X-bus
Register input VRTEMP_Z decode.v write to TEMP from Z-bus
Controls input VRMAAD TEMP decode.v output MAAD from TEMP.
input RST_SR decode.v reset SR
SR and | bit output [3:0] IBIT decode.v I bitin SR
Controls input [3:0] ILEVEL decode.v IRQLevel
input VR | BI T decode.v Write ILEVEL to | bitin SR

Tablel2.1 Data Path Unit IN/OUT Signals (3)

12.2.Structure of Data Path
Figurel2.1 shows the block diagram of data path unit. It also shows basic relationship
among data path, decoder, multiplier and memory access controller. In data path RTL
description (dat apat h. v), the general registers RO-R15 (egi ster.v) are located in
under data path layer. Data path has 4 internal buses.

X-bus : Data from each register resource

Y-bus : Data from each register resource

Z-bus : Data from results of ALU or Shifter

W-bus : Data from memory load (to be written back to each register resource)
In the data path, all resources are fully controlled by decoder unit. So, there are no state
machines in data path unit.
The register forwarding paths are shown in top of Figurel2.1 as direct paths from W to X
andWto.
The T bit, Q bit and M bit in Status Register (SR) are created from several signals as shown
in Figurel2.2, Figurel2.3 and Figurel2.4.

A Pipelined RISC CPU “Aquarius” 91

A

R
X

MA —»<«— WB —»

Z W
i I
> - |
o= | |
— PR i | decode.v
V =] |
| — PC P A
— ¢
V la
e R1 —— +2 ‘.”i
H Fd
: K13 4
[R15 ! /.i" ;"'
IF_AD _" _ A
MA_AD > \Y
@(RO,RN) ROor WBUS _H'_’ ADR > IF_DR
@(disp,GBR) CONST a4 S
l NA DWW .-" V.l % v
| ’! DATO W = MA_DR
':'Z*— -
Sign Aligner
E Extend mem.v
mul v
v
T
* O
<
-* 2 f—
ADD
: \4
— . _ 64bit 1
If 16bit saturate operation, O
| saturateresult 32'h0001 <
e—— SR l: : isoredto MACH. / > =
\g P i :
¢ VBR | qummm—mp— MACIN1 ;
! I
—— V| ge—) ; MACIN2 ;
— CBR [! i
P
=)

Figurel2.1 Block Diagram of Data Path Unit

A Pipelined RISC CPU “Aquarius”

CMP/xx

CMPRESULT —I-CMPSEQ

T _CRYSET)

ADDC/SUBC/ADDV/SUVV CRYO

TST/TST.B

SHxx/ROTxx

DIV1

DIVOS

CLRT/DIVOU

SETT

LDC.L

LDC

(D] AVAN

DIVOS

DIVOU

LDC.L

LDC

DIVOS

DIVOU

LDC.L

LDC

TSTO
SFTO

T DIV1
T_DIVOS
1'b0
1'bl
WBUS[0]

ZBUS[O]

T TSTSET,

—..
L SFTSET

T _DVISET)
T_DVOSET]

TCLR

—_—

T SET)

WRSR

WRSR Z

—_—

Figurel2.2 Generating T bit

Q DIV1
ALUX[31]
1'b0

WBUS[8]

ZBUS[§]

Q_DVOSET
e L

Q_DVISET
—»

SR[0]

Q CLR
—_—

WRSR W,

WRSR Z

SR(8]

Figurel2.3 Generating Q bit

ALUY[3]]
1'b0
WBUS[9]

ZBUS[9]

M_DVOSET,

M_CLR
e —

WRSR W_,

WRSR Z |

SR[9]

Figurel2.4 Generating M bit

A Pipelined RISC CPU “Aqguarius”

93

13. Multiplier Unit

This chapter describes the details of multiplier unit (mul t . v).

13.1.IN/OUT Signal Table

Tablel3.1 shows all in/out signals of multiplier unit.

Class Direction Name From/To Meaning Notes
System input CLK clock
Signals input RST reset
SLOT input SLOT cpu pipe slot
input MJULCOML M1 latch command
input [7: 0] MJULCOWR M2 latch and mult engage command
NOP 00000000 00
DMULSL 10111101 BD
Mult DMULU.L 10110101 B5
Commands MACL 10001111 8F
MACW 11001111 CF
MULL 10000111 87
MULSW 10101111 AF
MULUW 10101110 AE
Shit input MAC S S-hitin SR
input WRMACH, WRMACL write MACH and MACL directly from data path
Data input [31: 0] MACI N1 input data 1
T e input [31: 0] MACI N2 input data 2
output [31:0] MACH output MACH
output [31: 0] MACL output MACL

Status output MAC BUSY busy signal (negate at final operation state)

Tablel3.1 Multiplier Unit IN/OUT Signals

13.2.Algorithm of Multiplication
Basically, this multiplier design assumes that it is implemented by using Macro Module of
Multiplier for FPGA. So, existence of unsigned 32bit x 16bit (or similar) multiplier is
supposed. Now, let me define some symbols to explain.
As[N-1:0] = Assumed as Signed N bit
AU[N-1:0] = Assumed as Unsigned N bit Au[x]=As[x] (each bit is same)
Bs[N-1:0] = Assumed as Signed N bit
Bu[N-1:0] = Assumed as Unsigned N bit Bu[x]=Bs[x] (each bit is same)

94 A Pipelined RISC CPU “Aquarius”

(1) Signed 32bit x 32bit

Ag31:0] =-2°'" Au[31] + Au[30:0]
B31:0] = - 2*'" Bu[31] + Bu[30: 0]

A9 31:0]" Bs[31:0]

= 2% Au[31]" Bu[31]

- 2% Au[31]” Bu[30:0]
- 2°” BU[31]” Au[30:0]
+ Au[30:0]" Bu[30:0]

= 2% Au[31]" Bu[3]]

- 2% Au[31]” Bu[30:0]
- 2% BU[31]" AU[30:0]
+2'°” Au[30:0]" Bu[30:16]
+ Au[30:0]" Bu[15: 0]
=P1l- P2- P3+P4+P5

(2) Unsigned 32bit x 32bit

AU31:0] = +2%" Au[31] + Au[30: 0]
Bu[31: 0] = +2% " Bu[31] + Bu[30: 0]

AU 31:0]" Bu[31:Q]

= 2% Au[31]" Bu[31]
+2% Au[31]" Bu[30:0]
+ 2% Bu[31]" Au[30:0]
+ Au[30:0]" Bu[30:0]

= 2% Au[31]" Bu[3]]

+ 2% AU[31]" Bu[30:0]
+ 2% Bu[31]" Au[30:0]
+ 2" Au[30:0]" Bu[30:16]
+ Au[30:0]" Bu[15: 0]

= P1+ P2+ P3+P4+P5

A Pipelined RISC CPU “Aqguarius”

P1=2%" Au[31]" Bu[31]
P2=2%" Au[31]" Bu[30:0]
P3=2%" Bu[31]" Au[30:0]
P4=2"" Au[30:0]" Bu[30:16]
P5= Au[30:0]" Bu[15:0]

P1=2%" Au[31]" Bu[31]
P2=2%" Au[31]" Bu[30:0]
P3=2%" Bu[31]" Au[30:0]
P4=2"" Au[30:0]" Bu[30:16]
P5= Au[30:0]" Bu[15:0]

95

(3) Signed 16bit x 16bit

A915:0] =- 2" AU[15] + Au14: 0]
Bg[15: 0] =- 2'°" Bu[15] + Bu[14: 0]
A915:0]" Bg[15:0]

=2%" AU15]" Bu[15]

- 2157 AU15]" Bu[14:0]

- 27 Bu[15]” AU14:Q]

+ Au[14:0]" Bu[14: 0]

= P1- P2- P3+P4

P1=2%" Au[15] " Bu[15]
P2=2"" Au[15]" Bu[14:0]
P3=2"" Bu[15]" Au[14:0]
P4 = Au[14:0]" Bu[14:0]

(4) Unsigned 16bit x 16bit

AU[15:0] =+2" " AU15] + Au[14: 0]
Bu[15: 0] = +2'°" Bu[15] + Bu[14: 0]
AuU[15:0]" Bu[15:0Q]

= 2% AU[15]" Bu[15]

+ 215" AU15]" Bu[14: 0]

+ 27 Bu[15]” AU14:0]

+ Au[14:0]" Bu[14: 0]

= P1+ P2+P3+P4

P1=2%" Au[15] " Bu[15]
P2=2"" Au[15]" Bu[14:0]
P3=2"" Bu[15]" Au[14:0]
P4 = Au[14:0]" Bu[14:0]

Pn are partial result to be accumulated.
Gathering above way of thoughts, Figurel3.1 shows the methods of multiplication. The bit
size of multiplication macro module should be at least 31bit x 16bit.

In case of 32bit multiplication, the calculation needs 2 steps. In first step, P4 is
accumulated to MAC with preparing P2+P3, and in second step, P1, P2 and P3 are

accumulated to MAC with 16bits shifting.

In case of 16bit multiplication, the calculation needs only 1 step. In the step, P1, P2, P3 and
P4 are accumulated to MAC at once.

96 A Pipelined RISC CPU “Aquarius”

63 56 55 48 47 40 39 3231 24 23 16 15 8 7 0

He
61 31
(+/')| i P2 . | Unsigned : do add
61 : [31 [signed : do sub
(+/-) | _F8 i
61 : E 16
| P4 (=31bit * 15bit)
46 : 0
32hit * 32bit | P5 (=31bit * 16bit)
7 e
29 15
+/-
()| P2 , | Unsigned : do add
29 115 ['Signed : do sub
(+1)| P3 |
. _ 29 0
16bit * 16bit | P4 (=15bit * 15bit)

Figurel3.1 Algorithm of Multiplication

13.3.Structure of Multiplier Unit
According to algorithm shown in Figurel3.1, the multiplication unit has designed as shown
in Fugurel3.2. The some control signals are created by internal state machine as shown in

Tablel3.2. The 64bit accumulation adder should have saturation capability. It is described

later.
SIVA= SIGN SHIFT Notes

Signed 1st step 1 1 0
32bit 2nd step 1 1 1
Unsigned 1st step 1 0 0
32bit 2nd step 1 0 1
Signed 16bit 0 1 0
Unsigned 16bit 0 0 0

Tablel3.2 Control Signals in Multiplication Unit

A Pipelined RISC CPU “Aquarius” 97

If ~SIZE 17'h00000:P1:ABH[29:15]

if ~SHIFT 1'b0:ABH[46:15]
if SHIFT 1'b0:P1:ABH[45:15]
V] 16'h0000:A[14:0] [
M1 - AH
Wi ey
1'b0:B[14:0] N
L B[15:0] BH (47) PM if ~SHIFT ADDRESULT
. (16 T
1'b0:B[30:16]L~" C _E_
w [5L
5 B(31 P2 <
—M2 (31) it sHIFT "o | 2]
L if ~SIGN, add + _Z_
=23 if SIGN, sub 64 @)
D RSN
=
/ [=
MACH
MACL - f
2o Zwo ot o ettt e
if SHIFT P2 = 1'b0:A[31] & B[30:0]
if ~SIZE P2 = 17'h00000:A[15] & B[14:0]
if SHIFT P3=1'b0:B[31] & A[30:0]
if ~SIZE P3 = 17'h00000:B[15] & A[14:0]

Figurel3.2 Block Diagram of Multiplier Unit

13.4.Control of Multiplication Unit

The decoder unit sends two kinds of multiplication command to multiplication unit.

One is MULCOM1 which is latch signal of input data MACIN1[31:0]. Another is
MULCOMZ2[7:0] which has 2 meanings; latch signal of input data MACINZ2[31:0] and
operation class. The MULCOMZ2[7] means latch signal. And MULCOMZ2[6:0] is same as
{INSTR_STATE[14:12], INSTR_STATE[3:0]}. If MULCOMZ2[7]=0, it is NOP. Figurel13.3 to
Figurel3.6 shows the timing position of each command. “M1” is MULCOM1, “M2” is
MULCOM2. In the figures, the MAC value is determined at timing position with “MAC”

and an arrow.

The instructions related to multiplication execute in multi cycles. So, if post instruction
uses the result of MAC, it may be stalled.

Each multiplication instruction’s decode stage asserts EX_MAC_BUSY or WB_MAC_BUSY
to indicate busy state of MAC register.

On the other hand, each multiplication related instruction asserts MAC_STALL_SENSE at

98 A Pipelined RISC CPU “Aquarius”

decode stage to declare that it will use MAC resources.

In the decoder unit, MAC_STALL signal is created from each “pipeline shifted”
xXx_MAC_BUSY signal, MAC_STALL_SENSE and MAC_BUSY (from multiplier unit which
indicates second “m” stage from the last). The MAC_STALL is used in decoder unit to
control pipeline stall as shown in Figurel0.7. Figurel3.3 to Figurel3.6 also shows how
many stall cycle is necessary in the MAC conflict situation.

By the way, for example in Figurel3.3, the stall counts of DMULXL / MUL.L / MULX.W can
be reduced to 2 from 3, but such reduction has no meaning because the results (MACX) of

these instructions should be stored to registers or memories once.

Note that the S bit in SR should be latched at second ID stage of instruction MAC.x, to
avoid changing S during MAC operation. (The instruction after MAC may change S bit.)

13.5.How to implement Saturating Accumulation

In Figurel3.2, the 64 bit adder ADDRESULT = MAC + C should have saturating function
for MAC.W and MAC.L (S=1). If S=1, MAC.W should saturate between 32’h80000000 to
32’h7FFFFFFF, and MAC.L should saturate between 64’hFFFF800000000000 to
64’h00007FFFFFFFFFFF. To simplify explanation, consider only latter case.

M1 M2 MAC

MAC.W F D E M v
D E M | mult | mult
xx_MAC_BUSY QX2WB, - \\E1pyqWE2), B,
€ MAC_STALL =
STS MACX, Rn ()| @® | O | D E
STS.L MACx, @Rn @ | ®|O®| D | E | M
LDSRm, MACX/CLRMAC | D) | @®) | ©®) | D | E
LDS.L @Rm+, MACx | ®|O®|D|E|M]|W
MAC.W D E M M | mult | mult
MAC.L D E M M mult [mult | mult
DMULX.L/MUL.L D) | @O | O | D E | mult | mult
MULX.W D) | @O | ® | D E | mult

Figurel3.3 Conflict MAC.W and its post instruction

A Pipelined RISC CPU “Aqguarius” 99

M1 M2 MAC
y
D E M | mult | mult | mult

MAC.L F D E M

X=W| WB1 WB2 WB3
| |k 4—=Ppg——p
XX MAC BUSY 4= =5 MAC BUSY

4 MAC STALL —

STS MACX, Rn o|o®|®|O]| D|E

STSL MACx, @Rn ©)|®|®|O®| D|E|M
LDSRm,MACx/CLRMAC | (@) | @) | ® |® | D | E

LDSL @Rm+, MACX oO|o|o|oO|D]|E|M|wW
MAC.W D|E | M| M |mut|mult

MAC.L D|E | M | M |mut|mut|mut
DMULX.L/MUL.L ®|®|®|®]| D | E |mut|muit
MULX.W ®|®|o®|®]| D| E |[mut

Figurel3.4 Conflict MAC.L and its post instruction

M1& M2 MAC
DMULx.L F D E It |t+
MUL.L muft | mu
XX_MAC_BUSY QX=EXp, -EX1y,
MAC_BUSY
«—7>F
MAC_STALL
«—>
STSMACX, Rn @ | | D | E
STS.L MACx, @Rn @ || D|E| M
LDSRm, MACx/CLRMAC | D) | @) | D | E
LDS.L @Rm+, MACx O|o|D|E|M]|wW
MAC.W D E M M mult | mult
MAC.L D E M M | mult [mult | mult
DMULX.L/MUL.L @) | ® | D | E | mut|mult
MULx.W (D) | (D) D E | mult

Figurel3.5 Conflict DMULX.L / MUL.L and its post instruction

100 A Pipelined RISC CPU “Aquarius”

M1&M2 MAC

MULx.W {
A

F D E | mult
XX_MAC_BUSY @X=EXp EX1 p

MAC STALL
<+
STS MACX, Rn | Db | E
STSL MACx, @Rn | D | E|M

LDS Rm, MACx/CLRMAC (D) D E

LDS.L @Rm+, MACx (D) | D E M w

MAC.W D E M M | mult | mult
MAC.L D E M M | mult | mult | mult
DMULx.L/MUL.L (D) | D E | mult | mult

MULx.W (D) | D E | mult

Figurel3.6 Conflict MULX.W and its post instruction

One of the simplest implementation of saturation is only to cut carry chain in adder circuit
at proper position. But in this case, if the initial value has already been out of saturating
value, the final result will not correct one. So, we should consider the initial accumulator

value may be any value.

Figurel3.7 shows way of thought for correct saturation. The angle is accumulator’s value =
MAC. 0 degree means 64'0000000000000000, 180 degrees means 64’'7FFFFFFFFFFFFFFF.
Now, the desired saturation values is shown as +S and —S. And this plane is divided into 4
regions; P, P’, M and M. In this plane, we want to do operation add. If we add positive value
(+C), the angle of MAC moves counterclockwise; if we add negative value (-C), the angle of

MAC moves clockwise.
Tablel3.3 shows all combinations of MAC angle movement. And from Tablel3.4 to

tablel3.7 shows the compaction process of combinations. | implemented saturating

operation according to Table13.7.

A Pipelined RISC CPU “Aquarius” 101

7FFFFFFFFEEEFFFE 0000000000000000

8000000000000000 FFFFFFFFFFFFFFFF

Figurel3.7 Way of thought for Saturating Accumulation

Initial MAC C(Rotation) MAC+C ADDRESULT Not es

+ P K

P 00007FFF

00007FFF

00007FFF

00007FFF | mpossi bl e
00007FFF

00007FFF

00007FFF

oK

00007FFF | nposi bl e
FFFF8000

oK

oK

00007FFF

00007FFF | npossi bl e
oK

oK

FFFF8000 | npossi bl e
FFFF8000

X

(0.4

00007FFF

FFFF8000 | mpossi bl e
oK

FFFF8000

FFFF8000

FFFF8000

FFFF8000 | npossi bl e
FFFF8000

FFFF8000

FFFF8000

K

<=L

T

O 1 E R EoE Sty e

SZTTWIOKEZLTWIOEZLTWTOIEL

T

STV TIILLL

I ZILZILZNIEESEESE|ITUWUWTUD DU IOEIZIEEESE|T W TUWTUQUUUToDo
T

=L

Tablel13.3 All combinations of angle movement (1)

102 A Pipelined RISC CPU “Aquarius”

Initial MAC C(Rotation) MAC+C ADDRESULT Not es
P /M +/ - P /M oK
P /M +/ - P /M 00007FFF/ FFFF8000
P /M +/ - M/P 00007FFF/ FFFF8000
P /M +/ - M /P 00007FFF/ FFFF8000
P /M +/ - P /M | mpossi bl e Don't care
P /M +/ - P /M 00007FFF/ FFFF8000
P /M +/ - M/P 00007FFF/ FFFF8000
P /M +/ - M /P 00007FFF/ FEFF8000
M/P +/ - P /M oK
M/P +/ - P /M | npossi bl e Don't care
M/P +/ - M/P FFFF8000/ 00007FFF Cauti on!
M/P +/ - M /P oK
M/ P +/ - P /M K
M/P +/ - P /M 00007FFF/ FFFF8000
M/P + - M/P | npossi bl e Don't care
M /P +/ - M /P oK
Tablel3.4 All combinations of angle movement (2)
Initial MAC C(Rotation) MAC+C ADDRESULT Not es
P/M + - P /M (0.4
P /M +/ - P /M 00007FFF/ FFFF8000
P/M +/ - -+ 00007FFF/ FFFF8000
P /M + - P /M | npossi bl e Don't care
P /M + - P /M 00007FFF/ FFFF8000
P/M +/ - - |+ 00007FFF/ FFFF8000
M/ P +/ - P /M (0.4
- I+ +/ - M/P FFFF8000/ 00007FFF Cauti on!
M/ P +/ - M/ P XK
M/P + - P /M (0.4
- I+ +/ - P /M 00007FFF/ FFFF8000
M /P +/ - M /P K

Tablel3.5 Compressed combinations of angle movement (1)

Initial MAC C(Rotation) MAC+C ADDRESULT Not es

+ /- +/ - P /M oK

+ /- +/ - P /M 00007FFF/ FFFF8000

+ /- +/ - - 1+ 00007FFF/ FFFF8000

-+ +/ - P /M (0.8

- I+ +/ - M/P FFFF8000/ 00007FFF Cauti on!
- I+ +/ - M /P K

- I+ +/ - P/ M 00007FFF/ FFFF8000

Tablel3.6 Compressed combinations of angle movement (2)

Initial MAC C(Rotation) MAC+C ADDRESULT Not es

* o * + - P /M oK

* [* +/ - P /M 00007FFF/ FFFF8000

+ /- +/ - - |+ 00007FFF/ FEFF8000

- I+ + - M/P FFFF8000/ 00007FFF Cauti on!
-+ +/ - M /P oK

Tablel3.7 Compressed combinations of angle movement (3)

A Pipelined RISC CPU “Aqguarius”

103

14. Appendix: Aquarius Instruction Code

Aquarius instruction codes are compatible to SuperH-2.
Tablel4.1 shows al instruction codes and their controls.

Cl ass |Mhenonic Code Bi nary Code Hex Step [X Y z ALU [CMP [SFT [Qhers
ALU STC SR, Rn 0000NnnNnnNnnO00000010|0 ##0 2 SR Rn THRUY
ALU STC GBR Rn 0000NnnNnnNnn00010010J0 ##1 2 GBR |Rn THRUY
ALU STC VBR Rn 0000nNnnNnnNnNn00100010J0 ##2 2 VBR |Rn THRUY
BRA BSRF Rm 0000mMmMMmMO0000011(0 ##0 3 Rm |PC PC ADD Cur PC- >PR
BRA BSRF Rm 0000mMMMmMOO0000011|/0 ##0 3 | FADSEL, | F_JP
BRA BRAF Rm 000O0mMMMMO0100011|0 ##2 3 Rm PC PC ADD
BRA BRAF Rm 0000mMMMMO0100011|0 ##2 3 | FADSEL, | F_JP
Store [MOV.B Rm @RO,Rn) [000O0OnnnnmmmmO 10 0|0 ## ## 4 Rn Rm MAAD ADDRO RO+Rn- >MAAD, Rm >MADW WR. B
Store |[MOV.WRm @RO,Rn) [000O0OnnnnmmmmO 10 1|0 ## ## 5 Rn Rm MAAD ADDRO RO+Rn- >MAAD, Rm >MADW VW\R. W
Store |[MOV.L Rm @RO,Rn) [000O0OnnnnmmmmO 110|0 ## ## 6 Rn Rm MAAD ADDRO RO+Rn- >MAAD, Rm >MADW WR. L
MULLT MUL. L Rm Rn 000O0ONNnNnnNnmmmmMO 11 1|0 ## ## 7 Rn->ML, Rm >M2, MUL. L
ALU CLRT 0000000000001000(0 O O 8 0->T
ALU SETT 0000000000011000f0 0 1 8 1->T
ALU CLRVAC 0000000000101000[0 0 2 8 0- MACH MACL
ALU NCP 0000000000001001/0 0O O 9 NCP
ALU DI VOU 0000000000011001/0 0 1 9 DI VOU
ALU MOVT Rn 0000NnnNnnNn00101001j0 ##2 9 Rn ADD if T=1, 0+1->Rn else 0->Rn
ALU STS MACH, Rn 0000NnNnnNn00001010|0 ##0 10 MACH |Rn THRUY
ALU STS MACL, Rn 0000NnnNnnNnn00011010J0 ##1 10 MACL |Rn THRUY
ALU STS PR, Rn 0000nNnnNnNNn00101010J0 ##2 10 PR Rn THRUY
BRA RTS 0000000000001011{0 0 O 11fist PR PC THRUY
BRA RTS 0000000000001011(0 0 O 11)2nd | FADSEL, | F_JP
SLEEP |SLEEP 0000000000011011/0 0 1 11fmulti SLEEP sequence
RTE RTE 0000000000101011/0 0 2 11|multi RTE sequence
Load MOV.B @RO,Rm),Rn [0000nnnnmmmmllO0O0|0 ## ## 12 Rm MAAD ADDRO RO+Rm >MAAD, RD. B, MADR- >Rn
Load MOV.W@RO,Rm),Rn [0000nnnnmmmmll01|0 ## ## 13 Rm MAAD ADDRO RO+Rm >MAAD, RD. W MADR- >Rn
Load MOV.L @RO,Rm),Rn [0000nnnnmmmmll1lO0|0 ## ## 14 Rm MAAD ADDRO RO+Rm >MAAD, RD. L, MADR- >Rn
MULLT MAC. L @m+, @Rn+ 000O0ONnNnnnmmmmlll1|0 ## ## 15|1st Rn 4 Rn ADD Rn- >MAAD, RD. L, MADR- >ML
MULLT MAC. L @m+, @+ 000O0ONnNnnNnnmmmmlll1|0 ## ## 15|2nd |Rm 4 Rm ADD Rm >MAAD, RD. L, MADR- >M2, MAC. L
Store [MOV.L Rm @disp,RN)[0001nnnnmmmmdddd|l ## ## ## Rn Rm MAAD ADDCN 0d* 4+Rn- >MAAD, Rm >MADW WR. L
Store |MOV.B Rm @n 0010nnnnmmmmO0O0O0O0|2 ## ## 0 Rn Rm MAAD THRUX Rm >MADW WR. B
Store |MOV. WRm @n 0010nnnnmmmmO0O0O0 1|2 ## ## 1 Rn Rm MAAD THRUX Rm >MADW VR W
Store |MOV.L Rm @n 0010nnnnmmmmOO0 10|2 ## ## 2 Rn Rm MAAD THRUX Rm >MADW WR. L
Store |MOV. B Rm @ Rn 0010nnnnmmmmO100|2 ## ## 4 Rn -1 Rn/ MAAJADD Rm >MADW VR, B
Store |MOV. WRm @ Rn 0O010nnnnmmmmO0101|2 ## ## 5 Rn -2 Rn/ MAAJADD Rm >MADW \R. W
Store [MOV.L Rm @Rn 0010nnnnmmmmO110|2 ## ##6 Rn -4 Rn/ MAAJADD Rm >MADW WR. L
ALU DI VOS Rm Rn 0010nnnnmmmmO0 111|2 ## ## 7 DI VOS
ALU TST Rm Rn 0010nnnnmmmmlO0O0O0|2 ## #4# 8 Rn Rm AND resul t->T
ALU AND Rm Rn 0010nnnnmmmmlO0O0 1|2 ## ## 9 Rn Rm Rn AND
ALU XOR Rm Rn 0010nnnnmmmml010|2 ## ## 10 Rn Rm Rn XOR
ALU CR Rm Rn 0010nnnnmmmmlO011|2 ## ## 11 Rn Rm Rn R
ALU CQW/ STR Rm Rn 0010nnnnmmmmllO0O0|2 ## ## 12 Rn Rm CWP/ STR result->T
ALU XTRCT Rm Rn 0010nnnnmmmml1O01|2 ## ## 13 Rn Rm Rn XTRCT
MILT MJLU. WRm Rn 0010nnnnmmmmlllO0|2 ## ## 14 Rn- >ML, Rm >M2, MULU. W
MULLT MULS. WRm Rn 0010nnnnmmmmll1l1|2 ## ## 15 Rn->ML, Rm >M2, MULS. W
ALU CWP/ EQ Rm Rn 0011lnnnnmmmmOO0O0O0|3 ## ## 0 Rn Rm CWP/ EQ resul t->T
ALU CWP/ HS Rm Rn 0011lnnnnmmmmOO1O0|3 ## ## 2 Rn Rm CMP/ HS result->T
ALU CWP/ GE Rm Rn 0011lnnnnmmmmOO01L1|3 ## ## 3 Rn Rm CWP/ GE result->T
ALU DIVl Rm Rn 0O011lnnnnmmmmO10O0|3 ## ## 4 DI V1
MLT DMULU. L Rm Rn 0O011lnnnnmmmmO101|3 ## ## 5 Rn- >ML, Rm >M2, DMULU. L
ALU CWP/ H Rm Rn 001l1lnnnnmmmmO1210|3 ## ## 6 Rn Rm CMVP/ HI result->T
ALU CWP/ GT Rm Rn 0011lnnnnmmmmO111|3 ### 7 Rn Rm CWP/ GT result->T
ALU SUB Rm Rn 00l1lnnnnmmmmlO0O0O0|3 ## #4# 8 Rn Rm Rn suB
ALU SUBC Rm Rn 0O0l1lnnnnmmmmlO10|3 ## ## 10 Rn Rm Rn SuBC
ALU SUBV Rm Rn 0O0l1lnnnnmmmmlO11|3 ## ## 11 Rn Rm Rn suBv
ALU ADD Rm Rn 00l11lnnnnmmmmllO0O0|3 ## ## 12 Rn Rm Rn ADD
MLT DMULS. L Rm Rn 0011lnnnnmmmmllO01|3 ## ## 13 Rn- >ML, Rm >M2, DMULS. L
ALU ADDC Rm Rn 0O01llnnnnmmmmlll1O0|3 ## ## 14 Rn Rm Rn ADDC
ALU ADDV Rm Rn 0011lnnnnmmmmlll11|3 ## ## 15 Rn Rm Rn ADDV
Tablel4.1 Aquarius Instruction Codes (1)
104 A Pipelined RISC CPU “Aquarius”

Cl ass [Menoni c Code Binary Code Hex Step [X Y z ALU |[CMP |SFT Q hers

ALU SHL R 0100nnnn00000000|4 ##0 O Rn Rn SHLL

ALU DI R 0100nnnn00010000|4 ##1 O Rn -1 Rn ADD resul t->T

ALU SHAL Rn 0100nnnn00100000|4 ##2 O Rn Rn SHAL

ALU SHR Rn 0100nnnn00000001|4 ##0 1 Rn Rn SHLR

ALU CVP/ PZ Rn 0100nnnNn00010001f4 ##1 1 Rn CMVP/ PZ resul t->T

ALU SHAR Rn 0100nnnNnn00100001|4 ##2 1 Rn Rn SHAR

Store |STS.L MACH @Rn 0100nnnNnn00000010|4 ##0 2 Rn -4 Rn/ MAAQJADD MACH- >MADW WR. L

Store |STS.L MACL, @ Rn 0100nnnNnn00010010J|4 ##1 2 Rn -4 Rn/ MAAQJADD MACL- >MADW WR. L

Store [STS.L PR @Rn 0100nnnn00100010|4 ##2 2 Rn -4 Rn/ MAAJADD PR- >MADW VR. L

STC STC.L SR @Rn 0100nnNnnNnn00000011|4 ##0 3 |multi|Rn -4 Rn/ MAAJADD SR- >MADW WR. L

STC STC.L GBR, @Rn 0100nnNnnNnn00010011|4 ##1 3 |multi|Rn -4 Rn/ MAAJADD GBR- >MADW WR. L

STC STC.L VBR, @Rn 0100nnnn00100011J4 ##2 3 |multi|Rn -4 Rn/ MAAJADD VBR- >MADW WR. L

ALU ROTL Rn 0100nnnn00000100|4 ##0 4 Rn Rn ROTL

ALU ROTCL Rn 0100nnnn00100100|4 ##2 4 Rn Rn ROTCL

ALU ROTR Rn 0100nnnNnn00000101|4 ##0 5 Rn Rn ROTR

ALU CWP/ PL Rn 0100nnnn00010101|4 ##1 5 Rn CWP/ PL resul t->T

ALU ROTCR Rn 0100nnnNnn00100101|4 ##2 5 Rn Rn ROTCR

Load LDS. L @m+, MACH 0100mmmmO0O000110|4 ##0 6 Rm 4 Rm ADD Rm >MAAD, RD. L, MADR- >MACH
Load LDS. L @m+, MACL 0100mmmmO0010110|4 ##1 6 Rm 4 Rm ADD Rm >MAAD, RD. L, MADR- >MACL
Load LDS. L @m+, PR 0100mmmmO0100110|4 ##2 6 Rm 4 Rm ADD Rm >MAAD, RD. L, MADR- >PR
LDC(1 MILDC. L @m+, SR 0100mmmmO0000111|4 ##0 7 |multi|Rm 4 Rm ADD Rm >MAAD, RD. L, MADR- >SR
LDC LDC. L @m+, GBR 0100mmmmO0010111|4 ##1 7 |nulti|Rm 4 Rm ADD Rm >MAAD, RD. L, MADR- >GBR
LDC LDC. L @m+, VBR 0100mmmmOO0100111|4 ##2 7 |multi|Rm 4 Rm ADD Rm >MAAD, RD. L, MADR- >VBR
ALU SHLL2 Rn 0100nnnn00001000|4 ##0 8 Rn Rn SHLL2

ALU SHLL8 Rn 0100nnnNnn00011000|4 ##1 8 Rn Rn SHLL8

ALU SHLL16 Rn 0100nnnn00101000|4 ##2 8 Rn Rn SHLL16

ALU SHLR2 Rn 0100nnnn00001001|4 ##0 9 Rn Rn SHLR2

ALU SHLR8 Rn 0100nnnn00011001|4 ##1 9 Rn Rn SHLR8

ALU SHLR16 Rn 0100nnnn00101001|4 ##2 9 Rn Rn SHLR16

ALU LDS Rm MACH 0100mmmmO00001010[4 ##0 10 Rm Rm >MACH

ALU LDS Rm MACL 0100mmmmO0011010J4 ##1 10 Rm Rm >MACL

ALU LDS Rm PR 0100mmmmO0101010J4 ##2 10 Rm PR THRUX

BRA JSR @m 0100mmmmMOO0001011|4 ##0 11|lst Rm PC THRUX Cur PC- >PR

BRA JSR @m 0100mmmmO0001011|4 ##0 11|2nd | FADSEL, | F_JP

RMWV TAS.B @n 0100nnnNnn00011011|4 ##1 11|1st Rn MAAD THRUX RD. B

RMWV TAS.B @n 0100nnnNnn00011011|4 ##1 11|2nd |MADR |080 |MADW |AND |OWP/Z WR. B, resul t->T

BRA JMWP @m 0100mmmmO00101011|4 ##2 11|1st Rm PC THRUX

BRA JMP @m 0100mmmmO0101011|4 ##2 11|2nd | FADSEL, | F_JP

ALY I MILDC Rm SR 0100mmmmO0001110|4 ##0 14 Rm SR THRUX

ALU(I M LDC Rm GBR 0100mmmmO0011110|4 ##1 14 Rm GBR THRUX

ALY(1 M LDC Rm VBR 0100mmmmO0101110|4 ##2 14 Rm VBR THRUX

MLT MAC. W @mt+, @n+ 0100nnnnmmmmll11|4 ## ## 15|1st Rn 4 Rn ADD Rn- >MAAD, RD. W MADR- >ML
MLT MAC. W @m#+, @Rn+ 0100nnnnmmmmll1l1|4 ## # 15|2nd |Rm 4 Rm ADD Rm >MAAD, RD. W MADR- >M2, MAC. W
Load MOV.L @disp,RM), R0 101 nnnnmmmmdddd|5 ## ## ## Rm MAAD ADDCN 0d* 4+Rm >MAAD, RD. L, MADR- >Rn
Load MOV. B @Rm Rn 0110nnnnmmmmO0O0O0O0|6 ## ## 0 Rm MAAD THRUY RD. B, MADR- >Rn

Load MV. W@m Rn 0110nnnnmmmmO0 00 1|16 ## ## 1 Rm MAAD THRUY RD. W MADR- >Rn

Load MOV.L @m Rn 0110nnnnmmmmOO0 10|6 ## ## 2 Rm MAAD THRUY RD. L, MADR- >Rn

ALU MOV Rm Rn 0110nnnnmmmmOO011|6 ## ## 3 Rm Rn THRUY

Load MOV. B @m+, Rn 0110nnnnmmmmO100|6 ## ## 4 Rm 1 Rm ADD Rm >MAAD, RD. B, MADR- >Rn
Load MOV. W @mt, Rn 0110nnnnmmmmO0101|6 ## ## 5 Rm 2 Rm ADD Rm >MAAD, RD. W MADR- >Rn
Load MOV. L @m+, Rn 0110nnnnmmmmO0110|6 ## ## 6 Rm 4 Rm ADD Rm >MAAD, RD. L, MADR- >Rn
ALU NOT Rm Rn 0110nnnnmmmmO0111|6 ## ## 7 Rm Rn NOT

ALU SWAP. B Rm Rn 0110nnnnmmmmlO0O0O0|6 ## ## 8 Rn Rm Rn SWAPB

ALU SWAP. WRm Rn 0110nnnnmmmmlO0O0 1|6 ## ## 9 Rn Rm Rn SWAPW

ALU NEGC Rm Rn 0110nnnnmmmmlO010|6 ## ## 10 Rm Rn NEGC

ALU NEG Rm Rn 0110nnnnmmmmlO011|6 ## ## 11 Rm Rn NEG

ALU EXTU. B Rm Rn 0110nnnnmmmmllO0O0|6 ## ## 12 Rm Rn EXTUB

ALU EXTU. WRm Rn 0110nnnnmmmml101|6 ## ## 13 Rm Rn EXTUWM

ALU EXTS. B Rm Rn 0110nnnnmmmml1l10|6 ## ## 14 Rm Rn EXTSB

ALU EXTS. WRm Rn 0110nnnnmmmml111|6 ## ## 15 Rm Rn EXTS!

Tablel4.1 Aquarius Instruction Codes (2)

A Pipelined RISC CPU “Aqguarius”

105

Cl ass |Mhenonic Code Bi nary Code Hex JStep X Y z ALU [CMP [SFT [Qhers
ALU ADD #i nm Rn 0111lnnnniiiiilidiil7 ## ## ## Rn si Rn ADD
Store [MOV.B RO, @disp,Rn)[LO000000 nnnndddd|8 0 ## ## Rn RO MAAD ADDCN 0d* 1+Rn- >MAAD, RO- >MADW WR. B
Store |MOV. WRO, @disp,Rn)[LO000001 nnnndddd|8 1 ## ## Rn RO MAAD ADDCN 0d* 2+Rn- >MAAD, RO- >MADW WR.
Load MOV. B @disp,RmM,RJL0000100 mmmmdddd|8 4 ## ## Rm MAAD |ADDCN 0d* 1+Rm >MAAD, RD. B, MADR- >R0
Load MOV. W@disp,Rm),RjQL0000101 mmmmdddd|8 5 ## ## Rm MAAD ADDCN 0d* 2+Rm >MAAD, RD. W MADR- >R0
ALU CWP/ EQ #i nm RO 10001000 iiiiiiiil8 8 ## ## RO si CWP/ EQ resul t->T
Bcc BT disp 10001001 dddddddd|8 9 ## ##lst PC sd*2 |PC ADD if ~T then NOP and DI SPATCH
Bcc BT di sp 10001001 dddddddd|8 9 ## ##2nd | FADSEL, | F_JP
Bcc BT di sp 10001001 dddddddd|8 9 ## ##3rd NOP operati on
Bcc BF di sp 10001011 dddddddd|8 11 ## ##|lst PC sd*2 |PC ADD if T then NOP and DI SPATCH
Bcc BF disp 10001011 dddddddd|8 11 ## ##[2nd | FADSEL, | F_JP
Bcc BF disp 10001011 dddddddd|8 11 ## ##3rd NOP operation
Bcc/S BT/ S disp 10001101 dddddddd|8 13 ## ## PC sd*2 |PC ADD if result
Bcc/S [BF/S disp 10001111dddddddd|8 15 ## ## PC sd*2 |PC ADD if result
Load MOV. W@disp,PC),Ri1001nnnndddddddd|9 ## ## ## PC 0d*2 |MAAD ADD RD. L, MADR- >Rn
BRA BRA di sp 1010dddddddddddd|10 ## ## ##|1st PC sd*2 |PC ADD
BRA BRA di sp 1010dddddddddddd|10 ## ## ##|2nd | FADSEL, | F_JP
BRA BSR di sp 1011dddddddddddd|ll ## ## ##|1lst PC sd*2 |PC ADD Cur PC- >PR
BRA BSR di sp 1011dddddddddddd|1l ## ## ##|2nd | FADSEL, | F_JP
Store |MOV.B RO, @disp,GBRIL1000000 dddddddd|12 0 ## ## GBR |RO MAAD |ADDCN 0d* 1+GRB- >MAAD, RO- >MADW VR B
Store [MOV. WRO, @disp,GBRI1 1000001 dddddddd|12 1 ## ## GBR |RO MAAD |ADDCN 0d* 2+GRB- >MAAD, RO- >MADW VIR W
Store [MOV.L RO, @disp,GBRI1L 1000010 dddddddd|12 2 ## ## GBR |RO MAAD |ADDCN 0d* 4+GRB- >MAAD, RO- >MADW WR. L
TRAP | TRAPA #i mm 110000212 iiiiiiiil|l23 ## ##mlti|PC 0i *4 |PC ADD [TRAPA sequence I
Load MOV.B @disp,GBR), 1 1000100 dddddddd|12 4 ## ## GBR MAAD ADDCN 0d* 1+GRB- >MAAD, RD. B, MADR- >R0
Load MOV. W@disp,GBR), 1 1000101 dddddddd|12 5 ## ## GBR MAAD ADDCN 0d* 2+GRB- >MAAD, RD. W MADR- >R0
Load MOV.L @disp,GBR), 1 1000110dddddddd|12 6 ## ## GBR MAAD ADDCN 0d* 4+GRB- >MAAD, RD. L, MADR- >R0
ALU MOVA @disp,PC), R0 [11000111dddddddd|12 7 ## ## PC&FJ0d*4 |RO ADD
ALU TST #i mm RO 11001000 iiiiiiii|l28 #t ## RO Oi AND resul t->T
ALU AND #i nm RO 11001002 iiiiiiiill29 ## ## RO Oi RO AND
ALU XOR #i nm RO 110010210 iiiiiiiill210 ## ## RO Oi RO XOR
ALU CR #i mm RO 11002022 iiiiiiiifl2 11 ## ## RO Oi RO R
RMWV TST.B #inm @RO,GBRIL 1001100 i i iiiiii|l2 12 ## ##|1st GBR |RO MAAD ADD RD. B

2nd |MADR |Oi AND resul t->T
RMWV AND. B #inm @RO,GBRIL 1001101 iiiiiiii|l2 13 ## ##|1st GBR |RO MAAD ADD RD. B

2nd |MADR |Oi MADW |AND VR. B
RMWV XOR B # mm @QRO,GBRIL 1001110 iiiiiiii|l2 14 ## ##|lst GBR |RO MAAD ADD RD. B

2nd |MADR |Oi MADW |XOR VR. B
RMWV ORB #mM @RO,GBR)|1 10021111 iiiiidiiill215 ## ##|lst GBR |RO MAAD ADD RD. B

2nd |MADR |Oi MADW |R VR. B
Load MOV.L @disp,PC),Rf1101nnnndddddddd|13 ## ## ## PC&FJ0d*4 |MAAD ADD RD. L, MARD- >Rn
ALU MOV #i nm Rn L110nnnniiiiiiiil|ld ## ## ## si Rn THRUY
EVENT (Illegal Instructionl 1111111 *******xx115 15 ## ##mul ti
EVENT |Slot IIlegal 1111111000000110{15140 6 |nulti
EVENT [IRQ 11110010 ****x*xxx1152 4 #Hnlti
EVENT [NM 1111001100001011)153 0 11|nulti
EVENT |Address Error (CPUJI1111010000001001f154 0 9 [multi
EVENT |Address Error (DMAQ1111010100001010/155 0 10|multi
EVENT |Manual Reset 1111011000000010{156 0 2 |nulti
EVENT |Power on Reset 11110111 ***x**xx%[157 # #nulti

Tablel4.1 Aquarius Instruction Codes (3)

106 A Pipelined RISC CPU “Aquarius”

