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CHAPTERI|

INTRODUCTION

1.1  Central Processing Unit

Figure 1.1 shows the block diagram of a basic computer system. A basic
computer syslem must have the standard €lements CPU, memory and 1/0. All these
€lements communicate viathe system bus, which is compaosed by the data, address and

control buses.
CPU Memory I/O Interface
t A A A
Data Bus
Address Bus v v v
Control Bus v v v

Figure1l.1 Basic Computer System

The CPU, asthe ‘bran’ of the computer, adminigers dl the activity in the
system and performs al operations on data. The CPU has the ability to understand and
execute ingtructions based on a set of binary codes, each representing a simple operation.
These ingructions are usudly arithmetic, logic, data movement, or branch operations,



and are represented by a set of binary codes called the ingtruction set. The memory, is
used to store al the programs formed by the ingtruction set and al the require data. 1/0
interface provide an interconnection with the outside world, such asthe keyboard as an

input and the monitor as an output.

Minicomputers and mainframe computers, have CPUs condsting multiple ICs,
ranging from severd 1Cs (minicomputers) to severa circuit boards of ICs (mainframes).
Thisis necessary to achieve the high speeds and computationa power of larger
computers. On the other hand, the CPU of amicrocomputer is contained in asingle

integrated circuit. They are known as a microprocessor.

1.2 Microcontroller

It was pointed out above that microprocessors are sngle-chip CPUs used in
microcomputer. A microcontroller contains, in asingle IC, a CPU and much of the
remaining circuitry of abasic computer syssem. A microcontroller has the CPU, memory
(RAM, ROM) and the I/O interface (parallel, serid) dl within the same IC. Of course,
the amount of on-chip memory does not approach that of even a modest microcomputer
sysem.

Microprocessors are most commonly used as the CPU in microcomputer
systems. Microcontrollers, on the other hand, are found in smdl, minimum-component
designs performing control- oriented activities, such asthe traffic lights. These designs
were often implemented in the past using dozens or even hundreds of 1Cs. A
microcontroller aids in reducing the overal component count. All thet isrequiresis

microcontroller, a smal number of support components, and a control program in ROM.



1.3  Objectives

The main objective of this project isto desgn a RISC microcontroller using
VHDL and implement it in an FPGA. The microcontroller ingtruction set and festures
are based on Atmel AVR AT90S1200 RISC microcontroller.

14  Atmda AVR AT90S1200

The AT90S1200 is alow-power CMOS 8-hit microcontroller based on the AVR
RISC architecture. It has 89 powerful instructions and 32 genera purpose registers.
Most ingtructions are executed in one cycle and so it can achieve up to 12 MIPS
throughput at 12 MHz. The microcontroller aso come with 1K Bytes of in-system
programmable flash as the program memory and 64 bytes of in-system programmable
EEPROM.

The AT90S1200 is equipped with one 8-bit timer/counter with separate
prescaler, one on-chip anadlog comparator, awatchdog timer with on-chip oscillator and
SH! for in system programming. It aso features the externdl and internd interrupt. There
are atotal of 15 programmable 1/0 lines.

The IC come in 20-pin PDIP and SOIC with 2 speed grades, 0 - 4 MHz for
AT90S1200-4 and 0 — 12 MHz for AT90S1200-12.



1.5  Project Background

Wan Mohd Khalid did asmilar project titled “FPGA Implementation of aRISC
microcontroller”. The design is aso based on Atmd AVR AT90S1200 microcontroller.
The project is designed using both VHDL and schematics. Only 50% of the indructions
are desgned usng VHDL behaviord gpproach, which resultsin large areaand dow
performance. Parallel ports, timer, externd interrupt and other peripherd features are not
included. The project Szeis so large that it requires 3 pieces of Altera EPF10K 20.

16  Work Scope

The am of the project isto design the complete Atmel AVR AT90S1200. The
microcontroller must be able to fit into the targeted FPGA device, which is Altera
EPF10K 20, provided in Altera UP1 Education Board. Features which cannot be
implemented on an FPGA (andog comparator, pull-up resistors, etc) and which are not
critical to the operation of the CPU (watchdog reset, etc) will be ignored.



CHAPTER I

LITERATURE REVIEW

21  Complex Ingruction Set Computer (CISC)

In early days, computers had only asmal number of ingtructions and used
ampleingruction sets, forced mainly by the need to minimize the hardware used to
implement them. As digital hardware become chegper, computer ingtructions tended to
increase both in number and complexity. These computers dso employ a variety of data
types and alarge number of addressng modes. A computer with alarge number of
ingtructions, are known as complex instruction set compuiter, abbreviated CISC.

Major characteristics of CISC architecture are:

* A large number of indructions— typicdly from 100 to 250 ingtructions

* Someingtructions that perform speciaized tasks and are used infrequently

* A large variety of addressing modes— typicdly from 5 to 20 different modes
* Vaiable-length ingruction formats

* |ngructions that manipulate operands in memory



2.2  Reducelnsruction Set Computer (RI1SC)

In the early 1980s, a number of computer designers were questioning the need
for complex ingruction sets used in the computer of the time. In studies of popular
computer systems, dmost 80% of the ingtructions are rarely being used. So they
recommended that computers should have fewer ingtructions and with Smple constructs.
Thistype of computer is classified as reduced ingtruction set computer or RISC. The
term CISC isintroduced later to differentiate computers desgned using the ‘old’

philosophy.

According to Danid Tabak (1990), thefirst characteristic of RISC is the uniform
series of angle cydle, fetchand-execute operations for each ingtruction implemented on
the computer system being devel oped.

A dngle-cycle fetch can be achieved by keeping dl the ingtructions a sandard
sze. The standard indruction size should be equd to the number of datalinesin the
system bus, connecting the memory (where the program is stored) to the CPU. At any
fetch cycle, a complete sngle indruction will be transferred to the CPU. For ingtance, if
the basic word size is 32 hits, and the data port of the system bus (the data bus) has 32
lines, the sandard ingtruction length should be 32-hits.

Achieving uniform (same time) execution of dl indructions is much more
difficult than achieving a uniform fetch. Some ingructions may involve smple logica
operations on a CPU register (such as clearing aregister) and can be executed in asingle
CPU clock cycle without any problem. Other ingtructions may involve memory access
(load from or store to memory, fetch data) or multicycle operations (multiply, divide,
floating point), and may be impaossible to be executed in asingle cycle.

Idedlly, we would like to see asreamlined and uniform handling of al
ingructions, where the fetch and the execute stages take up the same time for any
indruction, desrably, asngle cycle. Thisisbascadly one of the first and most important



principles inherent in the RISC design gpproach. All ingructions go from the memory to
the CPU, where they get executed, in a constant stream. Each ingtruction is executed at
the same pace and no ingruction is made to wait. The CPU iskept busy dl the time.

Thus, some of the necessary conditions to achieve such a streamlined operation

are:

* Standard, fixed Sze of the ingruction, equa to the computer word length and
to the width of the data bus.

*  Standard execution time of dl ingtructions, desirably within asingle CPU
cycle.

Whileit might not practical to hope thet al indructions will executein asingle
cycle, one can hope that at least 75% should.

Which ingructions should be sdected to be on the reduced ingruction list? The
obvious answer is: the ones used most often. It has been established in anumber of
erlier sudiesthat ardatively smal percentage of ingtructions (10 — 20%) take up about
80% — 90% of execution time in an extended sdection of benchmark programs. Among
the most often executed ingtructions were data moves, arithmetic and logic operations.

As mentioned earlier, one of the reasons preventing an ingtruction from being
able to execute in asingle cycle is the possible need to access memory to fetch operands
and/or store results. The conclusion is therefore obvious — we should minimize as much
as possible the number ingtructions that access memory during the execution stage. This
congderation brought forward the following RISC principles:

*  Memory access, during the execution stage, is done by load/store instructions
only.

* All operations, except load/store, are register-to-regiger, within the CPU.



Mogt of the CISC systemns are microprogrammed, because of the flexibility that
microprogramming offers the designer. Different ingtructions usualy have microroutines
of different lengths. This means that each ingruction will take a number of different
cyclesto execute. This contradicts the principle of a uniform, streamlined handling of dl
ingructions. An exception to this rule can be made when each ingruction has a one-to-
one correspondence with a single microingtruction. That is, each microroutine conssts
of asngle control word, and sill let the designer benefit from the advantages of
microprogramming. However, contemporary CAD tools dlow the desgner of hardwired
control units almogt as easy as microprogrammed ones. This enables the single cycle

rule to be enforced, while reducing trangstor count.

In order to facilitate the implementation of most ingtruction as register-to register
operations, a sufficient amount of CPU generd purpose registers has to be provided. A
sufficiently large register set will permit temporary storage of intermediate results,
needed as operands in subsequent operations, in the CPU regiger file. This, in turn, will
reduce the number of memory accesses by reducing the number of |oad/store operations
in the program, speeding up itsrun time. A minima number of 32 generd purpose CPU
registers has been adopted, by most of the industrid RISC system designers.

The characteristics of RISC architecture are summarized as follow:

* Sngle-cycdeindruction execution

* Fixed-length, easily decoded ingtruction format

* Rdaivey few indructions

* Rdativey few addressng modes

*  Memory access limited to load and store ingtructions

* All operations done within the registers of the CPU

* Hardwired rather than microprogrammed control unit

* Rdativey large (a least 32) generd purpose regidter file

10



CHAPTER 111

DESIGN METHODOLOGY AND CAD TOOLS

3.1  Design Process

Hardware Design (VHDL)

e . VHDL
L SpeC‘IflcatIOI’l & L Coding
Design Ideas

Synthesis Compilation

(FPGA & Simulation

(Text Editor) Express) (MaxPlus 2)

Designed
Microcontroller
Program Coding ASM to MIF
& Assembling Converter
(AVR Assembler) (Hex2mif) Program

Simulation
(AVR Studio)

A 4

Compilation &
Device Programming
(MaxPlus 2)

Results
P Checking

Hardware Implementation

Figure3.1 Design Process Flow

Figure 3.1 shows the design process of the project and their related CAD tools.
The design process can be divided into 2 main parts— hardware design (with VHDL)

and hardware implementation.
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Hardware design is done with the related CAD tools. Thefirst sep in the
hardware design is to prepare the pecification of the design (the microcontroller). The
architecture and the ingtruction set must be understood thoroughly. The design idess are
then describe with VHDL in atext editor. Then, the VHDL codeis synthesized with
FPGA Express. If syntheszed successfully, FPGA express will generate anetlist files
(EDFfile). Thisfileisthen send to Max+Plus 1 for compilation and Smulation. Results
are verified by smulaion. The hardware desgn processis repeated until the
microcontroller is complete without any errors.

Hardware implementation is performed by downloading the design into the
targeted FPGA device, Altera EPF10K20RC240-4. The hardware implementation tests
the desgn in red physical environment by some control applications. A microcontroller
can perform thousands of control gpplications. For every gpplication, different programs
must be written and store into the program ROM of the microcontroller before it can do
the job. So, before the microcontroller is downloaded into the FPGA device, the specific
program for the gpplication must be written.

The program is written and assembled using the AVR Assembler. The AVR
Studio is used to smulate and test the program. If no bugs are found, the program HEX
file generated by the assembler is converted to MIF format with atool written by the
author, HEX2MIF. This MIF file, together with the EDF file of the complete
microcontroller is then send to Max+Plus 1| for compilation and device programming.

Once programmed into the device, the FPGA is reset to execute the gpplication.

3.2  Synopsys FPGA Express

Synopsys FPGA Expressis an indugtriad strength VHDL synthesistool and is
used to synthesize this project. First, VHDL files are written in atext editor such asthe



Windows Notepad Editor. Then al the files are loaded in a project in FPGA Express. It
will check the VHDL filefor syntax errors. If there are no errors, we can ask FPGA
Express to creste implementation for the project. Once the implementation is created,
the EDF net lig file of the implementation can be exported and used by MAX+plus|l

for compilation.

33 MAX+Plusll

MAX+Plusll is afree software provided by Altera. It has many sub components
and the important components are the compiler, smulator, waveform editor and

programmer.

3.3.1 Compiler

The compiler conssts of 6 sub modules- Compiler Netlist Extractor, Data Base,
Logic Synthesizer, Ftter, Timing SNF Extractor and Assembler. All of them play an
equdly important role of compiling the EDF file into asmulation netligt file- SNF.

3.3.2 Smulator and Waveform Editor

After the EDF file is compiled, the generated SNF file will contain information
of the circuit behavior and can be imported by the Smulator. The waveform editor let
the user draws the pattern of the input waveform. The smulator then generatesthe
output waveform based on the SNFfile.

13



14

3.3.3 Programmer

The programmer is atool used to download the compiled design into the FPGA
device. The compiler will generate a SOF file which contains information to be written
into the FPGA device (FLEX10K20). The programmer will program the SOF file
contents into the FPGA viaa PC pardld port usng the ByteBlaster cable.

34 AVR Assembler

AVR Assambler is provided by Atmd to write and assemble programs for al the
Atmd AVR RISC microcontrollers. The ingtruction set of this design is compatible with
the Atmel AVR AT90S1200, so the assembler can dso be used in this project. The

assembler will assemble a program to create HEX and OBJfiles.

35 AVR Studio

AVR Studioisasmulator for dl Atme AVR microcontrollers. It takes the OBJ
file crested by AVR Assambler. The smulator smulates the flow of ingtruction in the

program one by one and the changes on the generd purpose registers, memory contents,
flags and 1/0 can be observed.



36 HEX2MIF

HEX2MIF isaHEX to MIF converter used to convert the HEX file generated by
AVR Assembler into aMIF file. MIF files are used to define the initid vaue for the
memory components in Max+Plus I1. This smple program is written by the author with
C and the source code islisted in Appendix C.

15
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CHAPTER IV

INSTRUCTION SET

4.1  Indruction St Summary

The operation of the CPU is determined by the ingtruction it executes, referred to
as machine indructions or computer ingtructions. The collection of different instructions
that the CPU can execute is referred to as the CPU’ singtruction set. Since the ingtruction
st defines the datgpath and everything else in aprocessor, it is necessary to study it
fird.

Table 4.1 showsthe ingruction set summary of the designed microcontroller,
while theingruction st summary of the original AT90S1200 is shown in Appendix D.
There are 92 indructions grouped into 4 categories. arithmetic and logic indructions,
branch ingructions, data transfer instructions and the bit and bit-test ingtructions. As
mentioned earlier, ingtruction set of the design is based on Atmd AVR AT90S1200
ingtruction set. In thisway, the desgn can use the same assembler and smulator
provided by Atmd sincethefind design is actualy an AT90S1200 compatible

microcontroller.

One of the RISC characteristics mentioned earlier is sngle-cycle execution for
mogt ingructions. This can be seenin the # cycles columnin Table 4.1. Most



ingructions are single cycle except branch ingructions, the LD/ST ingructions and a
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few others.

Table4.1 Ingruction Set Summary
Mnemonic Operation Flags # Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Add Two Registers SZCNV H 1
ADC Add with Carry Two Registers SZ,CNVH 1
SUB Subtract Two Registers SZ,CNVH 1
SUBI Subtract Constant from Register SZ,CNVH 1
SBC Subtract with Carry Two Registers SZ,CNVH 1
SBCI Subtract with Carry Constant from Register SZ,CNVH 1
AND Logical AND Registers SZNV 1
ANDI Logical AND Register and Constant SZNV 1
OR Logical OR Registers SZNV 1
ORI Logical OR Register and Constant SZNV 1
EOR Exclusive OR Registers SZNV 1
COM One's Complement Register SCZNV 1
NEG Negate (2's Complement) Register SCZNV H 1
SBR Set Bit(s) in Register SZNV 1
CBR Clear Bit(s) in Register SZN\V 1
INC Increment SZNV 1
DEC Decrement SZNV 1
TST Test for Zero or Minus SZNV 1
CLR Clear Register SZN\V 1
SER Set Register None 1
BRANCH INSTRUCTIONS
RIMP Relative Jump None 3
RCALL Relative Subroutine Call None 3
RET Subroutine Return None 3
RETI Interrupt Return | 3
CPSE Compare, Skip if Equal None 1/2
CP Compare (Rd- Rr) SCZNV H 1
CPC Comparewith Carry (Rd - Rr - C) SCZNV H 1
CPI Compare Register with Immediate (Rd— K) SCZNV H 1
SBRC Skip if Bit in Register Cleared None 1/2
SBRS Skip if Bitin Register Set None 1/2
SBIC Skipif Bitin /O Register Cleared None 2/3
SBIS Skipif Bitin I/O Register Set None 2/3
BRBS Branch if Status Flag Set None 1/3
BRBC Branch if Status Flag Cleared None 1/3
BREQ Branchif Equal (Z=1) None 1/3
BRNE Branch if Not Equal (Z =0) None 1/3
BRCS Branchif Carry Set (C=1) None 1/3
BRCC Branch if Carry Cleared (C=0) None 1/3
BRSH Branch if Same or Higher (C=0) None 1/3
BRLO Branchif Lower (C=1 None 1/3
BRMI Branch if Minus (N = 1) None 1/3
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BRPL Branch if Plus(N = 0) None 1/3
BRGE Branch if Greater of Equal, Signed (S=1) None 1/3
BRLT Branch if Lessthan Zero, Signed (S=0) None 1/3
BRHS Branch if Half Carry Set (H = 1) None 1/3
BRHC Branch if Half Carry Cleared (H = 0) None 1/3
BRTS Branch if T-Flag Set (T =1) None 1/3
BRTC Branch if T-Flag Cleared (T = 0) None 1/3
BRVS Branch if Overflow FlagisSet (V = 1) None 1/3
BRVC Branch if Overflow Flagis Cleared (V = Q) None 1/3
BRIE Branch if Interrupt Enabled (I = 1) None 1/3
BRID Branch if Interrupt Disabled (1 = 0) None 1/3
DATA TRANSFER INSTRUCTIONS

MQV Move Between Registers None 1
LDI Load Immediate to Register None 1
LDZ Load Indirect with Z-Pointer None 2
LD Z+ Load Indirect and Post-Increment with Z-Pointer None 2
LD-Z Load Indirect and Pre-Decrement with Z-Pointer None 2
STZ Store Indirect with Z-Pointer None 2
ST Z+ Store Indirect and Post-Increment with Z-Pointer None 2
ST-Z Store Indirect and Pre-Decrement with Z-Pointer None 2
IN In Port to Register None 1
ouT Out Register to Port None 1
BIT AND BIT-TEST INSTRUCTIONS

SBI Set Bit in 1/0 Register None 2
CBI Clear Bitin I/O Register None 2
LS. Logical Shift Left SCZNV 1
LSR Logical Shift Right SC.ZNV 1
ROL Rotate L eft through Carry SC.ZNV 1
ROR Rotate Right through Carry SC.ZNV 1
ASR Arithmetic Shift Right SC.ZNV 1
SWAP Swap Nibbles None 1
BSET Flag Set Any 1
BCLR Flag Clear Any 1
BST Bit Storeform Registerto T T 1
BLD Bit Load from T to Register None 1
SEC Set Carry C 1
CLC Clear Carry C 1
SEN Set Negative Flag N 1
CLN Clear Negative Flag N 1
SEZ Set Zero Flag Z 1
CLZ Clear Zero Flag Z 1
H Global Interrupt Enable I 1
CLI Glaobal Interrupt Disabl I 1
SES Set Signed Test Flag S 1
CLS Clear Signed Test Flag S 1
SaY Set Two's Complement Overflow V 1
CLV Clear Two's Complement Overflow V 1
ST Set Tin SREG T 1
CLT Clear T in SREG T 1
SHE Set Half-carry Flag in SREG H 1
CLH Clear Half-carry Flagin SREG H 1
NOP No Operation None 1
9 _EEP Sleep (Wait for Interrupt) None Any




Of course, some of the ingructions will have different characterigtics as the
origind AT90S1200 ingtructions. They are:

1. Unconditiona branch ingtructions (RIMP, RCALL, RET, RETI) now take 3
cycles.

2. Conditiona branch ingtructions take 1 cycleif the branch is not taken and 3
cydesif the branch is taken.

3. ipif I/O regigter cleared/set ingtructions (SBIC, SBIS) take 2 cyclesif the next
ingruction is not skipped and 3 cyclesif the next indruction is skipped.

4. WDR (watch-dog reset) indruction is not available since the watch-dog timer
featuresis not included in the designed

5. SLEEP will not enter any deep modes (there are no degp modes in the design), it
will however stop the processor and wait for an interrupt. If an interrupt occurs,
the processor will ‘wake up’, execute the interrupt routine and resumes execution
from the indruction following SLEEP.

6. Data RAM isincluded in the design dthough AT90S1200 does not contain any
data RAM. So 4 ingtructions are added, which are load and store instructions
with post-increment and pre-decrement.

7. Generd purpose registers and 1/0 control registers are not mapped into the data
addressing space for LD and ST indructions.

8. Only 16 regigters are available for addressing - R16 to R32. This limitation is due
to the area congtraint of the targeted FPGA device.

Detall operation for each indruction requires further reference to the Instruction
Set section in Atme AVR RISC Microcontroller Data Book.



4.2  Addressing Modes

There are 7 addressing modes in the microcontroller. Rd and Rr are devoted to

the dedtination register and soure register.

1. Direct Single Register Addressing
The operandisin Rd.

2. Direct Double Register Addressing
The operands arein Rd and Rr. Result is stored back to Rd.

3. 1/O Direct Addressing
First operand is one of the I/O registers. The addressis contained in 6 bits of
the ingruction word. The second operand is either Rd or Rr. Used by IN and
OUT ingructions to read from or write to the I/O registers.

4. DataIndirect Addressing
Operand addressis the contents of the Z-register. Used when accessing the
SRAM with LD and ST ingtructions.

5. Datalndirect Addressng with Pre-Decrement
Z-pointer is decremented by 1 before the operation. Operand addressis the
decremented contents of the Z-register. Used when ng the SRAM
with LD and ST indructions.

6. Datalndirect Addressing with Post-lncrement
The Z-register isincremented by 1 after the operation. Operand addressisthe
origind content of the Z-register before increment. Used when accessing the
SRAM with LD and ST ingtructions.

7. Relative Program Memory Addressing
Program execution continue at address PC + offset. The offset iscontainsin
the ingruction word. Unconditiona branch ingtructions (RIMP, RCALL) can
reach the entire program memory from every location. However, conditiona
branch ingtructions can only reach —64 to 63 locations away from the current
address.
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Although there are 7 addressing modes of al, direct register addressing
(mode 1 and 2) are used most of the time. Others mode are used when accessing the 1/0,
SRAM and when branching.

4.3 Ingtruction Formats

As mention earlier, RISC indructions have afix length and are easly decoded.
For this microcontroller, al ingtructions have a fixed-length of 16-bits. The ingtruction
format issmplein order to be decoded easlly.

For ingructions that require two registers, d selects the destination register and r
selects the source register. 5-hits can addressed atotal of 32 registers (N = 2° = 32).

Ingtructions of this format include ADD, SUB and AND.

15 14 13 12|11 10 9 8|7 6 5 413 2 1 O

For ingtructions thet require one register, d addressed the destination/source
regigter. Ingructions of thisformat include NEG, ST and IN.

15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 O

For immediate ingtructions, K isthe 8-bit immediate vaue (constant) and d
selects the destination regigter. Sightly different from the previous format, there are
only 4 d-bits, which can address 16 registers only. The 5™ bit is assumed to be onein
this case and address the upper 16 registers (R16 to R32). Indructions using this format
are CPI, SUBI, SBCI, ORI, ANDI and LDI.



15 14 13 12

For unconditiona branch ingructions, K is the offset in 2's complement. 12 bits
wide offset provide a branch range from -2048 to 2047. Indructions using this format
are RIMP and RCALL.

15 14 13 12

For conditiond branch ingtructions, k isthe offset in 2's complement. The s-bits
addressed which bit in the status register isto be tested for the branch. The 7-bit wide
offset provide a branch range from —64 to 63. Ingtructions usng this format are BRBC
and BRBS.

15 14 13 12|11 10 9 8|7 6 5 413

An /0O addressing ingructions will contain the 1/0 address (A-bits) plusthe
corresponding destination/source register (d-bits) or the corresponding bit in the 1/0 (b-
bits). Thefirg type has 6-hit wide A-bits, which provide 64 1/0 addresses. The second
type has 5-bit wide A-bits addressed only the lower 32 1/O. Ingtructions using the first
format are IN and OUT while the second format are CBI, SBI, SBIC and SBIS.

15 14 13 1211 10 9 8|7 6 5 43 2 1 O

15 14 13 12|11 10 9 8|7 6 5 413 2 1 O

22
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Clear/Set bit in Status register ingtructions has the s-bits point to the
corresponding bit. They are BCLR and BSET.

15 14 13 12|11 10 9 8|7 6 5 4|13 2 1 O

And findly indructions thet use asingle bit in the register have the b-bits point
to the corresponding bit. They are BLD, BST, SBRC and SBRS.

15 14 13 12|11 10 9 8|7 6 5 413 2 1 O

4.4 Machine Codes

Theingtruction set contains 92 ingtructions and one might expect that there will
be 92 different machine codes for dl the ingtructions. But actudly there are only 51
machine codes. Thisis because there are 41 equivaent ingtructions which share the

same machine code with some others ingtructions. Table 4.2 shows these equivaent

ingructions.
Table 4.2 Equivalent Instructions

ADD LSL

ADC ROL

AND TST

EOR CLR

ORI SBR
ANDI CBR

LDI SER
BCLR CLI,CLT,CLH,CLS,CLV,CLN,CLZ,CLC

BSET SEl, SET, SEH, SES, SEV, SEN, SEZ, SEC
BRBC BRID, BRTC, BRHS, BRGE, BRVC, BRPL, BRNE, BRCC, BRSH
BRBS BRIE, BRTS, BRHS, BRLT, BRVS, BRMI, BREQ, BRCS, BRLO




For an example, ADD is shares the same machine code as LSL. Left-ghifting a
number is actudly multiplying the number by two, or adding a number to itsdlf. So ADD
can perform LSL operation by having the same register as destination and source. Thisis
shownin Table 4.3.

Table4.3 ADD And LSL Machine Codes

Instruction M achine Code
ADD 0000 11rd dddd rrrr
LSL 0000 11dd dddd dddd

BCLR, BSET, BRBC and BRBS can choose one of the 8 status regidter flags as
operand. The equivadent indructions in the right column state exactly which flag isto be
used. Both are the same, except that ingtructions on the left are more meaningful and
eader to used when writing a program. 8 status flags contribute to 8 specific ingtructions
for both BCLR and BSET, and 9 specific ingtructions for both BRBC and BRBS
because there are 2 ingtructions that test the C-flag.

Table 4.4 ligts the machine codes for the 51 ingtructions. They are list according
to the 4 most significant bits rather than the ingtruction format so that the indructions
can be decoded easlly when designing the control unit. The 41 equivaent ingtructions
are place ingde the bracket to the right of the correspondent instructions. It is very
important to know that we only need to design 51 ingtructions. Once finish, the 41
equivaent ingructions will immediately be available making the totd to 92 indructions.
The 51 ingructions satisfy the RISC characterigtic as having relatively few ingtructions.

24



Table4.4 Machine Codes

25

NOP 0000 0000 0000 0000

CPC 0000 O1rd dddd rrrr

SBC 0000 10rd dddd rrrr

ADD 0000 11rd dddd rrrr (LSL)
CPSE 0001 00rd dddd rrrr

CcP 0001 O1rd dddd rrrr

SuUB 0001 10rd dddd rrrr

ADC 0001 11rd dddd rrrr (RQOL)
AND 0010 00rd dddd rrrr (TST)
EOR 0010 O1rd dddd rrrr (CLR)
OR 0010 10rd dddd rrrr

MOV 0010 11rd dddd rrrr

CPI 0011 KKKK dddd KKKK

SBClI 0100 KKKK dddd KKKK

SUBI 0101 KKKK dddd KKKK

ORI 0110 KKKK dddd KKKK ( SBR)
ANDI 0111 KKKK dddd KKKK (CBR)
LD 1000 000d dddd 0000

ST 1000 001r rrrr 0000

LD Z+ 1001 000d dddd 0001

LD -Z 1001 000d dddd 0010

ST Z+ 1001 001r rrrr 0001

ST —-Z 1001 001r rrrr 0010

COM 1001 010d dddd 0000

NEG 1001 010d dddd 0001

SWAP 1001 010d dddd 0010

I NC 1001 010d dddd 0011

ASR 1001 010d dddd 0101

LSR 1001 010d dddd 0110

ROR 1001 010d dddd 0111

DEC 1001 010d dddd 1010

BSET 1001 0100 Osss 1000 (SE? - I, T,H S, V,N Z, O
BCLR 1001 0100 1sss 1000 (CcL? - I, T,H S, V,N Z O
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RET
RETI

SLEEP

CBI
SBI C
SBI
SBI S

1001
1001

1001

1001
1001
1001
1001

0101
0101

0101

1000
1001
1010
1011

0000
0001

1000

1000
1000

1000

Abbb
Abbb
Abbb
Abbb

1011
1011

0AAd
1AAr

dddd
rrrr

RJIMP

1100

kkkk

kkkk

kkkk

RCALL

1101

kkkk

kkkk

kkkk

LDl

1110

KKKK

dddd

KKKK

( SER)

BRBS
BRBC

BLD
BST

SBRC
SBRS

1111
1111

1111
1111

1111
1111

00kk
01kk

100d
101r

110r
111r

kkkk
kkkk

dddd
rerr

rrrr
rrrr

ksss
ksss

Obbb
Obbb

Obbb
Obbb

(BR?? — CS,LO EQ M, VS, LT, HS, TS, | E)
(BR?? — CC, SH, NE, PL, VC, GE, HC, TC, | D)




CHAPTER YV

PIPELINE PROCESSING

5.1 Ingruction Cycle

Figure 5.1 shows the the ingtruction cycle — which is divided into two stages, the
fetch stage and the execute Sage. In the fetch stage, the machine code of an indruction
isfetched into the indruction register. The control unit decodes the ingtruction to know
what the ingtruction performs and what operands are needed. In the execute stage, the
operands are fetched and the ingtruction is executed. The resultsis written back at the
end of the stage.

FETCH EXECUTE

Instruction Fetch | Decode Operand Fetch | Operate Write

Figure5.1 Insruction Cycle

As an example, the ingruction ADD R18,R20 will add R18 and R20 and write
the result back to R18. At the fetch stage (1% clock trangition), the machine code for
ADD R18,R20 isfetched into the indruction register. After the ingtruction is fetched, the
CPU now know that the next instuction to be executed is ADD and the operandsis R18
and R20. At the execute stage (the 2" clock transition), the contents of R18 and R20 is
latched into operand register A (ORA) and operand register B (ORB) which are

connected directly to the ALU. The ALU perform the ADD operation between ORA and
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ORB and the result is sent to the data bus. At the end of the execute stage (the 3 clock
trangition), the result in the data busis written into the detination register. The
indruction cycleisthen complete.

5.2  Indruction Pipeine

If an ingtruction cycle has 2 stages (Fetch and Execute), executing a series of
ingructions will have the form of:

Fetchl > Executel = Fetch2 = Execute2 - Fetch3 > Execute3 - ...

Thefirg indruction is fetched and executed, then the second ingruction is
fetched and executed, and so forth. Executing an instruction takes 2 cycles and executing
10 000 ingructions will take 20 000 cycles. By using ingtruction pipelining, the
performance of the system can be further enhanced.

Shown in Figure 5.2 isthe indruction pipeline structure. The fetch and execute
stage are now overlapped to perform smultaneous operations. The next indruction is
fetched while executing the current ingtruction. Thisis caled ingruction pre-fetch.

Clock Transition T1 T2 T3 T4
1% instruction Fetch Execute
2" instruction Fetch Execute
3" instruction Fetch Execute

Figure5.2 Ingruction Pipdine Structure
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Imagine after using the ingruction pipeling, there will be one ingruction
executing & every cycle. Executing an indruction will take only one cycle and executing
10 000 instructions take only 10 000 cycle. The performance is now doubled.

Program counter (PC) addressed the ingtruction in the program and are tightly
related to the pipdine structure. Figure 5.3 shows the PC change aong the pipeline
execution. After reset, the PC is cleared to 0. On the 1% clock transition (T1) after resdt,
ingtruction at address O is being fetched. At the sametime, PC isincremented to 1. On
the 2" clock transition (T2), instruction 0 is executed and instruction 1 is fetched. PC is
now incremented to 2. On the 3" dlock transition (T'3), result of instruction O iswritten
back, ingtruction 1 is executed and instruction 2 is being fetched. PC is now incremented
to 3. Theimportant point is, when ingruction N is being executed, ingruction N + 1 is
being fetch and the PCisN + 2.
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Clock Transition Reset T1 T2 T3 T4
PC 0 1 2 3 4
Instruction 0 Fetch O Execute 0
Instruction 1 Fetch 1 Execute 1
Instruction 2 Fetch 2 Execute 2

Figure5.3 PC and Ingtruction Pipeline

5.3  Pipdine Conflicts

Executing a branch ingtruction will cause a pipeline conflict. In that case the
pipeline must be flushed and Al ingructions that have been read from the memory &fter
the branch instructions must be discarded.

Figureb.4 shows how a branch ingtruction will affect the pipeline. Ingtruction 20

is ‘Branch to 73'. At T2, the branch ingtruction is executed but at the same time

ingruction 21 isfetched asusual. On T3, the new vauefor PC isloaded and instruction
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22 isfetched. Ingtruction 21 cannot be executed and is flushed from the pipdine. Only a
T4, ingruction 73 is being fetched. Indruction 22 must also be discarded. Findly at T5,
ingruction 73 is executed. So a branch ingtruction will take 3 cyclesto complete. The
first cycleistaken to load the PC with the new vadue. Thefollowing 2 cycles are just

wait gates to wait until the new instruction is executed.

Clock Transition T1 T2 T3 T4 5
PC 21 22 73 74 75
20 (Branch to 73) Fetch 20 Execute 20 | Execute 20 | Execute 20
Instruction 21 Fetch 21 Flushed
Instruction 22 Fetch 22 Flushed
Instruction 23 Fetch 73 Execute 73

Figure5.4 Branch Instruction Pipdine

Someingructionslike LD and ST require 2 execution cycles Thiswill also

affect the pipeline flow. Figure 5.5 shows the pipeline structure when a 2 cycles

ingruction is encountered. Ingruction 31 isa 2 cyclesingruction. At T3, it is executed
and indruction 32 isfetched. At T4, ingtruction 31 continuesiits execution. PC is not
incremented and no new ingruction is fetched. Only a T5, ingruction 32 is executed.
The next indruction is fetched and the PC isincremented. In this case, the pipdineis

hold for one cycle.

Clock Transition T1 T2 T3 T4 TS5
PC 31 32 33 33 34
Instruction 30 Fetch 30 Execute 30
31 (2 cycles) Fetch 31 Execute 31 | Execute 31
Instruction 32 Fetch 32 Execute 32
Instruction 33 Fetch 33
Figure55 2 CyclesIngruction Pipeline



Data dependency conflict arises when an ingtruction depends on the result of a
previous ingtruction, but the result is not yet available. Lets examine the following
ingructions flow:

LDI R18, $10 ; R18 = $10
LDI R18, $20 ; R18 = $20
INC R18 ; R18 = R18 + 1 = $21

Thefind vaue of R18 should be $21. But unluckily thered result is$11. Inan
ingruction fetch cycle, operands are fetched at the start of the execute stageto the
operands register and result is written back at the end of the execute stage to the
degtination register. As aresult, operands of the next ingtruction are loaded into the
operand register at the same risng edge as the write back of the current ingtruction to the
destination register. So INC R18 is actudly receiving the old vaue of R18, which is $10
rather then the result of LDI R18,$20.

To solve this problem, a technique called operand forwarding is used. If the
degtination register is needed as a source in the next ingruction, the ALU result is
forwarded to the operand register directly. Thiswill require extra control logic to check
for the conflict and perform the forwarding job.
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CHAPTER VI

MICROCONTROLLER ORGANIZATION

6.1  Pin Description

Clock —pp

Reset —Pf

Microcontroller
(FPGA)

4—» PortB
¢—» PportC
—» PortD

Figure6.1 Microcontroller Pin Configuration

Figure 6.1 shows the pin configuration for the designed microcontroller. The
microcontroller has 2 input pins and 3 bi-directiona 1/O ports. Each 1/0 port conssts of
8 individua 1/0O pins. So 3 1/0 ports contribute to atota of 24 1/0 pins. The clock sgnal
will drive the whole microcontroller directly. Reset is active low; when asserted it resets
the microcontroller to the default state even if the clock is not running. Port B, Port C
and Port D are all 8-hits port. Each bit can be configure to be input or output. All port

pins are tri-stated when the microcontroller is reset. Pin D7 aso serves as the externd

interrupt source and externa timer clock source.
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6.2 Architecture Overview

Fetch Unit Execution Unit 1/0
Program Counter ) General / N\
o Purpose |
# - — Register <
o File <4—» PortB
o
e
<
Program ROM .
g
'% o \/ <4—» PortC
c
L g ALU 3
o @
Instruction Register S s
< 8 <4—» PortD
g =
: &
| Status Register |¢——p —3 Timer
Control Unit
Data RAM —>
—p «—> External
vy ... v Interrupt

Control Signals N /

Figure6.2 Top-level Block Diagram

Figure 6.2 shows the top-leve block diagram of the design, the bus structure has
been smplified, but every block represents amodule to be designed. At first glace, there
are 11 modulesin the top-leve, with the 3 ports sharing the same module. These 11
modules are to be design separately using the top down design approach. Some modules
like the ingtruction register and status register are easy to design, but modules like ALU
and the control unit require alot of understanding. The overdl dataflow and bus
sructure between al the modules must be understand before designing the modules
individudly.



Buses provide connection between modules. There are basically two kinds of
buses, direct bus and common bus. Direct bus connects two modules directly and is used
specificaly by the connected modules. There are many direct buses, such asthe
connection between program counter and program ROM, between program ROM and
IR, between register file and ALU, etc. No control sgnas are required for direct buses.

A common busis abus shared by many modules. The data busisthe only
common busin this desgn. The data bus provides connection between the generd
purpose regigter file, ALU, status register, SRAM and all the I/O festures. The register
file can only recelve data from the data bus. All others modules can receive and send
data to the data bus. Since there are so many possible data flows, control sgnasare
required to control the correct flow direction. Only one source to the data bus is alowed
a atime. If not, logic contentions will happen and the value of the data bus will be
invaid. Tri-state bus is used to implement the common data bus. Only the correct source
is connected to the data bus while other are in high impedance sate. The impedance is
S0 high that it can be seen as unconnected to the bus system. If the ALU isthe data
source, the data bus will be flooded with the result of the ALU and isavailableto dl the
connected modules. Control logic will generate an enable Sgna for the red detination

to receive the data.

Next isabrief introduction to the whole system. The system can be divided into
3 units, the fetch unit, execute unit and I/O unit. Fetch unit isin charge of fetching the
next indruction and the execute unit isin charge of executing the current ingtruction. 1/O
unit provide a connection with the outside world. The fetch unit and execute unit form

the CPU of the microcontroller.

Thefirg module of the fetch unit is the program counter (PC). The PC contains
the address of the next ingtruction to be executed. It points to the program ROM to
locate the indruction. The ingtruction from the ROM is then latched into the ingtruction
regiger (IR). The control unit takes the content of the IR and decodesiit. It then assert
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the appropriate control signals to execute the ingtruction. All modules are connected
with direct buses.

The execute unit in charge of executing most ingructions. Normally, to execute
an ingruction, 2 operands are output from the register fileto the ALU. The ALU then
perform the operation and send the result to the data bus. Contents of the data bus (the
result) is then stored back to the register file. The ALU aso evauate the status register
flags and send them directly to the status register (SR). The whole execution processis
donein asngle cycle. The ALU perform many operations - include passing the contents
of agenerd register to the data bus. SR aso has a direct bus connection to the control
unit required for branch evauation. The register file (destination and source regider) is
addressed directly by some bitsin IR.

A RISC has memory access limited to only LD and ST ingtructions. Direct
addressing to the data RAM is not available. Only indirect addressing through the Z-
pointer (R30) is alowed. It could be indirect addressing, indirect addressing with post-
increment and indirect addressing with pre-decrement. Load and store ingtructions can
only transferred data between the RAM and the register file. The Z-pointer contains the
address of the RAM. A load operation sends the RAM datato the generd registers
through the data bus. A store operation sends the datato ALU, the ALU pass the data to
data bus and store into the RAM.

To implement the fetch and execute pipeine in this microcontroller, memory are
implemented using the Harvard architecture. Program and data are store in separate
memories. As seen in the block diagram, program is stored in the program ROM while
data are gored in the data RAM. The advantage of Harvard architecture is the ability to
fetch the pre-fetch the next indruction essly. A norma RAM will haveinitid vaue zero
when powered on. In FPGA, the RAM can have initid values and thus can makeit act as
aROM.



All the 1/0 modules contain many control registers. Data are sent to and received
from it through the common data bus. Table 6.1 shows the complete list of the 1/O
control registers and their corresponding address. Reserved and unused |ocations are not
shown in the table. The SR is also mapped into one of the I/O address. IN and OUT
ingtructions are used to transfer data between these control registers and the generd
registers. The lower haf of the control registers ($00 - $1F, shaded in gray) are directly
bit-accessble using the SBI and CBI (Set/Clear Bit in 1/0) ingructions. Using SBIS and
SBIC (Skipif bit in 1/0 cleared/set) indructions can adso check every single bit in these
regigers. In this desgn, the lower haf of control registersare al the /O ports control
registers. Note that, PINB, PINC and PIND are not ared registers, only aread operation
can apply to them and it will read the physica vaue holding by the externa pins.

Table6.1 /0O Address Space
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Address Hex Name Function
$3F SREG Status REGister
$3B GIMSK Generd Interrupt MaSK register
$39 TIMSK Timer/Counter Interrupt MaSK register
$38 TIFR Timer/Counter Interrupt Flag Register
$35 MCUCR MCU genera Control Register
$33 TCCRO Timer/Counter O Control Register
$32 TCNTO Timer/Counter 0 (8-bit)
$18 PORTB Data Register, Port B
$17 DDRB Data Direction Register, Port B
$16 PINB Input Pins, Port B
$15 PORTC Data Register, Port C
$14 DDRC Data Direction Register, Port C
$13 PINC Input Pins, Port C
$12 PORTD Data Register, Port D
$11 DDRD Data Direction Register, Port D
$10 PIND Input Pins, Port D

6.3  Register Transfer

The whole design contains many registers - ingruction register (IR), ingruction
backup register (IBR), program counter (PC), general purpose registers, memory address
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regiser (MAR), al the I/O control registers and many more (The program counter is
treated as a gpecia kind of register). They are found insde most of the modules seein
the top-leve block diagram. The whole system works by transferring data between these
registers (register transfer). Some data are transferred without modification while some
are manipulated before transfer to the next register. If the data are to be manipulated,
they are manipulated by the combinationd logic between these registers. How these data
are transferred, how are they being manipulated before transfer, and what does different
dataingde the register means, will determine whether the design can work asa
microcontroller. The design will perform along series of regiger transfer to form the
functioning of amicrocontraller. Figure 6.3 shows the register transfer concept. It can be
seen in the figure that register are transferred to another through many levels of
combinationd logic.

Register
I3 CiL ciL 5
%] %)
g 7 -
o C/L C/L 04
Register C/L: Combinational Logic

Figure6.3 Register Transfer

A read of the status register will bring the contents of the status register to one of
the generd regigter directly without manipulation. However, the vaue of the Z-pointer is
send to the memory addressregister (MAR) after a subtraction by 60. The combinationa
logic in this case is a subtracter. Performing an AND operation between two generd
registers, will pass the two regigters through a combinationd logic (the logic unit) before
writing back to one of the regster. Memory (program ROM and data RAM) are treated
asakind of combinational logic. Program counter (PC) are pass through the program



ROM to the ingtruction regigter. The ingruction register will receive theingruction in
from the program ROM pointed by the PC.

S0, the design processisto design dl the registers dong with the combinationa
logic and the interconnection between them. Thisis cdled the datapath of the system.

Control Sgnds are then used to determine how the register transfer takes place. Control
sgnds are asserted by the control unit. The datapath aong with the control unit form the

complete microcontroller. It isimportant to know what registers exigsin the system.
Table 6.2 ligts dl the modules and their respected registers.

Table6.2 RegistersList
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Modules Registers
Program Counter Program Counter (PC)
Program Counter Backup (PCB)
4 Hardware Stack (STACKO — STACK3)
Ingtruction Register Ingtruction Regiger (IR)
Control Unit Ingtruction Backup Regigter (IBR)
Generd Purpose 16 Generd Purpose Regigters (R16 - R31)
Regider Fle Z-Pointer (R30)
ALU Operand Register A (ORA)
Operand Register B (ORB)
Status Register Status Regigter (SR)
Data RAM Memory Address Register (MAR)
Memory Buffer Register (MBR)
Port B Data Regigter (PORTB)
Data Direction Register, Port B (DDRB)
Port C Data Register (PORTC)
Data Direction Register, Port C (DDRC)
Port D Data Register (PORTD)
Data Direction Register, Port D (DDRD)
Timer Timer/Counter Interrupt Mask Register (TIMSK)
Timer/Counter Interrupt Flag Register (TIFR)
Timer/Counter O Control Register (TCCRO)
Timer/Counter O (TCNTO)
Externd Interrupt Generd Interrupt Mask Register (GIM SK)
MCU Generd Control Register (MCUCR)

CLK istheglobd clock sgnd for dl the registers while CLRN isthe globa reset
sgnd (active low). CLRN clears dl the registers when asserted low.
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6.4  Control Signals Characteristics

If the control signals are used to contral the datapath then the characteristics of
the control sgnals must be understood before we can proceed further. First, a control
sgnd will have at least alength of one clock cycdle. It usualy asserted a short delay after
arisgng clock trangtion and unasserted a short delay after another rising clock. The
datapath consists of many registers and combinationa logic between them, so there are
bascdly 2 kinds of control sgnds. Thefirgt kind controls the combinationd logic and
the second kind controls the registers.

When a combinational logic encounters a control signd, it will act towards the
sgnd immediatdly. The ADD signd will cause the adder to perform the add operation
immediately. The delay to get the vaid result isthe delay for the input to propagate
through the combinationd logic. The combinationa logic can be functiond unit such as
adder and shifter, steering logic such as multiplexers and decoders or memory (program
ROM and data RAM).

A regigter control signd requires arising clock to operate. WR_REG signd will
only latch the data into the destination register of the register file when it encounters the
risng clock. Since control signals are asserted a short delay after arising clock and
unasserted on the next, the operations is actudly happened at the end of the control
sgnd where it meet the rising clock. These kinds of control signals are the enable

sgnasfor the registers, or the increment/decrement signal for a counter.

£ CLK o [ L [ T 1T 1
5= ADD 0 |
gP="WR_REG 0 |

S Result[7..0] Do g b0} 4
S Register[7.0]| DO 0 3 4

Figure6.4 Control Signal Timing



Figure 6.4 explains the concept graphicaly. Both ADD and WR_REG control
Sggnds are assarted and unassarted after arising clock. The ADD signdl gives effect
immediately after it is asserted by asking the adder to perform an add operation. The
result is available after some delay depending of the speed of the adder. The WR_REG
sgnd laiches the result into the register at the end of the signd when it encounters the
risng clock. Notice that the register changes vadue a short delay after the risng clock.
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CHAPTER VII

DATAPATH DES GN

7.1  Chapter Overview

The design of the microcontoller is discussed in 2 separate chapters— one for the
datapath and one for the control unit. This chapter discusses the design of the datapath
while the next chapter will discuss about the control unit. All modulesin the top-levd
block diagram (Figure 6.2) except the control unit are part of the datapath. These
modules are listed in Table 7.1. The design of each module will be discussed one by one
in this chapter.

Table7.1 ModulesInside The Datapath

Program counter (PC)

. Ingtruction Regigter (IR)

. Program ROM

. Generd Purpose Regigter File
. ALU

4

Status Register (SR)

Port

Timer
0. Externd Interrupt

1
2
3
5
6
=
8
9
1



7.2  Program Counter (PC)

+ Offset ———

Vector 2 ($01) ———P»
Vector 4 ($02) ——»
——»

PCB

STACKO PC |y Program

ROM
- v eall)

STACK1

'

STACK2

'

STACKS

v

Lost

Figure7.1 Program Counter Architecture

Figure 7.1 shows the architecture of the PC module. In the most basic execution
gream, the PC isincremented on every clock trangtion. But in some cases, the PC will
be loaded with a new value instead of incrementing it. Hardware stack is used to keep
the return address of a subroutine cal or interrupt request. Program counter backup
register (PCB) dways loaded with the last PC value.

There are 3 circumstances that the PC will be loaded with a new vaue instead of
incrementing it. Thefird is serving a branch ingruction (conditiona or unconditiond);
the second is serving an interrupt request; and the third is returning from a subroutine or
interrupt service routine (ISR).

The description for branch ingructionsisPC? PC + 1 + offset. Thiscanbea
confusing description. Should the PC stands for the value in the real program counter
itsdlf; or the address of the current executing indruction; or the address of the next



indruction to be fetched? Recall the pipdining discussin chapter 5, when the CPU is
executing the N instruction, the PC has aready increased to N + 2 and the instruction
inthe IR isthe N + 1 ingruction. The PC in the description is actudly the address of the
branch ingtruction itself, not the red hardware PC. So PC + 1 points to the next
ingruction that follow. If the redl PC is aways ahead of 2, another register - program
counter backup register (PCB) is used to keep the last PC value that is ahead of 1. When
serving a branch ingruction, the new PC vaue will be the PCB plus the offset

Serving an interrupt request will cause the PC to be loaded with the interrupt
vector address. There are 2 interrupt vectors and 1 reset vector al located at the start of
the program memory space listed in Table 7.2 according to its priorities. An RIMP
ingruction that jumps to the interrupt service routine (ISR) is contained in the vector
address. So when serving an interrupt request, the PC isfirst loaded with the vector
address, then the CPU execute the ingtruction |oaded from the corresponding vector
address - ajump to ISR. The PC is then |oaded with the address of the ISR. And findly
the CPU darts executing the ISR.

Table7.2 Interrupt Vector

Vector No. Vector Address | Source Interrupt Definition

1 $000 RESET Reset Pin

2 $001 INTO Externd Interrupt Request O
4 $002 TIMERO, OVFO | Timer/Counter Overflow

The hardware stack is used to store the return address of a subroutine call and
interrupt request. The stack is4-level deep (STACKO—STACK 3) and isLIFO (Last In
Firgt Out). When the CPU serves a subroutine call or interrupt request, the return address
is pushed into STACKO. The origind contents in the stack are push one level deeper,
with STACKO pushed into STACK1, STACK1 into STACK2, and so forth. Thisis
caled the push operation. On returning from a subroutine cal or interrupt request, PC is
being loaded with STACKO and the origina contents of the stack is pull up onelevd,
from STACK3 into STACK2, from STACK2 into STACK1, and so forth. Thisis caled



the pull operation. If there are more that 4 subsequent subroutine cdl or interrupt
request, the firgt return address that is pushed into the stack will be lost.

The return address for asubroutine cal is the PCB. However, the return address
for an interrupt request is not PCB but PCB — 1. A short program in Figure 7.2 will help
to darify this. When executing the RCALL MAKE indruction, PCB is$22 and is
pushed into the stack. The PC is loaded with $50 and the CPU gdart executing the
MAKE subroutine. When it encountered the RET ingtruction, the PC is pulled from the
stack, which contains $22, the next ingtruction address following RCALL MAKE.

Addr Label Instruction
$00 rimp reset ; reset vector
$01 rimp extirq ; external |RQ vector
$02 rinp tinmer ; timer overflow | RQ vector
$20 add r25,r26 ; 126 =126 + r25
$21 rcall meke ; call subroutine nmeke
$22 dec r26 ; r26 =r26 - 1
$23 i nc r25 ;r25 =r25 + 1
$50 make:

ret ; return from subroutine
$80 tinmer:...

reti ; return frominterrupt

Figure7.2 Subroutine Call and Interrupt Request Program

Now lets assume that the CPU serves the timer overflow interrupt request at $21.
PCB is $22. PC isloaded with the vector address ($02) and the CPU executes RIMP
TIMER and the ISR. When it encounters the RETI ingtruction, the return addressis pop
from the stack to the PC. If PCB was pushed into the stack earlier, the next instruction
that follows will be DEC R26, which iswrong because RCALL MAKE has not been
executed yet! So the correct return address for an interrupt request isPCB — 1.
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Figure7.3 Program Counter Symbol

Figure 7.3 shows the symbol of the program counter (PC) module. PC, PCB and
the 4 hardware stacks are 9-bits wide. So the PC can address up to 512 unique locations.
The PC is connected to the program ROM directly. The offset for ardative branchis
received from the control unit, o as others control sgnds. EN isthe enable signd for dl
the registers— PC, PCB and stacks. Only when EN signd is asserted, operation can be
performed. Thissgna is asserted only when executing a 2 cycles ingruction to hold the

pipdine.

ADDOFFSET sgnd load the PC with PCB + offset. VEC2 signd loads the PC
with interrupt vector 2 ($01 - externd interrupt) while VEC4 signd loads the PC with
interrupt vector 4 ($02 - timer overflow interrupt). PUSH sgnd performs the push
operation and PULL sgnd performsthe pull operation. If none of the sgnds that load
the PC is asserted, the PC will be incremented by one.



7.3 Program ROM

000 ($000)
001 ($000)

510 ($1FE)
511 ($1FF)

Figure7.4 Program ROM Organization

The program ROM is used to store the program for the microcontroller. A
program is a combination of many ingructions to perform a specific task. Figure 7.4
shows the organization of the program ROM. Since dl ingtructions have afixed width of
16-hits, the ROM word sizeis aso 16-bits so that the instruction can be fetched into the
ingruction register in asingle cycle. The ROM sizeis 1 K bytes, or better stated as 512
words. Thismeansthat it can store up to 512 ingtructions. To address 512 locations, it
requires 9-bit wide address.

pc[8..0] ? Program ROM ? instructions[15..0]
(v_rom.vhd)

Figure7.5 Program ROM Symbol

Figure 7.5 shows the symboal of the program ROM. It isimplemented using the
LPM_ROM module provided by Altera, which is the recommended way to implement
memory in Altera FLEX 10K devices. Program counter provide the 9-bit address through
adirect busto the ROM. The ingtruction output from the ROM is then send to the
ingruction register. No clock signd isrequire for the program ROM. It can be imagined
as a combination logic where the output will be available some dday after the input has
changed.



7.4  Ingruction Register (IR)

Asits name suggest, indruction regiser (IR) is used to sore the ingtruction. The
ingruction is received from the program ROM through a direct 16-bit wide bus
connection. The IR will only latch the new ingruction in if the EN signd is asserted.

The IR (the ingtruction) is connected to the control unit for decoding. The corresponding
bits that form the immediate vaue are sent to the ALU. While the bits that addressed the
destination and source register are sent to the generad purpose regidter file. Please refer
to chapter 4 for ingtruction format. Figure 7.6 shows the symbol for the IR module.

It isimportant to note that the indruction in IR is not holding the current
executing ingructions. IR is dways holding the next ingtruction. So the contral unit is
aways decoding the next indruction. Recal| that the execute stage of the current
indruction is aso the fetch stage of the next ingruction in the pipdine organization.

instructions[15..0] ? ? ir[15..0]
en? Instruction Register ? imm_value[7..0]
clk ? (v_ir.vhd) ? rd[3..0]
clrn ? ? rr[3..0]

Figure7.6 Ingruction Register Symbol

Figure 7.6 show the symbal if the ingtruction register module. The EN signd
seen hereissame asthe EN signa seen in the PC module. The IR can only load the data
from program ROM when EN is asserted. Usudly, it is aways asserted except when the
CPU isexecuting a2 cyclesingruction.
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75  General Purpose Register File

A RISC CPU usudly have alarge generd purpose register file. The standard
number of registers are normaly 32, so asin the AT90S1200. 32 registers will require
about 52% area of the targeted device Altera EPF10K 20RC240-4, which are
unacceptable. As aresult, only 16 registers are included in this design. The same
instruction format discussed earlier is used, except that the 5 bit of the register address

isnow adon’t care value.

Figure 7.7 shows the structure of the 16 genera purpose registers. They are
numbered from R16 to R31 instead of RO to R15 due to 2 reason. Firdtly, immediate
ingructions like LDI can only address the upper regigter file as discussed in the
ingruction format section in chaper 4. Secondly, the indirect Z-pointer share the same
register as R30.

R29
R30 (Z-Pointer)
R31

Figure7.7 General Purpose Register File Organization

At any time, the register file will connect 2 registers to the ALU through two
16-to-1 multiplexers. The two registers are the destination register and source register,
addressed directly by the ingtruction register. The data busis connected directly to the
regigter file. The vaue of the data bus can be written to the destination register if the
WR_REG sgnd is asserted.

The address bus connects the register file and data RAM together. R30 can be
used as either agenerd register or the Z-pointer (ZP) to address the data RAM. The



garting address for data RAM is $60. Unfortunately, the targeted device requires the
starting address of a RAM to be $0. So, the address bus vaueis the vaue of ZP
subtracted by $60. If indirect addressing with pre-decrement is used, then the address
busis the vaue of ZP subtracted by 61.

c[7..0] ?
wr_reg ?
inc_zp ? ? reg_rd[7..0]
dec_zp ? General Pupose Registers  [? reg_rr[7..0]
rd[3..0] ? (v_gpr.vhd) ? addr_bus[7..0]
re([3..0] ?
dest[3..0] ?
clk ?
Clmn ?

Figure 7.8 General Purpose Registers Symbol

Figure 7.8 shows the module symbol of the generd purpose register file.
INC_ZP is asserted when indirect addressing with post-increment is used. It will
incrememt ZP by 1. DEC_ZP is asserted when indirect addressing with pre-decrement is
used. It will decrement ZP by 1. When indirect addressing with pre-decrement is used,
the MAR load the vaue of the address bus at the same rising edge the ZP is
decremented. So MAR will not be able to load the decremented ZP value. Thisisthe
reason why the address bus is the value of ZP subtracted by $61 instead of $60 to correct
this problem.

Recdl that an ingtruction cycle are divided into fetch stage and execute stage.
Operands are fetch at the start of the execute stage while the result is written back at the
end of the execute stage. To be able to fetch the correct operands at the start of the
execute sange, the operands must be known in the fetch stage. The ingruction in the IR
isin the fetch stage, so it addressed the operands. When the ingtruction enter the execute
stage, another ingruction is fetched. To write the result from the ALU back to the
correct destination register must now tell by the control unit instead of the IR because IR
only knows the destination register of the next indructions. Thisisthe difference
between RD (fetch stage) and DEST (execute stage).
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76 ALU
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The ALU executes many ingructions, some directly and some indirectly. We
first examine the 24 most basic ingructions that are executed directly by the ALU. These
indructions are lisged in Table 7.3. They are divided into 5 groups— ADD, SUBCP,
LOGIC, RIGHT and DIR. ADD group ingtructions perform add operations, SUBCP
group ingructions perform subtract and compare operations, LOGIC group perform

logica operations; RIGHT group perform right shifting; DIR group perform direct

wiring operations.

Table7.3 BadgcInstructions

Group | Instruction Extra Signal Wr_Reg| ORA | ORB Flags
ADD ADD v HSVNZC
ADC WCARRY v HSVNZC
INC v One SVNZ
SUBCP | SUB v HSVNZC
SUBI 4 Imm | HSVNZC
SBC WCARRY v HSVNZC
SBCI WCARRY v Imm | HSVNZC
CP HSVNZC
CPC WCARRY HSVNZC
CPI Imm | HSVNZC
DEC v One SVNZ
NEG v Zero Rd | HSVNzC
LOGIC | AND LOGICSEL =00 v SVNZ
ANDI LOGICSEL =00 v Imm SVNZ
OR LOGICSEL =01 v SVNZ
ORI LOGICSEL =01 v Imm SVNZ
EOR LOGICSEL =10 v SVNZ
COM LOGICSEL =11 v SVNZC
RIGHT | LSR RIGHTSEL =00 v SVNzC
ROR RIGHTSEL =01 v SVNzC
ASR RIGHTSEL =10 v SVNZC
DIR MOV DIRSEL =0 v
LDI DIRSEL =0 v Imm
SWAP DIRSEL =1 v

* |f not gated, then ORA is default to Rd and ORB is default to Rr.
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WR_REG sgnd is assarted if the result of the ALU will be written back to the
destingtion regigter. It isaregister file control sgnd, not the ALU. ORA and ORB
columns shows what should be loaded into the operand register A and operand register
B. If the cdll isblank, it is default to Rd (destination register) for ORA and Rr (source
register) for ORB. Zero is*0000 0000”; Oneis*“0000 0001”; and Imm is the immediate
vaue of the ingructions,

Every indructions has its own combination of group + extrasignd + WR_REG
sggnd + ORA + ORB. This combination makes the 24 ingtructions unique to esch other.
To represent agroup, a control signad with the same name as the group is asserted. ADC
is executed by fetching Rd to ORA, Rr to ORB and assart the ADD signd, WCARRY
sgnd and WR_REG sgnd. ORI is executed by fetching Rd to ORA, the immediate
vaueto ORA, assert the LOGIC signad and set LOGICSEL to 01. All othersinstructions

are executed according to their combination

A total of 21 ingtructions will change the satus register (SR) flags based on the
result of the operation. So the ALU need to evduate the flags and send them to the SR.
If an indruction will modified the C-flag, the control will enable the C-bit in SR in order
to received the new flag from the ALU. Theflag column in Table 7.3 shows the flags
that are affected by the 21 indructions. If aflag is not affected, the control unit will not
enable the corresponding bit in SR. The value ALU send to the SR isdon't care.

Table7.4 Bit Load instructions

Signal Instruction | Wr_Reg| ORA | Description

BLD BLD v Rd Load T-Hag to bit

CBISBI CBI o] Clear bit in 1/O register
SBI 110 Set bit in 1/O register

We now add 3 more indructions to our discussion, listed in Table 7.4. They
require asingle operand, Rd for BLD and an 1/O register for CBI and SBI. Thelr
operation is smilar where BLD loads the T-flag into a bit while CBI can be think as
loading a0 into a bit, so as SBI isloading a 1 to a bit. The control will tell which bit




should be loaded. SBI and CBI ingtruction require 2 cyclesto complete. At the first
cycle, the1/O regigter isfetched to ORA through the data bus. At the second cycle, a0
or 1 isloaded to the bit location and result is written back to the /O through the data
bus.

The register file can only recelved data from the data bus. So, in order to send
data out to the data bus, it needsto passit through the ALU. Table 7.5 list the 4
indructions of this group. OUT ingruction transfers the content of aregister to an 1/0
regiser whileLD Z, LD Z+ and LD —Z transfer the content of aregister to the deta
RAM. Rd isfetch to ORA and the ALU perform a pass operation to pass ORA to data
bus.

Table7.5 Pass ORA Instructions
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Signal Ingtruction ORA | Description

PASSA ouT Rd Sip if bit in register cleared
LD Z Rd Sip if bit in register set
LD Z+ Rd Sip if bitin 1/O register cleared
LD-Z Rd Skip if bitin I/O register st

Following next are the 5 skip indructions listed in Table 7.6. They determine
whether the next ingruction followed should be skipped. The SKIPTEST group
ingructions require Sngle operand while the CPSE ingtruction reguires two. 1/0O refersto
the respective /0 register. SBIC and SBIC instruction require 2 cyclesto operate just
like CBI and SBI. At thefirst cycle, the 1/O register is fetched to ORA. The skip test
then performed at the second cycle.

Table7.6 Skip Ingructions

Signal Instruction ORA ORB | Description

SKIPTEST SBRC Rd SKip if bit in register cleared

SBIC 110 Skip if bit in 1/O register cleared

X

SBRS Rd X Skipif bit in register st
X
X

SBIS /0 Sipif bitin I/O register set

CPSE CPSE Rd Rr Compare, kip if equa
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Figure 7.9 shows the organization of the ALU module. It can be broken into 4
functiond units— operand fetch unit, execution unit, skip evauation unit and status flags
evauation unit. Operand fetch unit perform the fetching of operandsto ORA and ORB,
execution unit takes ORA and ORB and modified accordingly, Satus flags evauation
unit caculate the flags and send it to SR, and skip evauation unit perform skip test. We
will now assume that the control unit will send in the correct control signas a the
correct time. More detail description about the control sgnalswill be discussin control
unit section.

< Data Bus >
A

\ 4
Reg Rd — P
Reg Rr — 1 pi Operand Fetch | Execution
Immediate L > Unit Unit
Skip Evaluation Status Flags
Unit Evaluation Unit
v v
Skip Flags

Figure7.9 ALU Organization



7.6.1 Operand Fetch Unit

Figure 7.10 shows the structure of the operand fetch unit. There are two operand
registers ingde the operand fetch unit — operand register A (ORA) and operand register
B (ORB).

RegRd —P{ MUX MUX
Data Bus — > > ORA
A
C2A
0000 0000 P
A
ASEL
Reg Rt  —P{ MUX MUX
Data Bus — > > ORB
A
C2B
Reg Rd P>
Immediate P>
0000 0001 P>
A
BSEL

Figure7.10 Operand Fetch Unit

ORA can be loaded with Rd or “0000 0000” while ORB can be |oaded with Rr,
Rd, immediate vaue or “0000 0001". They are selected by the ASEL sgnd and BSEL
sgnd. The main purpose of the C2A sgnd and C2B sgnd is do perform operand
forwarding as discussed in pipeline conflicts section in chapter 5. They are used to
forward the result of the ALU (data bus) to the operand registers if the destination
regster of the currently executing ingruction is found to be same as Rd or Rr

Asdiscussed earlier, CBI, SBI, SBIC and SBIS ingructions will fetch one of the
I/0 register to ORA astheir operand. C2A aso does the job by sending the data bus
(that contains the 1/O regigter vaue) to ORA.



7.6.2 Execution Unit

The execution unit executes 7 groups of ingructions that are discussed earlier - 5
groups from the basic ingtructions (ADD, SUBCP, LOGIC, RIGHT and DIR), the bit
load group and the pass ORA group. As shown in Figure 7.11, the execution unit is
divided into 5 subunits. Adder-subtracter executes ingructions from both the ADD and
SUBCP group. Logic unit executes ingructions from the LOGIC group. Shifter for the
RIGHT group; direct unit for the DIR group; and bit loader for the bit load group.

Execution Unit

Adder-Subtracter

Logic Unit

Shifter

Direct Unit

Bit Loader

Figure7.11 Execution Unit Organization

The adder-subtracter add ORA and ORB when the ADD signdl is asserted, eseit
subtract ORB from ORA. Carry in of the adder-subtracter is determined by the ADD

ggnd and WCARRY ggnd asshown intable 7.7.

Table7.7 Carry In of Adder-Subtracter

ADD WCARRY CarryIn Related Instruction
0 0 1 SUB, SUBI, CP, CPI, DEC, NEG
0 1 Not C-Flag | SBC, SBCI, CPC
1 0 0 ADD, INC
1 1 C-Fag ADC




The logic unit performsit operation based on the LOGICSEL signd. It performs
alogica and between ORA and ORB when 00; logicd or between ORA and ORB when
01; exclusive or between ORA and ORB when 10; and complement ORA when 11.

The shifter performs right shifting operation. The 7 least Sgnificant bits (LSB) of
the result are the 7 most significant bits (MSB) of ORA. Theresult MSB is based on
RIGHTSEL sgnd, whichis*0 when 00; C-flag when 01; and the MSB of ORA when
10.

The direct unit performs direct data wiring based on the DIRSEL signdl. It
connects ORB to the result when DIRSEL isO. If DIRSEL =1, the4 MSB of the result
isthe4 LSB of ORA whilethe 4 LSB of theresult isthe 4 MSB of ORA (swap nibbles
of ORA).

The bit loader receives the 3 control sgnads—BLD, CBISBI, BITSEL and SET.
BLD dgnd loadsthe bit in ORA pointed by BITSEL with the T-flag. CBISBI signd
will load the bit in ORA pointed by BITSEL with the vaue of SET.

The outputs of dl the 5 units plus the vaue of ORA are multiplexed to the data
bus through tri- state- buffers. Table 7.8 shows the data bus vaue with the respective
control signal. 2 control signals asserted at the same time is impossible because each
control Sgna represents totally different instructions and the CPU can only executes one
indruction a atime. If none of the control sgnd in the table is active, nothing is sent
out to the data bus, and it has a high impedance vaue. The data bus can be used for

others purpose.



Table7.8 Data BusValue

Control Signal Data Bus Value
ADD, SUBCP Adder-Subtracter
LOGIC Logic Unit
RIGHT Shifter

DIRECT Direct Unit

BLD, CBISBI Bit Loader
PASSA ORA

Default High Impedance

7.6.3 Skip Evaluation Unit

Skip indructions (Table 7.6) are executed by first evauating the skip condition
by the skip evauating unit. If the skip condition isfulfilled, the SKIP sgnd is asserted.
The control unit will skip the next ingtruction that followed.

The skip evauation unit receives 4 control sgnas— CPSE, SKIPTEST, BITSEL
and SET. When CPSE signd is asserted, ORA are compared with ORB. The SKIP
ggnd isasserted if they contain the same value. SKIPTEST test the bit in ORA pointed
by BITSEL. If that bit has the same value as SET, the SKIP sgnd is asserted.

7.6.4 Flags Evaluation Unit

The 21 ingructions (shown in table 7.3) that are executed by the ALU plusthe
BST ingtruction will modified the status register (SR). The control unit tests the Satus
register bits to determine whether the branch of an unconditional branch ingtruction
should be taken. A 7-hit wide flag bus is connected directly to SR to send the flags
result. Itis 7 but not 8 bit because none of these ingtructions modified the I-flag.
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The ALU will evduate dl the 7 flags any time and send it to the SR through the
flag bus. Thiswill not create problems because every hit in SR recalves an individud
endble Sgnd. The flag vaue send from the ALU will only be loaded if the enable sgnd
for that bit is active. The control unit takes care of the enable sgnals. The ALU takes
care of sending the correct flagsto the bus. If aflag for an ingtruction is not modified,
the ALU can send anything to that busline.

Z-flag (Zero) is 1 when the result of an operation is zero. The evduation unit can
test the result (data bus) directly to determine the Z-flag. It works but it will dow down
the design performance because signas need to pass through the execution unit and the
tri- Sate buffers before reaching the data bus. Only instructions from ADD, SUBCP,
LOGIC and RIGHT groups modified the Z-flag. To increase performance, the result of
the adder-subtracter, logic unit and shifter istested directly instead of the data bus.

N-flag (Negative) is aways same as the vaue of the MSB of the result (bit 7).
Again, testing the data bus will dow down performance. So, the N-flag is tested based of
the result of the adder-subtracter, logic unit and shifter.

V-flag is directly generated by the adder- subtracter when performing ADD and
SUBCP group ingructions. It is aways cleared for LOGIC ingructions. For RIGHT
instruction, the Boolean equation given in the datasheet isN-flag A C-flag. Recall that
N-flag is equivaent to the MSB of the result (shifter result) and C-flag isthe LSB of
ORA.

S-flag (Sign) is an exclusve OR between the N-flag with the V-flag dl thetime.

C-flag (Carry) isthe carry out of the adder- subtracter when performing ADD
group ingructions. RIGHT group ingructions shift ORA one hit to the right and the LSB
of ORA enter the C-flag. The COM ingruction (from LOGIC group) aways set the C-
flag. For SUBCP ingtructions, C-flag is the borrow-in of the operation and is equd to the

complement of carry out of the adder-subtracter.



H-flag (Haf Carry) are modified by ADD and SUBCP group ingtructions. For
ADD group, itisset if thereisacarry out from bit 3 of the adder-shifter result. The

Boolean equation for it is A3.B3+B3.C3+C3A3 with A isORA, BisORB and Cis
the adder- subtracter result. The H-flag is the borrow in from bit 3 and is given as

A3B3+ B3.C3+C3.A3.
T-flag isdways the bit in ORA pointed by BITSEL. When executing the BST

(store bit to T-flag) ingruction, the control unit Smply assarts the enable sgnd for the
T-bitin SR.

7.7  StatusRegister (SR)

The gtatus register (SR) is mapped into the 1/0 space at $3F. Figure 7.12 shows
the Structure of the SR.

I T H S \% N z C

Figure7.12 StatusRegister Structure

e Bit7—1: Globd Interrupt Enable

* Bit6—T: Bit Copy Storage

* Bit5-H: Hdf Cary Hag

* Bit4-S SgnBit

* Bit 3—V: Two's Complement Overflow Flag
* Bit2— N: Negative Flag

* Bitl-Z: ZeroFag

* Bit0O-C: Cary Hag
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All the flags except the I-flag have been discussed in the ALU section. The -flag
must be set to enable the interrupt. Only if the I-flag is s, an interrupt request can be

served.

The SR can be modified in 4 conditions. Firgt, the SR can be replace with the
content of agenera purpose register. Thisis done by writing to the I/O address $3F. The
contents of the SR can aso transferred to a generd purpose register by reading the I/0
address $35.

Asdiscussed in the ALU section, the SR receives a 7-bit wide flag bus from the
ALU. The C buslineis connected to the C-flag (aflip-flop); Z busline to the Z-flag; and
so forth. The I-flag is not cormnected to any bus line. The control unit sendsin endble
ggndsfor dl theflags (flip-flops). Only when the bit is enabled, the vaue of the bus
line can be written into the flag.

If an interrupt request is served, the control unit will need to clear the I-flag
before executing the interrupt service routine (I1SR) so that another interrupt request will
not be executed when serving the current one. When the ISR is completed (when RETI
ingruction is executed) the I-flag will be set again. So another interrupt request can be
served. The control unit send 2 control signalsto clear and set the |-fleg.

Every hit in the SR can be cleared of set directly using the BCLR and BSET
ingructions. The SR receives BCLR, BSET and SRSEL sgnds. When BCLR is active,
the flag pointed by SRSEL will be cleared. When BSET is active, the flag pointed by
SRSEL will be st.



7.8 DataRAM

The actua AT90S1200 chip does not contain any SRAM. The AT90S2313
contains 128 Bytes of SRAM. Figure 7.13 show how the SRAM isorganized in
ATO0S2313. The 32 genera purpose registers and 64 1/0 registers are mapped into the
data space aswell. The address space is accessed by LD and ST ingtructions with
indirect addressing through the X-pointer, Y-pointer and Z pointer.

32 General %0
Purpose Registers
PoseRed $1F
) $20
64 1/0 Registers
$5F
SRAM $60
(128 x 8) $DF

Figure 7.13 Data Address Space

In this design, the generd purpose registers and 1/0 registers are not mapped into
the data space. The data space consist of the the SRAM only, addressed from $60 to

$DF. Only the Z-pointer (R30) is available. Data indirect with digplacement is not
supported.

2N\

MBR <4+—

v

M
A D Memory —
R

Data Bus

Address Bus

N4

Figure7.14 Data RAM Organization
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Figure 7.14 shows the organization of the data RAM module. It contains two
registers — memory address regster (MAR) and memory buffer register (MBR). MAR is
connected to the addressinput of the RAM. It receives data from the address bus which
is send from the egister file. MBR are connected to the data input port of the RAM. It
stores the data to be writen into the RAM. The MBR receives data from the data bus. A
write operation will write the contents of the MBR to the memory addressed by MAR. A
read operation will send the contents of the memory pointed by MAR to the data bus. If
the read operation is not active, the RAM output will be tri- stated.

addrbus[7..0] ?
rd_ram ?
wr_ram ? Data RAM ? c[7..0]
Id_mar ? (v_ram.vhd)
Id_mbr ?

clk ?

clrn ?

Figure7.15 Data RAM Symbol

Figure 7.15 shows the symbol of the data RAM module. The RAM is
implemented usng LPM_RAM_DQ module from the LPM library. A specia
characterigtic of thisRAM isthat it can have initid vaues by specifying the valuesin a
MIFfile Inthisway, it dso actslikeaROM aswdl. RD_RAM reads the content of the
memory to data bus, WR_RAM writes the content of the MBR to memory; LD_MAR
load the MAR with address bus;, and LD_MBR loads MBR with data bus.
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79  Port

There are three 8-hits bi-directiond 1/0 portsin the design — Port B, Port C and
Port D. Every port hasits own data register, data direction register and input pins. They
are mapped into the I/0 space asligted in Table 6.1. All the data registers and data
direction registers are cleared after reset. Data registers and data direction registers can
be read and written to while the input pins can only be read.

A port is built usng bit-dice gpproach where a sngle bit module is built and
cascaded together to form the port. Shown in Figure 7.16 is the schematic of the bit-

dice.
. Diata Bus .

(J:, """ : PR
i L Diata i

Gk - | : el

WE_PORT B :
. CLRM = | s
EEEN: 0 ) e
RD_PORT
""" (J) : .
PRN Direction % P

T
WEDOR ¢ o | | RD_DDR

Figure7.16 Bit-dice schematic of the 1/O Port

The hit-dice contains 2 D-flip-flops, one is the data flip-flop while another is the
data direction flip-flop. Data direction flip-flop control the direction of the I/O pin — 0
for input and 1 for output. When configure as input (direction = 0), the tri Sate buffer is
not enable and the externd bin will be in high impedanze state. A read on the pin will



read the value of the physica pin to the data bus. The data flip-flop vaue does not
change according to the phisca pin.

When the pin is configured as output (direction = 1), the tri-sate buffer that
connects to the data flip-flop is now enabled. The physica pin will be directly driven the
the vaue of the data flip-flop.

The port are connected directly to the data bus. When writing to the data flip-flop
and direction flip-flop, data is received from the data bus and the write Sgnd to the
respected flip-flop is asserted. A read operation can read the contents of the data flip-
flop, direction flip-flop and the externd pin. A read sgnd to the respected flip-flops or
pinwill read its content to the data bus.

Eight copies of the same hit-dice are cascaded together to form a port module.
Then the port module can be duplicate to form port B, port C and port D. Although they
share the same port module, they are actudly receiving different set of control sgnals
from the control unit which differenciate them.

rd_port ?

wr_port ?
rd_ddr ? Port ? c[7..0]

wr_ddr ? (v_port.vhd) ? pin[7..0]

rd_pin ?

clk ?

clrn ?

Figure7.17 Port Symbol

Figure 7.17 shows the symboal of the port module. The port B will have the
RD_PORT input connected to RD_PORTB signd while port C will have it connected to
RD_PORTC, and RD_PORTD for port D. The same naming convention is applied to
others control signals. The physical 1/0 pinisaso named as PINB, PINC and PIND

respectively.
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710 Timer

Thetimer isasmple 8-hit timer with overflow detection and interrupt request.
There are 4 control registers in the timer — timer/counter interrupt mask register
(TIMSK) at $39, timer/counter interrupt flag register (TIFR) at $38, timer/counter O
control register (TCCR) at $33 and timer/counter O (TCNTO) at $32. Figure 7.18 shows
the control bitsin these regigters.

7 6 5 4 3 2 1 0

Timsk | - | - | - | - | - | - JToEeo | - |
R - |- [ - [ - | - | - [7ovo] - |
Tccro | - | - | - | - | - | cso2 | cso1 [ csoo |
TCNTO | MSB | | | | | | | LsB |

Figure7.18 Timer Control Registers
The timer module contains a 10-bit prescaer/frequency divider drive by the
system clock, which give amaximum division of 1024. CS02, CS01 and CS00 sdlect the

clock source for the timer according to Table 7.9.

Table7.9 Timer Clock Source Sdect

Q
S
Q
3
Q
3

Timer Clock Source

0 0 0 0 - thetimer is stopped
0 0 1 System Clock (CLK)

0 1 0 CLK/8

0 1 1 CLK/64

1 0 0 CLK/256

1 0 1 CLK/1024

1 1 0 Externd Pin, fdling edge
1 1 1 Externd Pin, risng edge
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It isimportant to note that the timer clock source does not drive the TCNTO
directly. Instead, TCNTO is driven by the system clock. The timer clock source are
sampled at therising edge of the system clock. If alow to high trangtion is detected (a
low is sampled followed by a high), the increment signd for TCNTO is asserted to
increment it. Every trangition detected will generate an increment signd pulse. If the
timer clock source is the system clock, then no detection of rising edgeis required - the
increment Sgnal is aways asserted. To assure proper sampling of the externa clock
source, the frequency of the externd clock should be smaller than the system clock
frequency, and the smaller the better.

Every timethe increment Sgnd is active, TCNTO will be incremented by 1. If
TCNTO is $FF before increment, it will become $00 after increment and at the same
time the timer/counter O overflow flag (TOVO) will be st.

The timer/counter O interrupt overflow interrupt enable flag (TOVO0) is ANDed
with TOVO to generate the timer overflow interrupt request. If the TOVO is st (timer
overflow interrupt enabled) and TOVO isdso sat (timer overflow occurred), the timer
will assart an interrupt request to the control unit. If the I-flag in the SR is enabled, the
control unit will serve theinterrupt request and clear the TOVO flag by sending aclear
TOVO sgnd to the timer module.

Just like other control registers, the 4 timer registers can be read and write
through the data bus. However, reserved bits are always read as zero; and the TOVO flag
can be cleared by writing aoneto it. In thisway, TOVO flag can never be set by the
user. Reserved hits are not implemented with flip-flops, they are connected directly to
ground and thiswill save alat of flip-flops. Thisis why the reserved bits are dways read

as zero and there are no way data can be written to them.

Figure 7.19 shows the symbol of the timer module. In this design, the EXTPIN is
conneted to PIND7, the last pin of port D. It can easly configured to point to any of the
241/0 pins. CLR_TOVO is sent from the control unit to clear the TOVO flag when the
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interrupt request is served. The 4 RD signals read the timer control registers to the data
bus while the 4 WR signals write the data bus value to the corresponding register.

extpin ?
clr_tov0 ?
rd_timsk ?
wr_timsk ?
rd_tifr ? Timer ? c[7..0]
wr_tifr ? (v_timer.vhd) ? timerirq
rd_tccrO ?
wr_tcer0 ?
rd_tcntO ?
wr_tcnt0 ?
clk ?
clrn ?

Figure7.19 Timer Symbol

7.11 Externad Interrupt

The externd interrupt istriggered by an externd pin. In this design, the externd
pin share the pin with pin D7, the last pin of port D. This pin can be easily changed to
share with one of the 24 1/0 pins by modifying asingd linein the VHDL code. Shown
in Figure 7.20 isthe 2 control registers for externa interrupt — generd interrupt mask
register (GIMSK) at $3B and MCU contral register (MCUCR) at $35.

Gmsk [ - | wto ] - | - [ - [ - ] - | - 1]

mcucR | - | - [ - | - | - [ - [1scol | Iscoo |

Figure7.20 External Interrupt Control Register

The MCUCR of AT90S1200 hasthe bits4 and 5 for controlling the degp modes
of the microcontroller. Since the design does not include this fegture, these bits are taken

away from the register.
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Theinterrupt can be triggered by the externd pin on rising edge, faling edge of
low level and is sdlected by the ISCO1 and ISCOO bits (interrupt sense control 0) as
shown in Table 7.10.

Table7.10 Interrupt Source

ISCO1 | ISCO0 | Interrupt Source
0 0 Low Leve
0 1 -
1 0 Faling Edge
1 1 Risng Edge

The interrupt can aso be triggered when the externd pin is configured as outpt.
The difference now isthat the interrupt Sgnd is provided interndly from the
microcontroller instead of externa signd. This provides away to generate software

interrupt by the programmer.

Trangtions (faling edge and risng edge) are not detected using the clock input
of aflip-flop. The externa pinis sampled on every system clock to detect the transtions.
A low samplefallows by a high sample sense arisng edge while a high sample follows
by alow sample sense afdling edge. When the interrupt sourceis set to faling or rising
edge, the externa interrupt flag will be set when the require edge is detected. The
externd interrupt flag are not accessible by the user. It is not placed insde any of the
control register. The flag will stay until the interrupt request is served or after areset.

Figure 7.21 shows how interrupt request is generated. To generate an interrupt
request to the control unit, the INTO bit (externa interrupt request 0 enable) must be set.
Thisbit is ANDed with the flag to generate the interrupt request (with ISC /= 00).
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Figure7.21 Generating External Interrupt Request

Low-leve interrupt are difference from edge interrupt just discussed. It does not

st the externd interrupt flag to generate an interrupt request. Instead, it never touches
the flag. The complement of the externd pin (detect low-levd) is directly ANDed with
the INTO bit to generate an interrupt request. So if INTO is s, it will generate an

interrupt request aslong asthe pinis held low. If theinterrupt is not enabled when the

pinished low, it will be forgotten when the pin goes high.

If the externd interrupt is set to edge triggered, the externa sgnd must have

sharp trangtion. If aphysica switch is used to generate the interrupt, switch-bounce will

occur. It will generate a second, third or more interrupt request even if the interrupt
request has dready been served. So, it is recommended that the low-leve interrupt is

used, or the switch is hardware de-bounced.

extpin ?
clr_intf ?
rd_mcucr ?
wr_mcucr ? External Interrupt
rd_gimsk ? (v_extint.vhd)
wr_gimsk ?
clk ?
clrn ?

? c[7..0]
? extrirq

Figure7.22 Timer Symbol
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Figure 7.22 shows the symbol of the externa interrupt module. CLR_INTF is
sent by the control unit to clear the externd interrupt flag when the interrupt request is
served. RD and WR signd's provide reading and writing the control registers through the
system data bus.
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CHAPTER VIII

CONTROL UNIT DESIGN

81  Chapter Overview

The design of the datapath has been discussed in the last chapter. Only one
moduleis|eft for the design — the control unit module, which will be discussed in this
chapter. We have touched the ingtruction set, pipdine processing and many control
sgnas, which controls the datapath. The control unit plays the role on decoding the
ingruction, implements the pipeine processing and asserts the control signals for the
datapath at the correct timing. This chapter covers the decoding of the instruction and
the design of the finite Sate machine (FSM).

8.2 Instruction Decoder

The inputs of the control unit are the ingtruction machine code from ingtruction
regiser (IR), the flags vaue from satus register (SR), skip request, timer interrupt
request (timer IRQ) and externa interrupt request (externa 1RQ). The machine code is
decoded first before sending to the FSM, while the others inputs are connected directly
to the FSM.
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Asdiscussed in chapter 5, the design process involves 51 machine codes. The
instruction decoder takes the 16-bit machine code from the IR and generates 46 output
sgnasto represents the 51 ingructions. There are 4 pairs of ingructions that share a
same sgnd. The share Sgnd is active when ether oneisfound. They are BRBC,

BRBS, SBRC, SBRS; SBIS, SBIR; CBI, SBI. The NOP ingtruction is not decoded. So
51 take away 5 equalsto 46 signds.

At any time, the IR can only have oneindruction. So, it will not have more than
one output Sgnd active at atime. However, if the machine code received does not
match any of the 51 ingdructions, or is actualy the NOP ingtruction, then none of the
decoder output Sgnd is active. When none of the output Sgnd is active, the FSM will
not assert any control signa to perform an operation, so no operation (NOP) is executed
in that cycle. Any undetermined ingtruction is executed as NOP.

8.3  Synchronous M ealy Model Finite State Machine

RISC control unit should be hard-wired (logic gates) rather than
microprogrammed (ROM implementation). Microprogrammed control unit is used by
CISC because the ingruction has different length and execution cycles. So
microprogrammed can make the control unit design easier. The disadvantage is dower
gpeed performance. In RISC, ingruction has fixed length and mostly single cycle
execution. So desgn using hard-wired is not that complicated and it will have the
advantage of speed.

The FSM inthisdesign is hard-wired, using logic gates to generate the next Sate
and output Sgnds rather then aROM. The FSM isimplemented using synchronous
Medly modd. Figure X.X shows the block diagram of a synchronous Mealy model
FSM.
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Combinational > F
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Logic F
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Figure8.1 SynchronousMealy Model FSM

Different with the norma Medy FSM, the synchronous Medy FSM hasthear
output connected to flip-flops. That iswhy it is caled synchronous. There are two
combinationd logicsin the Sate machine, one to generate the next state base on the
input and current state, while the other is used to generate the outputs base also on the
input and current state.

There are basicdly 2 advantages from using a synchronous Meay FSM. For a
Moore or Medly FSM, the outputs are generated by the output combinationd logic. They
will be delay for the sgnas to pass through the combinationd logic before the output is
generated. Thiswill dow down the control Sgnals output speed. If the datapath receive
the control sgnds later, then will perform their operation later. In the synchronous case,
outputs are gill generated by the combinationd logic, but they are now gated to D-flip-
flops. On the next clock trangtion, the outputs are asserted immediately. The datapath
receives the control sgnds at the very beginning of a cycle and therefore can complete
its operation fagter. Thisisthefirst advantage.
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The FSM contains only 8 states. Such a small number of states are results of
using synchronous Medly implementation. Thisis the second advantage. Since the State
machine outputs are now gated to flip-flops, adl sngle cyce ingruction can share the
same date. The state is unchanged but the input changed, so it can determine the next
outpui.

84 Finite State M achine States

NO IRQ

IRQ

BRANCH1

Sleep
Uncond.
Branc

RESET

Single Cycle
Inst.

Branch Request

BRANCH2

Load Inst.

SBIC/SBIS

Store Inst.

CBI/SBI

CBISBI

Figure8.2 StateDiagram



Figure 8.2 shows the gtate diagram of the finite state machine (FSM). The 8
states are EXE (execute), SLEEP, BRANCH1, BRANCH2, SBICS (skip if bitin 1/O
clear/set), CBISBI (clear/set bitin 1/O), ST and LD.

The state diagram shows the state flow but does not clearly show the inputs. The
inputs to the FSM are the 46 output lines of the ingtruction decoder, timer IRQ, externd
IRQ, skip request and branch request. Branch request is generated by the branch
evauation unit when the condition of the conditiond branch ingruction is fulfilled.

We now assume dl ingructions are single cycle and there are no IRQ, skip
request and branch request. The state machine will have no state change in this case and
remain a EXE date. All ingructions have afetch cycle and an execute cycle and are
pipdined together as discussed in chapter 5. When thefirst ingtruction is fetched, its
corresponding output line of the ingtruction decoder will become active. It happensin
the fetch stage. The next state combinationd logic finds that the next sate is unchanged.
However, the output combinationa logic has prepared the control signals based on the
decoder’ s active line. On the next clock trangition, the ingtruction enter the execute stage
and the control sgnalsis assarted (latch into the output flip-flops). The ALU then
executes the ingruction. Because of pipeline processing, the next ingtruction has been
fetched a the same clock trangition. The instruction decoder decodesit and asserts
another output line. Again, the output logic will prepare the correct control sgnads and
assartsit on the next clock trangition. So the FSM can perform the pipeline processing
without any difficulty.

We now consider the one of the unconditiona branch ingruction - RIMP. When
RIMP isfetched, the RIMP output line of the decoder is active. The next state logic
determined that there would be a state change to BRANCH1 state on the next cycle. The
output logic aso prepared the control Sgnas for RIMP, which will load the PC with the
destination address. On the next clock trangtion, state changes to BRANCH1 and the
control Sgnas are asserted. At BRACH1, the next state must be BRANCH2. Although
the pre-fetched instructions asserts one of the decoder output line, the output logic does
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not prepared any control signals for the next cycle. So thisingruction is being flushed
from the pipeline, as discussed in chapter 5. So on the following clock trangtion, State
changesto BRANCH2 and at the same time, PC is loaded with the new vaue. The next
gtate will be returned to EXE gtate. Again, no output Sgnd is asserted based on the
fetched ingtruction because it is flushed. On the next clock trangition, the FSM enters
EXE gtate and the destination ingtruction has been fetched. The decoder’ s destination
ingruction output line is active and will be executed on the next cycle.

The discussion above is for the RIMP ingtruction. The same concept can be
goplied to RCALL, RET, RETI indructions as wdl as serving an IRQ. An IRQ (timer or
externd) is sent by the timer or externd interrupt module in the datapath. An IRQ can
only be served if the I-flag is set, ese it will beignored. To make sure dl ingruction s
are completely executed, an IRQ can be only be served in the EXE gtate. On EXE Hate,
the FSM first check for any IRQ (must have the I-flag s&t). If thereis any, it will ignored
the pre-fetched instruction and determines the next state to be BRANCH1. The output
logic prepare control signd to load PC with the interrupt vector and to clear the I-flag. I-
flag is cleared so that if thereisanew IRQ occurred while serving the current one, it will
not be served. After loading the interrupt vector to the PC, execution continues as
normal but there will not be any IRQ served until the RETI ingtruction is fetched and
executed. It will then set back the I-flag and allowed another IRQ to be served. Al
conditiona branch ingtruction will take 3 cycles to complete. This can be count from the
trangitions make to complete the execution from EXE state back to EXE state. (EXE —
BRANCH1 — BRANCH2 — EXE)

The next case to consder is the execution of conditiona branch ingtructions —
BRBC and BRBS. Different from conditiond branch ingruction, the branch may or may
not be taken. They test abit in the SR to determine whether the branch should be taken.
The branch evduation unit will do the job on testing the SR flags base on the condition
specified. If the condition isfulfilled, it will immediately generate a branch request to
the FSM.
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When either BRBC or BRBS is fetched, the shared instruction decoder output
line become active. Different from unconditional branch ingtructions, there will be no
gtate chance on the next cycle. The FSM will assert the branch test sgna on the next
cycle to request the branch evaduation unit to perform abranch test. If the condition is
not fulfilled, no branch request is generated. The pre-fetched ingruction is not flushed
from the pipdine and is executed. So it takes only one cycle for aconditiond branch
indruction if the branch if not taken.

If the condition is fulfilled, the branch evauation unit will send back a branch
request to the control unit immediately. At the same time, the control unit will aso
ingtruct the PC to loads the PC with the destination address. With the branch request, the
FSM will transfer to BRANCH2 tate on the next clock and the pre-fetched ingtruction
isflushed. On the next clock, the second pre-fetched ingtruction is aso flushed but the
FSM now return to EXE gate. The next ingtruction is the destination ingtruction and will
be executed on next cycle. So it takes 3 execution cyclesif the branch is taken for
conditiond branch ingtructions. Note that the control signd to load the PC is not asserted
according to clock trandtion. It is asserted only after the branch evauation unit has
received the branch test sgnd and performs the test successfully. So thereis delay for

the PC to receive the sgnd in this case.

When the FSM seesthe SLEEP ingtruction, it will jump to the SLEEP date.
When in the SLEEP ate, the PC is stopped and no indtruction is executed. Only when
thereis an IRQ (with the I-flag set), the FSM jumps to BRANCHL1 date to serve the
interrupt request. The processis exactly the same as serving an IRQ from the EXES.

For sngle cyde ingruction, the ingtruction will not need to be remembered after
the control sgnasis asserted because it is completed in one cycle. When enter the
execute cycle, the next ingruction is fetched and the current ingtruction is lost. However,
ingructions that require 2 cycles to complete must have some way to remember the
ingtruction in order to assert the correct control signds at the second cycle. So, the FSM



provides the second state to remember the ingtruction. Control signals are based on the
dateitsalf without considering the decoder’s output line.

If the second cycle of the indtructions asserts the same control signds, then the
dtate can be shared, dse it will require another one. There are 4 Sates of al for executing
2 cydesingruction — LD, ST, CBISBI and SBICS. The FSM jump to LD state when LD
Z,LD+ZorLD —Zisseen; ST if ST Z, ST +Z, ST —Z; CBISBI if CBI or SBI; SBICSif
SBIC or SBIS. When one of these ingructions is found, the control unit will need to
hold the pipeline (Chapter 4). The EN signd send to the PC module and IR module will
not be asserted for one cycle. So the PC is not incremented and the IR is il holding the
pre-fetched ingruction.

Skip indructions executes in asimilar way to unconditiond branch ingructions.
When the FSM seesa skip ingtruction, it will send control signalsto the ALU to perform
the skip test. The ALU will send a skip request back to the FSM if the skip condition
fulfilled. The skip request will not generate a state chance as branch ingtructions.
However, it will ignore the pre-fetched ingtruction (the ingtruction to be skipped). No
control signal is asserted to executeit. So it takes 1 cycleif the skip is not taken but 2 if
the kip is taken.

SBIC and SBISisacombination of 2 cyclesingruction and skip ingruction. It
requires an extracycle to fetch the 1/0 register before the skip can be test by the ALU.
The skip test Sgndl is asserted on the trangtion from SBICS to EXE. If askip istaken, it
takes 3 cyclesand it takes 2 isthe skip is not taken.

After the long discussion, we should notice when in the EXE date, it will first
check to seeif there are any branch request or skip request to processed (two of them
will never occurred a the sametime). If none, it will then check the IRQ. The IRQ must
be enabled by the I-flag in order to be served. Only after then it checks the instruction
decoder’ s output to execute an instruction.

78



79

8.5  Finite State Machine Output

Thefinite gate machine (FSM) output are the control signa's send to control the
datapath. The datapath and their control sgnas have been discussed in Chapter 7. The

FSM will generate these control Signals at the correct timing. Table 8.1 lists the control
ggnds and the ingtructions state/ condition that assert them.

Table8.1 Control Signals

Module Control Signal | Instruction/ State/ Condition
PC ADDOFFSET RIMP, RCALL, Branch Request
PUSH RCALL, Timer IRQ, Externd IRQ
PULL RET, RETI
VEC2 Externd IRQ
VEC4 Timer IRQ
PC& IR EN Other than (CBI, SBI, SBIC, SBIS, LD Z,LD Z+,LD
—Z,ST Z, ST Z+, ST -Z)
Generd WR_REG ADD, ADC, INC,
Purpose SUB, SUBI, SBC, SBCI, DEC, NEG,
Register AND, ANDI, OR, ORI, EOR, COM,
Hle LSR, ROR, ASR, LDI, MOV, SWAP,
IN, LD State
INC ZP LD Z+, ST Z+
DEC ZP LD-Z,LD-Z
ALU ADD ADD, ADC, INC
SUBCP SUB, SUBI, SBC, SBCI, CP, CPC, CPI
LOGIC AND, ANDI, OR, ORI, EOR, COM
RIGHT LSR, ROR, ASR
DIR LDI, MOV, SWAP
BLD BLD
CBISBI CBISBI state
PASSA OUT,ST Z,ST +Z,ST Z
CPSE CPSE
SKIPTEST SBRC, SBRS, SBICS State
LOGICSEL Refer to Table 7.3
DIRSEL Refer to Table 7.3
RIGHTSEL Refer to Table 7.3
SR BCLR BCLR
BSET BSET
EN for C-flag ADD, ADC,

SUB, SUBI, SBC, SBClI, CP, CPC, CPI, NEG,
COM, LSR, ROR, ASR
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EN for ADD, ADC, INC,
S\V,N,Z-flag SUB, SUBI, SBC, SBCI, CP, CPC, CPI, DEC, NEG,
AND, ANDI, OR, ORI, EOR, COM,
LSR, ROR, ASR
EN for H-flag ADD, ADC,
SUB, SUBI, SBC, SBCI, CP, CPC, CPI, NEG
EN for T-flag BST
CLR | Timer IRQ, Externd IRQ
SET | RETI
DataRAM LD_MAR LDZ,LD+Z LD —-Z,STZ,ST+Z,ST-Z
LD MBR STZ,ST+Z,ST Z
RD RAM LD date
WR_RAM ST state
Timer CLR TOVO Timer IRQ
Externd CLR_INTF Externd IRQ
I nterrupt
I/O Decoder | RD_10 IN, CBI, SBI, SBIC, SBIS
WR 10 OUT, CBISBI date, SBICS state
Branch BRANCH _ BRBC, BRBS
Evduation TEST
Unit

8.6  Fetch Stage Signals

Signas discussed so far are execute stage sgnas, which means they are asserted

at the execute stage of an ingtruction. But there are also fetch stage sgnds, which are
asserted at the fetch stage of the ingtruction.

The C2A and C2B signas are the operand-forwarding Sgnas. There are logics
in the control unit that compare the Rd bits of the current executing indruction (in IBR)
with the Rd and Rr bits of the newly fetched indruction (in IR). If it isfound to be the
same as either, or both, C2A or C2B will be asserted immediately. So on the next clock,
the operand register will loads the results of the ALU to the operand register instead of

the generd register.




Asdiscussed in the ALU operand fetch unit section is Chapter 7, ASEL and
BSEL control signds are used to sdect what should be loaded into the operand registers.
They are generated directly by the ingtruction decoder’ s output. Table 8.2 showsthe
vaue of ASEL and BSEL with the corresponding instructions and operands.

Table8.2 C2A and C2B Operand Fetching Signals

ASEL ORA Instruction

0 Rd Default

1 0000 0000 NEG
BSEL ORB Instruction

0 Rr Default

1 Rd NEG

. SUBI, SBCI, CPI,
2 Immediate Vdue ANDI. ORI LDI
3 000 0001 INC, DEC

8.7  Instruction Backup Register (IBR)

IR is dways loaded with the next indruction, then IBR will aways loaded with
the currently executing ingruction. So it is actudly loading the contents of the lagt IR.
Bitsin the IBR are used to form the destination register address for the regider file; the
bit select sgna (BSEL) for the ALU (sdect one of the 8 bitsin aregister); the SET
sggnd for the ALU (for bit loading, bit test); the flag select sgna (SRSEL) for SR; and
the OFFSET for the PC.



8.8 /O Decoder

When either the RD_IO or WR_10 is asserted, the 1/0O decoder will decode the
I/0O address to know exactly which 1/0O register are to be read of write. Then it sends out
the specific read or write control signd for that 1/0. In the ingtruction format section in
chapter 4, it is shown that there are two ingtruction formats for ingtructions that accessed
the 1/0. So the bits location for the I/O addressis different. The 1/0 decoder must be
able to know which bits are to be used as the 1/0 address.

8.9 Branch Evaluation Unit

A conditiona branch ingruction will test one of the 8 bitsin the SR. BRBC will
take the branch if the specific bit is cdleared while BRBS will take the branch if thet bit is
set. The branch evauation unit is enabled when the BRANCH_TEST sgnd isactive. It
will then test whether the specific bit meets the branch condition (clear/sst). If it does
meet the condition, a branch request is generated immediately to the control unit to
generate the ADDOFFSET control signal, the next state will now be BRANCH2 date. If
the condition is not fulfilled, nothing happens and the CPU will execute the next
ingruction.
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CHAPTER IX

HARDWARE IMPLEMENTATION

9.1 Altera UP1 Educational Board
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Figure9.1 Altera UP1 Educational Board

The Altera UP1 (University Program) Educationd Board as shown in Figure 9.1
isthe only FPGA device avallablein the LAB. It hastwo FPGAs on it for developing
complex programmable logic applications. The MAX7000 device on the left Sde of the
board typically supports 2,500 gates for smple designs. The FLEX10K20 on the right



supports 20,000 gates, and includes connectionsto a DB25 VGA connector, aswell asa
PS/2 mouse port. The system is programmable viaa PC pardld port, usng the included
MAX+PLUS Il Student Edition.

This design is targeting the FLEX10K 20 device. The exact device codeis
EPF10K 20RC240-4. 240 means the package has 240 externa pins, while -4 isthe speed
grade of the device. This deviceisthe second smalest in the FLEX10K series.

Desgning larger digitd sysem might be chalenging if it isthe only device availabdle for
implementation. Imagine that implementing 32x8 bit register with two 16-1 8-bit
multiplexers will svalow up 52% of thelogic cells! There are 4 speed grades for FLEX
devices, -4, -3, -2 and —1. Unfortunately, -4 is the dowest grade. Although the area and
speed congraints may lead to harder design process, however it will be more
challenging and reguire more knowledge on the device architecture in order to
minimized the area used and maximized the speed performance.

9.2  Pin Assgnments
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Figure9.2 FLEX10K PinsArrangement on UP1 Board



Figure 9.2 shows the pin arrangement of the FLEX10K device on the UP1 board.

Before the design is programmed into the device, pin assignments must be made to map
al the pins of the design to the physica pin on the UP1 board. Table 9.1 lists the pin

assignments used.
Table9.1 Pin Assgnments
Design Pin Map To Design Pin Map To

RESET 29 PINC3 73

CLK 91 PINC4 75
PINBO 45 PINC5 79
PINB1 48 PINC6 80
PINB2 50 PINC7 82
PINB3 53 PINDO 79
PINB4 55 PIND1 81
PINB5 61 PIND2 83
PINB6 63 PIND3 86
PINB7 65 PIND4 88
PINCO 66 PIND5 95
PINC1 68 PIND6 98
PINC2 71 PIND7 100

RESET pin is mapped to one of the onboard switch. The CLK is mapped to the
build-in clock source (25.9MHz). All the 1/O pins (Ports) are connected to the
FLEX_EPAN_A pins. Since the clock source is faster than the design maximum speed
(around 12 MHz). A frequency divider must be used to divide the clock source by 4 (6.5
MH?z) before driving the whole system.

9.3  External Circuitry

The board itsdf is not sufficient to test the design. If the board isnow a
microcontroller, then the externd circuitry for the control gpplications must be prepared.

The externa circuit will be connected to the 24 1/0 pins of the microcontroller.
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Port B is configured as output and is used to control two 7-segments LED
display through the used of two BCD to 7-segments decoder. The 4 lower bits of the port
will drive the right digit while the 4 upper bits of the port drive the Ift digit.

Lower 4 bits of port C is configured as output and is connected to 4 common
VCC red LEDs. The LED will on when the pin output a LOW logic. Upper bits of port
C isconfigured as input and is connected to 4 momentary normally open push buttons.
The other end of the push buttons is connected to GND. The input pin will senseaLOW
logic isthe button is pressed.

PINBO 1 2 3
PINB1 4 5 6
PINB2 7 8 9
PINB3 * 0 #

PINB4 PINBS PINB6

Figure9.3 Keypad Interfacing

7 pins of port D isused to interface a4 x 3 keypad. Figure 9.3 shows the
connection between he keypad and the pins. The lower 4 bits are configured as input and
are connected to the 4 rows of the keypad. These 4 bits are aso connected to 4 pull-up
resstors. The following 3 bits are configured as output and is connected to the 3
columns of the keypad.

Thelast pin (Pin D7) isthe externa interrupt request pin and is connected to a
push button. The configuration of the push button is the same as the push buttons for
port C. Pin D7 is aso connected to agreen LED. So this pin will be configured both as
input and output depends on the program. It will sense the push-button when configured
asinput ad it will on/off the LED when configured as output.



9.4  Fitting Report

=x*%% Project compilation was successful

*#x DEUICE SUMHMARY 2

Chip/ Input Output Bidir Hemory Hemory LCs
POF Device Pins Pins  Pins Bits % Utilized LCs % Utilized
u_riscmcu

EPF10K208RC2408-4 2 a 24 108248 83 % 1868 92 %
User Pins: 2 a pd

Figure9.4 Fitting Report

Figure 9.4 shows the fitting report of the whole design. The firdt line tells us that
the project has been compiled successfully. There are 2 input pins (CLK and RESET)
and 24 1/0 pins (Port B, C and D). 83% of the memory is utilized. Memory is
implemented in the embedded cells (EC) in the device. The program ROM and data
RAM uses EC. 92% of the logic cdls (LC) are utilized. LC isthe most basic logic
building block in the device.

9.5 Control Applications

We have got a microcontroller in the FPGA and the externd circuitry. Now we
need the have the program for the control application. 2 control gpplications are used to
test the microcontroller. The programs for the applications are listed in Appendix B. The
program must be assembled and changed to MIF format. Maxplus2 then compiled it

aong with the designed microcontroller.
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9.5.1 Simple Calculator

The firgt gpplication isasmple caculator that can only perform add and minus
operations. The keypad is the input of the caculator and the two 7-segments digits are
the output. The # key is used to represent the add (+) key while the * key isused to
represent the minus (-) key. There are no equd (=) key, the resultsis automaticaly
shows is the results changed after an operation (add or minus). To clear the result,
externd interrupt is used. The externd interrupt will clear dl the saved data when
requested.

All operations are done with BCD numbers. The microcontroller detect akey
pressed on the keypad and changed it to the BCD number it represents. Operations are
donein BCD directly so the C-flag and the H-flag of the Status register are used. Then

the results is shown and saved as BCD.

If an overflow occurred after an operation, interrupt istemporary disabled and
pin D7 (the externd interrupt pin) is configured as output to on the green LEDsfor a
short delay to indicate an overflow has occurred.

Thetimer isdso tested in this gpplication. The timer is enabled and the interrupt
mask bit is s&t. The interrupt service routine will on ared LED and rotate it through the
4red LEDs Sinceit is controlled by the timer interrupt, it does not affect the main
program (the calculator) and thus the microcontroller is multitasking, detecting keys and
generating running lights & the same time.

When akey is pressed and is holding, the microcontroller will take only one data
and it will only detect another key when the current key is released. The gpplicationis
also software de-bounced.
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9.5.2 Simple Memory Game

The smple memory game will display random red LEDs blink (one a atime).
The player will need to remember the sequence of the LEDs blink and tell the
microcontroller by using the push buttons. A player is given 3 lifesfor the whole game.
If the player getsit right, the green LED blinks once and the game proceed to the next
leve. If the player getsit wrong, dl thered LEDs blink once and the blink sequenceis
shown again. One life will be deducted.

Thefirg leve will have only 1 LED in the blink sequence and the second level
increased to 2. The higher the levd, the longer the blink sequence. The two digits 7-
segments display will dways shown the current leve of the game. If the player entered a
wrong sequence, the life is deducted and the remaining life is shown before the game
shows the sequence again.

Random numbers are used to determine which red LEDs should be on next.
Random numbers are generated by the used of timer. Every time arandom number is
needed, the microcontroller read the timer and get a vaue, then it processed the random
number to decide which of the 4 LEDs should be on.

This program must have complicated software for input detection. It must be able
to detect and count the key press very accurately. Let say in leve 8, there will be 8
LEDs blink in sequence. When the player keying in the result, the microcontroller must
takesin 8 inputs, and check them will the saved vaue. So it must have very accurate
detection on whether the current key has been released before taking the next one. It
must aso have software de-bounced.



CHAPTER X

SUGGESTIONS AND CONCLUSION

10.1 Recommendation on Future Works

At firgt, the microcontroller does not contain any data RAM. So the stack is
implemented using hardware just like AT90S1200 and is only 4-level deep. At theend
of the design process, data RAM has been included due to the extra time the author
have. Future works should have the stack implemented in the data RAM using a stack
pointer. Thiswill save up some area and more important, the stack will be ableto keep a

few times more entry then the origind hardware stack.

Thereisonly one indirect pointer, the Z-pointer in this design. If memory access
is frequent, more indirect pointers would make the job easier. Future works should aso

include the X-pointer and Y-pointer.

There are many more extra fegtures available in the AVR RISC microcontroller
family, such asthe UART sarid interface, SPI serid interface, the 16-bit timer (with
output compare and input capture), etc. Thisworks from this project should be used asa
platform to implement these festuresin.
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10.2 Conclusion

Asaconclusion, this project has been completed successfully fulfilling are the
objectives and scopes specified. The author has used his extra time to optimized the
gpeed of the design until 12 MHz. The data RAM that is not specified in the scope of the
project has aso been included. Hardware stack is enlarged to 4-leve ingtead of 3and a
total of 24 1/O lines are available. Since the project now occupies 92% of the FPGA
device (FLEX10K20), the author recommends that the laboratory provides alarger
FPGA device. Table 10.1 isthe comparison chart between AT90S1200 and the current
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design.
Table10.1 AT90S1200 VS Current Design
Specification AT90S1200 Current Design
Instructions 89 92
G.P Regigters 32 16
Program ROM 512 words 512 words
SRAM None 128 bytes
Har dwar e Stack 3 Level Deep 4 Level Deep
1/O Ports 2 (15 ping) 3 (24 pins)
Addressing Modes 5 7
Speed 4MHz/12 MHz 12 MHz
8-bit Timer 1 1
External Interrupt 1 1
I mplementation CMOS FPGA
Analog Compar ator,
Watch Dog Reset,
Others EEPRgM | None

Internal Pull Up Resistors
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