

Building A RISC Microcontroller in an FPGA

Yap Zi He
yapzihe@hotmail.com

http://www.opencores.org/projects/riscmcu/

Supervisor : Muhammad Mun’im Ahmad Zabidi (Assoc Prof)

raden@utm.my

Faculty of Electrical Engineering,

Universiti Teknologi Malaysia

1 March 2002

 2

Specially Dedicated To

My Beloved Parents

Yap Hong Chun, Lim Ah Mooi

And All My Friends

 3

CHAPTER I

INTRODUCTION

1.1 Central Processing Unit

Figure 1.1 shows the block diagram of a basic computer system. A basic

computer system must have the standard elements CPU, memory and I/O. All these

elements communicate via the system bus, which is composed by the data, address and

control buses.

Figure 1.1 Basic Computer System

The CPU, as the ‘brain’ of the computer, administers all the activity in the

system and performs all operations on data. The CPU has the ability to understand and

execute instructions based on a set of binary codes, each representing a simple operation.

These instructions are usually arithmetic, logic, data movement, or branch operations,

CPU

Memory

I/O Interface

Data Bus

Address Bus

Control Bus

 4

and are represented by a set of binary codes called the instruction set. The memory, is

used to store all the programs formed by the instruction set and all the require data. I/O

interface provide an interconnection with the outside world, such as the keyboard as an

input and the monitor as an output.

 Minicomputers and mainframe computers, have CPUs consisting multiple ICs,

ranging from several ICs (minicomputers) to several circuit boards of ICs (mainframes).

This is necessary to achieve the high speeds and computational power of larger

computers. On the other hand, the CPU of a microcomputer is contained in a single

integrated circuit. They are known as a microprocessor.

1.2 Microcontroller

It was pointed out above that microprocessors are single-chip CPUs used in

microcomputer. A microcontroller contains, in a single IC, a CPU and much of the

remaining circuitry of a basic computer system. A microcontroller has the CPU, memory

(RAM, ROM) and the I/O interface (parallel, serial) all within the same IC. Of course,

the amount of on-chip memory does not approach that of even a modest microcomputer

system.

Microprocessors are most commonly used as the CPU in microcomputer

systems. Microcontrollers, on the other hand, are found in small, minimum-component

designs performing control-oriented activities, such as the traffic lights. These designs

were often implemented in the past using dozens or even hundreds of ICs. A

microcontroller aids in reducing the overall component count. All that is requires is

microcontroller, a small number of support components, and a control program in ROM.

 5

1.3 Objectives

The main objective of this project is to design a RISC microcontroller using

VHDL and implement it in an FPGA. The microcontroller instruction set and features

are based on Atmel AVR AT90S1200 RISC microcontroller.

1.4 Atmel AVR AT90S1200

The AT90S1200 is a low-power CMOS 8-bit microcontroller based on the AVR

RISC architecture. It has 89 powerful instructions and 32 general purpose registers.

Most instructions are executed in one cycle and so it can achieve up to 12 MIPS

throughput at 12 MHz. The microcontroller also come with 1K Bytes of in-system

programmable flash as the program memory and 64 bytes of in-system programmable

EEPROM.

The AT90S1200 is equipped with one 8-bit timer/counter with separate

prescaler, one on-chip analog comparator, a watchdog timer with on-chip oscillator and

SPI for in system programming. It also features the external and internal interrupt. There

are a total of 15 programmable I/O lines.

The IC come in 20-pin PDIP and SOIC with 2 speed grades, 0 - 4 MHz for

AT90S1200-4 and 0 – 12 MHz for AT90S1200-12.

 6

1.5 Project Background

Wan Mohd Khalid did a similar project titled “FPGA Implementation of a RISC

microcontroller”. The design is also based on Atmel AVR AT90S1200 microcontroller.

The project is designed using both VHDL and schematics. Only 50% of the instructions

are designed using VHDL behavioral approach, which results in large area and slow

performance. Parallel ports, timer, external interrupt and other peripheral features are not

included. The project size is so large that it requires 3 pieces of Altera EPF10K20.

1.6 Work Scope

The aim of the project is to design the complete Atmel AVR AT90S1200. The

microcontroller must be able to fit into the targeted FPGA device, which is Altera

EPF10K20, provided in Altera UP1 Education Board. Features which cannot be

implemented on an FPGA (analog comparator, pull-up resistors, etc) and which are not

critical to the operation of the CPU (watchdog reset, etc) will be ignored.

 7

CHAPTER II

LITERATURE REVIEW

2.1 Complex Instruction Set Computer (CISC)

In early days, computers had only a small number of instructions and used

simple instruction sets, forced mainly by the need to minimize the hardware used to

implement them. As digital hardware become cheaper, computer instructions tended to

increase both in number and complexity. These computers also employ a variety of data

types and a large number of addressing modes. A computer with a large number of

instructions, are known as complex instruction set computer, abbreviated CISC.

Major characteristics of CISC architecture are:

� A large number of instructions – typically from 100 to 250 instructions

� Some instructions that perform specialized tasks and are used infrequently

� A large variety of addressing modes – typically from 5 to 20 different modes

� Variable-length instruction formats

� Instructions that manipulate operands in memory

 8

2.2 Reduce Instruction Set Computer (RISC)

In the early 1980s, a number of computer designers were questioning the need

for complex instruction sets used in the computer of the time. In studies of popular

computer systems, almost 80% of the instructions are rarely being used. So they

recommended that computers should have fewer instructions and with simple constructs.

This type of computer is classified as reduced instruction set computer or RISC. The

term CISC is introduced later to differentiate computers designed using the ‘old’

philosophy.

According to Daniel Tabak (1990), the first characteristic of RISC is the uniform

series of single cycle, fetch-and-execute operations for each instruction implemented on

the computer system being developed.

A single-cycle fetch can be achieved by keeping all the instructions a standard

size. The standard instruction size should be equal to the number of data lines in the

system bus, connecting the memory (where the program is stored) to the CPU. At any

fetch cycle, a complete single instruction will be transferred to the CPU. For instance, if

the basic word size is 32 bits, and the data port of the system bus (the data bus) has 32

lines, the standard instruction length should be 32-bits.

Achieving uniform (same time) execution of all instructions is much more

difficult than achieving a uniform fetch. Some instructions may involve simple logical

operations on a CPU register (such as clearing a register) and can be executed in a single

CPU clock cycle without any problem. Other instructions may involve memory access

(load from or store to memory, fetch data) or multicycle operations (multiply, divide,

floating point), and may be impossible to be executed in a single cycle.

Ideally, we would like to see a streamlined and uniform handling of all

instructions, where the fetch and the execute stages take up the same time for any

instruction, desirably, a single cycle. This is basically one of the first and most important

 9

principles inherent in the RISC design approach. All instructions go from the memory to

the CPU, where they get executed, in a constant stream. Each instruction is executed at

the same pace and no instruction is made to wait. The CPU is kept busy all the time.

Thus, some of the necessary conditions to achieve such a streamlined operation

are:

� Standard, fixed size of the instruction, equal to the computer word length and

to the width of the data bus.

� Standard execution time of all instructions, desirably within a single CPU

cycle.

While it might not practical to hope that all instructions will execute in a single

cycle, one can hope that at least 75% should.

Which instructions should be selected to be on the reduced instruction list? The

obvious answer is: the ones used most often. It has been established in a number of

earlier studies that a relatively small percentage of instructions (10 – 20%) take up about

80% – 90% of execution time in an extended selection of benchmark programs. Among

the most often executed instructions were data moves, arithmetic and logic operations.

As mentioned earlier, one of the reasons preventing an instruction from being

able to execute in a single cycle is the possible need to access memory to fetch operands

and/or store results. The conclusion is therefore obvious – we should minimize as much

as possible the number instructions that access memory during the execution stage. This

consideration brought forward the following RISC principles:

� Memory access, during the execution stage, is done by load/store instructions

only.

� All operations, except load/store, are register-to-register, within the CPU.

 10

Most of the CISC systems are microprogrammed, because of the flexibility that

microprogramming offers the designer. Different instructions usually have microroutines

of different lengths. This means that each instruction will take a number of different

cycles to execute. This contradicts the principle of a uniform, streamlined handling of all

instructions. An exception to this rule can be made when each instruction has a one-to-

one correspondence with a single microinstruction. That is, each microroutine consists

of a single control word, and still let the designer benefit from the advantages of

microprogramming. However, contemporary CAD tools allow the designer of hardwired

control units almost as easy as microprogrammed ones. This enables the single cycle

rule to be enforced, while reducing transistor count.

In order to facilitate the implementation of most instruction as register-to register

operations, a sufficient amount of CPU general purpose registers has to be provided. A

sufficiently large register set will permit temporary storage of intermediate results,

needed as operands in subsequent operations, in the CPU register file. This, in turn, will

reduce the number of memory accesses by reducing the number of load/store operations

in the program, speeding up its run time. A minimal number of 32 general purpose CPU

registers has been adopted, by most of the industrial RISC system designers.

The characteristics of RISC architecture are summarized as follow:

� Single-cycle instruction execution

� Fixed-length, easily decoded instruction format

� Relatively few instructions

� Relatively few addressing modes

� Memory access limited to load and store instructions

� All operations done within the registers of the CPU

� Hardwired rather than microprogrammed control unit

� Relatively large (at least 32) general purpose register file

 11

CHAPTER III

DESIGN METHODOLOGY AND CAD TOOLS

3.1 Design Process

Figure 3.1 Design Process Flow

Figure 3.1 shows the design process of the project and their related CAD tools.

The design process can be divided into 2 main parts – hardware design (with VHDL)

and hardware implementation.

Specification &
Design Ideas

VHDL
Coding

(Text Editor)

Synthesis
(FPGA

Express)

Compilation
& Simulation
(MaxPlus 2)

Program Coding
& Assembling

(AVR Assembler)

ASM to MIF
Converter
(Hex2mif)

Compilation &
Device Programming

(MaxPlus 2)

Results
 Checking

Simulation
(AVR Studio)

+
Program

Designed
Microcontroller

Hardware Implementation

Hardware Design (VHDL)

 12

Hardware design is done with the related CAD tools. The first step in the

hardware design is to prepare the specification of the design (the microcontroller). The

architecture and the instruction set must be understood thoroughly. The design ideas are

then describe with VHDL in a text editor. Then, the VHDL code is synthesized with

FPGA Express. If synthesized successfully, FPGA express will generate a netlist files

(EDF file). This file is then send to Max+Plus II for compilation and simulation. Results

are verified by simulation. The hardware design process is repeated until the

microcontroller is complete without any errors.

 Hardware implementation is performed by downloading the design into the

targeted FPGA device, Altera EPF10K20RC240-4. The hardware implementation tests

the design in real physical environment by some control applications. A microcontroller

can perform thousands of control applications. For every application, different programs

must be written and store into the program ROM of the microcontroller before it can do

the job. So, before the microcontroller is downloaded into the FPGA device, the specific

program for the application must be written.

 The program is written and assembled using the AVR Assembler. The AVR

Studio is used to simulate and test the program. If no bugs are found, the program HEX

file generated by the assembler is converted to MIF format with a tool written by the

author, HEX2MIF. This MIF file, together with the EDF file of the complete

microcontroller is then send to Max+Plus II for compilation and device programming.

Once programmed into the device, the FPGA is reset to execute the application.

3.2 Synopsys FPGA Express

 Synopsys FPGA Express is an industrial strength VHDL synthesis tool and is

used to synthesize this project. First, VHDL files are written in a text editor such as the

 13

Windows Notepad Editor. Then all the files are loaded in a project in FPGA Express. It

will check the VHDL file for syntax errors. If there are no errors, we can ask FPGA

Express to create implementation for the project. Once the implementation is created,

the EDF net list file of the implementation can be exported and used by MAX+plus II

for compilation.

3.3 MAX+Plus II

MAX+Plus II is a free software provided by Altera. It has many sub components

and the important components are the compiler, simulator, waveform editor and

programmer.

3.3.1 Compiler

 The compiler consists of 6 sub modules - Compiler Netlist Extractor, Data Base,

Logic Synthesizer, Fitter, Timing SNF Extractor and Assembler. All of them play an

equally important role of compiling the EDF file into a simulation netlist file - SNF.

3.3.2 Simulator and Waveform Editor

 After the EDF file is compiled, the generated SNF file will contain information

of the circuit behavior and can be imported by the Simulator. The waveform editor let

the user draws the pattern of the input waveform. The simulator then generates the

output waveform based on the SNF file.

 14

3.3.3 Programmer

 The programmer is a tool used to download the compiled design into the FPGA

device. The compiler will generate a SOF file which contains information to be written

into the FPGA device (FLEX10K20). The programmer will program the SOF file

contents into the FPGA via a PC parallel port using the ByteBlaster cable.

3.4 AVR Assembler

AVR Assembler is provided by Atmel to write and assemble programs for all the

Atmel AVR RISC microcontrollers. The instruction set of this design is compatible with

the Atmel AVR AT90S1200, so the assembler can also be used in this project. The

assembler will assemble a program to create HEX and OBJ files.

3.5 AVR Studio

 AVR Studio is a simulator for all Atmel AVR microcontrollers. It takes the OBJ

file created by AVR Assembler. The simulator simulates the flow of instruction in the

program one by one and the changes on the general purpose registers, memory contents,

flags and I/O can be observed.

 15

3.6 HEX2MIF

 HEX2MIF is a HEX to MIF converter used to convert the HEX file generated by

AVR Assembler into a MIF file. MIF files are used to define the initial value for the

memory components in Max+Plus II. This simple program is written by the author with

C and the source code is listed in Appendix C.

 16

CHAPTER IV

INSTRUCTION SET

4.1 Instruction Set Summary

The operation of the CPU is determined by the instruction it executes, referred to

as machine instructions or computer instructions. The collection of different instructions

that the CPU can execute is referred to as the CPU’s instruction set. Since the instruction

set defines the datapath and everything else in a processor, it is necessary to study it

first.

Table 4.1 shows the instruction set summary of the designed microcontroller,

while the instruction set summary of the original AT90S1200 is shown in Appendix D.

There are 92 instructions grouped into 4 categories: arithmetic and logic instructions,

branch instructions, data transfer instructions and the bit and bit-test instructions. As

mentioned earlier, instruction set of the design is based on Atmel AVR AT90S1200

instruction set. In this way, the design can use the same assembler and simulator

provided by Atmel since the final design is actually an AT90S1200 compatible

microcontroller.

One of the RISC characteristics mentioned earlier is single-cycle execution for

most instructions. This can be seen in the # cycles column in Table 4.1. Most

 17

instructions are single cycle except branch instructions, the LD/ST instructions and a

few others.

Table 4.1 Instruction Set Summary

Mnemonic Operation Flags # Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Add Two Registers S,Z,C,N,V,H 1
ADC Add with Carry Two Registers S,Z,C,N,V,H 1
SUB Subtract Two Registers S,Z,C,N,V,H 1
SUBI Subtract Constant from Register S,Z,C,N,V,H 1
SBC Subtract with Carry Two Registers S,Z,C,N,V,H 1
SBCI Subtract with Carry Constant from Register S,Z,C,N,V,H 1
AND Logical AND Registers S,Z,N,V 1
ANDI Logical AND Register and Constant S,Z,N,V 1
OR Logical OR Registers S,Z,N,V 1
ORI Logical OR Register and Constant S,Z,N,V 1
EOR Exclusive OR Registers S,Z,N,V 1
COM One’s Complement Register S,C,Z,N,V 1
NEG Negate (2’s Complement) Register S,C,Z,N,V,H 1
SBR Set Bit(s) in Register S,Z,N,V 1
CBR Clear Bit(s) in Register S,Z,N,V 1
INC Increment S,Z,N,V 1
DEC Decrement S,Z,N,V 1
TST Test for Zero or Minus S,Z,N,V 1
CLR Clear Register S,Z,N,V 1
SER Set Register None 1
BRANCH INSTRUCTIONS
RJMP Relative Jump None 3
RCALL Relative Subroutine Call None 3
RET Subroutine Return None 3
RETI Interrupt Return I 3
CPSE Compare, Skip if Equal None 1/2
CP Compare (Rd - Rr) S,C,Z,N,V,H 1
CPC Compare with Carry (Rd - Rr - C) S,C,Z,N,V,H 1
CPI Compare Register with Immediate (Rd – K) S,C,Z,N,V,H 1
SBRC Skip if Bit in Register Cleared None 1/2
SBRS Skip if Bit in Register Set None 1/2
SBIC Skip if Bit in I/O Register Cleared None 2/3
SBIS Skip if Bit in I/O Register Set None 2/3
BRBS Branch if Status Flag Set None 1/3
BRBC Branch if Status Flag Cleared None 1/3
BREQ Branch if Equal (Z = 1) None 1/3
BRNE Branch if Not Equal (Z = 0) None 1/3
BRCS Branch if Carry Set (C = 1) None 1/3
BRCC Branch if Carry Cleared (C = 0) None 1/3
BRSH Branch if Same or Higher (C = 0) None 1/3
BRLO Branch if Lower (C = 1 None 1/3
BRMI Branch if Minus (N = 1) None 1/3

 18

BRPL Branch if Plus (N = 0) None 1/3
BRGE Branch if Greater of Equal, Signed (S = 1) None 1/3
BRLT Branch if Less than Zero, Signed (S = 0) None 1/3
BRHS Branch if Half Carry Set (H = 1) None 1/3
BRHC Branch if Half Carry Cleared (H = 0) None 1/3
BRTS Branch if T-Flag Set (T = 1) None 1/3
BRTC Branch if T-Flag Cleared (T = 0) None 1/3
BRVS Branch if Overflow Flag is Set (V = 1) None 1/3
BRVC Branch if Overflow Flag is Cleared (V = 0) None 1/3
BRIE Branch if Interrupt Enabled (I = 1) None 1/3
BRID Branch if Interrupt Disabled (I = 0) None 1/3
DATA TRANSFER INSTRUCTIONS
MOV Move Between Registers None 1
LDI Load Immediate to Register None 1
LD Z Load Indirect with Z-Pointer None 2
LD Z+ Load Indirect and Post-Increment with Z-Pointer None 2
LD –Z Load Indirect and Pre-Decrement with Z-Pointer None 2
ST Z Store Indirect with Z-Pointer None 2
ST Z+ Store Indirect and Post-Increment with Z-Pointer None 2
ST -Z Store Indirect and Pre-Decrement with Z-Pointer None 2
IN In Port to Register None 1
OUT Out Register to Port None 1
BIT AND BIT-TEST INSTRUCTIONS
SBI Set Bit in I/O Register None 2
CBI Clear Bit in I/O Register None 2
LSL Logical Shift Left S,C,Z,N,V 1
LSR Logical Shift Right S,C,Z,N,V 1
ROL Rotate Left through Carry S,C,Z,N,V 1
ROR Rotate Right through Carry S,C,Z,N,V 1
ASR Arithmetic Shift Right S,C,Z,N,V 1
SWAP Swap Nibbles None 1
BSET Flag Set Any 1
BCLR Flag Clear Any 1
BST Bit Store form Register to T T 1
BLD Bit Load from T to Register None 1
SEC Set Carry C 1
CLC Clear Carry C 1
SEN Set Negative Flag N 1
CLN Clear Negative Flag N 1
SEZ Set Zero Flag Z 1
CLZ Clear Zero Flag Z 1
SEI Global Interrupt Enable I 1
CLI Global Interrupt Disabl I 1
SES Set Signed Test Flag S 1
CLS Clear Signed Test Flag S 1
SEV Set Two’s Complement Overflow V 1
CLV Clear Two’s Complement Overflow V 1
SET Set T in SREG T 1
CLT Clear T in SREG T 1
SHE Set Half-carry Flag in SREG H 1
CLH Clear Half-carry Flag in SREG H 1
NOP No Operation None 1
SLEEP Sleep (Wait for Interrupt) None Any

 19

Of course, some of the instructions will have different characteristics as the

original AT90S1200 instructions. They are:

1. Unconditional branch instructions (RJMP, RCALL, RET, RETI) now take 3

cycles.

2. Conditional branch instructions take 1 cycle if the branch is not taken and 3

cycles if the branch is taken.

3. Skip if I/O register cleared/set instructions (SBIC, SBIS) take 2 cycles if the next

instruction is not skipped and 3 cycles if the next instruction is skipped.

4. WDR (watch-dog reset) instruction is not available since the watch-dog timer

features is not included in the designed

5. SLEEP will not enter any sleep modes (there are no sleep modes in the design), it

will however stop the processor and wait for an interrupt. If an interrupt occurs,

the processor will ‘wake up’, execute the interrupt routine and resumes execution

from the instruction following SLEEP.

6. Data RAM is included in the design although AT90S1200 does not contain any

data RAM. So 4 instructions are added, which are load and store instructions

with post-increment and pre-decrement.

7. General purpose registers and I/O control registers are not mapped into the data

addressing space for LD and ST instructions.

8. Only 16 registers are available for addressing - R16 to R32. This limitation is due

to the area constraint of the targeted FPGA device.

Detail operation for each instruction requires further reference to the Instruction

Set section in Atmel AVR RISC Microcontroller Data Book.

 20

4.2 Addressing Modes

There are 7 addressing modes in the microcontroller. Rd and Rr are devoted to

the destination register and soure register.

1. Direct Single Register Addressing

The operand is in Rd.

2. Direct Double Register Addressing

The operands are in Rd and Rr. Result is stored back to Rd.

3. I/O Direct Addressing

First operand is one of the I/O registers. The address is contained in 6 bits of

the instruction word. The second operand is either Rd or Rr. Used by IN and

OUT instructions to read from or write to the I/O registers.

4. Data Indirect Addressing

Operand address is the contents of the Z-register. Used when accessing the

SRAM with LD and ST instructions.

5. Data Indirect Addressing with Pre-Decrement

Z-pointer is decremented by 1 before the operation. Operand address is the

decremented contents of the Z-register. Used when accessing the SRAM

with LD and ST instructions.

6. Data Indirect Addressing with Post-Increment

The Z-register is incremented by 1 after the operation. Operand address is the

original content of the Z-register before increment. Used when accessing the

SRAM with LD and ST instructions.

7. Relative Program Memory Addressing

Program execution continue at address PC + offset. The offset is contains in

the instruction word. Unconditional branch instructions (RJMP, RCALL) can

reach the entire program memory from every location. However, conditional

branch instructions can only reach –64 to 63 locations away from the current

address.

 21

Although there are 7 addressing modes of all, direct register addressing

(mode 1 and 2) are used most of the time. Others mode are used when accessing the I/O,

SRAM and when branching.

4.3 Instruction Formats

As mention earlier, RISC instructions have a fix length and are easily decoded.

For this microcontroller, all instructions have a fixed-length of 16-bits. The instruction

format is simple in order to be decoded easily.

For instructions that require two registers, d selects the destination register and r

selects the source register. 5-bits can addressed a total of 32 registers (N = 25 = 32).

Instructions of this format include ADD, SUB and AND.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 r d d d d d r r r r

For instructions that require one register, d addressed the destination/source

register. Instructions of this format include NEG, ST and IN.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 d d d d d

For immediate instructions, K is the 8-bit immediate value (constant) and d

selects the destination register. Slightly different from the previous format, there are

only 4 d-bits, which can address 16 registers only. The 5th bit is assumed to be one in

this case and address the upper 16 registers (R16 to R32). Instructions using this format

are CPI, SUBI, SBCI, ORI, ANDI and LDI.

 22

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 K K K K d d d d K K K K

For unconditional branch instructions, k is the offset in 2’s complement. 12 bits

wide offset provide a branch range from -2048 to 2047. Instructions using this format

are RJMP and RCALL.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 k k k k k k k k k k k k

For conditional branch instructions, k is the offset in 2’s complement. The s-bits

addressed which bit in the status register is to be tested for the branch. The 7-bit wide

offset provide a branch range from –64 to 63. Instructions using this format are BRBC

and BRBS.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 k k k k k k k s s s

An I/O addressing instructions will contain the I/O address (A-bits) plus the

corresponding destination/source register (d-bits) or the corresponding bit in the I/O (b-

bits). The first type has 6-bit wide A-bits, which provide 64 I/O addresses. The second

type has 5-bit wide A-bits addressed only the lower 32 I/O. Instructions using the first

format are IN and OUT while the second format are CBI, SBI, SBIC and SBIS.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 A A d d d d d A A A A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 A A A A A b b b

 23

Clear/Set bit in status register instructions has the s-bits point to the

corresponding bit. They are BCLR and BSET.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 s s s

And finally instructions that use a single bit in the register have the b-bits point

to the corresponding bit. They are BLD, BST, SBRC and SBRS.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 d d d d d b b b

4.4 Machine Codes

The instruction set contains 92 instructions and one might expect that there will

be 92 different machine codes for all the instructions. But actually there are only 51

machine codes. This is because there are 41 equivalent instructions which share the

same machine code with some others instructions. Table 4.2 shows these equivalent

instructions.

Table 4.2 Equivalent Instructions

ADD LSL
ADC ROL
AND TST
EOR CLR
ORI SBR

ANDI CBR
LDI SER

BCLR CLI, CLT, CLH, CLS, CLV, CLN, CLZ, CLC
BSET SEI, SET, SEH, SES, SEV, SEN, SEZ, SEC
BRBC BRID, BRTC, BRHS, BRGE, BRVC, BRPL, BRNE, BRCC, BRSH
BRBS BRIE, BRTS, BRHS, BRLT, BRVS, BRMI, BREQ, BRCS, BRLO

 24

For an example, ADD is shares the same machine code as LSL. Left-shifting a

number is actually multiplying the number by two, or adding a number to itself. So ADD

can perform LSL operation by having the same register as destination and source. This is

shown in Table 4.3.

Table 4.3 ADD And LSL Machine Codes

Instruction Machine Code
ADD 0000 11rd dddd rrrr
LSL 0000 11dd dddd dddd

BCLR, BSET, BRBC and BRBS can choose one of the 8 status register flags as

operand. The equivalent instructions in the right column state exactly which flag is to be

used. Both are the same, except that instructions on the left are more meaningful and

easier to used when writing a program. 8 status flags contribute to 8 specific instructions

for both BCLR and BSET, and 9 specific instructions for both BRBC and BRBS

because there are 2 instructions that test the C-flag.

Table 4.4 lists the machine codes for the 51 instructions. They are list according

to the 4 most significant bits rather than the instruction format so that the instructions

can be decoded easily when designing the control unit. The 41 equivalent instructions

are place inside the bracket to the right of the correspondent instructions. It is very

important to know that we only need to design 51 instructions. Once finish, the 41

equivalent instructions will immediately be available making the total to 92 instructions.

The 51 instructions satisfy the RISC characteristic as having relatively few instructions.

 25

Table 4.4 Machine Codes

NOP 0000 0000 0000 0000
CPC 0000 01rd dddd rrrr
SBC 0000 10rd dddd rrrr
ADD 0000 11rd dddd rrrr (LSL)

CPSE 0001 00rd dddd rrrr
CP 0001 01rd dddd rrrr
SUB 0001 10rd dddd rrrr
ADC 0001 11rd dddd rrrr (ROL)

AND 0010 00rd dddd rrrr (TST)
EOR 0010 01rd dddd rrrr (CLR)
OR 0010 10rd dddd rrrr
MOV 0010 11rd dddd rrrr

CPI 0011 KKKK dddd KKKK

SBCI 0100 KKKK dddd KKKK

SUBI 0101 KKKK dddd KKKK

ORI 0110 KKKK dddd KKKK (SBR)

ANDI 0111 KKKK dddd KKKK (CBR)

LD 1000 000d dddd 0000
ST 1000 001r rrrr 0000

LD Z+ 1001 000d dddd 0001
LD –Z 1001 000d dddd 0010
ST Z+ 1001 001r rrrr 0001
ST –Z 1001 001r rrrr 0010

COM 1001 010d dddd 0000
NEG 1001 010d dddd 0001
SWAP 1001 010d dddd 0010
INC 1001 010d dddd 0011
ASR 1001 010d dddd 0101
LSR 1001 010d dddd 0110
ROR 1001 010d dddd 0111
DEC 1001 010d dddd 1010

BSET 1001 0100 0sss 1000 (SE? - I,T,H,S,V,N,Z,C)
BCLR 1001 0100 1sss 1000 (CL? - I,T,H,S,V,N,Z,C)

 26

RET 1001 0101 0000 1000
RETI 1001 0101 0001 1000

SLEEP 1001 0101 1000 1000

CBI 1001 1000 AAAA Abbb
SBIC 1001 1001 AAAA Abbb
SBI 1001 1010 AAAA Abbb
SBIS 1001 1011 AAAA Abbb

IN 1011 0AAd dddd AAAA
OUT 1011 1AAr rrrr AAAA

RJMP 1100 kkkk kkkk kkkk

RCALL 1101 kkkk kkkk kkkk

LDI 1110 KKKK dddd KKKK (SER)

BRBS 1111 00kk kkkk ksss (BR?? – CS,LO,EQ,MI,VS,LT,HS,TS,IE)
BRBC 1111 01kk kkkk ksss (BR?? – CC,SH,NE,PL,VC,GE,HC,TC,ID)

BLD 1111 100d dddd 0bbb
BST 1111 101r rrrr 0bbb

SBRC 1111 110r rrrr 0bbb
SBRS 1111 111r rrrr 0bbb

 27

CHAPTER V

PIPELINE PROCESSING

5.1 Instruction Cycle

Figure 5.1 shows the the instruction cycle – which is divided into two stages, the

fetch stage and the execute stage. In the fetch stage, the machine code of an instruction

is fetched into the instruction register. The control unit decodes the instruction to know

what the instruction performs and what operands are needed. In the execute stage, the

operands are fetched and the instruction is executed. The results is written back at the

end of the stage.

FETCH EXECUTE

Instruction Fetch Decode Operand Fetch Operate Write

Figure 5.1 Instruction Cycle

As an example, the instruction ADD R18,R20 will add R18 and R20 and write

the result back to R18. At the fetch stage (1st clock transition), the machine code for

ADD R18,R20 is fetched into the instruction register. After the instruction is fetched, the

CPU now know that the next instuction to be executed is ADD and the operands is R18

and R20. At the execute stage (the 2nd clock transition), the contents of R18 and R20 is

latched into operand register A (ORA) and operand register B (ORB) which are

connected directly to the ALU. The ALU perform the ADD operation between ORA and

 28

ORB and the result is sent to the data bus. At the end of the execute stage (the 3rd clock

transition), the result in the data bus is written into the destination register. The

instruction cycle is then complete.

5.2 Instruction Pipeline

 If an instruction cycle has 2 stages (Fetch and Execute), executing a series of

instructions will have the form of:

 Fetch1 à Execute1 à Fetch2 à Execute2 à Fetch3 à Execute3 à …

The first instruction is fetched and executed, then the second instruction is

fetched and executed, and so forth. Executing an instruction takes 2 cycles and executing

10 000 instructions will take 20 000 cycles. By using instruction pipelining, the

performance of the system can be further enhanced.

Shown in Figure 5.2 is the instruction pipeline structure. The fetch and execute

stage are now overlapped to perform simultaneous operations. The next instruction is

fetched while executing the current instruction. This is called instruction pre-fetch.

Clock Transition T1 T2 T3 T4

1st instruction Fetch Execute

2nd instruction Fetch Execute

3rd instruction Fetch Execute

Figure 5.2 Instruction Pipeline Structure

 29

Imagine after using the instruction pipeline, there will be one instruction

executing at every cycle. Executing an instruction will take only one cycle and executing

10 000 instructions take only 10 000 cycle. The performance is now doubled.

Program counter (PC) addressed the instruction in the program and are tightly

related to the pipeline structure. Figure 5.3 shows the PC change along the pipeline

execution. After reset, the PC is cleared to 0. On the 1st clock transition (T1) after reset,

instruction at address 0 is being fetched. At the same time, PC is incremented to 1. On

the 2nd clock transition (T2), instruction 0 is executed and instruction 1 is fetched. PC is

now incremented to 2. On the 3rd clock transition (T3), result of instruction 0 is written

back, instruction 1 is executed and instruction 2 is being fetched. PC is now incremented

to 3. The important point is, when instruction N is being executed, instruction N + 1 is

being fetch and the PC is N + 2.

Clock Transition Reset T1 T2 T3 T4

PC 0 1 2 3 4

Instruction 0 Fetch 0 Execute 0

Instruction 1 Fetch 1 Execute 1

Instruction 2 Fetch 2 Execute 2

Figure 5.3 PC and Instruction Pipeline

5.3 Pipeline Conflicts

Executing a branch instruction will cause a pipeline conflict. In that case the

pipeline must be flushed and all instructions that have been read from the memory after

the branch instructions must be discarded.

Figure5.4 shows how a branch instruction will affect the pipeline. Instruction 20

is ‘Branch to 73’. At T2, the branch instruction is executed but at the same time

instruction 21 is fetched as usual. On T3, the new value for PC is loaded and instruction

 30

22 is fetched. Instruction 21 cannot be executed and is flushed from the pipeline. Only at

T4, instruction 73 is being fetched. Instruction 22 must also be discarded. Finally at T5,

instruction 73 is executed. So a branch instruction will take 3 cycles to complete. The

first cycle is taken to load the PC with the new value. The following 2 cycles are just

wait states to wait until the new instruction is executed.

Clock Transition T1 T2 T3 T4 T5

PC 21 22 73 74 75

20 (Branch to 73) Fetch 20 Execute 20 Execute 20 Execute 20

Instruction 21 Fetch 21 Flushed

Instruction 22 Fetch 22 Flushed

Instruction 23 Fetch 73 Execute 73

Figure 5.4 Branch Instruction Pipeline

Some instructions like LD and ST require 2 execution cycles. This will also

affect the pipeline flow. Figure 5.5 shows the pipeline structure when a 2 cycles

instruction is encountered. Instruction 31 is a 2 cycles instruction. At T3, it is executed

and instruction 32 is fetched. At T4, instruction 31 continues its execution. PC is not

incremented and no new instruction is fetched. Only at T5, instruction 32 is executed.

The next instruction is fetched and the PC is incremented. In this case, the pipeline is

hold for one cycle.

Clock Transition T1 T2 T3 T4 T5

PC 31 32 33 33 34

Instruction 30 Fetch 30 Execute 30

31 (2 cycles) Fetch 31 Execute 31 Execute 31

Instruction 32 Fetch 32 Execute 32

Instruction 33 Fetch 33

Figure 5.5 2 Cycles Instruction Pipeline

 31

 Data dependency conflict arises when an instruction depends on the result of a

previous instruction, but the result is not yet available. Lets examine the following

instructions flow:

 LDI R18,$10 ; R18 = $10

 LDI R18,$20 ; R18 = $20

 INC R18 ; R18 = R18 + 1 = $21

 The final value of R18 should be $21. But unluckily the real result is $11. In an

instruction fetch cycle, operands are fetched at the start of the execute stage to the

operands register and result is written back at the end of the execute stage to the

destination register. As a result, operands of the next instruction are loaded into the

operand register at the same rising edge as the write back of the current instruction to the

destination register. So INC R18 is actually receiving the old value of R18, which is $10

rather then the result of LDI R18,$20.

 To solve this problem, a technique called operand forwarding is used. If the

destination register is needed as a source in the next instruction, the ALU result is

forwarded to the operand register directly. This will require extra control logic to check

for the conflict and perform the forwarding job.

 32

CHAPTER VI

MICROCONTROLLER ORGANIZATION

6.1 Pin Description

Figure 6.1 Microcontroller Pin Configuration

Figure 6.1 shows the pin configuration for the designed microcontroller. The

microcontroller has 2 input pins and 3 bi-directional I/O ports. Each I/O port consists of

8 individual I/O pins. So 3 I/O ports contribute to a total of 24 I/O pins. The clock signal

will drive the whole microcontroller directly. Reset is active low; when asserted it resets

the microcontroller to the default state even if the clock is not running. Port B, Port C

and Port D are all 8-bits port. Each bit can be configure to be input or output. All port

pins are tri-stated when the microcontroller is reset. Pin D7 also serves as the external

interrupt source and external timer clock source.

Microcontroller
(FPGA)

Clock

Reset

Port B

Port C

Port D

 33

6.2 Architecture Overview

Figure 6.2 Top-level Block Diagram

 Figure 6.2 shows the top-level block diagram of the design, the bus structure has

been simplified, but every block represents a module to be designed. At first glace, there

are 11 modules in the top-level, with the 3 ports sharing the same module. These 11

modules are to be design separately using the top down design approach. Some modules

like the instruction register and status register are easy to design, but modules like ALU

and the control unit require a lot of understanding. The overall dataflow and bus

structure between all the modules must be understand before designing the modules

individually.

Fetch Unit Execution Unit

Program Counter

Program ROM

Control Unit

Instruction Register

Port B

Port C

Port D

Timer

External
Interrupt

General
Purpose
Register

File

Status Register

Data RAM

ALU

I/O

8-
B

it
D

at
a

B
us

… …

Control Signals

In
di

re
ct

 A
dd

re
ss

in
g

R
eg

is
te

r
A

dd
re

ss
in

g

 34

 Buses provide connection between modules. There are basically two kinds of

buses, direct bus and common bus. Direct bus connects two modules directly and is used

specifically by the connected modules. There are many direct buses, such as the

connection between program counter and program ROM, between program ROM and

IR, between register file and ALU, etc. No control signals are required for direct buses.

A common bus is a bus shared by many modules. The data bus is the only

common bus in this design. The data bus provides connection between the general

purpose register file, ALU, status register, SRAM and all the I/O features. The register

file can only receive data from the data bus. All others modules can receive and send

data to the data bus. Since there are so many possible data flows, control signals are

required to control the correct flow direction. Only one source to the data bus is allowed

at a time. If not, logic contentions will happen and the value of the data bus will be

invalid. Tri-state bus is used to implement the common data bus. Only the correct source

is connected to the data bus while other are in high impedance state. The impedance is

so high that it can be seen as unconnected to the bus system. If the ALU is the data

source, the data bus will be flooded with the result of the ALU and is available to all the

connected modules. Control logic will generate an enable signal for the real destination

to receive the data.

Next is a brief introduction to the whole system. The system can be divided into

3 units, the fetch unit, execute unit and I/O unit. Fetch unit is in charge of fetching the

next instruction and the execute unit is in charge of executing the current instruction. I/O

unit provide a connection with the outside world. The fetch unit and execute unit form

the CPU of the microcontroller.

 The first module of the fetch unit is the program counter (PC). The PC contains

the address of the next instruction to be executed. It points to the program ROM to

locate the instruction. The instruction from the ROM is then latched into the instruction

register (IR). The control unit takes the content of the IR and decodes it. It then assert

 35

the appropriate control signals to execute the instruction. All modules are connected

with direct buses.

 The execute unit in charge of executing most instructions. Normally, to execute

an instruction, 2 operands are output from the register file to the ALU. The ALU then

perform the operation and send the result to the data bus. Contents of the data bus (the

result) is then stored back to the register file. The ALU also evaluate the status register

flags and send them directly to the status register (SR). The whole execution process is

done in a single cycle. The ALU perform many operations - include passing the contents

of a general register to the data bus. SR also has a direct bus connection to the control

unit required for branch evaluation. The register file (destination and source register) is

addressed directly by some bits in IR.

 A RISC has memory access limited to only LD and ST instructions. Direct

addressing to the data RAM is not available. Only indirect addressing through the Z-

pointer (R30) is allowed. It could be indirect addressing, indirect addressing with post-

increment and indirect addressing with pre-decrement. Load and store instructions can

only transferred data between the RAM and the register file. The Z-pointer contains the

address of the RAM. A load operation sends the RAM data to the general registers

through the data bus. A store operation sends the data to ALU, the ALU pass the data to

data bus and store into the RAM.

 To implement the fetch and execute pipeline in this microcontroller, memory are

implemented using the Harvard architecture. Program and data are store in separate

memories. As seen in the block diagram, program is stored in the program ROM while

data are stored in the data RAM. The advantage of Harvard architecture is the ability to

fetch the pre-fetch the next instruction easily. A normal RAM will have initial value zero

when powered on. In FPGA, the RAM can have initial values and thus can make it act as

a ROM.

 36

 All the I/O modules contain many control registers. Data are sent to and received

from it through the common data bus. Table 6.1 shows the complete list of the I/O

control registers and their corresponding address. Reserved and unused locations are not

shown in the table. The SR is also mapped into one of the I/O address. IN and OUT

instructions are used to transfer data between these control registers and the general

registers. The lower half of the control registers ($00 - $1F, shaded in gray) are directly

bit-accessible using the SBI and CBI (Set/Clear Bit in I/O) instructions. Using SBIS and

SBIC (Skip if bit in I/O cleared/set) instructions can also check every single bit in these

registers. In this design, the lower half of control registers are all the I/O ports control

registers. Note that, PINB, PINC and PIND are not a real registers, only a read operation

can apply to them and it will read the physical value holding by the external pins.

Table 6.1 I/O Address Space

Address Hex Name Function
$3F SREG Status REGister
$3B GIMSK General Interrupt MaSK register
$39 TIMSK Timer/Counter Interrupt MaSK register
$38 TIFR Timer/Counter Interrupt Flag Register
$35 MCUCR MCU general Control Register
$33 TCCR0 Timer/Counter 0 Control Register
$32 TCNT0 Timer/Counter 0 (8-bit)
$18 PORTB Data Register, Port B
$17 DDRB Data Direction Register, Port B
$16 PINB Input Pins, Port B
$15 PORTC Data Register, Port C
$14 DDRC Data Direction Register, Port C
$13 PINC Input Pins, Port C
$12 PORTD Data Register, Port D
$11 DDRD Data Direction Register, Port D
$10 PIND Input Pins, Port D

6.3 Register Transfer

 The whole design contains many registers - instruction register (IR), instruction

backup register (IBR), program counter (PC), general purpose registers, memory address

 37

register (MAR), all the I/O control registers and many more (The program counter is

treated as a special kind of register). They are found inside most of the modules see in

the top-level block diagram. The whole system works by transferring data between these

registers (register transfer). Some data are transferred without modification while some

are manipulated before transfer to the next register. If the data are to be manipulated,

they are manipulated by the combinational logic between these registers. How these data

are transferred, how are they being manipulated before transfer, and what does different

data inside the register means, will determine whether the design can work as a

microcontroller. The design will perform a long series of register transfer to form the

functioning of a microcontroller. Figure 6.3 shows the register transfer concept. It can be

seen in the figure that register are transferred to another through many levels of

combinational logic.

Figure 6.3 Register Transfer

 A read of the status register will bring the contents of the status register to one of

the general register directly without manipulation. However, the value of the Z-pointer is

send to the memory address register (MAR) after a subtraction by 60. The combinational

logic in this case is a subtracter. Performing an AND operation between two general

registers, will pass the two registers through a combinational logic (the logic unit) before

writing back to one of the register. Memory (program ROM and data RAM) are treated

as a kind of combinational logic. Program counter (PC) are pass through the program

R
eg

is
te

r

Register

C/L C/L

C/L C/L R
eg

is
te

r

Register C/L: Combinational Logic

 38

ROM to the instruction register. The instruction register will receive the instruction in

from the program ROM pointed by the PC.

 So, the design process is to design all the registers along with the combinational

logic and the interconnection between them. This is called the datapath of the system.

Control signals are then used to determine how the register transfer takes place. Control

signals are asserted by the control unit. The datapath along with the control unit form the

complete microcontroller. It is important to know what registers exists in the system.

Table 6.2 lists all the modules and their respected registers.

Table 6.2 Registers List

Modules Registers

Program Counter Program Counter (PC)
Program Counter Backup (PCB)
4 Hardware Stack (STACK0 – STACK3)

Instruction Register Instruction Register (IR)
Control Unit Instruction Backup Register (IBR)
General Purpose
Register File

16 General Purpose Registers (R16 - R31)
Z-Pointer (R30)

ALU Operand Register A (ORA)
Operand Register B (ORB)

Status Register Status Register (SR)
Data RAM Memory Address Register (MAR)

Memory Buffer Register (MBR)
Port B Data Register (PORTB)

Data Direction Register, Port B (DDRB)
Port C Data Register (PORTC)

Data Direction Register, Port C (DDRC)
Port D Data Register (PORTD)

Data Direction Register, Port D (DDRD)
Timer Timer/Counter Interrupt Mask Register (TIMSK)

Timer/Counter Interrupt Flag Register (TIFR)
Timer/Counter 0 Control Register (TCCR0)
Timer/Counter 0 (TCNT0)

External Interrupt General Interrupt Mask Register (GIMSK)
MCU General Control Register (MCUCR)

CLK is the global clock signal for all the registers while CLRN is the global reset

signal (active low). CLRN clears all the registers when asserted low.

 39

6.4 Control Signals Characteristics

If the control signals are used to control the datapath then the characteristics of

the control signals must be understood before we can proceed further. First, a control

signal will have at least a length of one clock cycle. It usually asserted a short delay after

a rising clock transition and unasserted a short delay after another rising clock. The

datapath consists of many registers and combinational logic between them, so there are

basically 2 kinds of control signals. The first kind controls the combinational logic and

the second kind controls the registers.

When a combinational logic encounters a control signal, it will act towards the

signal immediately. The ADD signal will cause the adder to perform the add operation

immediately. The delay to get the valid result is the delay for the input to propagate

through the combinational logic. The combinational logic can be functional unit such as

adder and shifter, steering logic such as multiplexers and decoders or memory (program

ROM and data RAM).

A register control signal requires a rising clock to operate. WR_REG signal will

only latch the data into the destination register of the register file when it encounters the

rising clock. Since control signals are asserted a short delay after a rising clock and

unasserted on the next, the operations is actually happened at the end of the control

signal where it meet the rising clock. These kinds of control signals are the enable

signals for the registers, or the increment/decrement signal for a counter.

Figure 6.4 Control Signal Timing

 40

 Figure 6.4 explains the concept graphically. Both ADD and WR_REG control

signals are asserted and unasserted after a rising clock. The ADD signal gives effect

immediately after it is asserted by asking the adder to perform an add operation. The

result is available after some delay depending of the speed of the adder. The WR_REG

signal latches the result into the register at the end of the signal when it encounters the

rising clock. Notice that the register changes value a short delay after the rising clock.

 41

CHAPTER VII

DATAPATH DESIGN

7.1 Chapter Overview

The design of the microcontoller is discussed in 2 separate chapters – one for the

datapath and one for the control unit. This chapter discusses the design of the datapath

while the next chapter will discuss about the control unit. All modules in the top-level

block diagram (Figure 6.2) except the control unit are part of the datapath. These

modules are listed in Table 7.1. The design of each module will be discussed one by one

in this chapter.

Table 7.1 Modules Inside The Datapath

1. Program counter (PC)
2. Instruction Register (IR)
3. Program ROM
4. General Purpose Register File
5. ALU
6. Status Register (SR)
7. Data RAM
8. Port
9. Timer
10. External Interrupt

 42

7.2 Program Counter (PC)

Figure 7.1 Program Counter Architecture

Figure 7.1 shows the architecture of the PC module. In the most basic execution

stream, the PC is incremented on every clock transition. But in some cases, the PC will

be loaded with a new value instead of incrementing it. Hardware stack is used to keep

the return address of a subroutine call or interrupt request. Program counter backup

register (PCB) always loaded with the last PC value.

There are 3 circumstances that the PC will be loaded with a new value instead of

incrementing it. The first is serving a branch instruction (conditional or unconditional);

the second is serving an interrupt request; and the third is returning from a subroutine or

interrupt service routine (ISR).

The description for branch instructions is PC ? PC + 1 + offset. This can be a

confusing description. Should the PC stands for the value in the real program counter

itself; or the address of the current executing instruction; or the address of the next

PCB
STACK0

STACK1

STACK2

PC

STACK3

Lost

Program
ROM

-1

+ Offset

Vector 2 ($01)

Vector 4 ($02)

+1

 43

instruction to be fetched? Recall the pipelining discuss in chapter 5, when the CPU is

executing the Nth instruction, the PC has already increased to N + 2 and the instruction

in the IR is the N + 1 instruction. The PC in the description is actually the address of the

branch instruction itself, not the real hardware PC. So PC + 1 points to the next

instruction that follow. If the real PC is always ahead of 2, another register - program

counter backup register (PCB) is used to keep the last PC value that is ahead of 1. When

serving a branch instruction, the new PC value will be the PCB plus the offset

Serving an interrupt request will cause the PC to be loaded with the interrupt

vector address. There are 2 interrupt vectors and 1 reset vector all located at the start of

the program memory space listed in Table 7.2 according to its priorities. An RJMP

instruction that jumps to the interrupt service routine (ISR) is contained in the vector

address. So when serving an interrupt request, the PC is first loaded with the vector

address, then the CPU execute the instruction loaded from the corresponding vector

address - a jump to ISR. The PC is then loaded with the address of the ISR. And finally

the CPU starts executing the ISR.

Table 7.2 Interrupt Vector

Vector No. Vector Address Source Interrupt Definition
1 $000 RESET Reset Pin
2 $001 INT0 External Interrupt Request 0
4 $002 TIMER0, OVF0 Timer/Counter Overflow

The hardware stack is used to store the return address of a subroutine call and

interrupt request. The stack is 4-level deep (STACK0 – STACK 3) and is LIFO (Last In

First Out). When the CPU serves a subroutine call or interrupt request, the return address

is pushed into STACK0. The original contents in the stack are push one level deeper,

with STACK0 pushed into STACK1, STACK1 into STACK2, and so forth. This is

called the push operation. On returning from a subroutine call or interrupt request, PC is

being loaded with STACK0 and the original contents of the stack is pull up one level,

from STACK3 into STACK2, from STACK2 into STACK1, and so forth. This is called

 44

the pull operation. If there are more that 4 subsequent subroutine call or interrupt

request, the first return address that is pushed into the stack will be lost.

The return address for a subroutine call is the PCB. However, the return address

for an interrupt request is not PCB but PCB – 1. A short program in Figure 7.2 will help

to clarify this. When executing the RCALL MAKE instruction, PCB is $22 and is

pushed into the stack. The PC is loaded with $50 and the CPU start executing the

MAKE subroutine. When it encountered the RET instruction, the PC is pulled from the

stack, which contains $22, the next instruction address following RCALL MAKE.

 Figure 7.2 Subroutine Call and Interrupt Request Program

Now lets assume that the CPU serves the timer overflow interrupt request at $21.

PCB is $22. PC is loaded with the vector address ($02) and the CPU executes RJMP

TIMER and the ISR. When it encounters the RETI instruction, the return address is pop

from the stack to the PC. If PCB was pushed into the stack earlier, the next instruction

that follows will be DEC R26, which is wrong because RCALL MAKE has not been

executed yet! So the correct return address for an interrupt request is PCB – 1.

Addr Label Instruction

$00 rjmp reset ; reset vector
$01 rjmp extirq ; external IRQ vector
$02 rjmp timer ; timer overflow IRQ vector

$20 add r25,r26 ; r26 = r26 + r25
$21 rcall make ; call subroutine make
$22 dec r26 ; r26 = r26 - 1
$23 inc r25 ; r25 = r25 + 1

$50 make: ...
 ...
 ret ; return from subroutine

$80 timer:...
 ...
 reti ; return from interrupt

 45

 offset[8..0] ?

en ?
addoffset ?

push ? Program Counter ? pc[8..0]
pull ? (v_pc.vhd)

 vec2 ?
vec4 ?
clk ?

clrn ?

Figure 7.3 Program Counter Symbol

Figure 7.3 shows the symbol of the program counter (PC) module. PC, PCB and

the 4 hardware stacks are 9-bits wide. So the PC can address up to 512 unique locations.

The PC is connected to the program ROM directly. The offset for a relative branch is

received from the control unit, so as others control signals. EN is the enable signal for all

the registers – PC, PCB and stacks. Only when EN signal is asserted, operation can be

performed. This signal is asserted only when executing a 2 cycles instruction to hold the

pipeline.

ADDOFFSET signal load the PC with PCB + offset. VEC2 signal loads the PC

with interrupt vector 2 ($01 - external interrupt) while VEC4 signal loads the PC with

interrupt vector 4 ($02 - timer overflow interrupt). PUSH signal performs the push

operation and PULL signal performs the pull operation. If none of the signals that load

the PC is asserted, the PC will be incremented by one.

 46

7.3 Program ROM

15 0

000 ($000)

001 ($000)

…

…

510 ($1FE)

511 ($1FF)

Figure 7.4 Program ROM Organization

The program ROM is used to store the program for the microcontroller. A

program is a combination of many instructions to perform a specific task. Figure 7.4

shows the organization of the program ROM. Since all instructions have a fixed width of

16-bits, the ROM word size is also 16-bits so that the instruction can be fetched into the

instruction register in a single cycle. The ROM size is 1 K bytes, or better stated as 512

words. This means that it can store up to 512 instructions. To address 512 locations, it

requires 9-bit wide address.

 pc[8..0] ? Program ROM ? instructions[15..0]

(v_rom.vhd)

Figure 7.5 Program ROM Symbol

Figure 7.5 shows the symbol of the program ROM. It is implemented using the

LPM_ROM module provided by Altera, which is the recommended way to implement

memory in Altera FLEX10K devices. Program counter provide the 9-bit address through

a direct bus to the ROM. The instruction output from the ROM is then send to the

instruction register. No clock signal is require for the program ROM. It can be imagined

as a combination logic where the output will be available some delay after the input has

changed.

 47

7.4 Instruction Register (IR)

As its name suggest, instruction register (IR) is used to store the instruction. The

instruction is received from the program ROM through a direct 16-bit wide bus

connection. The IR will only latch the new instruction in if the EN signal is asserted.

The IR (the instruction) is connected to the control unit for decoding. The corresponding

bits that form the immediate value are sent to the ALU. While the bits that addressed the

destination and source register are sent to the general purpose register file. Please refer

to chapter 4 for instruction format. Figure 7.6 shows the symbol for the IR module.

It is important to note that the instruction in IR is not holding the current

executing instructions. IR is always holding the next instruction. So the control unit is

always decoding the next instruction. Recall that the execute stage of the current

instruction is also the fetch stage of the next instruction in the pipeline organization.

 instructions[15..0] ? ? ir[15..0]
 en ? Instruction Register ? imm_value[7..0]
 clk ? (v_ir.vhd) ? rd[3..0]

 clrn ? ? rr[3..0]

Figure 7.6 Instruction Register Symbol

Figure 7.6 show the symbol if the instruction register module. The EN signal

seen here is same as the EN signal seen in the PC module. The IR can only load the data

from program ROM when EN is asserted. Usually, it is always asserted except when the

CPU is executing a 2 cycles instruction.

 48

7.5 General Purpose Register File

 A RISC CPU usually have a large general purpose register file. The standard

number of registers are normally 32, so as in the AT90S1200. 32 registers will require

about 52% area of the targeted device Altera EPF10K20RC240-4, which are

unacceptable. As a result, only 16 registers are included in this design. The same

instruction format discussed earlier is used, except that the 5th bit of the register address

is now a don’t care value.

Figure 7.7 shows the structure of the 16 general purpose registers. They are

numbered from R16 to R31 instead of R0 to R15 due to 2 reason. Firstly, immediate

instructions like LDI can only address the upper register file as discussed in the

instruction format section in chaper 4. Secondly, the indirect Z-pointer share the same

register as R30.

7 0

R16

R17

…

R29

R30 (Z-Pointer)

R31

Figure 7.7 General Purpose Register File Organization

At any time, the register file will connect 2 registers to the ALU through two

16-to-1 multiplexers. The two registers are the destination register and source register,

addressed directly by the instruction register. The data bus is connected directly to the

register file. The value of the data bus can be written to the destination register if the

WR_REG signal is asserted.

The address bus connects the register file and data RAM together. R30 can be

used as either a general register or the Z-pointer (ZP) to address the data RAM. The

 49

starting address for data RAM is $60. Unfortunately, the targeted device requires the

starting address of a RAM to be $0. So, the address bus value is the value of ZP

subtracted by $60. If indirect addressing with pre-decrement is used, then the address

bus is the value of ZP subtracted by 61.

c[7..0] ?
wr_reg ?
inc_zp ? ? reg_rd[7..0]

dec_zp ? General Pupose Registers ? reg_rr[7..0]
rd[3..0] ? (v_gpr.vhd) ? addr_bus[7..0]
rr[[3..0] ?

dest[3..0] ?
 clk ?

 Clrn ?

Figure 7.8 General Purpose Registers Symbol

 Figure 7.8 shows the module symbol of the general purpose register file.

INC_ZP is asserted when indirect addressing with post-increment is used. It will

incrememt ZP by 1. DEC_ZP is asserted when indirect addressing with pre-decrement is

used. It will decrement ZP by 1. When indirect addressing with pre-decrement is used,

the MAR load the value of the address bus at the same rising edge the ZP is

decremented. So MAR will not be able to load the decremented ZP value. This is the

reason why the address bus is the value of ZP subtracted by $61 instead of $60 to correct

this problem.

 Recall that an instruction cycle are divided into fetch stage and execute stage.

Operands are fetch at the start of the execute stage while the result is written back at the

end of the execute stage. To be able to fetch the correct operands at the start of the

execute stange, the operands must be known in the fetch stage. The instruction in the IR

is in the fetch stage, so it addressed the operands. When the instruction enter the execute

stage, another instruction is fetched. To write the result from the ALU back to the

correct destination register must now tell by the control unit instead of the IR because IR

only knows the destination register of the next instructions. This is the difference

between RD (fetch stage) and DEST (execute stage).

 50

7.6 ALU

The ALU executes many instructions, some directly and some indirectly. We

first examine the 24 most basic instructions that are executed directly by the ALU. These

instructions are listed in Table 7.3. They are divided into 5 groups – ADD, SUBCP,

LOGIC, RIGHT and DIR. ADD group instructions perform add operations; SUBCP

group instructions perform subtract and compare operations; LOGIC group perform

logical operations; RIGHT group perform right shifting; DIR group perform direct

wiring operations.

Table 7.3 Basic Instructions

Group Instruction Extra Signal Wr_Reg ORA ORB Flags
ADD ü HSVNZC
ADC WCARRY ü HSVNZC

ADD

INC ü One HSVNZC
SUB ü HSVNZC
SUBI ü Imm HSVNZC
SBC WCARRY ü HSVNZC
SBCI WCARRY ü Imm HSVNZC
CP HSVNZC
CPC WCARRY HSVNZC
CPI Imm HSVNZC
DEC ü One SVNZ

SUBCP

NEG ü Zero Rd HSVNZC
AND LOGICSEL = 00 ü HSVNZC
ANDI LOGICSEL = 00 ü Imm HSVNZC
OR LOGICSEL = 01 ü HSVNZC
ORI LOGICSEL = 01 ü Imm HSVNZC
EOR LOGICSEL = 10 ü HSVNZC

LOGIC

COM LOGICSEL = 11 ü HSVNZC
LSR RIGHTSEL = 00 ü SVNZC
ROR RIGHTSEL = 01 ü SVNZC

RIGHT

ASR RIGHTSEL = 10 ü SVNZC
MOV DIRSEL = 0 ü
LDI DIRSEL = 0 ü Imm

DIR

SWAP DIRSEL = 1 ü

* If not stated, then ORA is default to Rd and ORB is default to Rr.

 51

 WR_REG signal is asserted if the result of the ALU will be written back to the

destination register. It is a register file control signal, not the ALU. ORA and ORB

columns shows what should be loaded into the operand register A and operand register

B. If the cell is blank, it is default to Rd (destination register) for ORA and Rr (source

register) for ORB. Zero is “0000 0000”; One is “0000 0001”; and Imm is the immediate

value of the instructions.

Every instructions has its own combination of group + extra signal + WR_REG

signal + ORA + ORB. This combination makes the 24 instructions unique to each other.

To represent a group, a control signal with the same name as the group is asserted. ADC

is executed by fetching Rd to ORA, Rr to ORB and assert the ADD signal, WCARRY

signal and WR_REG signal. ORI is executed by fetching Rd to ORA, the immediate

value to ORA, assert the LOGIC signal and set LOGICSEL to 01. All others instructions

are executed according to their combination

A total of 21 instructions will change the status register (SR) flags based on the

result of the operation. So the ALU need to evaluate the flags and send them to the SR.

If an instruction will modified the C-flag, the control will enable the C-bit in SR in order

to received the new flag from the ALU. The flag column in Table 7.3 shows the flags

that are affected by the 21 instructions. If a flag is not affected, the control unit will not

enable the corresponding bit in SR. The value ALU send to the SR is don’t care.

Table 7.4 Bit Load instructions

Signal Instruction Wr_Reg ORA Description

BLD BLD ü Rd Load T-Flag to bit
CBI I/O Clear bit in I/O register CBISBI
SBI I/O Set bit in I/O register

We now add 3 more instructions to our discussion, listed in Table 7.4. They

require a single operand, Rd for BLD and an I/O register for CBI and SBI. Their

operation is similar where BLD loads the T-flag into a bit while CBI can be think as

loading a 0 into a bit, so as SBI is loading a 1 to a bit. The control will tell which bit

 52

should be loaded. SBI and CBI instruction require 2 cycles to complete. At the first

cycle, the I/O register is fetched to ORA through the data bus. At the second cycle, a 0

or 1 is loaded to the bit location and result is written back to the I/O through the data

bus.

The register file can only received data from the data bus. So, in order to send

data out to the data bus, it needs to pass it through the ALU. Table 7.5 list the 4

instructions of this group. OUT instruction transfers the content of a register to an I/O

register while LD Z, LD Z+ and LD –Z transfer the content of a register to the data

RAM. Rd is fetch to ORA and the ALU perform a pass operation to pass ORA to data

bus.

Table 7.5 Pass ORA Instructions

Signal Instruction ORA Description

OUT Rd Skip if bit in register cleared
LD Z Rd Skip if bit in register set
LD Z+ Rd Skip if bit in I/O register cleared

PASSA

LD –Z Rd Skip if bit in I/O register set

Following next are the 5 skip instructions listed in Table 7.6. They determine

whether the next instruction followed should be skipped. The SKIPTEST group

instructions require single operand while the CPSE instruction requires two. I/O refers to

the respective I/O register. SBIC and SBIC instruction require 2 cycles to operate just

like CBI and SBI. At the first cycle, the I/O register is fetched to ORA. The skip test

then performed at the second cycle.

Table 7.6 Skip Instructions

Signal Instruction ORA ORB Description

SBRC Rd X Skip if bit in register cleared
SBRS Rd X Skip if bit in register set
SBIC I/O X Skip if bit in I/O register cleared

SKIPTEST

SBIS I/O X Skip if bit in I/O register set
CPSE CPSE Rd Rr Compare, skip if equal

 53

Figure 7.9 shows the organization of the ALU module. It can be broken into 4

functional units – operand fetch unit, execution unit, skip evaluation unit and status flags

evaluation unit. Operand fetch unit perform the fetching of operands to ORA and ORB,

execution unit takes ORA and ORB and modified accordingly, status flags evaluation

unit calculate the flags and send it to SR, and skip evaluation unit perform skip test. We

will now assume that the control unit will send in the correct control signals at the

correct time. More detail description about the control signals will be discuss in control

unit section.

Figure 7.9 ALU Organization

Skip Flags

Reg Rd
Reg Rr
Immediate

Operand Fetch

Unit

Skip Evaluation

Unit

Execution

Unit

Status Flags

Evaluation Unit

Data Bus

 54

7.6.1 Operand Fetch Unit

Figure 7.10 shows the structure of the operand fetch unit. There are two operand

registers inside the operand fetch unit – operand register A (ORA) and operand register

B (ORB).

Figure 7.10 Operand Fetch Unit

ORA can be loaded with Rd or “0000 0000” while ORB can be loaded with Rr,

Rd, immediate value or “0000 0001”. They are selected by the ASEL signal and BSEL

signal. The main purpose of the C2A signal and C2B signal is do perform operand

forwarding as discussed in pipeline conflicts section in chapter 5. They are used to

forward the result of the ALU (data bus) to the operand registers if the destination

register of the currently executing instruction is found to be same as Rd or Rr

As discussed earlier, CBI, SBI, SBIC and SBIS instructions will fetch one of the

I/O register to ORA as their operand. C2A also does the job by sending the data bus

(that contains the I/O register value) to ORA.

MUX MUX
ORA

Reg Rd
Data Bus

0000 0000
C2A

ASEL

MUX MUX
ORB

Reg Rr
Data Bus

Reg Rd
Immediate
0000 0001

C2B

BSEL

 55

7.6.2 Execution Unit

The execution unit executes 7 groups of instructions that are discussed earlier - 5

groups from the basic instructions (ADD, SUBCP, LOGIC, RIGHT and DIR), the bit

load group and the pass ORA group. As shown in Figure 7.11, the execution unit is

divided into 5 subunits. Adder-subtracter executes instructions from both the ADD and

SUBCP group. Logic unit executes instructions from the LOGIC group. Shifter for the

RIGHT group; direct unit for the DIR group; and bit loader for the bit load group.

Figure 7.11 Execution Unit Organization

The adder-subtracter add ORA and ORB when the ADD signal is asserted, else it

subtract ORB from ORA. Carry in of the adder-subtracter is determined by the ADD

signal and WCARRY signal as shown in table 7.7.

Table 7.7 Carry In of Adder-Subtracter

ADD WCARRY Carry In Related Instruction
0 0 1 SUB, SUBI, CP, CPI, DEC, NEG
0 1 Not C-Flag SBC, SBCI, CPC
1 0 0 ADD, INC
1 1 C-Flag ADC

Adder-Subtracter

Logic Unit

Shifter

Direct Unit

Bit Loader

Execution Unit

 56

The logic unit performs it operation based on the LOGICSEL signal. It performs

a logical and between ORA and ORB when 00; logical or between ORA and ORB when

01; exclusive or between ORA and ORB when 10; and complement ORA when 11.

The shifter performs right shifting operation. The 7 least significant bits (LSB) of

the result are the 7 most significant bits (MSB) of ORA. The result MSB is based on

RIGHTSEL signal, which is ‘0’ when 00; C-flag when 01; and the MSB of ORA when

10.

The direct unit performs direct data wiring based on the DIRSEL signal. It

connects ORB to the result when DIRSEL is 0. If DIRSEL = 1, the 4 MSB of the result

is the 4 LSB of ORA while the 4 LSB of the result is the 4 MSB of ORA (swap nibbles

of ORA).

The bit loader receives the 3 control signals – BLD, CBISBI, BITSEL and SET.

BLD signal loads the bit in ORA pointed by BITSEL with the T-flag. CBISBI signal

will load the bit in ORA pointed by BITSEL with the value of SET.

The outputs of all the 5 units plus the value of ORA are multiplexed to the data

bus through tri-state-buffers. Table 7.8 shows the data bus value with the respective

control signal. 2 control signals asserted at the same time is impossible because each

control signal represents totally different instructions and the CPU can only executes one

instruction at a time. If none of the control signal in the table is active, nothing is sent

out to the data bus, and it has a high impedance value. The data bus can be used for

others purpose.

 57

Table 7.8 Data Bus Value

Control Signal Data Bus Value
ADD, SUBCP Adder-Subtracter
LOGIC Logic Unit
RIGHT Shifter
DIRECT Direct Unit
BLD, CBISBI Bit Loader
PASSA ORA
Default High Impedance

7.6.3 Skip Evaluation Unit

Skip instructions (Table 7.6) are executed by first evaluating the skip condition

by the skip evaluating unit. If the skip condition is fulfilled, the SKIP signal is asserted.

The control unit will skip the next instruction that followed.

The skip evaluation unit receives 4 control signals – CPSE, SKIPTEST, BITSEL

and SET. When CPSE signal is asserted, ORA are compared with ORB. The SKIP

signal is asserted if they contain the same value. SKIPTEST test the bit in ORA pointed

by BITSEL. If that bit has the same value as SET, the SKIP signal is asserted.

7.6.4 Flags Evaluation Unit

The 21 instructions (shown in table 7.3) that are executed by the ALU plus the

BST instruction will modified the status register (SR). The control unit tests the status

register bits to determine whether the branch of an unconditional branch instruction

should be taken. A 7-bit wide flag bus is connected directly to SR to send the flags

result. It is 7 but not 8 bit because none of these instructions modified the I-flag.

 58

The ALU will evaluate all the 7 flags any time and send it to the SR through the

flag bus. This will not create problems because every bit in SR receives an individual

enable signal. The flag value send from the ALU will only be loaded if the enable signal

for that bit is active. The control unit takes care of the enable signals. The ALU takes

care of sending the correct flags to the bus. If a flag for an instruction is not modified,

the ALU can send anything to that bus line.

 Z-flag (Zero) is 1 when the result of an operation is zero. The evaluation unit can

test the result (data bus) directly to determine the Z-flag. It works but it will slow down

the design performance because signals need to pass through the execution unit and the

tri-state buffers before reaching the data bus. Only instructions from ADD, SUBCP,

LOGIC and RIGHT groups modified the Z-flag. To increase performance, the result of

the adder-subtracter, logic unit and shifter is tested directly instead of the data bus.

 N-flag (Negative) is always same as the value of the MSB of the result (bit 7).

Again, testing the data bus will slow down performance. So, the N-flag is tested based of

the result of the adder-subtracter, logic unit and shifter.

 V-flag is directly generated by the adder-subtracter when performing ADD and

SUBCP group instructions. It is always cleared for LOGIC instructions. For RIGHT

instruction, the Boolean equation given in the datasheet is N-flag ⊕ C-flag. Recall that

N-flag is equivalent to the MSB of the result (shifter result) and C-flag is the LSB of

ORA.

 S-flag (Sign) is an exclusive OR between the N-flag with the V-flag all the time.

 C-flag (Carry) is the carry out of the adder-subtracter when performing ADD

group instructions. RIGHT group instructions shift ORA one bit to the right and the LSB

of ORA enter the C-flag. The COM instruction (from LOGIC group) always set the C-

flag. For SUBCP instructions, C-flag is the borrow-in of the operation and is equal to the

complement of carry out of the adder-subtracter.

 59

 H-flag (Half Carry) are modified by ADD and SUBCP group instructions. For

ADD group, it is set if there is a carry out from bit 3 of the adder-shifter result. The

Boolean equation for it is 3.33.33.3 ACCBBA ++ with A is ORA, B is ORB and C is

the adder-subtracter result. The H-flag is the borrow in from bit 3 and is given as

3.33.33.3 ACCBBA ++ .

 T-flag is always the bit in ORA pointed by BITSEL. When executing the BST

(store bit to T-flag) instruction, the control unit simply asserts the enable signal for the

T-bit in SR.

7.7 Status Register (SR)

The status register (SR) is mapped into the I/O space at $3F. Figure 7.12 shows

the structure of the SR.

7 6 5 4 3 2 1 0

I T H S V N Z C

Figure 7.12 Status Register Structure

� Bit 7 – I: Global Interrupt Enable

� Bit 6 – T: Bit Copy Storage

� Bit 5 – H: Half Carry Flag

� Bit 4 – S: Sign Bit

� Bit 3 – V: Two’s Complement Overflow Flag

� Bit 2 – N: Negative Flag

� Bit 1 – Z: Zero Flag

� Bit 0 – C: Carry Flag

 60

All the flags except the I-flag have been discussed in the ALU section. The I-flag

must be set to enable the interrupt. Only if the I-flag is set, an interrupt request can be

served.

The SR can be modified in 4 conditions. First, the SR can be replace with the

content of a general purpose register. This is done by writing to the I/O address $3F. The

contents of the SR can also transferred to a general purpose register by reading the I/O

address $35.

As discussed in the ALU section, the SR receives a 7-bit wide flag bus from the

ALU. The C bus line is connected to the C-flag (a flip-flop); Z bus line to the Z-flag; and

so forth. The I-flag is not connected to any bus line. The control unit sends in enable

signals for all the flags (flip-flops). Only when the bit is enabled, the value of the bus

line can be written into the flag.

If an interrupt request is served, the control unit will need to clear the I-flag

before executing the interrupt service routine (ISR) so that another interrupt request will

not be executed when serving the current one. When the ISR is completed (when RETI

instruction is executed) the I-flag will be set again. So another interrupt request can be

served. The control unit send 2 control signals to clear and set the I-flag.

 Every bit in the SR can be cleared of set directly using the BCLR and BSET

instructions. The SR receives BCLR, BSET and SRSEL signals. When BCLR is active,

the flag pointed by SRSEL will be cleared. When BSET is active, the flag pointed by

SRSEL will be set.

 61

7.8 Data RAM

The actual AT90S1200 chip does not contain any SRAM. The AT90S2313

contains 128 Bytes of SRAM. Figure 7.13 show how the SRAM is organized in

AT90S2313. The 32 general purpose registers and 64 I/O registers are mapped into the

data space as well. The address space is accessed by LD and ST instructions with

indirect addressing through the X-pointer, Y-pointer and Z pointer.

$00
 32 General

Purpose Registers
$1F
$20

64 I/O Registers
$5F
$60 SRAM

(128 x 8) $DF

Figure 7.13 Data Address Space

In this design, the general purpose registers and I/O registers are not mapped into

the data space. The data space consist of the the SRAM only, addressed from $60 to

$DF. Only the Z-pointer (R30) is available. Data indirect with displacement is not

supported.

Figure 7.14 Data RAM Organization

Memory

M
A
R

MBR

Address Bus D
at

a
B

us

 62

Figure 7.14 shows the organization of the data RAM module. It contains two

registers – memory address register (MAR) and memory buffer register (MBR). MAR is

connected to the address input of the RAM. It receives data from the address bus which

is send from the egister file. MBR are connected to the data input port of the RAM. It

stores the data to be writen into the RAM. The MBR receives data from the data bus. A

write operation will write the contents of the MBR to the memory addressed by MAR. A

read operation will send the contents of the memory pointed by MAR to the data bus. If

the read operation is not active, the RAM output will be tri-stated.

addrbus[7..0] ?

rd_ram ?
wr_ram ? Data RAM ? c[7..0]
ld_mar ? (v_ram.vhd)
ld_mbr ?

 clk ?
 clrn ?

Figure 7.15 Data RAM Symbol

Figure 7.15 shows the symbol of the data RAM module. The RAM is

implemented using LPM_RAM_DQ module from the LPM library. A special

characteristic of this RAM is that it can have initial values by specifying the values in a

MIF file. In this way, it also acts like a ROM as well. RD_RAM reads the content of the

memory to data bus; WR_RAM writes the content of the MBR to memory; LD_MAR

load the MAR with address bus; and LD_MBR loads MBR with data bus.

 63

7.9 Port

There are three 8-bits bi-directional I/O ports in the design – Port B, Port C and

Port D. Every port has its own data register, data direction register and input pins. They

are mapped into the I/O space as listed in Table 6.1. All the data registers and data

direction registers are cleared after reset. Data registers and data direction registers can

be read and written to while the input pins can only be read.

A port is built using bit-slice approach where a single bit module is built and

cascaded together to form the port. Shown in Figure 7.16 is the schematic of the bit-

slice.

 Figure 7.16 Bit-slice schematic of the I/O Port

 The bit-slice contains 2 D-flip-flops, one is the data flip-flop while another is the

data direction flip-flop. Data direction flip-flop control the direction of the I/O pin – 0

for input and 1 for output. When configure as input (direction = 0), the tri state buffer is

not enable and the external bin will be in high impedanze state. A read on the pin will

 64

read the value of the physical pin to the data bus. The data flip-flop value does not

change according to the phisical pin.

When the pin is configured as output (direction = 1), the tri-state buffer that

connects to the data flip-flop is now enabled. The physical pin will be directly driven the

the value of the data flip-flop.

The port are connected directly to the data bus. When writing to the data flip-flop

and direction flip-flop, data is received from the data bus and the write signal to the

respected flip-flop is asserted. A read operation can read the contents of the data flip-

flop, direction flip-flop and the external pin. A read signal to the respected flip-flops or

pin will read its content to the data bus.

 Eight copies of the same bit-slice are cascaded together to form a port module.

Then the port module can be duplicate to form port B, port C and port D. Although they

share the same port module, they are actually receiving different set of control signals

from the control unit which differenciate them.

rd_port ?
wr_port ?
rd_ddr ? Port ? c[7..0]
wr_ddr ? (v_port.vhd) ? pin[7..0]
rd_pin ?

 clk ?
 clrn ?

Figure 7.17 Port Symbol

Figure 7.17 shows the symbol of the port module. The port B will have the

RD_PORT input connected to RD_PORTB signal while port C will have it connected to

RD_PORTC, and RD_PORTD for port D. The same naming convention is applied to

others control signals. The physical I/O pin is also named as PINB, PINC and PIND

respectively.

 65

7.10 Timer

The timer is a simple 8-bit timer with overflow detection and interrupt request.

There are 4 control registers in the timer – timer/counter interrupt mask register

(TIMSK) at $39, timer/counter interrupt flag register (TIFR) at $38, timer/counter 0

control register (TCCR) at $33 and timer/counter 0 (TCNT0) at $32. Figure 7.18 shows

the control bits in these registers.

 7 6 5 4 3 2 1 0

TIMSK - - - - - - TOIE0 -

TIFR - - - - - - TOV0 -

TCCR0 - - - - - CS02 CS01 CS00

TCNT0 MSB LSB

Figure 7.18 Timer Control Registers

The timer module contains a 10-bit prescaler/frequency divider drive by the

system clock, which give a maximum division of 1024. CS02, CS01 and CS00 select the

clock source for the timer according to Table 7.9.

Table 7.9 Timer Clock Source Select

CS02 CS01 CS00 Timer Clock Source

0 0 0 0 - the timer is stopped
0 0 1 System Clock (CLK)
0 1 0 CLK/8
0 1 1 CLK/64
1 0 0 CLK/256
1 0 1 CLK/1024
1 1 0 External Pin, falling edge
1 1 1 External Pin, rising edge

 66

It is important to note that the timer clock source does not drive the TCNT0

directly. Instead, TCNT0 is driven by the system clock. The timer clock source are

sampled at the rising edge of the system clock. If a low to high transition is detected (a

low is sampled followed by a high), the increment signal for TCNT0 is asserted to

increment it. Every transition detected will generate an increment signal pulse. If the

timer clock source is the system clock, then no detection of rising edge is required - the

increment signal is always asserted. To assure proper sampling of the external clock

source, the frequency of the external clock should be smaller than the system clock

frequency, and the smaller the better.

Every time the increment signal is active, TCNT0 will be incremented by 1. If

TCNT0 is $FF before increment, it will become $00 after increment and at the same

time the timer/counter 0 overflow flag (TOV0) will be set.

The timer/counter 0 interrupt overflow interrupt enable flag (TOV0) is ANDed

with TOV0 to generate the timer overflow interrupt request. If the TOV0 is set (timer

overflow interrupt enabled) and TOV0 is also set (timer overflow occurred), the timer

will assert an interrupt request to the control unit. If the I-flag in the SR is enabled, the

control unit will serve the interrupt request and clear the TOV0 flag by sending a clear

TOV0 signal to the timer module.

Just like other control registers, the 4 timer registers can be read and write

through the data bus. However, reserved bits are always read as zero; and the TOV0 flag

can be cleared by writing a one to it. In this way, TOV0 flag can never be set by the

user. Reserved bits are not implemented with flip-flops, they are connected directly to

ground and this will save a lot of flip-flops. This is why the reserved bits are always read

as zero and there are no way data can be written to them.

Figure 7.19 shows the symbol of the timer module. In this design, the EXTPIN is

conneted to PIND7, the last pin of port D. It can easily configured to point to any of the

24 I/O pins. CLR_TOV0 is sent from the control unit to clear the TOV0 flag when the

 67

interrupt request is served. The 4 RD signals read the timer control registers to the data

bus while the 4 WR signals write the data bus value to the corresponding register.

extpin ?

clr_tov0 ?
rd_timsk ?
wr_timsk ?

rd_tifr ? Timer ? c[7..0]
 wr_tifr ? (v_timer.vhd) ? timerirq

 rd_tccr0 ?
wr_tccr0 ?
rd_tcnt0 ?
wr_tcnt0 ?

clk ?
clrn ?

Figure 7.19 Timer Symbol

7.11 External Interrupt

 The external interrupt is triggered by an external pin. In this design, the external

pin share the pin with pin D7, the last pin of port D. This pin can be easily changed to

share with one of the 24 I/O pins by modifying a singal line in the VHDL code. Shown

in Figure 7.20 is the 2 control registers for external interrupt – general interrupt mask

register (GIMSK) at $3B and MCU control register (MCUCR) at $35.

 7 6 5 4 3 2 1 0

GIMSK - INT0 - - - - - -

MCUCR - - - - - - ISC01 ISC00

Figure 7.20 External Interrupt Control Register

 The MCUCR of AT90S1200 has the bits 4 and 5 for controlling the sleep modes

of the microcontroller. Since the design does not include this feature, these bits are taken

away from the register.

 68

 The interrupt can be triggered by the external pin on rising edge, falling edge of

low level and is selected by the ISC01 and ISC00 bits (interrupt sense control 0) as

shown in Table 7.10.

Table 7.10 Interrupt Source

ISC01 ISC00 Interrupt Source
0 0 Low Level
0 1 -
1 0 Falling Edge
1 1 Rising Edge

 The interrupt can also be triggered when the external pin is configured as output.

The difference now is that the interrupt signal is provided internally from the

microcontroller instead of external signal. This provides a way to generate software

interrupt by the programmer.

Transitions (falling edge and rising edge) are not detected using the clock input

of a flip-flop. The external pin is sampled on every system clock to detect the transitions.

A low sample follows by a high sample sense a rising edge while a high sample follows

by a low sample sense a falling edge. When the interrupt source is set to falling or rising

edge, the external interrupt flag will be set when the require edge is detected. The

external interrupt flag are not accessible by the user. It is not placed inside any of the

control register. The flag will stay until the interrupt request is served or after a reset.

Figure 7.21 shows how interrupt request is generated. To generate an interrupt

request to the control unit, the INT0 bit (external interrupt request 0 enable) must be set.

This bit is ANDed with the flag to generate the interrupt request (with ISC /= 00).

 69

Figure 7.21 Generating External Interrupt Request

Low-level interrupt are difference from edge interrupt just discussed. It does not

set the external interrupt flag to generate an interrupt request. Instead, it never touches

the flag. The complement of the external pin (detect low-level) is directly ANDed with

the INT0 bit to generate an interrupt request. So if INT0 is set, it will generate an

interrupt request as long as the pin is held low. If the interrupt is not enabled when the

pin is held low, it will be forgotten when the pin goes high.

If the external interrupt is set to edge triggered, the external signal must have

sharp transition. If a physical switch is used to generate the interrupt, switch-bounce will

occur. It will generate a second, third or more interrupt request even if the interrupt

request has already been served. So, it is recommended that the low-level interrupt is

used, or the switch is hardware de-bounced.

extpin ?
clr_intf ?

rd_mcucr ?
wr_mcucr ? External Interrupt ? c[7..0]
rd_gimsk ? (v_extint.vhd) ? extrirq

 wr_gimsk ?
clk ?

clrn ?

Figure 7.22 Timer Symbol

 70

Figure 7.22 shows the symbol of the external interrupt module. CLR_INTF is

sent by the control unit to clear the external interrupt flag when the interrupt request is

served. RD and WR signals provide reading and writing the control registers through the

system data bus.

 71

CHAPTER VIII

CONTROL UNIT DESIGN

8.1 Chapter Overview

 The design of the datapath has been discussed in the last chapter. Only one

module is left for the design – the control unit module, which will be discussed in this

chapter. We have touched the instruction set, pipeline processing and many control

signals, which controls the datapath. The control unit plays the role on decoding the

instruction, implements the pipeline processing and asserts the control signals for the

datapath at the correct timing. This chapter covers the decoding of the instruction and

the design of the finite state machine (FSM).

8.2 Instruction Decoder

The inputs of the control unit are the instruction machine code from instruction

register (IR), the flags value from status register (SR), skip request, timer interrupt

request (timer IRQ) and external interrupt request (external IRQ). The machine code is

decoded first before sending to the FSM, while the others inputs are connected directly

to the FSM.

 72

As discussed in chapter 5, the design process involves 51 machine codes. The

instruction decoder takes the 16-bit machine code from the IR and generates 46 output

signals to represents the 51 instructions. There are 4 pairs of instructions that share a

same signal. The share signal is active when either one is found. They are BRBC,

BRBS; SBRC, SBRS; SBIS, SBIR; CBI, SBI. The NOP instruction is not decoded. So

51 take away 5 equals to 46 signals.

At any time, the IR can only have one instruction. So, it will not have more than

one output signal active at a time. However, if the machine code received does not

match any of the 51 instructions, or is actually the NOP instruction, then none of the

decoder output signal is active. When none of the output signal is active, the FSM will

not assert any control signal to perform an operation, so no operation (NOP) is executed

in that cycle. Any undetermined instruction is executed as NOP.

8.3 Synchronous Mealy Model Finite State Machine

RISC control unit should be hard-wired (logic gates) rather than

microprogrammed (ROM implementation). Microprogrammed control unit is used by

CISC because the instruction has different length and execution cycles. So

microprogrammed can make the control unit design easier. The disadvantage is slower

speed performance. In RISC, instruction has fixed length and mostly single cycle

execution. So design using hard-wired is not that complicated and it will have the

advantage of speed.

The FSM in this design is hard-wired, using logic gates to generate the next state

and output signals rather then a ROM. The FSM is implemented using synchronous

Mealy model. Figure X.X shows the block diagram of a synchronous Mealy model

FSM.

 73

Figure 8.1 Synchronous Mealy Model FSM

 Different with the normal Mealy FSM, the synchronous Mealy FSM has their

output connected to flip-flops. That is why it is called synchronous. There are two

combinational logics in the state machine, one to generate the next state base on the

input and current state, while the other is used to generate the outputs base also on the

input and current state.

 There are basically 2 advantages from using a synchronous Mealy FSM. For a

Moore or Mealy FSM, the outputs are generated by the output combinational logic. They

will be delay for the signals to pass through the combinational logic before the output is

generated. This will slow down the control signals output speed. If the datapath receive

the control signals later, then will perform their operation later. In the synchronous case,

outputs are still generated by the combinational logic, but they are now gated to D-flip-

flops. On the next clock transition, the outputs are asserted immediately. The datapath

receives the control signals at the very beginning of a cycle and therefore can complete

its operation faster. This is the first advantage.

Next State

Combinational
Logic

Output

Combinational
Logic

D
F
F

Next
State

Current
State

D
F
F

Next
Output Output

Input

 74

 The FSM contains only 8 states. Such a small number of states are results of

using synchronous Mealy implementation. This is the second advantage. Since the state

machine outputs are now gated to flip-flops, all single cycle instruction can share the

same state. The state is unchanged but the input changed, so it can determine the next

output.

8.4 Finite State Machine States

Figure 8.2 State Diagram

EXE

SLEEP

ST

CBISBI

SBICS

BRANCH2

BRANCH1

LD

IRQ

NO IRQ NO IRQ

Single Cycle
Inst.

RESET
Uncond.
Branch

Branch Request

SBIC/SBIS

CBI/SBI

Store Inst.

Load Inst.

Sleep

 75

 Figure 8.2 shows the state diagram of the finite state machine (FSM). The 8

states are EXE (execute), SLEEP, BRANCH1, BRANCH2, SBICS (skip if bit in I/O

clear/set), CBISBI (clear/set bit in I/O), ST and LD.

 The state diagram shows the state flow but does not clearly show the inputs. The

inputs to the FSM are the 46 output lines of the instruction decoder, timer IRQ, external

IRQ, skip request and branch request. Branch request is generated by the branch

evaluation unit when the condition of the conditional branch instruction is fulfilled.

 We now assume all instructions are single cycle and there are no IRQ, skip

request and branch request. The state machine will have no state change in this case and

remain at EXE state. All instructions have a fetch cycle and an execute cycle and are

pipelined together as discussed in chapter 5. When the first instruction is fetched, its

corresponding output line of the instruction decoder will become active. It happens in

the fetch stage. The next state combinational logic finds that the next state is unchanged.

However, the output combinational logic has prepared the control signals based on the

decoder’s active line. On the next clock transition, the instruction enter the execute stage

and the control signals is asserted (latch into the output flip-flops). The ALU then

executes the instruction. Because of pipeline processing, the next instruction has been

fetched at the same clock transition. The instruction decoder decodes it and asserts

another output line. Again, the output logic will prepare the correct control signals and

asserts it on the next clock transition. So the FSM can perform the pipeline processing

without any difficulty.

 We now consider the one of the unconditional branch instruction - RJMP. When

RJMP is fetched, the RJMP output line of the decoder is active. The next state logic

determined that there would be a state change to BRANCH1 state on the next cycle. The

output logic also prepared the control signals for RJMP, which will load the PC with the

destination address. On the next clock transition, state changes to BRANCH1 and the

control signals are asserted. At BRACH1, the next state must be BRANCH2. Although

the pre-fetched instructions asserts one of the decoder output line, the output logic does

 76

not prepared any control signals for the next cycle. So this instruction is being flushed

from the pipeline, as discussed in chapter 5. So on the following clock transition, state

changes to BRANCH2 and at the same time, PC is loaded with the new value. The next

state will be returned to EXE state. Again, no output signal is asserted based on the

fetched instruction because it is flushed. On the next clock transition, the FSM enters

EXE state and the destination instruction has been fetched. The decoder’s destination

instruction output line is active and will be executed on the next cycle.

 The discussion above is for the RJMP instruction. The same concept can be

applied to RCALL, RET, RETI instructions as well as serving an IRQ. An IRQ (timer or

external) is sent by the timer or external interrupt module in the datapath. An IRQ can

only be served if the I-flag is set, else it will be ignored. To make sure all instruction s

are completely executed, an IRQ can be only be served in the EXE state. On EXE state,

the FSM first check for any IRQ (must have the I-flag set). If there is any, it will ignored

the pre-fetched instruction and determines the next state to be BRANCH1. The output

logic prepare control signal to load PC with the interrupt vector and to clear the I-flag. I-

flag is cleared so that if there is a new IRQ occurred while serving the current one, it will

not be served. After loading the interrupt vector to the PC, execution continues as

normal but there will not be any IRQ served until the RETI instruction is fetched and

executed. It will then set back the I-flag and allowed another IRQ to be served. All

conditional branch instruction will take 3 cycles to complete. This can be count from the

transitions make to complete the execution from EXE state back to EXE state. (EXE �

BRANCH1 � BRANCH2 � EXE)

 The next case to consider is the execution of conditional branch instructions –

BRBC and BRBS. Different from conditional branch instruction, the branch may or may

not be taken. They test a bit in the SR to determine whether the branch should be taken.

The branch evaluation unit will do the job on testing the SR flags base on the condition

specified. If the condition is fulfilled, it will immediately generate a branch request to

the FSM.

 77

 When either BRBC or BRBS is fetched, the shared instruction decoder output

line become active. Different from unconditional branch instructions, there will be no

state chance on the next cycle. The FSM will assert the branch test signal on the next

cycle to request the branch evaluation unit to perform a branch test. If the condition is

not fulfilled, no branch request is generated. The pre-fetched instruction is not flushed

from the pipeline and is executed. So it takes only one cycle for a conditional branch

instruction if the branch if not taken.

 If the condition is fulfilled, the branch evaluation unit will send back a branch

request to the control unit immediately. At the same time, the control unit will also

instruct the PC to loads the PC with the destination address. With the branch request, the

FSM will transfer to BRANCH2 state on the next clock and the pre-fetched instruction

is flushed. On the next clock, the second pre-fetched instruction is also flushed but the

FSM now return to EXE state. The next instruction is the destination instruction and will

be executed on next cycle. So it takes 3 execution cycles if the branch is taken for

conditional branch instructions. Note that the control signal to load the PC is not asserted

according to clock transition. It is asserted only after the branch evaluation unit has

received the branch test signal and performs the test successfully. So there is delay for

the PC to receive the signal in this case.

 When the FSM sees the SLEEP instruction, it will jump to the SLEEP state.

When in the SLEEP state, the PC is stopped and no instruction is executed. Only when

there is an IRQ (with the I-flag set), the FSM jumps to BRANCH1 state to serve the

interrupt request. The process is exactly the same as serving an IRQ from the EXES.

 For single cycle instruction, the instruction will not need to be remembered after

the control signals is asserted because it is completed in one cycle. When enter the

execute cycle, the next instruction is fetched and the current instruction is lost. However,

instructions that require 2 cycles to complete must have some way to remember the

instruction in order to assert the correct control signals at the second cycle. So, the FSM

 78

provides the second state to remember the instruction. Control signals are based on the

state itself without considering the decoder’s output line.

If the second cycle of the instructions asserts the same control signals, then the

state can be shared, else it will require another one. There are 4 states of all for executing

2 cycles instruction – LD, ST, CBISBI and SBICS. The FSM jump to LD state when LD

Z, LD +Z or LD –Z is seen; ST if ST Z, ST +Z, ST –Z; CBISBI if CBI or SBI; SBICS if

SBIC or SBIS. When one of these instructions is found, the control unit will need to

hold the pipeline (Chapter 4). The EN signal send to the PC module and IR module will

not be asserted for one cycle. So the PC is not incremented and the IR is still holding the

pre-fetched instruction.

Skip instructions executes in a similar way to unconditional branch instructions.

When the FSM sees a skip instruction, it will send control signals to the ALU to perform

the skip test. The ALU will send a skip request back to the FSM if the skip condition

fulfilled. The skip request will not generate a state chance as branch instructions.

However, it will ignore the pre-fetched instruction (the instruction to be skipped). No

control signal is asserted to execute it. So it takes 1 cycle if the skip is not taken but 2 if

the skip is taken.

SBIC and SBIS is a combination of 2 cycles instruction and skip instruction. It

requires an extra cycle to fetch the I/O register before the skip can be test by the ALU.

The skip test signal is asserted on the transition from SBICS to EXE. If a skip is taken, it

takes 3 cycles and it takes 2 is the skip is not taken.

After the long discussion, we should notice when in the EXE state, it will first

check to see if there are any branch request or skip request to processed (two of them

will never occurred at the same time). If none, it will then check the IRQ. The IRQ must

be enabled by the I-flag in order to be served. Only after then it checks the instruction

decoder’s output to execute an instruction.

 79

8.5 Finite State Machine Output

 The finite state machine (FSM) output are the control signals send to control the

datapath. The datapath and their control signals have been discussed in Chapter 7. The

FSM will generate these control signals at the correct timing. Table 8.1 lists the control

signals and the instructions/ state/ condition that assert them.

Table 8.1 Control Signals

Module Control Signal Instruction/ State/ Condition

ADDOFFSET RJMP, RCALL, Branch Request
PUSH RCALL, Timer IRQ, External IRQ
PULL RET, RETI
VEC2 External IRQ

PC

VEC4 Timer IRQ
PC & IR EN Other than (CBI, SBI, SBIC, SBIS, LD Z, LD Z+, LD

–Z, ST Z, ST Z+, ST –Z)
WR_REG ADD, ADC, INC,

SUB, SUBI, SBC, SBCI, DEC, NEG,
AND, ANDI, OR, ORI, EOR, COM,
LSR, ROR, ASR, LDI, MOV, SWAP,
IN, LD State

INC_ZP LD Z+, ST Z+

General
Purpose
Register
File

DEC_ZP LD –Z, LD -Z
ADD ADD, ADC, INC
SUBCP SUB, SUBI, SBC, SBCI, CP, CPC, CPI
LOGIC AND, ANDI, OR, ORI, EOR, COM
RIGHT LSR, ROR, ASR
DIR LDI, MOV, SWAP
BLD BLD
CBISBI CBISBI state
PASSA OUT, ST Z, ST +Z, ST –Z
CPSE CPSE
SKIPTEST SBRC, SBRS, SBICS State
LOGICSEL Refer to Table 7.3
DIRSEL Refer to Table 7.3

ALU

RIGHTSEL Refer to Table 7.3
BCLR BCLR
BSET BSET

SR

EN for C-flag ADD, ADC,
SUB, SUBI, SBC, SBCI, CP, CPC, CPI, NEG,
COM, LSR, ROR, ASR

 80

EN for
S,V,N,Z-flag

ADD, ADC, INC,
SUB, SUBI, SBC, SBCI, CP, CPC, CPI, DEC, NEG,
AND, ANDI, OR, ORI, EOR, COM,
LSR, ROR, ASR

EN for H-flag ADD, ADC,
SUB, SUBI, SBC, SBCI, CP, CPC, CPI, NEG

EN for T-flag BST
CLR_I Timer IRQ, External IRQ

SET_I RETI
LD_MAR LD Z, LD +Z, LD –Z, ST Z, ST +Z, ST –Z
LD_MBR ST Z, ST +Z, ST –Z
RD_RAM LD state

Data RAM

WR_RAM ST state
Timer CLR_TOV0 Timer IRQ
External
Interrupt

CLR_INTF External IRQ

RD_IO IN, CBI, SBI, SBIC, SBIS I/O Decoder
WR_IO OUT, CBISBI state, SBICS state

Branch
Evaluation
Unit

BRANCH_
TEST

BRBC, BRBS

8.6 Fetch Stage Signals

Signals discussed so far are execute stage signals, which means they are asserted

at the execute stage of an instruction. But there are also fetch stage signals, which are

asserted at the fetch stage of the instruction.

The C2A and C2B signals are the operand-forwarding signals. There are logics

in the control unit that compare the Rd bits of the current executing instruction (in IBR)

with the Rd and Rr bits of the newly fetched instruction (in IR). If it is found to be the

same as either, or both, C2A or C2B will be asserted immediately. So on the next clock,

the operand register will loads the results of the ALU to the operand register instead of

the general register.

 81

As discussed in the ALU operand fetch unit section is Chapter 7, ASEL and

BSEL control signals are used to select what should be loaded into the operand registers.

They are generated directly by the instruction decoder’s output. Table 8.2 shows the

value of ASEL and BSEL with the corresponding instructions and operands.

Table 8.2 C2A and C2B Operand Fetching Signals

ASEL ORA Instruction
0 Rd Default
1 0000 0000 NEG

BSEL ORB Instruction
0 Rr Default
1 Rd NEG

2 Immediate Value SUBI, SBCI, CPI,
ANDI, ORI, LDI

3 000 0001 INC, DEC

8.7 Instruction Backup Register (IBR)

IR is always loaded with the next instruction, then IBR will always loaded with

the currently executing instruction. So it is actually loading the contents of the last IR.

Bits in the IBR are used to form the destination register address for the register file; the

bit select signal (BSEL) for the ALU (select one of the 8 bits in a register); the SET

signal for the ALU (for bit loading, bit test); the flag select signal (SRSEL) for SR; and

the OFFSET for the PC.

 82

8.8 I/O Decoder

When either the RD_IO or WR_IO is asserted, the I/O decoder will decode the

I/O address to know exactly which I/O register are to be read of write. Then it sends out

the specific read or write control signal for that I/O. In the instruction format section in

chapter 4, it is shown that there are two instruction formats for instructions that accessed

the I/O. So the bits location for the I/O address is different. The I/O decoder must be

able to know which bits are to be used as the I/O address.

8.9 Branch Evaluation Unit

A conditional branch instruction will test one of the 8 bits in the SR. BRBC will

take the branch if the specific bit is cleared while BRBS will take the branch if that bit is

set. The branch evaluation unit is enabled when the BRANCH_TEST signal is active. It

will then test whether the specific bit meets the branch condition (clear/set). If it does

meet the condition, a branch request is generated immediately to the control unit to

generate the ADDOFFSET control signal, the next state will now be BRANCH2 state. If

the condition is not fulfilled, nothing happens and the CPU will execute the next

instruction.

 83

CHAPTER IX

HARDWARE IMPLEMENTATION

9.1 Altera UP1 Educational Board

Figure 9.1 Altera UP1 Educational Board

 The Altera UP1 (University Program) Educational Board as shown in Figure 9.1

is the only FPGA device available in the LAB. It has two FPGAs on it for developing

complex programmable logic applications. The MAX7000 device on the left side of the

board typically supports 2,500 gates for simple designs. The FLEX10K20 on the right

 84

supports 20,000 gates, and includes connections to a DB25 VGA connector, as well as a

PS/2 mouse port. The system is programmable via a PC parallel port, using the included

MAX+PLUS II Student Edition.

 This design is targeting the FLEX10K20 device. The exact device code is

EPF10K20RC240-4. 240 means the package has 240 external pins; while –4 is the speed

grade of the device. This device is the second smallest in the FLEX10K series.

Designing larger digital system might be challenging if it is the only device available for

implementation. Imagine that implementing 32x8 bit register with two 16-1 8-bit

multiplexers will swallow up 52% of the logic cells! There are 4 speed grades for FLEX

devices, -4, -3, -2 and –1. Unfortunately, -4 is the slowest grade. Although the area and

speed constraints may lead to harder design process, however it will be more

challenging and require more knowledge on the device architecture in order to

minimized the area used and maximized the speed performance.

9.2 Pin Assignments

Figure 9.2 FLEX10K Pins Arrangement on UP1 Board

 85

Figure 9.2 shows the pin arrangement of the FLEX10K device on the UP1 board.

Before the design is programmed into the device, pin assignments must be made to map

all the pins of the design to the physical pin on the UP1 board. Table 9.1 lists the pin

assignments used.

Table 9.1 Pin Assignments

Design Pin Map To Design Pin Map To
RESET 29 PINC3 73
CLK 91 PINC4 75

PINB0 45 PINC5 79
PINB1 48 PINC6 80
PINB2 50 PINC7 82
PINB3 53 PIND0 79
PINB4 55 PIND1 81
PINB5 61 PIND2 83
PINB6 63 PIND3 86
PINB7 65 PIND4 88
PINC0 66 PIND5 95
PINC1 68 PIND6 98
PINC2 71 PIND7 100

RESET pin is mapped to one of the onboard switch. The CLK is mapped to the

build-in clock source (25.9MHz). All the I/O pins (Ports) are connected to the

FLEX_EPAN_A pins. Since the clock source is faster than the design maximum speed

(around 12 MHz). A frequency divider must be used to divide the clock source by 4 (6.5

MHz) before driving the whole system.

9.3 External Circuitry

The board itself is not sufficient to test the design. If the board is now a

microcontroller, then the external circuitry for the control applications must be prepared.

The external circuit will be connected to the 24 I/O pins of the microcontroller.

 86

 Port B is configured as output and is used to control two 7-segments LED

display through the used of two BCD to 7-segments decoder. The 4 lower bits of the port

will drive the right digit while the 4 upper bits of the port drive the left digit.

 Lower 4 bits of port C is configured as output and is connected to 4 common

VCC red LEDs. The LED will on when the pin output a LOW logic. Upper bits of port

C is configured as input and is connected to 4 momentary normally open push buttons.

The other end of the push buttons is connected to GND. The input pin will sense a LOW

logic is the button is pressed.

PINB0 1 2 3

PINB1 4 5 6

PINB2 7 8 9

PINB3 * 0 #

 PINB4 PINB5 PINB6

Figure 9.3 Keypad Interfacing

7 pins of port D is used to interface a 4 x 3 keypad. Figure 9.3 shows the

connection between he keypad and the pins. The lower 4 bits are configured as input and

are connected to the 4 rows of the keypad. These 4 bits are also connected to 4 pull-up

resistors. The following 3 bits are configured as output and is connected to the 3

columns of the keypad.

The last pin (Pin D7) is the external interrupt request pin and is connected to a

push button. The configuration of the push button is the same as the push buttons for

port C. Pin D7 is also connected to a green LED. So this pin will be configured both as

input and output depends on the program. It will sense the push-button when configured

as input and it will on/off the LED when configured as output.

 87

9.4 Fitting Report

Figure 9.4 Fitting Report

 Figure 9.4 shows the fitting report of the whole design. The first line tells us that

the project has been compiled successfully. There are 2 input pins (CLK and RESET)

and 24 I/O pins (Port B, C and D). 83% of the memory is utilized. Memory is

implemented in the embedded cells (EC) in the device. The program ROM and data

RAM uses EC. 92% of the logic cells (LC) are utilized. LC is the most basic logic

building block in the device.

9.5 Control Applications

We have got a microcontroller in the FPGA and the external circuitry. Now we

need the have the program for the control application. 2 control applications are used to

test the microcontroller. The programs for the applications are listed in Appendix B. The

program must be assembled and changed to MIF format. Maxplus2 then compiled it

along with the designed microcontroller.

 88

9.5.1 Simple Calculator

 The first application is a simple calculator that can only perform add and minus

operations. The keypad is the input of the calculator and the two 7-segments digits are

the output. The # key is used to represent the add (+) key while the * key is used to

represent the minus (-) key. There are no equal (=) key, the results is automatically

shows is the results changed after an operation (add or minus). To clear the result,

external interrupt is used. The external interrupt will clear all the saved data when

requested.

 All operations are done with BCD numbers. The microcontroller detect a key

pressed on the keypad and changed it to the BCD number it represents. Operations are

done in BCD directly so the C-flag and the H-flag of the status register are used. Then

the results is shown and saved as BCD.

 If an overflow occurred after an operation, interrupt is temporary disabled and

pin D7 (the external interrupt pin) is configured as output to on the green LEDs for a

short delay to indicate an overflow has occurred.

 The timer is also tested in this application. The timer is enabled and the interrupt

mask bit is set. The interrupt service routine will on a red LED and rotate it through the

4 red LEDs. Since it is controlled by the timer interrupt, it does not affect the main

program (the calculator) and thus the microcontroller is multitasking, detecting keys and

generating running lights at the same time.

 When a key is pressed and is holding, the microcontroller will take only one data

and it will only detect another key when the current key is released. The application is

also software de-bounced.

 89

9.5.2 Simple Memory Game

The simple memory game will display random red LEDs blink (one at a time).

The player will need to remember the sequence of the LEDs blink and tell the

microcontroller by using the push buttons. A player is given 3 lifes for the whole game.

If the player gets it right, the green LED blinks once and the game proceed to the next

level. If the player gets it wrong, all the red LEDs blink once and the blink sequence is

shown again. One life will be deducted.

The first level will have only 1 LED in the blink sequence and the second level

increased to 2. The higher the level, the longer the blink sequence. The two digits 7-

segments display will always shown the current level of the game. If the player entered a

wrong sequence, the life is deducted and the remaining life is shown before the game

shows the sequence again.

 Random numbers are used to determine which red LEDs should be on next.

Random numbers are generated by the used of timer. Every time a random number is

needed, the microcontroller read the timer and get a value, then it processed the random

number to decide which of the 4 LEDs should be on.

 This program must have complicated software for input detection. It must be able

to detect and count the key press very accurately. Let say in level 8, there will be 8

LEDs blink in sequence. When the player keying in the result, the microcontroller must

takes in 8 inputs, and check them will the saved value. So it must have very accurate

detection on whether the current key has been released before taking the next one. It

must also have software de-bounced.

 90

CHAPTER X

SUGGESTIONS AND CONCLUSION

10.1 Recommendation on Future Works

At first, the microcontroller does not contain any data RAM. So the stack is

implemented using hardware just like AT90S1200 and is only 4-level deep. At the end

of the design process, data RAM has been included due to the extra time the author

have. Future works should have the stack implemented in the data RAM using a stack

pointer. This will save up some area and more important, the stack will be able to keep a

few times more entry then the original hardware stack.

There is only one indirect pointer, the Z-pointer in this design. If memory access

is frequent, more indirect pointers would make the job easier. Future works should also

include the X-pointer and Y-pointer.

There are many more extra features available in the AVR RISC microcontroller

family, such as the UART serial interface, SPI serial interface, the 16-bit timer (with

output compare and input capture), etc. This works from this project should be used as a

platform to implement these features in.

 91

10.2 Conclusion

As a conclusion, this project has been completed successfully fulfilling are the

objectives and scopes specified. The author has used his extra time to optimized the

speed of the design until 12 MHz. The data RAM that is not specified in the scope of the

project has also been included. Hardware stack is enlarged to 4-level instead of 3 and a

total of 24 I/O lines are available. Since the project now occupies 92% of the FPGA

device (FLEX10K20), the author recommends that the laboratory provides a larger

FPGA device. Table 10.1 is the comparison chart between AT90S1200 and the current

design.

Table 10.1 AT90S1200 VS Current Design

Specification AT90S1200 Current Design

Instructions 89 92
G.P Registers 32 16
Program ROM 512 words 512 words
SRAM None 128 bytes
Hardware Stack 3 Level Deep 4 Level Deep
I/O Ports 2 (15 pins) 3 (24 pins)
Addressing Modes 5 7
Speed 4 MHz / 12 MHz 12 MHz
8-bit Timer 1 1
External Interrupt 1 1
Implementation CMOS FPGA

Others

Analog Comparator,
Watch Dog Reset,

EEPROM,
Internal Pull Up Resistors

None

 92

Reference

[1] Daniel Tabak, RISC Systems, Research Studies Press Ltd.: Taunton, Somerset,

England TA1 1HD, 1990

[2] M.Morris Mano, Computer System Architecture, Prentice Hall inc.: Englewood

Cliffs, New Jersey 07632, 1993.

[3] AVR 8-bit RISC Microcontrollers Data Book, Atmel Corporation, San Jose,

California 95131, August 1999.

[4] Randy H. Katz, Contemporary Logic Design, The Benjamin/Cummings
Publishing Company, Inc.: Redwood City, California 94065, 1994.

[5] Douglas L. Perry, VHDL, McGraw-Hill Companies, Inc.: Singapore, 1999.

[6] Jan Gray, Building a RISC system in an FPGA: Part 1,2 & 3, Circuit Cellar

Magazine (http://www.circuitcellar.com), 2000.

	Title
	Dedication
	1 Introduction
	1.1 Central Processing Unit
	1.2 Microcontroller
	1.3 Objectives
	1.4 Atmel AVR AT90S1200
	1.5 Project Background
	1.6 Work Scope

	2 Literature Review
	2.1 Complex Instruction Set Computer (CISC)
	2.2 Reduce Instruction Set Computer

	3 Design Methodology and CAD Tools
	3.1 Design Process
	3.1 Synopsys FPGA Express
	3.3 MAX+Plus II
	3.3.1 Compiler
	3.3.2 Simulator and Waveform Editor
	3.3.3 Programmer

	3.4 AVR Assembler
	3.5 AVR Studio
	3.6 HEX2MIF

	4 Instruction Set
	4.1 Instruction Set Summary
	4.2 Addressing Modes
	4.3 Instuction Formats
	4.4 Machine Codes

	5 Pipeline Processing
	5.1 Instruction Cycle
	5.2 Instruction Pipeline
	5.3 Pipeline Conflicts

	6 Microcontroller Organization
	6.1 Pin Description
	6.2 Architecture Overview
	6.3 Register Transfer
	6.4 Control Signals Characteristics

	7 Datapath Design
	7.1 Chapter Overview
	7.2 Program Counter (PC)
	7.3 Program ROM
	7.4 Instruction Register (IR)
	7.5 General Purpose Registers File
	7.6 ALU
	7.6.1 Operand Fetch Unit
	7.6.2 Execution Unit
	7.6.3 Skip Evaluation Unit
	7.6.4 Flags Evaluation Unit

	7.7 Status Register (SR)
	7.8 Data RAM
	7.9 Port
	7.10 Timer
	7.11 External Interrupt

	8 Control Unit Design
	8.1 Chapter Overview
	8.2 Instruction Decoder
	8.3 Synchronous Mealy Model Finite State Machine
	8.4 Finite State Machine States
	8.5 Finite State Machine Output
	8.6 Fetch Stage Signals
	8.7 Instruction Backup Register (IBR)
	8.8 I/O Decoder
	8.9 Branch Evaluation Unit

	9 Hardware Implementation
	9.1 Altera UP1 Educational Board
	9.2 Pin Assignments
	9.3 External Circuitry
	9.4 Fitting Report
	9.5 Control Applications
	9.5.1 Simple Calculator
	9.5.2 Simple Memory Game

	10 Suggestions and Conclusion
	10.1 Recommendation on Future Works
	10.2 Conclusion

	Reference

