
Building A RISC Microcontroller
in an FPGA

n Name : Yap Zi He

n Course : 4 SEL

n Supervisor : PM Muhammad Mun’im
Ahmad Zabidi

Introduction
n Reduce Instruction Set Computer (RISC) is a

new trend on computer design. The opposite and
rather established trend is Complex Instruction
Set Computer (CISC), which consist lots of
instruction sets, addressing modes, instruction
formats and a number of possible instructions length.
The complexity of the instruction makes the design
more complicated. While RISC tend to reduce the
complexity of the instructions set and thus make the
design process easier.

Objectives
n The objectives of my project is to design a RISC

Microcontroller using VHDL and implement it in an
FPGA

n The instructions set and features are based on ATMEL
AVR AT90S1200 RISC Microcontroller.

AT90S1200 At First Glance
• 89 Instructions
• 32 General Purpose Registers
• 2 IO Ports (15 pins)
• 1 x 8-bit Timer
• 1 x External Interrupt
• 1 x Analog Comparator

Scopes
n Implement the Complete AT90S1200 Microcontroller in an

FPGA
n FPGA unimplementable features (analog comparator and

internal pull-up resistors) and unnecessary feature
(WatchDog Reset) will be ignored

What is the Challenges ?
1. AREA – the design must be able to fit into the targeted

FPGA device, which is Altera EPF10K20RC240-4.
2. SPEED – the microcontroller must be able to run at a

minimum clock speed of 10MHz.

Project Background
n “FPGA Implementation of a RISC microcontroller” – Wan

Mohd Khalid
Problems :
1. Project is poorly documented
2. Design using both VHDL and schematics
3. Only 50% instructions designed (behavioral approach)
4. No peripheral features (port, timer, ext int)
5. Project size is too large, require 3 pieces of EPF10K20 !
6. FPGA implementation is not done

Approach

Architecture &
Instructions Set

VHDL
Coding

(Text Editor)

Synthesis
(FPGA Express)

Compilation
& Simulation
(MaxPlus II)

Program Coding
& Assembling

(AVR Assembler)

ASM to MIF
Converter

(Self Written)

Compilation &
Device Programming

(MaxPlus 2)

Results
Checking

Simulation
(AVR Studio)

+
Program

Designed
Microcontroller

Hardware Implementation

Software (VHDL)

Architecture Overview

Microcontroller
(FPGA)

Reset

Clock

PortB

PortC

PortD

* All IO Ports are 8-bits width (3 ports = 24 pins)
* External Interrupt and Timer external clock source

share the same pin with pin D7

Program CounterProgram Counter

Program ROMProgram ROM

Control UnitControl Unit

Instruction RegInstruction Reg

Port BPort B

Port CPort C

Port DPort D

TimerTimer

Ext IntExt Int

General
Purpose

Registers

General
Purpose

Registers

Status RegStatus Reg

RAMRAM

ALUALU

Fetch Unit Execution Unit I/O

8
-B

it
 D

a
ta

 B
u

s

… …
Control Signals

In
di

re
ct

 A
dd

re
ss

in
g

R
eg

is
te

r
Ad

dr
es

si
ng

Instructions Cycle / Pipelines

ExecuteFetch3rd instruction

ExecuteFetch2nd instruction

ExecuteFetch1st Instruction

4321Clock Cycle

The 2 stage pipelines allowed 1 instruction to be executed on
every clock cycle.

Project Highlight : Control Unit
n Designing the control unit is usually the most tedious

task in digital system design
n In my design, the control unit is implemented with

Synchronous Mealy Model.
n The advantages are :-

1. The control signals are asserted according to clock transition
rather than generated by the state as in Moore Model. Thus the
control signals appear faster and will speed up the
microcontroller.

2. The control unit for the microcontroller has only 8 states ! This
is because control signals are lock to transition rather than the
states. So all single cycle instructions can share the same state.

What is Synchronous Mealy Model ?

Combinational
Logic

Flip
Flops

Flip
Flops

Combinational
Logic for

NEXT STATE

Combinational
Logic for
OUTPUT

Clock Clock

INPUT
(Instruction

Code,
IRQ,

Branch
Taken? …)

OUTPUT
(Control
Signals)

Current
State

Next
State

EXE
LD

ST

CBISBI

SBICS

Branch1

Branch2

SLEEP

Single Cycle Instrutions

Load Inst

Sto
re I

nst

Conditional branch taken

Unco
ndit

iona
l bra

nchIRQ

No IRQ

Sleep

CBI/SBI

SBIC/SBIS

Reset
EXE State

8 States Control Unit

2 Cycles Instructions

Wait for Interrupt

Branch Instructions
(3 cycles)

Instructions
The designed microcontroller is capable of executing 92 instructions.
Arithmetic and Logic Instructions (20) :-
ADD, ADC, SUB, SUBI, SBC, SBCI, AND, ANDI, OR, ORI, EOR, COM, NEG, SBR,
CBR, INC, DEC, TST, CLR, SER
Branch and Skip Instructions (32) :-
RJMP, RCALL, RET, RETI, CPSE, CP, CPC, CPI, SBRC, SBRS, SBIC, SBIS, BRBS,
BRBC, BREQ, BRNE, BRCS, BRCC, BRSH, BRLO, BRMI, BRPL, BRGE, BRLT, BRHS,
BRHC, BRTS, BRTC, BRVS, BRVC, BRIE, BRID
Data Transfer Instructions (10) :-
LD Z, LD Z+, LD –Z, ST Z, ST Z+, ST –Z, MOV, LDI, IN, OUT
Bit and Bit Test Instructions (28) :-
SBI, CBI, LSL, LSR, ROL, ROR, ASR, SWAP, BSET, BCLR, BST, BLD, SEC, CLC, SEN,
CLN, SEZ, CLZ, SEI, CLI, SES, CLS, SEV, CLV, SET, CLT, SHE, CLH
Misc Instructions (2) :-
NOP, SLEEP > 20 + 32 + 10 + 28 + 2 = 92 instructions

Results Achieved
1. VHDL coding and simulation for all the modules in the

block diagram has been done successfully.
2. The design has been programmed into FPGA

successfully.
3. The FPGA is now a microcontroller and is able to control

some real applications (will be demo).

How about the challenges stated ?
AREA – The design fit into the targeted device successfully

(using 92% of EPF10K20RC240-4)
SPEED – The final design clock speed is 12 MHz (target is 10MHz)

128 bytesNoneSRAM

CMOS

1

1

1

4 MHz / 12 MHz

5

2 (15 pins)

512 words

32

89

AT90S1200

FPGA

None

1

1

12 MHz*

8

3 (24 pins)

512 words

16

92

RISCMCU

Addressing Modes

Implementation

Analog Comparator

External Interrupt

8-bit Timer

Speed

IO Ports

Program ROM

G.P Registers

Instructions

AT90S1200 VS My Design

* 18 MHz can be achieved when implemented in the fastest device from the same family

Recommendations on Future Works
My design is based on AVR AT90S1200. There are many
more members in the AVR family which contribute to more
instructions and features. The next step will be adding these
instructions and features into my design. Example:
Instructions – MUL, DIV, IJMP …
Features – UART, SPI, 16-bit Timer (with input capture,
output compare & PWM)

Conclusion
n The project has achieve all the objectives and fulfilled all

the scope specified
n My main contribution is the VHDL source code, which is

an AT90S1200 compatible RISC microcontroller

	Building A RISC Microcontroller in an FPGA
	Introduction
	Objectives
	Scopes
	Project Background
	Approach
	Architecture Overview
	Block Diagram
	Instructions Cycle/Pipelines
	Project Highlight: Control Unit
	What is Synchronous Mealy Model
	8 States Control Unit
	Instuctions
	Results Achieved
	AT90S1200 VS My Design
	Recommendation on Future Works
	Conclusion

