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CHAPTER I 

 

 

 

INTRODUCTION 

 

 

 

1.1 Central Processing Unit 

 

Figure 1.1 shows the block diagram of a basic computer system. A basic 

computer system must have the standard elements CPU, memory and I/O. All these 

elements communicate via the system bus, which is composed by the data, address and 

control buses.  

 

 

 

 

 

 

 

Figure 1.1   Basic Computer System 

 

The CPU, as the ‘brain’ of the computer, administers all the activity in the 

system and performs all operations on data. The CPU has the ability to understand and 

execute instructions based on a set of binary codes, each representing a simple operation. 

These instructions are usually arithmetic, logic, data movement, or branch operations, 
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and are represented by a set of binary codes called the instruction set. The memory, is 

used to store all the programs formed by the instruction set and all the require data. I/O 

interface provide an interconnection with the outside world, such as the keyboard as an 

input and the monitor as an output. 

 

 Minicomputers and mainframe computers, have CPUs consisting multiple ICs, 

ranging from several ICs (minicomputers) to several circuit boards of ICs (mainframes). 

This is necessary to achieve the high speeds and computational power of larger 

computers. On the other hand, the CPU of a microcomputer is contained in a single 

integrated circuit. They are known as a microprocessor. 

 

 

 

1.2 Microcontroller 

 

It was pointed out above that microprocessors are single-chip CPUs used in 

microcomputer. A microcontroller contains, in a single IC, a CPU and much of the 

remaining circuitry of a basic computer system. A microcontroller has the CPU, memory 

(RAM, ROM) and the I/O interface (parallel, serial) all within the same IC. Of course, 

the amount of on-chip memory does not approach that of even a modest microcomputer 

system. 

 

Microprocessors are most commonly used as the CPU in microcomputer 

systems. Microcontrollers, on the other hand, are found in small, minimum-component 

designs performing control-oriented activities, such as the traffic lights. These designs 

were often implemented in the past using dozens or even hundreds of ICs. A 

microcontroller aids in reducing the overall component count. All that is requires is 

microcontroller, a small number of support components, and a control program in ROM. 
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1.3 Objectives 

 

The main objective of this project is to design a RISC microcontroller using 

VHDL and implement it in an FPGA. The microcontroller instruction set and features 

are based on Atmel AVR AT90S1200 RISC microcontroller. 

 

 

 

1.4 Atmel AVR AT90S1200 

 

The AT90S1200 is a low-power CMOS 8-bit microcontroller based on the AVR 

RISC architecture. It has 89 powerful instructions and 32 general purpose registers. 

Most instructions are executed in one cycle and so it can achieve up to 12 MIPS 

throughput at 12 MHz. The microcontroller also come with 1K Bytes of in-system 

programmable flash as the program memory and 64 bytes of in-system programmable 

EEPROM. 

 

The AT90S1200 is equipped with one 8-bit timer/counter with separate 

prescaler, one on-chip analog comparator, a watchdog timer with on-chip oscillator and 

SPI for in system programming. It also features the external and internal interrupt. There 

are a total of 15 programmable I/O lines. 

 

The IC come in 20-pin PDIP and SOIC with 2 speed grades, 0 - 4 MHz for 

AT90S1200-4 and 0 – 12 MHz for AT90S1200-12. 
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1.5 Project Background 

 

Wan Mohd Khalid did a similar project titled “FPGA Implementation of a RISC 

microcontroller”. The design is also based on Atmel AVR AT90S1200 microcontroller. 

The project is designed using both VHDL and schematics. Only 50% of the instructions 

are designed using VHDL behavioral approach, which results in large area and slow 

performance. Parallel ports, timer, external interrupt and other peripheral features are not 

included. The project size is so large that it requires 3 pieces of Altera EPF10K20. 

 

 

 

1.6 Work Scope 

 

The aim of the project is to design the complete Atmel AVR AT90S1200. The 

microcontroller must be able to fit into the targeted FPGA device, which is Altera 

EPF10K20, provided in Altera UP1 Education Board. Features which cannot be 

implemented on an FPGA (analog comparator, pull-up resistors, etc) and which are not 

critical to the operation of the CPU (watchdog reset, etc) will be ignored. 
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CHAPTER II 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Complex Instruction Set Computer (CISC) 

 

In early days, computers had only a small number of instructions and used 

simple instruction sets, forced mainly by the need to minimize the hardware used to 

implement them. As digital hardware become cheaper, computer instructions tended to 

increase both in number and complexity. These computers also employ a variety of data 

types and a large number of addressing modes. A computer with a large number of 

instructions, are known as complex instruction set computer, abbreviated CISC. 

 

Major characteristics of CISC architecture are: 

 

� A large number of instructions – typically from 100 to 250 instructions 

� Some instructions that perform specialized tasks and are used infrequently 

� A large variety of addressing modes – typically from 5 to 20 different modes 

� Variable-length instruction formats 

� Instructions that manipulate operands in memory 
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2.2 Reduce Instruction Set Computer (RISC) 

 

In the early 1980s, a number of computer designers were questioning the need 

for complex instruction sets used in the computer of the time. In studies of popular 

computer systems, almost 80% of the instructions are rarely being used. So they 

recommended that computers should have fewer instructions and with simple constructs. 

This type of computer is classified as reduced instruction set computer or RISC. The 

term CISC is introduced later to differentiate computers designed using the ‘old’ 

philosophy. 

 

According to Daniel Tabak (1990), the first characteristic of RISC is the uniform 

series of single cycle, fetch-and-execute operations for each instruction implemented on 

the computer system being developed. 

 

A single-cycle fetch can be achieved by keeping all the instructions a standard 

size. The standard instruction size should be equal to the number of data lines in the 

system bus, connecting the memory (where the program is stored) to the CPU. At any 

fetch cycle, a complete single instruction will be transferred to the CPU. For instance, if 

the basic word size is 32 bits, and the data port of the system bus (the data bus) has 32 

lines, the standard instruction length should be 32-bits. 

 

Achieving uniform (same time) execution of all instructions is much more 

difficult than achieving a uniform fetch. Some instructions may involve simple logical 

operations on a CPU register (such as clearing a register) and can be executed in a single 

CPU clock cycle without any problem. Other instructions may involve memory access 

(load from or store to memory, fetch data) or multicycle operations (multiply, divide, 

floating point), and may be impossible to be executed in a single cycle. 

 

Ideally, we would like to see a streamlined and uniform handling of all 

instructions, where the fetch and the execute stages take up the same time for any 

instruction, desirably, a single cycle. This is basically one of the first and most important 
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principles inherent in the RISC design approach. All instructions go from the memory to 

the CPU, where they get executed, in a constant stream. Each instruction is executed at 

the same pace and no instruction is made to wait. The CPU is kept busy all the time. 

 

Thus, some of the necessary conditions to achieve such a streamlined operation 

are: 

 

� Standard, fixed size of the instruction, equal to the computer word length and 

to the width of the data bus. 

� Standard execution time of all instructions, desirably within a single CPU 

cycle. 

 

While it might not practical to hope that all instructions will execute in a single 

cycle, one can hope that at least 75% should. 

 

Which instructions should be selected to be on the reduced instruction list? The 

obvious answer is: the ones used most often. It has been established in a number of 

earlier studies that a relatively small percentage of instructions (10 – 20%) take up about 

80% – 90% of execution time in an extended selection of benchmark programs. Among 

the most often executed instructions were data moves, arithmetic and logic operations.  

 

As mentioned earlier, one of the reasons preventing an instruction from being 

able to execute in a single cycle is the possible need to access memory to fetch operands 

and/or store results. The conclusion is therefore obvious – we should minimize as much 

as possible the number instructions that access memory during the execution stage. This 

consideration brought forward the following RISC principles: 

 

� Memory access, during the execution stage, is done by load/store instructions 

only. 

� All operations, except load/store, are register-to-register, within the CPU. 
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Most of the CISC systems are microprogrammed, because of the flexibility that 

microprogramming offers the designer. Different instructions usually have microroutines 

of different lengths. This means that each instruction will take a number of different 

cycles to execute. This contradicts the principle of a uniform, streamlined handling of all 

instructions. An exception to this rule can be made when each instruction has a one-to-

one correspondence with a single microinstruction. That is, each microroutine consists 

of a single control word, and still let the designer benefit from the advantages of 

microprogramming. However, contemporary CAD tools allow the designer of hardwired 

control units almost as easy as microprogrammed ones. This enables the single cycle 

rule to be enforced, while reducing transistor count. 

 

In order to facilitate the implementation of most instruction as register-to register 

operations, a sufficient amount of CPU general purpose registers has to be provided. A 

sufficiently large register set will permit temporary storage of intermediate results, 

needed as operands in subsequent operations, in the CPU register file. This, in turn, will 

reduce the number of memory accesses by reducing the number of load/store operations 

in the program, speeding up its run time. A minimal number of 32 general purpose CPU 

registers has been adopted, by most of the industrial RISC system designers. 

 

The characteristics of RISC architecture are summarized as follow: 

 

� Single-cycle instruction execution  

� Fixed-length, easily decoded instruction format  

� Relatively few instructions 

� Relatively few addressing modes 

� Memory access limited to load and store instructions 

� All operations done within the registers of the CPU 

� Hardwired rather than microprogrammed control unit 

� Relatively large (at least 32) general purpose register file 
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CHAPTER III 

 

 

 

DESIGN METHODOLOGY AND CAD TOOLS 

 

 

 

3.1 Design Process 

 

 

Figure 3.1   Design Process Flow 

 

Figure 3.1 shows the design process of the project and their related CAD tools. 

The design process can be divided into 2 main parts – hardware design (with VHDL) 

and hardware implementation. 
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Hardware design is done with the related CAD tools. The first step in the 

hardware design is to prepare the specification of the design (the microcontroller). The 

architecture and the instruction set must be understood thoroughly. The design ideas are 

then describe with VHDL in a text editor. Then, the VHDL code is synthesized with 

FPGA Express. If synthesized successfully, FPGA express will generate a netlist files 

(EDF file). This file is then send to Max+Plus II for compilation and simulation. Results 

are verified by simulation. The hardware design process is repeated until the 

microcontroller is complete without any errors. 

 

 Hardware implementation is performed by downloading the design into the 

targeted FPGA device, Altera EPF10K20RC240-4. The hardware implementation tests 

the design in real physical environment by some control applications. A microcontroller 

can perform thousands of control applications. For every application, different programs 

must be written and store into the program ROM of the microcontroller before it can do 

the job. So, before the microcontroller is downloaded into the FPGA device, the specific 

program for the application must be written. 

 

 The program is written and assembled using the AVR Assembler. The AVR 

Studio is used to simulate and test the program. If no bugs are found, the program HEX 

file generated by the assembler is converted to MIF format with a tool written by the 

author, HEX2MIF. This MIF file, together with the EDF file of the complete 

microcontroller is then send to Max+Plus II for compilation and device programming. 

Once programmed into the device, the FPGA is reset to execute the application. 

 

 

 

3.2 Synopsys FPGA Express 

 

 Synopsys FPGA Express is an industrial strength VHDL synthesis tool and is 

used to synthesize this project. First, VHDL files are written in a text editor such as the 
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Windows Notepad Editor. Then all the files are loaded in a project in FPGA Express. It 

will check the VHDL file for syntax errors. If there are no errors, we can ask FPGA 

Express to create implementation for the project. Once the implementation is created, 

the EDF net list file of the implementation can be exported and used by MAX+plus II 

for compilation. 

 

 

 

3.3 MAX+Plus II 

 

MAX+Plus II is a free software provided by Altera. It has many sub components 

and the important components are the compiler, simulator, waveform editor and 

programmer. 

 

 

 

3.3.1 Compiler 

 

 The compiler consists of 6 sub modules - Compiler Netlist Extractor, Data Base, 

Logic Synthesizer, Fitter, Timing SNF Extractor and Assembler. All of them play an 

equally important role of compiling the EDF file into a simulation netlist file - SNF.  

 

 

 

3.3.2 Simulator and Waveform Editor 

 

 After the EDF file is compiled, the generated SNF file will contain information 

of the circuit behavior and can be imported by the Simulator. The waveform editor let 

the user draws the pattern of the input waveform. The simulator then generates the 

output waveform based on the SNF file. 
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3.3.3 Programmer 

 

 The programmer is a tool used to download the compiled design into the FPGA 

device. The compiler will generate a SOF file which contains information to be written 

into the FPGA device (FLEX10K20). The programmer will program the SOF file 

contents into the FPGA via a PC parallel port using the ByteBlaster cable.  

 

 

 

3.4      AVR Assembler 

 

AVR Assembler is provided by Atmel to write and assemble programs for all the 

Atmel AVR RISC microcontrollers. The instruction set of this design is compatible with 

the Atmel AVR AT90S1200, so the assembler can also be used in this project. The 

assembler will assemble a program to create HEX and OBJ files. 

 

 

 

3.5 AVR Studio 

  

 AVR Studio is a simulator for all Atmel AVR microcontrollers. It takes the OBJ 

file created by AVR Assembler. The simulator simulates the flow of instruction in the 

program one by one and the changes on the general purpose registers, memory contents, 

flags and I/O can be observed. 
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3.6 HEX2MIF 

 

 HEX2MIF is a HEX to MIF converter used to convert the HEX file generated by 

AVR Assembler into a MIF file. MIF files are used to define the initial value for the 

memory components in Max+Plus II. This simple program is written by the author with 

C and the source code is listed in Appendix C. 
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CHAPTER IV 

 

 

 

INSTRUCTION SET 

 

 

 

4.1 Instruction Set Summary 

 

The operation of the CPU is determined by the instruction it executes, referred to 

as machine instructions or computer instructions. The collection of different instructions 

that the CPU can execute is referred to as the CPU’s instruction set. Since the instruction 

set defines the datapath and everything else in a processor, it is necessary to study it 

first.  

 

Table 4.1 shows the instruction set summary of the designed microcontroller, 

while the instruction set summary of the original AT90S1200 is shown in Appendix D. 

There are 92 instructions grouped into 4 categories: arithmetic and logic instructions, 

branch instructions, data transfer instructions and the bit and bit-test instructions. As 

mentioned earlier, instruction set of the design is based on Atmel AVR AT90S1200 

instruction set. In this way, the design can use the same assembler and simulator 

provided by Atmel since the final design is actually an AT90S1200 compatible 

microcontroller.  

 

One of the RISC characteristics mentioned earlier is single-cycle execution for 

most instructions. This can be seen in the # cycles column in Table 4.1. Most 
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instructions are single cycle except branch instructions, the LD/ST instructions and a 

few others. 

 

Table 4.1   Instruction Set Summary 

 

Mnemonic Operation Flags # Clocks 

ARITHMETIC AND LOGIC INSTRUCTIONS 
ADD Add Two Registers S,Z,C,N,V,H 1 
ADC Add with Carry Two Registers S,Z,C,N,V,H 1 
SUB Subtract Two Registers S,Z,C,N,V,H 1 
SUBI Subtract Constant from Register S,Z,C,N,V,H 1 
SBC Subtract with Carry Two Registers S,Z,C,N,V,H 1 
SBCI Subtract with Carry Constant from Register S,Z,C,N,V,H 1 
AND Logical AND Registers S,Z,N,V 1 
ANDI Logical AND Register and Constant S,Z,N,V 1 
OR Logical OR Registers S,Z,N,V 1 
ORI Logical OR Register and Constant S,Z,N,V 1 
EOR Exclusive OR Registers S,Z,N,V 1 
COM One’s Complement Register S,C,Z,N,V 1 
NEG Negate (2’s Complement) Register S,C,Z,N,V,H 1 
SBR Set Bit(s) in Register S,Z,N,V 1 
CBR Clear Bit(s) in Register S,Z,N,V 1 
INC Increment S,Z,N,V 1 
DEC Decrement S,Z,N,V 1 
TST Test for Zero or Minus S,Z,N,V 1 
CLR Clear Register S,Z,N,V 1 
SER Set Register None 1 
BRANCH INSTRUCTIONS 
RJMP Relative Jump  None 3 
RCALL Relative Subroutine Call None 3 
RET Subroutine Return None 3 
RETI Interrupt Return I 3 
CPSE Compare, Skip if Equal None 1/2 
CP Compare (Rd - Rr) S,C,Z,N,V,H 1 
CPC Compare with Carry (Rd - Rr - C) S,C,Z,N,V,H 1 
CPI Compare Register with Immediate (Rd – K) S,C,Z,N,V,H 1 
SBRC Skip if Bit in Register Cleared None 1/2 
SBRS Skip if Bit in Register Set None 1/2 
SBIC Skip if Bit in I/O Register Cleared None 2/3 
SBIS Skip if Bit in I/O Register Set None 2/3 
BRBS Branch if Status Flag Set None 1/3 
BRBC Branch if Status Flag Cleared None 1/3 
BREQ Branch if Equal (Z = 1) None 1/3 
BRNE Branch if Not Equal (Z = 0) None 1/3 
BRCS Branch if Carry Set (C = 1) None 1/3 
BRCC Branch if Carry Cleared (C = 0) None 1/3 
BRSH Branch if Same or Higher (C = 0) None 1/3 
BRLO Branch if Lower (C = 1 None 1/3 
BRMI Branch if Minus (N = 1) None 1/3 
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BRPL Branch if Plus (N = 0) None 1/3 
BRGE Branch if Greater of Equal, Signed (S = 1) None 1/3 
BRLT Branch if Less than Zero, Signed (S = 0) None 1/3 
BRHS Branch if Half Carry Set (H = 1) None 1/3 
BRHC Branch if Half Carry Cleared (H = 0) None 1/3 
BRTS Branch if T-Flag Set (T = 1) None 1/3 
BRTC Branch if T-Flag Cleared (T = 0) None 1/3 
BRVS Branch if Overflow Flag is Set (V = 1) None 1/3 
BRVC Branch if Overflow Flag is Cleared (V = 0) None 1/3 
BRIE Branch if Interrupt Enabled (I = 1) None 1/3 
BRID Branch if Interrupt Disabled (I = 0) None 1/3 
DATA TRANSFER INSTRUCTIONS 
MOV Move Between Registers None 1 
LDI Load Immediate to Register None 1 
LD Z Load Indirect with Z-Pointer None 2 
LD Z+ Load Indirect and Post-Increment with Z-Pointer None 2 
LD –Z Load Indirect and Pre-Decrement with Z-Pointer None 2 
ST Z Store Indirect with Z-Pointer None 2 
ST Z+ Store Indirect and Post-Increment with Z-Pointer None 2 
ST -Z Store Indirect and Pre-Decrement with Z-Pointer None 2 
IN In Port to Register None 1 
OUT Out Register to Port None 1 
BIT AND BIT-TEST INSTRUCTIONS 
SBI Set Bit in I/O Register None 2 
CBI Clear Bit in I/O Register None 2 
LSL Logical Shift Left S,C,Z,N,V 1 
LSR Logical Shift Right S,C,Z,N,V 1 
ROL Rotate Left through Carry S,C,Z,N,V 1 
ROR Rotate Right through Carry S,C,Z,N,V 1 
ASR Arithmetic Shift Right S,C,Z,N,V 1 
SWAP Swap Nibbles None 1 
BSET Flag Set Any 1 
BCLR Flag Clear Any 1 
BST Bit Store form Register to T T 1 
BLD Bit Load from T to Register None 1 
SEC Set Carry C 1 
CLC Clear Carry C 1 
SEN Set Negative Flag N 1 
CLN Clear Negative Flag N 1 
SEZ Set Zero Flag Z 1 
CLZ Clear Zero Flag Z 1 
SEI Global Interrupt Enable I 1 
CLI Global Interrupt Disabl I 1 
SES Set Signed Test Flag S 1 
CLS Clear Signed Test Flag S 1 
SEV Set Two’s Complement Overflow V 1 
CLV Clear Two’s Complement Overflow V 1 
SET Set T in SREG T 1 
CLT Clear T in SREG T 1 
SHE Set Half-carry Flag in SREG H 1 
CLH Clear Half-carry Flag in SREG H 1 
NOP No Operation None 1 
SLEEP Sleep (Wait for Interrupt) None Any 
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Of course, some of the instructions will have different characteristics as the 

original AT90S1200 instructions. They are: 

 

1. Unconditional branch instructions (RJMP, RCALL, RET, RETI) now take 3 

cycles. 

2. Conditional branch instructions take 1 cycle if the branch is not taken and 3 

cycles if the branch is taken. 

3. Skip if I/O register cleared/set instructions (SBIC, SBIS) take 2 cycles if the next 

instruction is not skipped and 3 cycles if the next instruction is skipped. 

4. WDR (watch-dog reset) instruction is not available since the watch-dog timer 

features is not included in the designed 

5. SLEEP will not enter any sleep modes (there are no sleep modes in the design), it 

will however stop the processor and wait for an interrupt. If an interrupt occurs, 

the processor will ‘wake up’, execute the interrupt routine and resumes execution 

from the instruction following SLEEP. 

6. Data RAM is included in the design although AT90S1200 does not contain any 

data RAM. So 4 instructions are added, which are load and store instructions 

with post-increment and pre-decrement. 

7. General purpose registers and I/O control registers are not mapped into the data 

addressing space for LD and ST instructions. 

8. Only 16 registers are available for addressing - R16 to R32. This limitation is due 

to the area constraint of the targeted FPGA device. 

 

Detail operation for each instruction requires further reference to the Instruction 

Set section in Atmel AVR RISC Microcontroller Data Book.  
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4.2 Addressing Modes 

 

There are 7 addressing modes in the microcontroller. Rd and Rr are devoted to 

the destination register and soure register.  

 

1. Direct Single Register Addressing 

The operand is in Rd. 

2. Direct Double Register Addressing 

The operands are in Rd and Rr. Result is stored back to Rd. 

3. I/O Direct Addressing 

First operand is one of the I/O registers. The address is contained in 6 bits of 

the instruction word. The second operand is either Rd or Rr. Used by IN and 

OUT instructions to read from or write to the I/O registers. 

4. Data Indirect Addressing 

Operand address is the contents of the Z-register. Used when accessing the 

SRAM with LD and ST instructions. 

5. Data Indirect Addressing with Pre-Decrement 

Z-pointer is decremented by 1 before the operation. Operand address is the 

decremented contents of the Z-register. Used  when accessing the SRAM 

with LD and ST instructions. 

6. Data Indirect Addressing with Post-Increment 

The Z-register is incremented by 1 after the operation. Operand address is the 

original content of the Z-register before increment. Used when accessing the 

SRAM with LD and ST instructions. 

7. Relative Program Memory Addressing 

Program execution continue at address PC + offset. The offset is contains in 

the instruction word. Unconditional branch instructions (RJMP, RCALL) can 

reach the entire program memory from every location. However, conditional 

branch instructions can only reach –64 to 63 locations away from the current 

address. 
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Although there are 7 addressing modes of all, direct register addressing 

(mode 1 and 2) are used most of the time. Others mode are used when accessing the I/O, 

SRAM and when branching. 

 

 

 

4.3 Instruction Formats 

 

As mention earlier, RISC instructions have a fix length and are easily decoded. 

For this microcontroller, all instructions have a fixed-length of 16-bits. The instruction 

format is simple in order to be decoded easily.  

 

For instructions that require two registers, d selects the destination register and r 

selects the source register. 5-bits can addressed a total of 32 registers (N = 25 = 32). 

Instructions of this format include ADD, SUB and AND. 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

      r d d d d d r r r r 
 

 

For instructions that require one register, d addressed the destination/source 

register. Instructions of this format include NEG, ST and IN. 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

       d d d d d     
 

 

For immediate instructions, K is the 8-bit immediate value (constant) and d 

selects the destination register. Slightly different from the previous format, there are 

only 4 d-bits, which can address 16 registers only. The 5th bit is assumed to be one in 

this case and address the upper 16 registers (R16 to R32). Instructions using this format 

are CPI, SUBI, SBCI, ORI, ANDI and LDI. 
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

    K K K K d d d d K K K K 
 

 

For unconditional branch instructions, k is the offset in 2’s complement. 12 bits 

wide offset provide a branch range from -2048 to 2047. Instructions using this format 

are RJMP and RCALL. 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

    k k k k k k k k k k k k 
 

 

For conditional branch instructions, k is the offset in 2’s complement. The s-bits 

addressed which bit in the status register is to be tested for the branch. The 7-bit wide 

offset provide a branch range from –64 to 63. Instructions using this format are BRBC 

and BRBS. 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

      k k k k k k k s s s 
 

 

An I/O addressing instructions will contain the I/O address (A-bits) plus the 

corresponding destination/source register (d-bits) or the corresponding bit in the I/O (b-

bits). The first type has 6-bit wide A-bits, which provide 64 I/O addresses. The second 

type has 5-bit wide A-bits addressed only the lower 32 I/O. Instructions using the first 

format are IN and OUT while the second format are CBI, SBI, SBIC and SBIS. 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

     A A d d d d d A A A A 

                
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

        A A A A A b b b 
 



 23

Clear/Set bit in status register instructions has the s-bits point to the 

corresponding bit. They are BCLR and BSET. 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

         s s s     
 

 

And finally instructions that use a single bit in the register have the b-bits point 

to the corresponding bit. They are BLD, BST, SBRC and SBRS. 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

       d d d d d  b b b 
 

 

 

4.4 Machine Codes 

 

The instruction set contains 92 instructions and one might expect that there will 

be 92 different machine codes for all the instructions. But actually there are only 51 

machine codes. This is because there are 41 equivalent instructions which share the 

same machine code with some others instructions. Table 4.2 shows these equivalent 

instructions. 

  

Table 4.2 Equivalent Instructions  

ADD LSL 
ADC ROL 
AND TST 
EOR CLR 
ORI SBR 

ANDI CBR 
LDI SER 

BCLR CLI, CLT, CLH, CLS, CLV, CLN, CLZ, CLC 
BSET SEI, SET, SEH, SES, SEV, SEN, SEZ, SEC 
BRBC BRID, BRTC, BRHS, BRGE, BRVC, BRPL, BRNE, BRCC, BRSH 
BRBS BRIE, BRTS, BRHS, BRLT, BRVS, BRMI, BREQ, BRCS, BRLO 



 24

For an example, ADD is shares the same machine code as LSL. Left-shifting a 

number is actually multiplying the number by two, or adding a number to itself. So ADD 

can perform LSL operation by having the same register as destination and source. This is 

shown in Table 4.3. 

 

Table 4.3   ADD And LSL Machine Codes 

Instruction Machine Code 
ADD 0000 11rd dddd rrrr 
LSL 0000 11dd dddd dddd 

 

 

BCLR, BSET, BRBC and BRBS can choose one of the 8 status register flags as 

operand. The equivalent instructions in the right column state exactly which flag is to be 

used. Both are the same, except that instructions on the left are more meaningful and 

easier to used when writing a program. 8 status flags contribute to 8 specific instructions 

for both BCLR and BSET, and 9 specific instructions for both BRBC and BRBS 

because there are 2 instructions that test the C-flag. 

 

Table 4.4 lists the machine codes for the 51 instructions. They are list according 

to the 4 most significant bits rather than the instruction format so that the instructions 

can be decoded easily when designing the control unit. The 41 equivalent instructions 

are place inside the bracket to the right of the correspondent instructions. It is very 

important to know that we only need to design 51 instructions. Once finish, the 41 

equivalent instructions will immediately be available making the total to 92 instructions. 

The 51 instructions satisfy the RISC characteristic as having relatively few instructions. 
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Table 4.4   Machine Codes 

 
NOP 0000 0000 0000 0000  
CPC 0000 01rd dddd rrrr  
SBC 0000 10rd dddd rrrr   
ADD 0000 11rd dddd rrrr (LSL) 
 
 
CPSE 0001 00rd dddd rrrr  
CP 0001 01rd dddd rrrr  
SUB 0001 10rd dddd rrrr   
ADC 0001 11rd dddd rrrr (ROL) 
 
 
AND 0010 00rd dddd rrrr (TST) 
EOR 0010 01rd dddd rrrr (CLR) 
OR 0010 10rd dddd rrrr  
MOV 0010 11rd dddd rrrr  
 
 
CPI 0011 KKKK dddd KKKK  
 
 
SBCI 0100 KKKK dddd KKKK   
 
 
SUBI 0101 KKKK dddd KKKK  
 
 
ORI 0110 KKKK dddd KKKK (SBR) 
 
 
ANDI 0111 KKKK dddd KKKK (CBR) 
 
 
LD 1000 000d dddd 0000   
ST 1000 001r rrrr 0000 
 
 
LD Z+ 1001 000d dddd 0001 
LD –Z 1001 000d dddd 0010 
ST Z+ 1001 001r rrrr 0001 
ST –Z 1001 001r rrrr 0010 
 
COM 1001 010d dddd 0000  
NEG 1001 010d dddd 0001   
SWAP 1001 010d dddd 0010  
INC 1001 010d dddd 0011   
ASR 1001 010d dddd 0101  
LSR 1001 010d dddd 0110  
ROR 1001 010d dddd 0111  
DEC 1001 010d dddd 1010   
  
BSET 1001 0100 0sss 1000 (SE? - I,T,H,S,V,N,Z,C) 
BCLR 1001 0100 1sss 1000 (CL? - I,T,H,S,V,N,Z,C) 
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RET 1001 0101 0000 1000  
RETI 1001 0101 0001 1000 
 
SLEEP 1001 0101 1000 1000 
 
CBI 1001 1000 AAAA Abbb  
SBIC 1001 1001 AAAA Abbb  
SBI 1001 1010 AAAA Abbb 
SBIS 1001 1011 AAAA Abbb 
 
 
IN 1011 0AAd dddd AAAA 
OUT 1011 1AAr rrrr AAAA 
 
 
RJMP 1100 kkkk kkkk kkkk  
 
 
RCALL 1101 kkkk kkkk kkkk   
 
 
LDI 1110 KKKK dddd KKKK (SER) 
 
 
BRBS 1111 00kk kkkk ksss (BR?? – CS,LO,EQ,MI,VS,LT,HS,TS,IE) 
BRBC 1111 01kk kkkk ksss (BR?? – CC,SH,NE,PL,VC,GE,HC,TC,ID) 
 
BLD 1111 100d dddd 0bbb 
BST 1111 101r rrrr 0bbb  
 
SBRC 1111 110r rrrr 0bbb  
SBRS 1111 111r rrrr 0bbb 
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CHAPTER V 

 

 

 

PIPELINE PROCESSING 

 

 

 

5.1 Instruction Cycle 

 

Figure 5.1 shows the the instruction cycle – which is divided into two stages, the 

fetch stage and the execute stage. In the fetch stage, the machine code of an instruction 

is fetched into the instruction register. The control unit decodes the instruction to know 

what the instruction performs and what operands are needed. In the execute stage, the 

operands are fetched and the instruction is executed. The results is written back at the 

end of the stage. 

 

FETCH EXECUTE 

Instruction Fetch Decode Operand Fetch Operate Write 

Figure 5.1   Instruction Cycle 

 

As an example, the instruction ADD R18,R20 will add R18 and R20 and write 

the result back to R18. At the fetch stage (1st clock transition), the machine code for 

ADD R18,R20 is fetched into the instruction register. After the instruction is fetched, the 

CPU now know that the next instuction to be executed is ADD and the operands is R18 

and R20. At the execute stage (the 2nd clock transition), the contents of R18 and R20 is 

latched into operand register A (ORA) and operand register B (ORB) which are 

connected directly to the ALU. The ALU perform the ADD operation between ORA and 
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ORB and the result is sent to the data bus. At the end of the execute stage (the 3rd clock 

transition), the result in the data bus is written into the destination register. The 

instruction cycle is then complete. 

 

 

 

5.2 Instruction Pipeline 

 

 If an instruction cycle has 2 stages (Fetch and Execute), executing a series of 

instructions will have the form of: 

 

 Fetch1 à Execute1 à Fetch2 à Execute2 à Fetch3 à Execute3 à …  

  

The first instruction is fetched and executed, then the second instruction is 

fetched and executed, and so forth. Executing an instruction takes 2 cycles and executing 

10 000 instructions will take 20 000 cycles. By using instruction pipelining, the 

performance of the system can be further enhanced. 

 

Shown in Figure 5.2 is the instruction pipeline structure. The fetch and execute 

stage are now overlapped to perform simultaneous operations. The next instruction is 

fetched while executing the current instruction. This is called instruction pre-fetch. 

 

Clock Transition T1 T2 T3 T4 

1st instruction Fetch Execute   

2nd instruction  Fetch Execute  

3rd instruction   Fetch Execute 

Figure 5.2   Instruction Pipeline Structure 
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Imagine after using the instruction pipeline, there will be one instruction 

executing at every cycle. Executing an instruction will take only one cycle and executing 

10 000 instructions take only 10 000 cycle. The performance is now doubled. 

 

Program counter (PC) addressed the instruction in the program and are tightly 

related to the pipeline structure. Figure 5.3 shows the PC change along the pipeline 

execution. After reset, the PC is cleared to 0. On the 1st clock transition (T1) after reset, 

instruction at address 0 is being fetched. At the same time, PC is incremented to 1. On 

the 2nd clock transition (T2), instruction 0 is executed and instruction 1 is fetched. PC is 

now incremented to 2. On the 3rd clock transition (T3), result of instruction 0 is written 

back, instruction 1 is executed and instruction 2 is being fetched. PC is now incremented 

to 3. The important point is, when instruction N is being executed, instruction N + 1 is 

being fetch and the PC is N + 2.  

 

Clock Transition Reset T1 T2 T3 T4 

PC 0 1 2 3 4 

Instruction 0  Fetch 0 Execute 0   

Instruction 1   Fetch 1 Execute 1  

Instruction 2    Fetch 2 Execute 2 

Figure 5.3   PC and Instruction Pipeline 

 

 

 

5.3 Pipeline Conflicts 

 

Executing a branch instruction will cause a pipeline conflict. In that case the 

pipeline must be flushed and all instructions that have been read from the memory after 

the branch instructions must be discarded. 

 

Figure5.4 shows how a branch instruction will affect the pipeline. Instruction 20 

is ‘Branch to 73’. At T2, the branch instruction is executed but at the same time 

instruction 21 is fetched as usual. On T3, the new value for PC is loaded and instruction 
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22 is fetched. Instruction 21 cannot be executed and is flushed from the pipeline. Only at 

T4, instruction 73 is being fetched. Instruction 22 must also be discarded. Finally at T5, 

instruction 73 is executed. So a branch instruction will take 3 cycles to complete. The 

first cycle is taken to load the PC with the new value. The following 2 cycles are just 

wait states to wait until the new instruction is executed. 

 

Clock Transition T1 T2 T3 T4 T5 

PC 21 22 73 74 75 

20 (Branch to 73) Fetch 20 Execute 20 Execute 20 Execute 20  

Instruction 21  Fetch 21 Flushed   

Instruction 22   Fetch 22 Flushed  

Instruction 23    Fetch 73 Execute 73 

Figure 5.4   Branch Instruction Pipeline 

 

Some instructions like LD and ST require 2 execution cycles. This will also 

affect the pipeline flow. Figure 5.5 shows the pipeline structure when a 2 cycles 

instruction is encountered. Instruction 31 is a 2 cycles instruction. At T3, it is executed 

and instruction 32 is fetched. At T4, instruction 31 continues its execution. PC is not 

incremented and no new instruction is fetched. Only at T5, instruction 32 is executed. 

The next instruction is fetched and the PC is incremented. In this case, the pipeline is 

hold for one cycle. 

 

Clock Transition T1 T2 T3 T4 T5 

PC 31 32 33 33 34 

Instruction 30 Fetch 30 Execute 30    

31 (2 cycles)   Fetch 31 Execute 31 Execute 31  

Instruction 32   Fetch 32  Execute 32 

Instruction 33     Fetch 33 

Figure 5.5   2 Cycles Instruction Pipeline  
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 Data dependency conflict arises when an instruction depends on the result of a 

previous instruction, but the result is not yet available. Lets examine the following 

instructions flow: 

 
 LDI  R18,$10 ; R18 = $10 

 LDI R18,$20 ; R18 = $20 

 INC R18  ; R18 = R18 + 1 = $21 

 

 The final value of R18 should be $21. But unluckily the real result is $11. In an 

instruction fetch cycle, operands are fetched at the start of the execute stage to the 

operands register and result is written back at the end of the execute stage to the 

destination register. As a result, operands of the next instruction are loaded into the 

operand register at the same rising edge as the write back of the current instruction to the 

destination register. So INC R18 is actually receiving the old value of R18, which is $10 

rather then the result of LDI R18,$20. 

 

 To solve this problem, a technique called operand forwarding is used. If the 

destination register is needed as a source in the next instruction, the ALU result is 

forwarded to the operand register directly. This will require extra control logic to check 

for the conflict and perform the forwarding job. 
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CHAPTER VI 

 

 

 

MICROCONTROLLER ORGANIZATION 

 

 

 

6.1 Pin Description 

 

 

Figure 6.1   Microcontroller Pin Configuration 

 

Figure 6.1 shows the pin configuration for the designed microcontroller. The 

microcontroller has 2 input pins and 3 bi-directional I/O ports. Each I/O port consists of 

8 individual I/O pins. So 3 I/O ports contribute to a total of 24 I/O pins. The clock signal 

will drive the whole microcontroller directly. Reset is active low; when asserted it resets 

the microcontroller to the default state even if the clock is not running. Port B, Port C 

and Port D are all 8-bits port. Each bit can be configure to be input or output. All port 

pins are tri-stated when the microcontroller is reset. Pin D7 also serves as the external 

interrupt source and external timer clock source. 

 
 

Microcontroller 
(FPGA) 

Clock 

_____ 
Reset 

Port B 

Port C 

Port D 
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6.2 Architecture Overview 

 

 

Figure 6.2    Top-level Block Diagram 

 

 Figure 6.2 shows the top-level block diagram of the design, the bus structure has 

been simplified, but every block represents a module to be designed. At first glace, there 

are 11 modules in the top-level, with the 3 ports sharing the same module. These 11 

modules are to be design separately using the top down design approach. Some modules 

like the instruction register and status register are easy to design, but modules like ALU 

and the control unit require a lot of understanding. The overall dataflow and bus 

structure between all the modules must be understand before designing the modules 

individually. 
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 Buses provide connection between modules. There are basically two kinds of 

buses, direct bus and common bus. Direct bus connects two modules directly and is used 

specifically by the connected modules. There are many direct buses, such as the 

connection between program counter and program ROM, between program ROM and 

IR, between register file and ALU, etc. No control signals are required for direct buses.  

 

A common bus is a bus shared by many modules. The data bus is the only 

common bus in this design. The data bus provides connection between the general 

purpose register file, ALU, status register, SRAM and all the I/O features. The register 

file can only receive data from the data bus. All others modules can receive and send 

data to the data bus. Since there are so many possible data flows, control signals are 

required to control the correct flow direction. Only one source to the data bus is allowed 

at a time. If not, logic contentions will happen and the value of the data bus will be 

invalid. Tri-state bus is used to implement the common data bus. Only the correct source 

is connected to the data bus while other are in high impedance state. The impedance is 

so high that it can be seen as unconnected to the bus system. If the ALU is the data 

source, the data bus will be flooded with the result of the ALU and is available to all the 

connected modules. Control logic will generate an enable signal for the real destination 

to receive the data. 

 

Next is a brief introduction to the whole system. The system can be divided into 

3 units, the fetch unit, execute unit and I/O unit. Fetch unit is in charge of fetching the 

next instruction and the execute unit is in charge of executing the current instruction. I/O 

unit provide a connection with the outside world. The fetch unit and execute unit form 

the CPU of the microcontroller.  

 

 The first module of the fetch unit is the program counter (PC). The PC contains 

the address of the next instruction to be executed. It points to the program ROM to 

locate the instruction. The instruction from the ROM is then latched into the instruction 

register (IR). The control unit takes the content of the IR and decodes it. It then assert 
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the appropriate control signals to execute the instruction. All modules are connected 

with direct buses. 

 

 The execute unit in charge of executing most instructions. Normally, to execute 

an instruction, 2 operands are output from the register file to the ALU. The ALU then 

perform the operation and send the result to the data bus. Contents of the data bus (the 

result) is then stored back to the register file. The ALU also evaluate the status register 

flags and send them directly to the status register (SR). The whole execution process is 

done in a single cycle. The ALU perform many operations - include passing the contents 

of a general register to the data bus. SR also has a direct bus connection to the control 

unit required for branch evaluation. The register file (destination and source register) is 

addressed directly by some bits in IR. 

 

 A RISC has memory access limited to only LD and ST instructions. Direct 

addressing to the data RAM is not available. Only indirect addressing through the Z-

pointer (R30) is allowed. It could be indirect addressing, indirect addressing with post-

increment and indirect addressing with pre-decrement. Load and store instructions can 

only transferred data between the RAM and the register file. The Z-pointer contains the 

address of the RAM. A load operation sends the RAM data to the general registers 

through the data bus. A store operation sends the data to ALU, the ALU pass the data to 

data bus and store into the RAM. 

 

 To implement the fetch and execute pipeline in this microcontroller, memory are 

implemented using the Harvard architecture. Program and data are store in separate 

memories. As seen in the block diagram, program is stored in the program ROM while 

data are stored in the data RAM. The advantage of Harvard architecture is the ability to 

fetch the pre-fetch the next instruction easily. A normal RAM will have initial value zero 

when powered on. In FPGA, the RAM can have initial values and thus can make it act as 

a ROM. 
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 All the I/O modules contain many control registers. Data are sent to and received 

from it through the common data bus. Table 6.1 shows the complete list of the I/O 

control registers and their corresponding address. Reserved and unused locations are not 

shown in the table. The SR is also mapped into one of the I/O address. IN and OUT 

instructions are used to transfer data between these control registers and the general 

registers. The lower half of the control registers ($00 - $1F, shaded in gray) are directly 

bit-accessible using the SBI and CBI (Set/Clear Bit in I/O) instructions. Using SBIS and 

SBIC (Skip if bit in I/O cleared/set) instructions can also check every single bit in these 

registers. In this design, the lower half of control registers are all the I/O ports control 

registers. Note that, PINB, PINC and PIND are not a real registers, only a read operation 

can apply to them and it will read the physical value holding by the external pins. 

 

Table 6.1   I/O Address Space 

Address Hex Name Function 
$3F SREG Status REGister 
$3B GIMSK General Interrupt MaSK register 
$39 TIMSK Timer/Counter Interrupt MaSK register 
$38 TIFR Timer/Counter Interrupt Flag Register 
$35 MCUCR MCU general Control Register 
$33 TCCR0 Timer/Counter 0 Control Register 
$32 TCNT0 Timer/Counter 0 (8-bit) 
$18 PORTB Data Register, Port B 
$17 DDRB Data Direction Register, Port B 
$16 PINB Input Pins, Port B 
$15 PORTC Data Register, Port C 
$14 DDRC Data Direction Register, Port C 
$13 PINC Input Pins, Port C 
$12 PORTD Data Register, Port D 
$11 DDRD Data Direction Register, Port D 
$10 PIND Input Pins, Port D 

 

 

6.3 Register Transfer 

 

 The whole design contains many registers - instruction register (IR), instruction 

backup register (IBR), program counter (PC), general purpose registers, memory address 
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register (MAR), all the I/O control registers and many more (The program counter is 

treated as a special kind of register). They are found inside most of the modules see in 

the top-level block diagram. The whole system works by transferring data between these 

registers (register transfer). Some data are transferred without modification while some 

are manipulated before transfer to the next register. If the data are to be manipulated, 

they are manipulated by the combinational logic between these registers. How these data 

are transferred, how are they being manipulated before transfer, and what does different 

data inside the register means, will determine whether the design can work as a 

microcontroller. The design will perform a long series of register transfer to form the 

functioning of a microcontroller. Figure 6.3 shows the register transfer concept. It can be 

seen in the figure that register are transferred to another through many levels of 

combinational logic. 

 

Figure 6.3   Register Transfer 

 

 A read of the status register will bring the contents of the status register to one of 

the general register directly without manipulation. However, the value of the Z-pointer is 

send to the memory address register (MAR) after a subtraction by 60. The combinational 

logic in this case is a subtracter. Performing an AND operation between two general 

registers, will pass the two registers through a combinational logic (the logic unit) before 

writing back to one of the register. Memory (program ROM and data RAM) are treated 

as a kind of combinational logic. Program counter (PC) are pass through the program 
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ROM to the instruction register. The instruction register will receive the instruction in 

from the program ROM pointed by the PC. 

 

 So, the design process is to design all the registers along with the combinational 

logic and the interconnection between them. This is called the datapath of the system. 

Control signals are then used to determine how the register transfer takes place. Control 

signals are asserted by the control unit. The datapath along with the control unit form the 

complete microcontroller. It is important to know what registers exists in the system. 

Table 6.2 lists all the modules and their respected registers. 

 

Table 6.2   Registers List 

Modules Registers  

Program Counter Program Counter (PC) 
Program Counter Backup (PCB) 
4 Hardware Stack (STACK0 – STACK3) 

Instruction Register Instruction Register (IR) 
Control Unit Instruction Backup Register (IBR) 
General Purpose 
Register File 

16 General Purpose Registers (R16 - R31) 
Z-Pointer (R30) 

ALU Operand Register A (ORA) 
Operand Register B (ORB) 

Status Register Status Register (SR) 
Data RAM Memory Address Register (MAR) 

Memory Buffer Register (MBR) 
Port B Data Register (PORTB)  

Data Direction Register, Port B (DDRB) 
Port C Data Register (PORTC)  

Data Direction Register, Port C (DDRC) 
Port D Data Register (PORTD)  

Data Direction Register, Port D (DDRD) 
Timer Timer/Counter Interrupt Mask Register (TIMSK) 

Timer/Counter Interrupt Flag Register (TIFR) 
Timer/Counter 0 Control Register (TCCR0) 
Timer/Counter 0 (TCNT0) 

External Interrupt General Interrupt Mask Register (GIMSK) 
MCU General Control Register (MCUCR) 

 

CLK is the global clock signal for all the registers while CLRN is the global reset 

signal (active low). CLRN clears all the registers when asserted low.  
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6.4 Control Signals Characteristics 

 

If the control signals are used to control the datapath then the characteristics of 

the control signals must be understood before we can proceed further. First, a control 

signal will have at least a length of one clock cycle. It usually asserted a short delay after 

a rising clock transition and unasserted a short delay after another rising clock. The 

datapath consists of many registers and combinational logic between them, so there are 

basically 2 kinds of control signals. The first kind controls the combinational logic and 

the second kind controls the registers.  

 

When a combinational logic encounters a control signal, it will act towards the 

signal immediately. The ADD signal will cause the adder to perform the add operation 

immediately. The delay to get the valid result is the delay for the input to propagate 

through the combinational logic. The combinational logic can be functional unit such as 

adder and shifter, steering logic such as multiplexers and decoders or memory (program 

ROM and data RAM). 

 

A register control signal requires a rising clock to operate. WR_REG signal will 

only latch the data into the destination register of the register file when it encounters the 

rising clock. Since control signals are asserted a short delay after a rising clock and 

unasserted on the next, the operations is actually happened at the end of the control 

signal where it meet the rising clock. These kinds of control signals are the enable 

signals for the registers, or the increment/decrement signal for a counter. 

 

 

Figure 6.4   Control Signal Timing 
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 Figure 6.4 explains the concept graphically. Both ADD and WR_REG control 

signals are asserted and unasserted after a rising clock. The ADD signal gives effect 

immediately after it is asserted by asking the adder to perform an add operation. The 

result is available after some delay depending of the speed of the adder. The WR_REG 

signal latches the result into the register at the end of the signal when it encounters the 

rising clock. Notice that the register changes value a short delay after the rising clock. 
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CHAPTER VII 

 

 

 

DATAPATH DESIGN 

 

 

 

7.1 Chapter Overview 

 

The design of the microcontoller is discussed in 2 separate chapters – one for the 

datapath and one for the control unit. This chapter discusses the design of the datapath 

while the next chapter will discuss about the control unit. All modules in the top-level 

block diagram (Figure 6.2) except the control unit are part of the datapath. These 

modules are listed in Table 7.1. The design of each module will be discussed one by one 

in this chapter. 

 

Table 7.1   Modules Inside The Datapath 

1. Program counter (PC) 
2. Instruction Register (IR) 
3. Program ROM 
4. General Purpose Register File 
5. ALU 
6. Status Register (SR) 
7. Data RAM 
8. Port 
9. Timer 
10. External Interrupt 
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7.2 Program Counter (PC) 

Figure 7.1   Program Counter Architecture  

 

Figure 7.1 shows the architecture of the PC module. In the most basic execution 

stream, the PC is incremented on every clock transition. But in some cases, the PC will 

be loaded with a new value instead of incrementing it. Hardware stack is used to keep 

the return address of a subroutine call or interrupt request. Program counter backup 

register (PCB) always loaded with the last PC value. 

 

There are 3 circumstances that the PC will be loaded with a new value instead of 

incrementing it. The first is serving a branch instruction (conditional or unconditional); 

the second is serving an interrupt request; and the third is returning from a subroutine or 

interrupt service routine (ISR). 

 

The description for branch instructions is PC ?  PC + 1 + offset. This can be a 

confusing description. Should the PC stands for the value in the real program counter 

itself; or the address of the current executing instruction; or the address of the next 
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instruction to be fetched? Recall the pipelining discuss in chapter 5, when the CPU is 

executing the Nth instruction, the PC has already increased to N + 2 and the instruction 

in the IR is the N + 1 instruction. The PC in the description is actually the address of the 

branch instruction itself, not the real hardware PC. So PC + 1 points to the next 

instruction that follow. If the real PC is always ahead of 2, another register - program 

counter backup register (PCB) is used to keep the last PC value that is ahead of 1. When 

serving a branch instruction, the new PC value will be the PCB plus the offset 

 

Serving an interrupt request will cause the PC to be loaded with the interrupt 

vector address. There are 2 interrupt vectors and 1 reset vector all located at the start of 

the program memory space listed in Table 7.2 according to its priorities. An RJMP 

instruction that jumps to the interrupt service routine (ISR) is contained in the vector 

address. So when serving an interrupt request, the PC is first loaded with the vector 

address, then the CPU execute the instruction loaded from the corresponding vector 

address - a jump to ISR. The PC is then loaded with the address of the ISR. And finally 

the CPU starts executing the ISR. 

 

Table 7.2   Interrupt Vector 

Vector No. Vector Address Source Interrupt Definition 
1 $000 RESET Reset Pin 
2 $001 INT0 External Interrupt Request 0 
4 $002 TIMER0, OVF0 Timer/Counter Overflow 

  

 

The hardware stack is used to store the return address of a subroutine call and 

interrupt request. The stack is 4-level deep (STACK0 – STACK 3) and is LIFO (Last In 

First Out). When the CPU serves a subroutine call or interrupt request, the return address 

is pushed into STACK0. The original contents in the stack are push one level deeper, 

with STACK0 pushed into STACK1, STACK1 into STACK2, and so forth. This is 

called the push operation. On returning from a subroutine call or interrupt request, PC is 

being loaded with STACK0 and the original contents of the stack is pull up one level, 

from STACK3 into STACK2, from STACK2 into STACK1, and so forth. This is called 
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the pull operation. If there are more that 4 subsequent subroutine call or interrupt 

request, the first return address that is pushed into the stack will be lost. 

 

The return address for a subroutine call is the PCB. However, the return address 

for an interrupt request is not PCB but PCB – 1. A short program in Figure 7.2 will help 

to clarify this. When executing the RCALL MAKE instruction, PCB is $22 and is 

pushed into the stack. The PC is loaded with $50 and the CPU start executing the 

MAKE subroutine. When it encountered the RET instruction, the PC is pulled from the 

stack, which contains $22, the next instruction address following RCALL MAKE. 

 

 Figure 7.2   Subroutine Call and Interrupt Request Program 

 

Now lets assume that the CPU serves the timer overflow interrupt request at $21. 

PCB is $22. PC is loaded with the vector address ($02) and the CPU executes RJMP 

TIMER and the ISR. When it encounters the RETI instruction, the return address is pop 

from the stack to the PC. If PCB was pushed into the stack earlier, the next instruction 

that follows will be DEC R26, which is wrong because RCALL MAKE has not been 

executed yet! So the correct return address for an interrupt request is PCB – 1. 

Addr Label Instruction 
 
$00  rjmp reset  ; reset vector 
$01  rjmp extirq ; external IRQ vector 
$02  rjmp timer  ; timer overflow IRQ vector 
 
$20  add r25,r26 ; r26 = r26 + r25 
$21  rcall make  ; call subroutine make 
$22  dec r26  ; r26 = r26 - 1 
$23  inc r25  ; r25 = r25 + 1 
 
$50 make: ... 
  ... 
  ret   ; return from subroutine 
 
$80 timer:... 
  ... 
  reti   ; return from interrupt 
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 offset[8..0] ?   

en  ?   
addoffset  ?   

push  ? Program Counter ?  pc[8..0] 
pull ? (v_pc.vhd)  

 vec2 ?   
vec4 ?   
clk  ?   

clrn  ?   
  

Figure 7.3   Program Counter Symbol 

 

Figure 7.3 shows the symbol of the program counter (PC) module. PC, PCB and 

the 4 hardware stacks are 9-bits wide. So the PC can address up to 512 unique locations. 

The PC is connected to the program ROM directly. The offset for a relative branch is 

received from the control unit, so as others control signals. EN is the enable signal for all 

the registers – PC, PCB and stacks. Only when EN signal is asserted, operation can be 

performed. This signal is asserted only when executing a 2 cycles instruction to hold the 

pipeline. 

 

ADDOFFSET signal load the PC with PCB + offset. VEC2 signal loads the PC 

with interrupt vector 2 ($01 - external interrupt) while VEC4 signal loads the PC with 

interrupt vector 4 ($02 - timer overflow interrupt). PUSH signal performs the push 

operation and PULL signal performs the pull operation. If none of the signals that load 

the PC is asserted, the PC will be incremented by one. 
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7.3 Program ROM 

 

15 0 

000 ($000) 

001 ($000) 

… 

… 

510 ($1FE) 

511 ($1FF) 

Figure 7.4   Program ROM Organization 

 

The program ROM is used to store the program for the microcontroller. A 

program is a combination of many instructions to perform a specific task. Figure 7.4 

shows the organization of the program ROM. Since all instructions have a fixed width of 

16-bits, the ROM word size is also 16-bits so that the instruction can be fetched into the 

instruction register in a single cycle. The ROM size is 1 K bytes, or better stated as 512 

words. This means that it can store up to 512 instructions. To address 512 locations, it 

requires 9-bit wide address. 

 
 

  
 pc[8..0] ? Program ROM ?  instructions[15..0] 

(v_rom.vhd)  
  

 
Figure 7.5   Program ROM Symbol 

 

Figure 7.5 shows the symbol of the program ROM. It is implemented using the 

LPM_ROM module provided by Altera, which is the recommended way to implement 

memory in Altera FLEX10K devices. Program counter provide the 9-bit address through 

a direct bus to the ROM. The instruction output from the ROM is then send to the 

instruction register. No clock signal is require for the program ROM. It can be imagined 

as a combination logic where the output will be available some delay after the input has 

changed. 
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7.4 Instruction Register (IR) 

 

As its name suggest, instruction register (IR) is used to store the instruction. The 

instruction is received from the program ROM through a direct 16-bit wide bus 

connection. The IR will only latch the new instruction in if the EN signal is asserted. 

The IR (the instruction) is connected to the control unit for decoding. The corresponding 

bits that form the immediate value are sent to the ALU. While the bits that addressed the 

destination and source register are sent to the general purpose register file. Please refer 

to chapter 4 for instruction format. Figure 7.6 shows the symbol for the IR module. 

 

It is important to note that the instruction in IR is not holding the current 

executing instructions. IR is always holding the next instruction. So the control unit is 

always decoding the next instruction. Recall that the execute stage of the current 

instruction is also the fetch stage of the next instruction in the pipeline organization. 

 

 
  

 instructions[15..0] ?  ?  ir[15..0] 
 en ? Instruction Register ?  imm_value[7..0] 
 clk ? (v_ir.vhd) ?  rd[3..0] 

 clrn ?  ?  rr[3..0] 
  

Figure 7.6   Instruction Register Symbol 

 

Figure 7.6 show the symbol if the instruction register module. The EN signal 

seen here is same as the EN signal seen in the PC module. The IR can only load the data 

from program ROM when EN is asserted. Usually, it is always asserted except when the 

CPU is executing a 2 cycles instruction.  
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7.5 General Purpose Register File 

 

 A RISC CPU usually have a large general purpose register file. The standard 

number of registers are normally 32, so as in the AT90S1200. 32 registers will require 

about 52% area of the targeted device Altera EPF10K20RC240-4, which are 

unacceptable. As a result, only 16 registers are included in this design. The same 

instruction format discussed earlier is used, except that the 5th bit of the register address 

is now a don’t care value. 

 

Figure 7.7 shows the structure of the 16 general purpose registers. They are 

numbered from R16 to R31 instead of R0 to R15 due to 2 reason. Firstly, immediate 

instructions like LDI can only address the upper register file as discussed in the 

instruction format section in chaper 4. Secondly, the indirect Z-pointer share the same 

register as R30.  

 

7 0 

R16 

R17 

… 

R29 

R30 (Z-Pointer) 

R31 

Figure 7.7   General Purpose Register File Organization 

 

At any time, the register file will connect 2 registers to the ALU through two  

16-to-1 multiplexers. The two registers are the destination register and source register, 

addressed directly by the instruction register. The data bus is connected directly to the 

register file. The value of the data bus can be written to the destination register if the 

WR_REG signal is asserted.  

 

The address bus connects the register file and data RAM together. R30 can be 

used as either a general register or the Z-pointer (ZP) to address the data RAM. The 
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starting address for data RAM is $60. Unfortunately, the targeted device requires the 

starting address of a RAM to be $0. So, the address bus value is the value of ZP 

subtracted by $60. If indirect addressing with pre-decrement is used, then the address 

bus is the value of ZP subtracted by 61.  

 

  
c[7..0] ?   
wr_reg ?   
inc_zp ?  ?  reg_rd[7..0] 

dec_zp ? General Pupose Registers ?  reg_rr[7..0] 
rd[3..0] ? (v_gpr.vhd) ?  addr_bus[7..0] 
rr[[3..0] ?   

dest[3..0] ?   
 clk ?   

 Clrn ?  
 

Figure 7.8 General Purpose Registers Symbol 

 

 Figure 7.8 shows the module symbol of the general purpose register file. 

INC_ZP is asserted when indirect addressing with post-increment is used. It will 

incrememt ZP by 1. DEC_ZP is asserted when indirect addressing with pre-decrement is 

used. It will decrement ZP by 1. When indirect addressing with pre-decrement is used, 

the MAR load the value of the address bus at the same rising edge the ZP is 

decremented. So MAR will not be able to load the decremented ZP value. This is the 

reason why the address bus is the value of ZP subtracted by $61 instead of $60 to correct 

this problem. 

 

 Recall that an instruction cycle are divided into fetch stage and execute stage. 

Operands are fetch at the start of the execute stage while the result is written back at the 

end of the execute stage. To be able to fetch the correct operands at the start of the 

execute stange, the operands must be known in the fetch stage. The instruction in the IR 

is in the fetch stage, so it addressed the operands. When the instruction enter the execute 

stage, another instruction is fetched. To write the result from the ALU back to the 

correct destination register must now tell by the control unit instead of the IR because IR 

only knows the destination register of the next instructions. This is the difference 

between RD (fetch stage) and DEST (execute stage). 



 50

7.6 ALU 

 

The ALU executes many instructions, some directly and some indirectly. We 

first examine the 24 most basic instructions that are executed directly by the ALU. These 

instructions are listed in Table 7.3. They are divided into 5 groups – ADD, SUBCP, 

LOGIC, RIGHT and DIR. ADD group instructions perform add operations; SUBCP 

group instructions perform subtract and compare operations; LOGIC group perform 

logical operations; RIGHT group perform right shifting; DIR group perform direct 

wiring operations. 

 

Table 7.3   Basic Instructions  

Group Instruction Extra Signal Wr_Reg ORA ORB Flags 
ADD  ü   HSVNZC 
ADC WCARRY ü   HSVNZC 

ADD 

INC  ü  One HSVNZC 
SUB  ü   HSVNZC 
SUBI  ü  Imm HSVNZC 
SBC WCARRY ü   HSVNZC 
SBCI WCARRY ü  Imm HSVNZC 
CP     HSVNZC 
CPC WCARRY    HSVNZC 
CPI    Imm HSVNZC 
DEC  ü  One    SVNZ 

SUBCP 

NEG  ü Zero Rd HSVNZC 
AND LOGICSEL = 00 ü   HSVNZC 
ANDI LOGICSEL = 00 ü  Imm HSVNZC 
OR LOGICSEL = 01 ü   HSVNZC 
ORI LOGICSEL = 01 ü  Imm HSVNZC 
EOR LOGICSEL = 10 ü   HSVNZC 

LOGIC 

COM LOGICSEL = 11 ü   HSVNZC 
LSR RIGHTSEL = 00 ü      SVNZC 
ROR RIGHTSEL = 01 ü      SVNZC 

RIGHT 

ASR RIGHTSEL = 10 ü      SVNZC 
MOV DIRSEL = 0 ü    
LDI DIRSEL = 0 ü  Imm  

DIR 

SWAP DIRSEL = 1 ü    

* If not stated, then ORA is default to Rd and ORB is default to Rr. 
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 WR_REG signal is asserted if the result of the ALU will be written back to the 

destination register. It is a register file control signal, not the ALU. ORA and ORB 

columns shows what should be loaded into the operand register A and operand register 

B. If the cell is blank, it is default to Rd (destination register) for ORA and Rr (source 

register) for ORB. Zero is “0000 0000”; One is “0000 0001”; and Imm is the immediate 

value of the instructions. 

 

Every instructions has its own combination of group + extra signal + WR_REG 

signal + ORA + ORB. This combination makes the 24 instructions unique to each other. 

To represent a group, a control signal with the same name as the group is asserted. ADC 

is executed by fetching Rd to ORA, Rr to ORB and assert the ADD signal, WCARRY 

signal and WR_REG signal. ORI is executed by fetching Rd to ORA, the immediate 

value to ORA, assert the LOGIC signal and set LOGICSEL to 01. All others instructions 

are executed according to their combination 

 

A total of 21 instructions will change the status register (SR) flags based on the 

result of the operation. So the ALU need to evaluate the flags and send them to the SR. 

If an instruction will modified the C-flag, the control will enable the C-bit in SR in order 

to received the new flag from the ALU. The flag column in Table 7.3 shows the flags 

that are affected by the 21 instructions. If a flag is not affected, the control unit will not 

enable the corresponding bit in SR. The value ALU send to the SR is don’t care. 

 

Table 7.4   Bit Load instructions  

Signal Instruction Wr_Reg ORA Description 

BLD BLD ü Rd Load T-Flag to bit 
CBI  I/O Clear bit in I/O register CBISBI 
SBI  I/O Set bit in I/O register 

 

We now add 3 more instructions to our discussion, listed in Table 7.4. They 

require a single operand, Rd for BLD and an I/O register for CBI and SBI. Their 

operation is similar where BLD loads the T-flag into a bit while CBI can be think as 

loading a 0 into a bit, so as SBI is loading a 1 to a bit. The control will tell which bit 
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should be loaded. SBI and CBI instruction require 2 cycles to complete. At the first 

cycle, the I/O register is fetched to ORA through the data bus. At the second cycle, a 0 

or 1 is loaded to the bit location and result is written back to the I/O through the data 

bus. 

 

The register file can only received data from the data bus. So, in order to send 

data out to the data bus, it needs to pass it through the ALU. Table 7.5 list the 4 

instructions of this group. OUT instruction transfers the content of a register to an I/O 

register while LD Z, LD Z+ and LD –Z transfer the content of a register to the data 

RAM. Rd is fetch to ORA and the ALU perform a pass operation to pass ORA to data 

bus. 

 

Table 7.5   Pass ORA Instructions  

Signal Instruction ORA Description 

OUT Rd Skip if bit in register cleared 
LD Z Rd Skip if bit in register set 
LD Z+ Rd Skip if bit in I/O register cleared 

PASSA 

LD –Z Rd Skip if bit in I/O register set 
 

Following next are the 5 skip instructions listed in Table 7.6. They determine 

whether the next instruction followed should be skipped. The SKIPTEST group 

instructions require single operand while the CPSE instruction requires two. I/O refers to 

the respective I/O register. SBIC and SBIC instruction require 2 cycles to operate just 

like CBI and SBI. At the first cycle, the I/O register is fetched to ORA. The skip test 

then performed at the second cycle. 

 

Table 7.6   Skip Instructions  

Signal Instruction ORA ORB Description 

SBRC Rd X Skip if bit in register cleared 
SBRS Rd X Skip if bit in register set 
SBIC I/O X Skip if bit in I/O register cleared 

SKIPTEST 

SBIS I/O X Skip if bit in I/O register set 
CPSE CPSE Rd Rr Compare, skip if equal 
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Figure 7.9 shows the organization of the ALU module. It can be broken into 4 

functional units – operand fetch unit, execution unit, skip evaluation unit and status flags 

evaluation unit. Operand fetch unit perform the fetching of operands to ORA and ORB, 

execution unit takes ORA and ORB and modified accordingly, status flags evaluation 

unit calculate the flags and send it to SR, and skip evaluation unit perform skip test. We 

will now assume that the control unit will send in the correct control signals at the 

correct time. More detail description about the control signals will be discuss in control 

unit section. 

 

Figure 7.9   ALU Organization 
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7.6.1 Operand Fetch Unit 

 

Figure 7.10 shows the structure of the operand fetch unit. There are two operand 

registers inside the operand fetch unit – operand register A (ORA) and operand register 

B (ORB).  

 

Figure 7.10   Operand Fetch Unit 

 

ORA can be loaded with Rd or “0000 0000” while ORB can be loaded with Rr, 

Rd, immediate value or “0000 0001”. They are selected by the ASEL signal and BSEL 

signal. The main purpose of the C2A signal and C2B signal is do perform operand 

forwarding as discussed in pipeline conflicts section in chapter 5. They are used to 

forward the result of the ALU (data bus) to the operand registers if the destination 

register of the currently executing instruction is found to be same as Rd or Rr 

 

As discussed earlier, CBI, SBI, SBIC and SBIS instructions will fetch one of the 

I/O register to ORA as their operand. C2A also does the job by sending the data bus 

(that contains the I/O register value) to ORA. 

 

MUX MUX 
ORA 

Reg Rd 
Data Bus 

0000 0000 
C2A 

ASEL 

MUX MUX 
ORB 

Reg Rr 
Data Bus 

Reg Rd 
Immediate 
0000 0001 
 

C2B 
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7.6.2 Execution Unit 

 

The execution unit executes 7 groups of instructions that are discussed earlier - 5 

groups from the basic instructions (ADD, SUBCP, LOGIC, RIGHT and DIR), the bit 

load group and the pass ORA group. As shown in Figure 7.11, the execution unit is 

divided into 5 subunits. Adder-subtracter executes instructions from both the ADD and 

SUBCP group. Logic unit executes instructions from the LOGIC group. Shifter for the 

RIGHT group; direct unit for the DIR group; and bit loader for the bit load group. 

Figure 7.11   Execution Unit Organization 

 

The adder-subtracter add ORA and ORB when the ADD signal is asserted, else it 

subtract ORB from ORA. Carry in of the adder-subtracter is determined by the ADD 

signal and WCARRY signal as shown in table 7.7.  

 

Table 7.7   Carry In of Adder-Subtracter 

ADD WCARRY Carry In Related Instruction 
0 0 1 SUB, SUBI, CP, CPI, DEC, NEG 
0 1 Not C-Flag SBC, SBCI, CPC 
1 0 0 ADD, INC 
1 1 C-Flag ADC 

 

 

Adder-Subtracter 

Logic Unit 

Shifter 

Direct Unit 

Bit Loader 

Execution Unit 
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The logic unit performs it operation based on the LOGICSEL signal. It performs 

a logical and between ORA and ORB when 00; logical or between ORA and ORB when 

01; exclusive or between ORA and ORB when 10; and complement ORA when 11. 

 

The shifter performs right shifting operation. The 7 least significant bits (LSB) of 

the result are the 7 most significant bits (MSB) of ORA. The result MSB is based on 

RIGHTSEL signal, which is ‘0’ when 00; C-flag when 01; and the MSB of ORA when 

10. 

 

The direct unit performs direct data wiring based on the DIRSEL signal. It 

connects ORB to the result when DIRSEL is 0. If DIRSEL = 1, the 4 MSB of the result 

is the 4 LSB of ORA while the 4 LSB of the result is the 4 MSB of ORA (swap nibbles 

of ORA). 

 

The bit loader receives the 3 control signals – BLD, CBISBI, BITSEL and SET. 

BLD signal loads the bit in ORA pointed by BITSEL with the T-flag. CBISBI signal 

will load the bit in ORA pointed by BITSEL with the value of SET. 

 

The outputs of all the 5 units plus the value of ORA are multiplexed to the data 

bus through tri-state-buffers. Table 7.8 shows the data bus value with the respective 

control signal. 2 control signals asserted at the same time is impossible because each 

control signal represents totally different instructions and the CPU can only executes one 

instruction at a time. If none of the control signal in the table is active, nothing is sent 

out to the data bus, and it has a high impedance value. The data bus can be used for 

others purpose. 
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Table 7.8   Data Bus Value  

Control Signal Data Bus Value  
ADD, SUBCP Adder-Subtracter 
LOGIC Logic Unit 
RIGHT Shifter 
DIRECT Direct Unit 
BLD, CBISBI Bit Loader 
PASSA ORA 
Default High Impedance 

 

 

 

7.6.3 Skip Evaluation Unit 

 

Skip instructions (Table 7.6) are executed by first evaluating the skip condition 

by the skip evaluating unit. If the skip condition is fulfilled, the SKIP signal is asserted. 

The control unit will skip the next instruction that followed. 

 

The skip evaluation unit receives 4 control signals – CPSE, SKIPTEST, BITSEL 

and SET. When CPSE signal is asserted, ORA are compared with ORB. The SKIP 

signal is asserted if they contain the same value. SKIPTEST test the bit in ORA pointed 

by BITSEL. If that bit has the same value as SET, the SKIP signal is asserted. 

 

 

 

7.6.4 Flags Evaluation Unit 

 

The 21 instructions (shown in table 7.3) that are executed by the ALU plus the 

BST instruction will modified the status register (SR). The control unit tests the status 

register bits to determine whether the branch of an unconditional branch instruction 

should be taken. A 7-bit wide flag bus is connected directly to SR to send the flags 

result. It is 7 but not 8 bit because none of these instructions modified the I-flag.  
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The ALU will evaluate all the 7 flags any time and send it to the SR through the 

flag bus. This will not create problems because every bit in SR receives an individual 

enable signal. The flag value send from the ALU will only be loaded if the enable signal 

for that bit is active. The control unit takes care of the enable signals. The ALU takes 

care of sending the correct flags to the bus. If a flag for an instruction is not modified, 

the ALU can send anything to that bus line. 

 

 Z-flag (Zero) is 1 when the result of an operation is zero. The evaluation unit can 

test the result (data bus) directly to determine the Z-flag. It works but it will slow down 

the design performance because signals need to pass through the execution unit and the 

tri-state buffers before reaching the data bus. Only instructions from ADD, SUBCP, 

LOGIC and RIGHT groups modified the Z-flag. To increase performance, the result of 

the adder-subtracter, logic unit and shifter is tested directly instead of the data bus.  

 

 N-flag (Negative) is always same as the value of the MSB of the result (bit 7). 

Again, testing the data bus will slow down performance. So, the N-flag is tested based of 

the result of the adder-subtracter, logic unit and shifter. 

 

 V-flag is directly generated by the adder-subtracter when performing ADD and 

SUBCP group instructions. It is always cleared for LOGIC instructions. For RIGHT 

instruction, the Boolean equation given in the datasheet is N-flag ⊕  C-flag. Recall that 

N-flag is equivalent to the MSB of the result (shifter result) and C-flag is the LSB of 

ORA. 

 

 S-flag (Sign) is an exclusive OR between the N-flag with the V-flag all the time. 

 

 C-flag (Carry) is the carry out of the adder-subtracter when performing ADD 

group instructions. RIGHT group instructions shift ORA one bit to the right and the LSB 

of ORA enter the C-flag. The COM instruction (from LOGIC group) always set the C-

flag. For SUBCP instructions, C-flag is the borrow-in of the operation and is equal to the 

complement of carry out of the adder-subtracter. 
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 H-flag (Half Carry) are modified by ADD and SUBCP group instructions. For 

ADD group, it is set if there is a carry out from bit 3 of the adder-shifter result. The 

Boolean equation for it is 3.33.33.3 ACCBBA ++  with A is ORA, B is ORB and C is 

the adder-subtracter result. The H-flag is the borrow in from bit 3 and is given as 

3.33.33.3 ACCBBA ++ . 

 

 T-flag is always the bit in ORA pointed by BITSEL. When executing the BST 

(store bit to T-flag) instruction, the control unit simply asserts the enable signal for the 

T-bit in SR. 

 

 

 

7.7 Status Register (SR) 

 

The status register (SR) is mapped into the I/O space at $3F. Figure 7.12 shows 

the structure of the SR. 

 

7 6 5 4 3 2 1 0 

I T H S V N Z C 

Figure 7.12   Status Register Structure  

 

� Bit 7 – I: Global Interrupt Enable 

� Bit 6 – T: Bit Copy Storage 

� Bit 5 – H: Half Carry Flag 

� Bit 4 – S: Sign Bit 

� Bit 3 – V: Two’s Complement Overflow Flag 

� Bit 2 – N: Negative Flag 

� Bit 1 – Z: Zero Flag 

� Bit 0 – C: Carry Flag 

 

 



 60

All the flags except the I-flag have been discussed in the ALU section. The I-flag 

must be set to enable the interrupt. Only if the I-flag is set, an interrupt request can be 

served. 

 

The SR can be modified in 4 conditions. First, the SR can be replace with the 

content of a general purpose register. This is done by writing to the I/O address $3F. The 

contents of the SR can also transferred to a general purpose register by reading the I/O 

address $35. 

 

As discussed in the ALU section, the SR receives a 7-bit wide flag bus from the 

ALU. The C bus line is connected to the C-flag (a flip-flop); Z bus line to the Z-flag; and 

so forth. The I-flag is not connected to any bus line. The control unit sends in enable 

signals for all the flags (flip-flops). Only when the bit is enabled, the value of the bus 

line can be written into the flag. 

 

If an interrupt request is served, the control unit will need to clear the I-flag 

before executing the interrupt service routine (ISR) so that another interrupt request will 

not be executed when serving the current one. When the ISR is completed (when RETI 

instruction is executed) the I-flag will be set again. So another interrupt request can be 

served. The control unit send 2 control signals to clear and set the I-flag. 

 

 Every bit in the SR can be cleared of set directly using the BCLR and BSET 

instructions. The SR receives BCLR, BSET and SRSEL signals. When BCLR is active, 

the flag pointed by SRSEL will be cleared. When BSET is active, the flag pointed by 

SRSEL will be set. 
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7.8 Data RAM 

 

The actual AT90S1200 chip does not contain any SRAM. The AT90S2313 

contains 128 Bytes of SRAM. Figure 7.13 show how the SRAM is organized in 

AT90S2313. The 32 general purpose registers and 64 I/O registers are mapped into the 

data space as well. The address space is accessed by LD and ST instructions with 

indirect addressing through the X-pointer, Y-pointer and Z pointer. 

 

$00 
 32 General 

Purpose Registers 
$1F 
$20 

64 I/O Registers 
$5F 
$60 SRAM 

(128 x 8) $DF 

Figure 7.13 Data Address Space 

 

In this design, the general purpose registers and I/O registers are not mapped into 

the data space. The data space consist of the the SRAM only, addressed from $60 to 

$DF. Only the Z-pointer (R30) is available. Data indirect with displacement is not 

supported. 

  

Figure 7.14 Data RAM Organization 
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Figure 7.14 shows the organization of the data RAM module. It contains two 

registers – memory address register (MAR) and memory buffer register (MBR). MAR is 

connected to the address input of the RAM. It receives data from the address bus which 

is send from the egister file. MBR are connected to the data input port of the RAM. It 

stores the data to be writen into the RAM. The MBR receives data from the data bus. A 

write operation will write the contents of the MBR to the memory addressed by MAR. A 

read operation will send the contents of the memory pointed by MAR to the data bus. If 

the read operation is not active, the RAM output will be tri-stated. 

 

  
addrbus[7..0] ?   

rd_ram ?   
wr_ram ? Data RAM ?  c[7..0] 
ld_mar ? (v_ram.vhd)  
ld_mbr ?   

 clk ?   
 clrn ?  

 

Figure 7.15   Data RAM Symbol  

 

Figure 7.15 shows the symbol of the data RAM module. The RAM is 

implemented using LPM_RAM_DQ module from the LPM library. A special 

characteristic of this RAM is that it can have initial values by specifying the values in a 

MIF file. In this way, it also acts like a ROM as well. RD_RAM reads the content of the 

memory to data bus; WR_RAM writes the content of the MBR to memory; LD_MAR 

load the MAR with address bus; and LD_MBR loads MBR with data bus. 
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7.9 Port 

 

There are three 8-bits bi-directional I/O ports in the design – Port B, Port C and 

Port D. Every port has its own data register, data direction register and input pins. They 

are mapped into the I/O space as listed in Table 6.1. All the data registers and data 

direction registers are cleared after reset. Data registers and data direction registers can 

be read and written to while the input pins can only be read. 

 

A port is built using bit-slice approach where a single bit module is built and 

cascaded together to form the port. Shown in Figure 7.16 is the schematic of the bit-

slice.  

 Figure 7.16   Bit-slice schematic of the I/O Port 

 

 The bit-slice contains 2 D-flip-flops, one is the data flip-flop while another is the 

data direction flip-flop. Data direction flip-flop control the direction of the I/O pin – 0 

for input and 1 for output. When configure as input (direction = 0), the tri state buffer is 

not enable and the external bin will be in high impedanze state. A read on the pin will 
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read the value of the physical pin to the data bus. The data flip-flop value does not 

change according to the phisical pin.  

 

When the pin is configured as output (direction = 1), the tri-state buffer that 

connects to the data flip-flop is now enabled. The physical pin will be directly driven the 

the value of the data flip-flop. 

 

The port are connected directly to the data bus. When writing to the data flip-flop 

and direction flip-flop, data is received from the data bus and the write signal to the 

respected flip-flop is asserted. A read operation can read the contents of the data flip-

flop, direction flip-flop and the external pin. A read signal to the respected flip-flops or 

pin will read its content to the data bus. 

 

 Eight copies of the same bit-slice are cascaded together to form a port module. 

Then the port module can be duplicate to form port B, port C and port D. Although they 

share the same port module, they are actually receiving different set of control signals 

from the control unit which differenciate them. 

 

  
rd_port ?   
wr_port ?   
rd_ddr ? Port ?  c[7..0] 
wr_ddr ? (v_port.vhd) ?  pin[7..0] 
rd_pin ?   

 clk ?   
 clrn ?  

 
Figure 7.17   Port Symbol  

 

Figure 7.17 shows the symbol of the port module. The port B will have the 

RD_PORT input connected to RD_PORTB signal while port C will have it connected to 

RD_PORTC, and RD_PORTD for port D. The same naming convention is applied to 

others control signals. The physical I/O pin is also named as PINB, PINC and PIND 

respectively.
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7.10 Timer 

 

The timer is a simple 8-bit timer with overflow detection and interrupt request. 

There are 4 control registers in the timer – timer/counter interrupt mask register 

(TIMSK) at $39, timer/counter interrupt flag register (TIFR) at $38, timer/counter 0 

control register (TCCR) at $33 and timer/counter 0 (TCNT0) at $32. Figure 7.18 shows 

the control bits in these registers. 

 

 7 6 5 4 3 2 1 0 

TIMSK - - - - - - TOIE0 - 
         

TIFR - - - - - - TOV0 - 
         

TCCR0 - - - - - CS02 CS01 CS00 
         

TCNT0 MSB       LSB 
         

Figure 7.18   Timer Control Registers  

 

The timer module contains a 10-bit prescaler/frequency divider drive by the 

system clock, which give a maximum division of 1024. CS02, CS01 and CS00 select the 

clock source for the timer according to Table 7.9. 

 

Table 7.9   Timer Clock Source Select 

CS02 CS01 CS00 Timer Clock Source 

0 0 0 0 - the timer is stopped 
0 0 1 System Clock (CLK) 
0 1 0 CLK/8 
0 1 1 CLK/64 
1 0 0 CLK/256 
1 0 1 CLK/1024 
1 1 0 External Pin, falling edge 
1 1 1 External Pin, rising edge 
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It is important to note that the timer clock source does not drive the TCNT0 

directly. Instead, TCNT0 is driven by the system clock. The timer clock source are 

sampled at the rising edge of the system clock. If a low to high transition is detected (a 

low is sampled followed by a high), the increment signal for TCNT0 is asserted to 

increment it. Every transition detected will generate an increment signal pulse. If the 

timer clock source is the system clock, then no detection of rising edge is required - the 

increment signal is always asserted. To assure proper sampling of the external clock 

source, the frequency of the external clock should be smaller than the system clock 

frequency, and the smaller the better. 

 

Every time the increment signal is active, TCNT0 will be incremented by 1. If 

TCNT0 is $FF before increment, it will become $00 after increment and at the same 

time the timer/counter 0 overflow flag (TOV0) will be set. 

 

The timer/counter 0 interrupt overflow interrupt enable flag (TOV0) is ANDed 

with TOV0 to generate the timer overflow interrupt request. If the TOV0 is set (timer 

overflow interrupt enabled) and TOV0 is also set (timer overflow occurred), the timer 

will assert an interrupt request to the control unit. If the I-flag in the SR is enabled, the 

control unit will serve the interrupt request and clear the TOV0 flag by sending a clear 

TOV0 signal to the timer module. 

 

Just like other control registers, the 4 timer registers can be read and write 

through the data bus. However, reserved bits are always read as zero; and the TOV0 flag 

can be cleared by writing a one to it. In this way, TOV0 flag can never be set by the 

user. Reserved bits are not implemented with flip-flops, they are connected directly to 

ground and this will save a lot of flip-flops. This is why the reserved bits are always read 

as zero and there are no way data can be written to them. 

 

Figure 7.19 shows the symbol of the timer module. In this design, the EXTPIN is 

conneted to PIND7, the last pin of port D. It can easily configured to point to any of the 

24 I/O pins. CLR_TOV0 is sent from the control unit to clear the TOV0 flag when the 
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interrupt request is served. The 4 RD signals read the timer control registers to the data 

bus while the 4 WR signals write the data bus value to the corresponding register. 

 

  
extpin ?   

clr_tov0 ?   
rd_timsk ?   
wr_timsk ?   

rd_tifr ? Timer ?  c[7..0] 
 wr_tifr ? (v_timer.vhd) ?  timerirq 

 rd_tccr0 ?   
wr_tccr0 ?  
rd_tcnt0 ?  
wr_tcnt0 ?  

clk ?  
clrn ?  

 

Figure 7.19   Timer Symbol  

 

 

 

7.11 External Interrupt 

 

 The external interrupt is triggered by an external pin. In this design, the external 

pin share the pin with pin D7, the last pin of port D. This pin can be easily changed to 

share with one of the 24 I/O pins by modifying a singal line in the VHDL code. Shown 

in Figure 7.20 is the 2 control registers for external interrupt – general interrupt mask 

register (GIMSK) at $3B and MCU control register (MCUCR) at $35. 

 

 7 6 5 4 3 2 1 0 

GIMSK - INT0 - - - - - - 
         

MCUCR - - - - - - ISC01 ISC00 
         

Figure 7.20   External Interrupt Control Register 

 

 The MCUCR of AT90S1200 has the bits 4 and 5 for controlling the sleep modes 

of the microcontroller. Since the design does not include this feature, these bits are taken 

away from the register. 
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 The interrupt can be triggered by the external pin on rising edge, falling edge of 

low level and is selected by the ISC01 and ISC00 bits (interrupt sense control 0) as 

shown in Table 7.10. 

 

Table 7.10   Interrupt Source 

ISC01 ISC00 Interrupt Source 
0 0 Low Level 
0 1 - 
1 0 Falling Edge 
1 1 Rising Edge 

 

 

 The interrupt can also be triggered when the external pin is configured as output. 

The difference now is that the interrupt signal is provided internally from the 

microcontroller instead of external signal. This provides a way to generate software 

interrupt by the programmer. 

 

Transitions (falling edge and rising edge) are not detected using the clock input 

of a flip-flop. The external pin is sampled on every system clock to detect the transitions. 

A low sample follows by a high sample sense a rising edge while a high sample follows 

by a low sample sense a falling edge. When the interrupt source is set to falling or rising 

edge, the external interrupt flag will be set when the require edge is detected. The 

external interrupt flag are not accessible by the user. It is not placed inside any of the 

control register. The flag will stay until the interrupt request is served or after a reset. 

 

Figure 7.21 shows how interrupt request is generated. To generate an interrupt 

request to the control unit, the INT0 bit (external interrupt request 0 enable) must be set. 

This bit is ANDed with the flag to generate the interrupt request (with ISC /= 00). 
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Figure 7.21   Generating External Interrupt Request 

 

Low-level interrupt are difference from edge interrupt just discussed. It does not 

set the external interrupt flag to generate an interrupt request. Instead, it never touches 

the flag. The complement of the external pin (detect low-level) is directly ANDed with 

the INT0 bit to generate an interrupt request. So if INT0 is set, it will generate an 

interrupt request as long as the pin is held low. If the interrupt is not enabled when the 

pin is held low, it will be forgotten when the pin goes high. 

 

If the external interrupt is set to edge triggered, the external signal must have 

sharp transition. If a physical switch is used to generate the interrupt, switch-bounce will 

occur. It will generate a second, third or more interrupt request even if the interrupt 

request has already been served. So, it is recommended that the low-level interrupt is 

used, or the switch is hardware de-bounced. 

 

  
extpin ?   
clr_intf ?   

rd_mcucr ?   
wr_mcucr ? External Interrupt ?  c[7..0] 
rd_gimsk ? (v_extint.vhd) ?  extrirq 

 wr_gimsk ?   
clk ?   

clrn ?  
 

Figure 7.22   Timer Symbol 
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Figure 7.22 shows the symbol of the external interrupt module. CLR_INTF is 

sent by the control unit to clear the external interrupt flag when the interrupt request is 

served. RD and WR signals provide reading and writing the control registers through the 

system data bus. 
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CHAPTER VIII 

 

 

 

CONTROL UNIT DESIGN 

 

 

 

8.1 Chapter Overview 

 

 The design of the datapath has been discussed in the last chapter. Only one 

module is left for the design – the control unit module, which will be discussed in this 

chapter. We have touched the instruction set, pipeline processing and many control 

signals, which controls the datapath. The control unit plays the role on decoding the 

instruction, implements the pipeline processing and asserts the control signals for the 

datapath at the correct timing. This chapter covers the decoding of the instruction and 

the design of the finite state machine (FSM). 

 

 

 

8.2 Instruction Decoder 

 

The inputs of the control unit are the instruction machine code from instruction 

register (IR), the flags value from status register (SR), skip request, timer interrupt 

request (timer IRQ) and external interrupt request (external IRQ). The machine code is 

decoded first before sending to the FSM, while the others inputs are connected directly 

to the FSM. 
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As discussed in chapter 5, the design process involves 51 machine codes. The 

instruction decoder takes the 16-bit machine code from the IR and generates 46 output 

signals to represents the 51 instructions. There are 4 pairs of instructions that share a 

same signal. The share signal is active when either one is found. They are BRBC, 

BRBS; SBRC, SBRS; SBIS, SBIR; CBI, SBI. The NOP instruction is not decoded. So 

51 take away 5 equals to 46 signals. 

 

At any time, the IR can only have one instruction. So, it will not have more than 

one output signal active at a time. However, if the machine code received does not 

match any of the 51 instructions, or is actually the NOP instruction, then none of the 

decoder output signal is active. When none of the output signal is active, the FSM will 

not assert any control signal to perform an operation, so no operation (NOP) is executed 

in that cycle. Any undetermined instruction is executed as NOP. 

 

 

 

8.3 Synchronous Mealy Model Finite State Machine  

 

RISC control unit should be hard-wired (logic gates) rather than 

microprogrammed (ROM implementation). Microprogrammed control unit is used by 

CISC because the instruction has different length and execution cycles. So 

microprogrammed can make the control unit design easier. The disadvantage is slower 

speed performance. In RISC, instruction has fixed length and mostly single cycle 

execution. So design using hard-wired is not that complicated and it will have the 

advantage of speed. 

 

The FSM in this design is hard-wired, using logic gates to generate the next state 

and output signals rather then a ROM. The FSM is implemented using synchronous 

Mealy model. Figure X.X shows the block diagram of a synchronous Mealy model 

FSM. 
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Figure 8.1   Synchronous Mealy Model FSM 

 
 
 Different with the normal Mealy FSM, the synchronous Mealy FSM has their 

output connected to flip-flops. That is why it is called synchronous. There are two 

combinational logics in the state machine, one to generate the next state base on the 

input and current state, while the other is used to generate the outputs base also on the 

input and current state. 

 

 There are basically 2 advantages from using a synchronous Mealy FSM. For a 

Moore or Mealy FSM, the outputs are generated by the output combinational logic. They 

will be delay for the signals to pass through the combinational logic before the output is 

generated. This will slow down the control signals output speed. If the datapath receive 

the control signals later, then will perform their operation later. In the synchronous case, 

outputs are still generated by the combinational logic, but they are now gated to D-flip-

flops. On the next clock transition, the outputs are asserted immediately. The datapath 

receives the control signals at the very beginning of a cycle and therefore can complete 

its operation faster. This is the first advantage. 
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 The FSM contains only 8 states. Such a small number of states are results of 

using synchronous Mealy implementation. This is the second advantage. Since the state 

machine outputs are now gated to flip-flops, all single cycle instruction can share the 

same state. The state is unchanged but the input changed, so it can determine the next 

output. 

 

 

 

8.4 Finite State Machine States 

 

 

Figure 8.2    State Diagram 

 

EXE 

 

SLEEP 

 

ST 

 

CBISBI 

 

SBICS 

 

BRANCH2 

 

BRANCH1 

 

LD 

IRQ 

NO IRQ NO IRQ 

Single Cycle 
Inst. 

RESET 
Uncond.  
Branch 

Branch Request 

SBIC/SBIS 

CBI/SBI 

Store Inst. 

Load Inst. 

Sleep 



 75

 Figure 8.2 shows the state diagram of the finite state machine (FSM). The 8 

states are EXE (execute), SLEEP, BRANCH1, BRANCH2, SBICS (skip if bit in I/O 

clear/set), CBISBI (clear/set bit in I/O), ST and LD. 

 

 The state diagram shows the state flow but does not clearly show the inputs. The 

inputs to the FSM are the 46 output lines of the instruction decoder, timer IRQ, external 

IRQ, skip request and branch request. Branch request is generated by the branch 

evaluation unit when the condition of the conditional branch instruction is fulfilled. 

 

 We now assume all instructions are single cycle and there are no IRQ, skip 

request and branch request. The state machine will have no state change in this case and 

remain at EXE state. All instructions have a fetch cycle and an execute cycle and are 

pipelined together as discussed in chapter 5. When the first instruction is fetched, its 

corresponding output line of the instruction decoder will become active. It happens in 

the fetch stage. The next state combinational logic finds that the next state is unchanged. 

However, the output combinational logic has prepared the control signals based on the 

decoder’s active line. On the next clock transition, the instruction enter the execute stage 

and the control signals is asserted (latch into the output flip-flops). The ALU then 

executes the instruction. Because of pipeline processing, the next instruction has been 

fetched at the same clock transition. The instruction decoder decodes it and asserts 

another output line. Again, the output logic will prepare the correct control signals and 

asserts it on the next clock transition. So the FSM can perform the pipeline processing 

without any difficulty. 

 

 We now consider the one of the unconditional branch instruction - RJMP. When 

RJMP is fetched, the RJMP output line of the decoder is active. The next state logic 

determined that there would be a state change to BRANCH1 state on the next cycle. The 

output logic also prepared the control signals for RJMP, which will load the PC with the 

destination address. On the next clock transition, state changes to BRANCH1 and the 

control signals are asserted. At BRACH1, the next state must be BRANCH2. Although 

the pre-fetched instructions asserts one of the decoder output line, the output logic does 
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not prepared any control signals for the next cycle. So this instruction is being flushed 

from the pipeline, as discussed in chapter 5. So on the following clock transition, state 

changes to BRANCH2 and at the same time, PC is loaded with the new value. The next 

state will be returned to EXE state. Again, no output signal is asserted based on the 

fetched instruction because it is flushed. On the next clock transition, the FSM enters 

EXE state and the destination instruction has been fetched. The decoder’s destination 

instruction output line is active and will be executed on the next cycle. 

 

 The discussion above is for the RJMP instruction. The same concept can be 

applied to RCALL, RET, RETI instructions as well as serving an IRQ. An IRQ (timer or 

external) is sent by the timer or external interrupt module in the datapath. An IRQ can 

only be served if the I-flag is set, else it will be ignored. To make sure all instruction s 

are completely executed, an IRQ can be only be served in the EXE state. On EXE state, 

the FSM first check for any IRQ (must have the I-flag set). If there is any, it will ignored 

the pre-fetched instruction and determines the next state to be BRANCH1. The output 

logic prepare control signal to load PC with the interrupt vector and to clear the I-flag. I-

flag is cleared so that if there is a new IRQ occurred while serving the current one, it will 

not be served. After loading the interrupt vector to the PC, execution continues as 

normal but there will not be any IRQ served until the RETI instruction is fetched and 

executed. It will then set back the I-flag and allowed another IRQ to be served. All 

conditional branch instruction will take 3 cycles to complete. This can be count from the 

transitions make to complete the execution from EXE state back to EXE state. (EXE � 

BRANCH1 � BRANCH2 � EXE) 

 

 The next case to consider is the execution of conditional branch instructions – 

BRBC and BRBS. Different from conditional branch instruction, the branch may or may 

not be taken. They test a bit in the SR to determine whether the branch should be taken. 

The branch evaluation unit will do the job on testing the SR flags base on the condition 

specified. If the condition is fulfilled, it will immediately generate a branch request to 

the FSM. 
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 When either BRBC or BRBS is fetched, the shared instruction decoder output 

line become active. Different from unconditional branch instructions, there will be no 

state chance on the next cycle. The FSM will assert the branch test signal on the next 

cycle to request the branch evaluation unit to perform a branch test. If the condition is 

not fulfilled, no branch request is generated. The pre-fetched instruction is not flushed 

from the pipeline and is executed. So it takes only one cycle for a conditional branch 

instruction if the branch if not taken. 

 

 If the condition is fulfilled, the branch evaluation unit will send back a branch 

request to the control unit immediately. At the same time, the control unit will also 

instruct the PC to loads the PC with the destination address. With the branch request, the 

FSM will transfer to BRANCH2 state on the next clock and the pre-fetched instruction 

is flushed. On the next clock, the second pre-fetched instruction is also flushed but the 

FSM now return to EXE state. The next instruction is the destination instruction and will 

be executed on next cycle. So it takes 3 execution cycles if the branch is taken for 

conditional branch instructions. Note that the control signal to load the PC is not asserted 

according to clock transition. It is asserted only after the branch evaluation unit has 

received the branch test signal and performs the test successfully. So there is delay for 

the PC to receive the signal in this case. 

 

 When the FSM sees the SLEEP instruction, it will jump to the SLEEP state. 

When in the SLEEP state, the PC is stopped and no instruction is executed. Only when 

there is an IRQ (with the I-flag set), the FSM jumps to BRANCH1 state to serve the 

interrupt request. The process is exactly the same as serving an IRQ from the EXES. 

 

 For single cycle instruction, the instruction will not need to be remembered after 

the control signals is asserted because it is completed in one cycle. When enter the 

execute cycle, the next instruction is fetched and the current instruction is lost. However, 

instructions that require 2 cycles to complete must have some way to remember the 

instruction in order to assert the correct control signals at the second cycle. So, the FSM 
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provides the second state to remember the instruction. Control signals are based on the 

state itself without considering the decoder’s output line. 

 

If the second cycle of the instructions asserts the same control signals, then the 

state can be shared, else it will require another one. There are 4 states of all for executing 

2 cycles instruction – LD, ST, CBISBI and SBICS. The FSM jump to LD state when LD 

Z, LD +Z or LD –Z is seen; ST if ST Z, ST +Z, ST –Z; CBISBI if CBI or SBI; SBICS if 

SBIC or SBIS. When one of these instructions is found, the control unit will need to 

hold the pipeline (Chapter 4). The EN signal send to the PC module and IR module will 

not be asserted for one cycle. So the PC is not incremented and the IR is still holding the 

pre-fetched instruction. 

 

Skip instructions executes in a similar way to unconditional branch instructions. 

When the FSM sees a skip instruction, it will send control signals to the ALU to perform 

the skip test. The ALU will send a skip request back to the FSM if the skip condition 

fulfilled. The skip request will not generate a state chance as branch instructions. 

However, it will ignore the pre-fetched instruction (the instruction to be skipped). No 

control signal is asserted to execute it. So it takes 1 cycle if the skip is not taken but 2 if 

the skip is taken. 

 

SBIC and SBIS is a combination of 2 cycles instruction and skip instruction. It 

requires an extra cycle to fetch the I/O register before the skip can be test by the ALU. 

The skip test signal is asserted on the transition from SBICS to EXE. If a skip is taken, it 

takes 3 cycles and it takes 2 is the skip is not taken. 

 

After the long discussion, we should notice when in the EXE state, it will first 

check to see if there are any branch request or skip request to processed (two of them 

will never occurred at the same time). If none, it will then check the IRQ. The IRQ must 

be enabled by the I-flag in order to be served. Only after then it checks the instruction 

decoder’s output to execute an instruction. 
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8.5 Finite State Machine Output 

 

 The finite state machine (FSM) output are the control signals send to control the 

datapath. The datapath and their control signals have been discussed in Chapter 7. The 

FSM will generate these control signals at the correct timing. Table 8.1 lists the control 

signals and the instructions/ state/ condition that assert them. 

 

Table 8.1   Control Signals 

Module Control Signal Instruction/ State/ Condition 

ADDOFFSET RJMP, RCALL, Branch Request 
PUSH RCALL, Timer IRQ, External IRQ 
PULL RET, RETI 
VEC2 External IRQ 

PC 

VEC4 Timer IRQ 
PC & IR EN Other than (CBI, SBI, SBIC, SBIS, LD Z, LD Z+, LD 

–Z, ST Z, ST Z+, ST –Z) 
WR_REG ADD, ADC, INC, 

SUB, SUBI, SBC, SBCI, DEC, NEG, 
AND, ANDI, OR, ORI, EOR, COM, 
LSR, ROR, ASR, LDI, MOV, SWAP, 
IN, LD State 

INC_ZP LD Z+, ST Z+ 

General 
Purpose 
Register 
File 

DEC_ZP LD –Z, LD -Z 
ADD ADD, ADC, INC 
SUBCP SUB, SUBI, SBC, SBCI, CP, CPC, CPI 
LOGIC AND, ANDI, OR, ORI, EOR, COM 
RIGHT LSR, ROR, ASR 
DIR LDI, MOV, SWAP 
BLD BLD 
CBISBI CBISBI state 
PASSA OUT, ST Z, ST +Z, ST –Z 
CPSE CPSE 
SKIPTEST SBRC, SBRS, SBICS State 
LOGICSEL Refer to Table 7.3 
DIRSEL Refer to Table 7.3 

ALU 

RIGHTSEL Refer to Table 7.3 
BCLR BCLR 
BSET BSET 

SR 

EN for C-flag ADD, ADC,  
SUB, SUBI, SBC, SBCI, CP, CPC, CPI, NEG, 
COM, LSR, ROR, ASR 
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EN for  
S,V,N,Z-flag 

ADD, ADC, INC,  
SUB, SUBI, SBC, SBCI, CP, CPC, CPI, DEC, NEG,  
AND, ANDI, OR, ORI, EOR, COM,  
LSR, ROR, ASR 

EN for H-flag ADD, ADC,  
SUB, SUBI, SBC, SBCI, CP, CPC, CPI, NEG 

EN for T-flag BST 
CLR_I Timer IRQ, External IRQ 

 

SET_I RETI 
LD_MAR LD Z, LD +Z, LD –Z, ST Z, ST +Z, ST –Z 
LD_MBR ST Z, ST +Z, ST –Z 
RD_RAM LD state 

Data RAM 

WR_RAM ST state 
Timer CLR_TOV0 Timer IRQ 
External 
Interrupt 

CLR_INTF External IRQ 

RD_IO IN, CBI, SBI, SBIC, SBIS I/O Decoder 
WR_IO OUT, CBISBI state, SBICS state 

Branch 
Evaluation 
Unit 

BRANCH_ 
TEST 

BRBC, BRBS 

 

 

 

8.6 Fetch Stage Signals 

 

Signals discussed so far are execute stage signals, which means they are asserted 

at the execute stage of an instruction. But there are also fetch stage signals, which are 

asserted at the fetch stage of the instruction. 

 

The C2A and C2B signals are the operand-forwarding signals.  There are logics 

in the control unit that compare the Rd bits of the current executing instruction (in IBR) 

with the Rd and Rr bits of the newly fetched instruction (in IR). If it is found to be the 

same as either, or both, C2A or C2B will be asserted immediately. So on the next clock, 

the operand register will loads the results of the ALU to the operand register instead of 

the general register. 
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As discussed in the ALU operand fetch unit section is Chapter 7, ASEL and 

BSEL control signals are used to select what should be loaded into the operand registers. 

They are generated directly by the instruction decoder’s output. Table 8.2 shows the 

value of ASEL and BSEL with the corresponding instructions and operands. 

 

Table 8.2   C2A and C2B Operand Fetching Signals 

ASEL ORA Instruction 
0 Rd Default 
1 0000 0000 NEG 
   

BSEL ORB Instruction 
0 Rr Default 
1 Rd NEG 

2 Immediate Value SUBI, SBCI, CPI, 
ANDI, ORI, LDI 

3 000 0001 INC, DEC 
 

 

 

8.7 Instruction Backup Register (IBR) 

 

IR is always loaded with the next instruction, then IBR will always loaded with 

the currently executing instruction. So it is actually loading the contents of the last IR. 

Bits in the IBR are used to form the destination register address for the register file; the 

bit select signal (BSEL) for the ALU (select one of the 8 bits in a register); the SET 

signal for the ALU (for bit loading, bit test); the flag select signal (SRSEL) for SR; and 

the OFFSET for the PC. 
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8.8 I/O Decoder 

 

When either the RD_IO or WR_IO is asserted, the I/O decoder will decode the 

I/O address to know exactly which I/O register are to be read of write. Then it sends out 

the specific read or write control signal for that I/O. In the instruction format section in 

chapter 4, it is shown that there are two instruction formats for instructions that accessed 

the I/O. So the bits location for the I/O address is different. The I/O decoder must be 

able to know which bits are to be used as the I/O address. 

 

 

 

8.9 Branch Evaluation Unit 

 

A conditional branch instruction will test one of the 8 bits in the SR. BRBC will 

take the branch if the specific bit is cleared while BRBS will take the branch if that bit is 

set. The branch evaluation unit is enabled when the BRANCH_TEST signal is active. It 

will then test whether the specific bit meets the branch condition (clear/set). If it does 

meet the condition, a branch request is generated immediately to the control unit to 

generate the ADDOFFSET control signal, the next state will now be BRANCH2 state. If 

the condition is not fulfilled, nothing happens and the CPU will execute the next 

instruction. 
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CHAPTER IX 

 

 

 

HARDWARE IMPLEMENTATION 

 

 

 

9.1 Altera UP1 Educational Board 

 

 
Figure 9.1   Altera UP1 Educational Board 

 

 The Altera UP1 (University Program) Educational Board as shown in Figure 9.1 

is the only FPGA device available in the LAB. It has two FPGAs on it for developing 

complex programmable logic applications. The MAX7000 device on the left side of the 

board typically supports 2,500 gates for simple designs. The FLEX10K20 on the right 
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supports 20,000 gates, and includes connections to a DB25 VGA connector, as well as a 

PS/2 mouse port. The system is programmable via a PC parallel port, using the included 

MAX+PLUS II Student Edition. 

 

 This design is targeting the FLEX10K20 device. The exact device code is 

EPF10K20RC240-4. 240 means the package has 240 external pins; while –4 is the speed 

grade of the device. This device is the second smallest in the FLEX10K series. 

Designing larger digital system might be challenging if it is the only device available for 

implementation. Imagine that implementing 32x8 bit register with two 16-1 8-bit 

multiplexers will swallow up 52% of the logic cells! There are 4 speed grades for FLEX 

devices, -4, -3, -2 and –1. Unfortunately, -4 is the slowest grade. Although the area and 

speed constraints may lead to harder design process, however it will be more 

challenging and require more knowledge on the device architecture in order to 

minimized the area used and maximized the speed performance. 

 

 

 

9.2 Pin Assignments 

 

 

Figure 9.2   FLEX10K Pins Arrangement on UP1 Board 
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Figure 9.2 shows the pin arrangement of the FLEX10K device on the UP1 board. 

Before the design is programmed into the device, pin assignments must be made to map 

all the pins of the design to the physical pin on the UP1 board. Table 9.1 lists the pin 

assignments used.  

 

Table 9.1   Pin Assignments 

Design Pin Map To Design Pin Map To 
RESET 29 PINC3 73 
CLK 91 PINC4 75 

PINB0 45 PINC5 79 
PINB1 48 PINC6 80 
PINB2 50 PINC7 82 
PINB3 53 PIND0 79 
PINB4 55 PIND1 81 
PINB5 61 PIND2 83 
PINB6 63 PIND3 86 
PINB7 65 PIND4 88 
PINC0 66 PIND5 95 
PINC1 68 PIND6 98 
PINC2 71 PIND7 100 

  

 

RESET pin is mapped to one of the onboard switch. The CLK is mapped to the 

build-in clock source (25.9MHz). All the I/O pins (Ports) are connected to the 

FLEX_EPAN_A pins. Since the clock source is faster than the design maximum speed 

(around 12 MHz). A frequency divider must be used to divide the clock source by 4 (6.5 

MHz) before driving the whole system. 

 

 

9.3 External Circuitry 

 

The board itself is not sufficient to test the design. If the board is now a 

microcontroller, then the external circuitry for the control applications must be prepared. 

The external circuit will be connected to the 24 I/O pins of the microcontroller. 
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 Port B is configured as output and is used to control two 7-segments LED 

display through the used of two BCD to 7-segments decoder. The 4 lower bits of the port 

will drive the right digit while the 4 upper bits of the port drive the left digit. 

 

 Lower 4 bits of port C is configured as output and is connected to 4 common 

VCC red LEDs. The LED will on when the pin output a LOW logic. Upper bits of port 

C is configured as input and is connected to 4 momentary normally open push buttons. 

The other end of the push buttons is connected to GND. The input pin will sense a LOW 

logic is the button is pressed. 

 

PINB0 1 2 3 

PINB1 4 5 6 

PINB2 7 8 9 

PINB3 * 0 # 

 PINB4 PINB5 PINB6 
 

Figure 9.3   Keypad Interfacing 

 

7 pins of port D is used to interface a 4 x 3 keypad. Figure 9.3 shows the 

connection between he keypad and the pins. The lower 4 bits are configured as input and 

are connected to the 4 rows of the keypad. These 4 bits are also connected to 4 pull-up 

resistors. The following 3 bits are configured as output and is connected to the 3 

columns of the keypad. 

 

The last pin (Pin D7) is the external interrupt request pin and is connected to a 

push button. The configuration of the push button is the same as the push buttons for 

port C. Pin D7 is also connected to a green LED. So this pin will be configured both as 

input and output depends on the program. It will sense the push-button when configured 

as input and it will on/off the LED when configured as output. 
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9.4 Fitting Report 

 

 
 

Figure 9.4   Fitting Report 

 

 Figure 9.4 shows the fitting report of the whole design. The first line tells us that 

the project has been compiled successfully. There are 2 input pins (CLK and RESET) 

and 24 I/O pins (Port B, C and D). 83% of the memory is utilized. Memory is 

implemented in the embedded cells (EC) in the device. The program ROM and data 

RAM uses EC. 92% of the logic cells (LC) are utilized. LC is the most basic logic 

building block in the device. 

 

 

 

9.5 Control Applications 

 

We have got a microcontroller in the FPGA and the external circuitry. Now we 

need the have the program for the control application. 2 control applications are used to 

test the microcontroller. The programs for the applications are listed in Appendix B. The 

program must be assembled and changed to MIF format. Maxplus2 then compiled it 

along with the designed microcontroller. 
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9.5.1 Simple Calculator 

 

 The first application is a simple calculator that can only perform add and minus 

operations. The keypad is the input of the calculator and the two 7-segments digits are 

the output. The # key is used to represent the add (+) key while the * key is used to 

represent the minus (-) key. There are no equal (=) key, the results is automatically 

shows is the results changed after an operation (add or minus). To clear the result, 

external interrupt is used. The external interrupt will clear all the saved data when 

requested.  

 

 All operations are done with BCD numbers. The microcontroller detect a key 

pressed on the keypad and changed it to the BCD number it represents. Operations are 

done in BCD directly so the C-flag and the H-flag of the status register are used. Then 

the results is shown and saved as BCD. 

 

 If an overflow occurred after an operation, interrupt is temporary disabled and 

pin D7 (the external interrupt pin) is configured as output to on the green LEDs for a 

short delay to indicate an overflow has occurred. 

 

 The timer is also tested in this application. The timer is enabled and the interrupt 

mask bit is set. The interrupt service routine will on a red LED and rotate it through the 

4 red LEDs. Since it is controlled by the timer interrupt, it does not affect the main 

program (the calculator) and thus the microcontroller is multitasking, detecting keys and 

generating running lights at the same time. 

 

 When a key is pressed and is holding, the microcontroller will take only one data 

and it will only detect another key when the current key is released. The application is 

also software de-bounced. 
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9.5.2 Simple Memory Game 

 

The simple memory game will display random red LEDs blink (one at a time). 

The player will need to remember the sequence of the LEDs blink and tell the 

microcontroller by using the push buttons. A player is given 3 lifes for the whole game. 

If the player gets it right, the green LED blinks once and the game proceed to the next 

level. If the player gets it wrong, all the red LEDs blink once and the blink sequence is 

shown again. One life will be deducted. 

 

The first level will have only 1 LED in the blink sequence and the second level 

increased to 2. The higher the level, the longer the blink sequence. The two digits 7-

segments display will always shown the current level of the game. If the player entered a 

wrong sequence, the life is deducted and the remaining life is shown before the game 

shows the sequence again. 

 

 Random numbers are used to determine which red LEDs should be on next. 

Random numbers are generated by the used of timer. Every time a random number is 

needed, the microcontroller read the timer and get a value, then it processed the random 

number to decide which of the 4 LEDs should be on. 

 

 This program must have complicated software for input detection. It must be able 

to detect and count the key press very accurately. Let say in level 8, there will be 8 

LEDs blink in sequence. When the player keying in the result, the microcontroller must 

takes in 8 inputs, and check them will the saved value. So it must have very accurate 

detection on whether the current key has been released before taking the next one. It 

must also have software de-bounced. 
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CHAPTER X 

 

 

 

SUGGESTIONS AND CONCLUSION 

 

 

 

10.1 Recommendation on Future Works 

 

At first, the microcontroller does not contain any data RAM. So the stack is 

implemented using hardware just like AT90S1200 and is only 4-level deep. At the end 

of the design process, data RAM has been included due to the extra time the author 

have. Future works should have the stack implemented in the data RAM using a stack 

pointer. This will save up some area and more important, the stack will be able to keep a 

few times more entry then the original hardware stack. 

 

There is only one indirect pointer, the Z-pointer in this design. If memory access 

is frequent, more indirect pointers would make the job easier. Future works should also 

include the X-pointer and Y-pointer. 

 

There are many more extra features available in the AVR RISC microcontroller 

family, such as the UART serial interface, SPI serial interface, the 16-bit timer (with 

output compare and input capture), etc. This works from this project should be used as a 

platform to implement these features in. 
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10.2 Conclusion 

 

As a conclusion, this project has been completed successfully fulfilling are the 

objectives and scopes specified. The author has used his extra time to optimized the 

speed of the design until 12 MHz. The data RAM that is not specified in the scope of the 

project has also been included. Hardware stack is enlarged to 4-level instead of 3 and a 

total of 24 I/O lines are available. Since the project now occupies 92% of the FPGA 

device (FLEX10K20), the author recommends that the laboratory provides a larger 

FPGA device. Table 10.1 is the comparison chart between AT90S1200 and the current 

design. 

 

Table 10.1   AT90S1200 VS Current Design 

Specification AT90S1200 Current Design 

Instructions 89 92 
G.P Registers  32 16 
Program ROM 512 words 512 words 
SRAM None 128 bytes 
Hardware Stack 3 Level Deep 4 Level Deep 
I/O Ports 2 (15 pins) 3 (24 pins) 
Addressing Modes 5 7 
Speed 4 MHz / 12 MHz 12 MHz 
8-bit Timer 1 1 
External Interrupt 1 1 
Implementation CMOS FPGA 

Others 

Analog Comparator, 
Watch Dog Reset, 

EEPROM, 
Internal Pull Up Resistors  

None 
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