

A-Z80 CPU
User’s Guide
An FPGA project recreating the Z80

© 2014-2015 Goran Devic

1/22/2015

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 1

Revision History

Date Revision Change

2014-12-14 1.0 Initial revision.

2014-12-21 1.1 Added ZX Spectrum Turbo mode, speaker blink etc.

2015-01-22 1.2 Added section on file generators; other small updates.

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 2

Table of Contents

Revision History..1

Introduction ...3

Project Directory Structure..4

Environment ..5

Simulation..6

Module simulations ..6

Top-level simulations ..9

Verification .. 11

Fuse tests ... 11

Selected functional tests ... 12

Z80 Assembly level tests.. 13

Tools.. 14

PLA Checker Tool .. 14

Arduino Tools ... 17

Integration ... 18

Interface .. 19

Sample Implementations .. 20

Simple host .. 20

Sinclair ZX Spectrum.. 22

Advanced Topics... 24

Modifying the A-Z80 CPU .. 24

File Generators ... 26

Building the CPU.. 26

Verification/Tests .. 27

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 3

Introduction

A-Z80 is a conceptual implementation of the venerable Zilog® Z80 processor targeted to synthesize and

run on a modern FPGA device. It differs from the existing Z80 implementations in that it is designed

from the ground-up through the schematics and low-level gates.

This design is capable of mimicking the actual Z80 CPU and it illustrates its inner workings.

The A-Z80 implementation strives to be internally structurally identical to the original Z80. Using this

approach the model achieves a full cycle accuracy and has identical behavior for all documented and

undocumented features (*) not by explicitly hard-coding them but by mimicking their actual design.

Various Zilog Z80 references are widely available so the CPU, its instructions and behavior will not be

covered in this document.

This document focuses on the structure and mechanics of working with the A-Z80 project; it should help

you understand it and incorporate it into your designs.

You can read more about the conception and implementation of the A-Z80 on its home website:

www.baltazarstudios.com .

http://www.baltazarstudios.com/

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 4

Project Directory Structure

A-Z80 project can be downloaded at OPENCORES as a SVN repo http://opencores.org/project,a-z80 and

also on Bitbucket: https://bitbucket.org/gdevic/a-z80 .

The following table describes its hierarchical directory structure:

Directory Sub-directory Description

cpu Contains all core files of the A-Z80 CPU

 alu Arithmetical and Logical Unit files

 bus Various bus-related files

 control Control unit files

 registers Register block files

 toplevel A-Z80 top level interfaces and projects

 deploy A release copy of all files needed to deploy the CPU

docs Documentation and schematic images

host Two implementations using the A-Z80 on Altera DE1 FPGA

 basic Basic computer containing UART mainly for testing and verification

 zxspectrum Sinclair ZX Spectrum implementation

resources General project resources and scripts

tools Building and testing utilities and misc. files

 Arduino Software for Arduino Mega dongle to interface with a Z80

 dongle Dongle and simulation scripts and golden files

 z80_pla_checker Windows utility to test and create A-Z80 PLA tables

 zmac Z80 test and verification assembler files

http://opencores.org/project,a-z80
https://bitbucket.org/gdevic/a-z80

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 5

Environment

A minimal set of tools needed to compile various parts of the project is:

 Altera Quartus II Web Edition (Free)

 ModelSim (Altera edition) – needed only for module simulation (Free)

 Python 2.7 – needed only to change and compile CPU modules. All necessary files needed to

include A-Z80 sources in your own project are included (Free)

 Microsoft Visual Studio 2010 SP1 – needed only to recompile the z80_pla_checker tool yourself.

This is normally not needed since the sources and precompiled executable are checked in with

the project.

This project is developed and tested on a Windows 7 OS. Your mileage may vary on Linux.

All designs are tested on an Altera FPGA DE1 board:

http://www.altera.com/education/univ/materials/boards/de1/unv-de1-board.html

This particular board has a Cyclone II EP2C20F484C7 FPGA alongside a number of useful peripherals

including a 512 KB SRAM bank, PS/2 keyboard, UART and a VGA connector. Project can easily be ported

to similar boards since Verilog (and SystemVerilog) files that comprise A-Z80 and other add-on designs in

this package are synthesizable for other vendors (such as Xilinx) and their tool chains.

http://www.altera.com/education/univ/materials/boards/de1/unv-de1-board.html

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 6

Simulation

Module simulations
If you start making any changes to the core A-Z80 files, you should run one or more simulations to verify

the correctness of your modifications.

Each module in the “cpu” directory contains a ModelSim simulation project that verifies the

functionality of one or more of its blocks. Before opening any project in ModelSim, run

“modelsim_setup.py” script located in the project root directory. That script will set up relative file

mappings to enable project to reside anywhere on your drive.

If you have installed and configured ModelSim correctly, double-clicking on any *.mpf file will open a

project in the ModelSim GUI.

This particular example will illustrate setting up and starting a simulation of a specific logic block in the

alu module.

Important: Before you can compile any simulation test bench, you need to create a library by typing

“vlib work” as shown:

Next, select “Compile->Compile All” to compile all files that are part of a module simulation.

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 7

Each project has one or more simulation configurations; each configuration tests a specific block of logic.

In addition, each configuration has its own wave file which you can load before you run a simulation.

Wave files are customized for a specific test and a handy way to quickly see all relevant signals.

In this example, we will run “Test prep daa” configuration. DAA is a Z80 instruction that adjusts

accumulator for a decimal operation. It requires calculating the adjustment addend based on the result

of a previous operation. Hence, this test is written to verify the correctness of that calculation.

Each test configuration is run by a main test bench file that is always written in a System Verilog

language with the extension *.sv. A file that runs the “Test prep daa” configuration is

“test_prep_daa.sv”.

Double-click on the “Test prep daa” configuration and your simulation should be loaded.

Open the wave window if it is not already visible and select File->Open to load a wave file as shown:

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 8

A handy shortcut is provided to run a simulation: each ModelSim directory contains a small text file with

the name “r” that contains command “restart -f ; run -all”. Run, or rerun, a test simply by typing “do r”

as shown above.

After running this particular example, you should see a waveform of the DAA preparation block:

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 9

Although this was a very simple example, it illustrated a method of running a simulation and that can be

repeated on other configurations and modules. The pattern of configurations, files and waveform names

is the same.

Each main test bench file (like the “test_prep_daa.sv”) contains a set of assert() statements to verify the

signal correctness. These assert()s will fail and your simulation will stop if the signals take unexpected

values.

Most simulations run for the predetermined number of clocks. The exceptions are top-level simulations

(in the directory “cpu\toplevel\simulation\modelsim”) and a basic host simulation (in the directory

“host\basic\simulation\modelsim”). These simulations need to be stopped manually since they simply

continue to execute given Z80 executable code.

Top-level simulations
The two top-level simulations are designed to load an arbitrary Z80 assembly code and execute it. A

simple unidirectional UART model is provided for the Z80 software to write to the ModelSim console.

The UART model will simulate the behavior of a synthesized serial port. When the same design is

synthesized for the FPGA, the same Z80 code will write messages through a physical serial port.

Module Simulation project

Toplevel cpu\toplevel\simulation\modelsim\test_top.mpf

Basic host host\basic\simulation\modelsim\test_host.mpf

Those two simulation configurations can run any Z80 code, and several sample test sources can be

found in the directory “tools\zmac” along with the ZMAC assembler and a few batch scripts that

simplify compilation and the test setup. Z80 test files are roughly based on CP/M and have a BDOS style

text print interface.

Two MS DOS batch files are used to compile and run a test (you can also create and run your own tests

as well):

Batch file Description

tools\zmac\make_modelsim.bat Compiles and generates executable code for a ModelSim test at
“cpu\toplevel\simulation\modelsim\test_top.mpf”, for “test_top”
configuration.

tools\zmac\make_fpga.bat 1. Compiles and generates executable code in Intel HEX file
format to be included into the target FPGA data file for
basic host “host\basic\ host_board.qpf”

2. Also generates executable code for the basic host
ModelSim test at “host\basic\simulation\modelsim\
test_host.mpf”

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 10

You can simply drag and drop an assembly source file (*.asm) onto one of those batch files and a batch

file will compile and copy the results into proper directories after which you only need to recompile a

relevant project.

For this example, we will compile and run a “Hello, world” test (“tools\zmac\hello_world.asm”).

Drag and drop “hello_world.asm” onto the “make_modelsim.bat” and start a top level simulation

(“test_top” configuration) in the ModelSim.

Shortly, you should see the output in the ModelSim console window.

After you see the text being written to the virtual UART device, you can stop the simulation.

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 11

Verification

Fuse tests
Fuse is a set of tests to verify Z80 at the individual instruction level. Written for software emulator

designers, it contains a fairly complete set of input and output states for each instruction.

Files that are used in this verification are subset of the Fuse emulator source package:

http://fuse-emulator.sourceforge.net . You can find them in the “cpu\toplevel\fuse” directory.

The files describe individual instruction’s tests and need to be processed into a format that we can run –

which is Verilog. A Python script “cpu\toplevel\genfuse.py” generates Verilog test code for a selected

number of Fuse tests.

See that script file for more details on how to configure it before running.

When run, it creates “cpu\toplevel\test_fuse.vh” include file.

// Automatically generated by genfuse.py
force dut.reg_file_.reg_gp_we=0;
force dut.reg_control_.ctl_reg_sys_we=0;
force dut.z80_top_ifc_n.fpga_reset=1;
#2 //--
 force dut.instruction_reg_.ctl_ir_we=1;
 force dut.instruction_reg_.db=0;
#2 release dut.instruction_reg_.ctl_ir_we;
 release dut.instruction_reg_.db;
$fdisplay(f,"Testing opcode 00 NOP");
...

Once generated, this include file needs to be compiled with a ModelSim project file

“cpu\toplevel\simulation\modelsim\test_top.mpf” to run a set of tests. The test output will show in

the ModelSim window and the test will also create and write a file “fuse.result.txt”.

Hint: You can speed up Fuse simulation if you disable output to the wave window by typing:

VSIM 10> nolog –all

The following command re-enables the output:

VSIM 10> nolog –reset

http://fuse-emulator.sourceforge.net/

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 12

Image 1 : Fuse tests in ModelSim

Results of Fuse tests are written in the file “fuse.result.txt”, one instruction per line:

Testing opcode 00 NOP
Testing opcode ed67 RRD
Testing opcode ed6f RLD
Testing opcode 81 ADD A,C
Testing opcode cb41 BIT 0,C
Testing opcode cb93 RES 2,E
...

Selected functional tests
There are 3 tests that verify specific ALU operations by cross-checking the results run on a real Z80 with

the algorithm written in Python:

Test directory Z80 test file Description

tools\dongle\daa tools\zmac\test.daa.asm Execute DAA instruction for all values 0-255

tools\dongle\neg tools\zmac\test.neg.asm Execute NEG instruction for all values 0-255

tools\dongle\sbc n/a Simulate SUB and SBC instructions

Python scripts run the Arduino Z80 dongle (described in the Tools section) and generate output files.

Those files are then compared with the output produced by another set of Python scripts (they

implement corresponding algorithms). Lastly, the same text files are compared with ModelSim

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 13

simulation of those instructions and also by running the same executable on the Simple Host FPGA

implementation and capturing the UART output.

The “golden” files include values of flags and accumulator going into the instruction and the result after

the instruction has completed:

F:00 A:00 -> 00 F:44
F:00 A:01 -> 01 F:00
F:00 A:02 -> 02 F:00
F:00 A:03 -> 03 F:04
F:00 A:04 -> 04 F:00
F:00 A:05 -> 05 F:04
F:00 A:06 -> 06 F:04
F:00 A:07 -> 07 F:00
...

Z80 Assembly level tests
Folder “tools/zmac” contains several Z80 assembly level tests.

Test source file Description

tools\zmac\hello_world.asm A mandatory “Hello, World”

tools\zmac\zexdoc.asm Tests documented Z80 instructions and flags

tools\zmac\zexall.asm Tests ALL Z80 instructions and flags (documented and undocumented)

While all of them can run in ModelSim, the last two are very comprehensive tests and should normally

be run only in the FPGA hardware in full speed mode.

“hello_world.asm” source is written to allow the test bench “cpu\toplevel\test_top.sv” to exercise

various interrupt modes. It contains interrupt handlers and logging for the test bench to run the

following cases:

 Inject a single or periodic NMI

 Inject a single or periodic INT

 Test response to the nWAIT signal

 Test response to the nBUSRQ signal

 Test resets

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 14

Tools

PLA Checker Tool
PLA checker tool in “tools\z80_pla_checker” directory is a test utility to verify and create PLA code used

to statically decode Z80 instruction groups.

In addition to the C# source code, the Windows executable is also checked in so you don’t have to have

Microsoft Visual Studio IDE installed to use the tool.

Upon start, the PLA checker tool loads a number of files from the “resources” directory. That includes

the raw PLA table definition as reverse-engineered from an image of a Z80 die.

The tool was invaluable in the development phase of the A-Z80 and maintain its value as a cross-checker

for the PLA code. Available commands are:

Cmd Description

h or ? Help, list all commands.

p PLA table contains a set of modifiers and a gate-level logic array that ‘filters’ various instruction
opcode groups. This command shows you those groups.

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 15

p # Given a PLA entry number (decimal), show opcodes that are activated by it

10>>> p 3

PLA Entry: 3 Modifier: XX, NHALT
DD => [3] IX/IY prefix
FD => [3] IX/IY prefix

m # This is a reverse-lookup that shows all PLA table entries that would activate a specific opcode
given as a hex number:
12>>> m 76
Opcode: 76
[58] ld r,(hl)

[59] ld (hl),r
[61] ld r,r'
[95] halt

t Dumps the opcode table in several ways. One or two optional arguments are given which
restrict the table or show extra information including the number of PLA entries that trigger for
each opcode etc.

q # Useful only while simulating the CPU design, this command decodes the actual PLA table string

which is a long sequence of binary digits (105 bits in total)

g Generates Verilog code that implements the PLA decode. The output of this command is used to
create “cpu\control\pla_decode.sv” source file which is at the core of the design.

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 16

The image shows the start of the PLA decode module implemented in Verilog.

Z80 has several opcode tables and addressing modes selected either by a combination of instruction

prefix bytes (0xCB, 0xED and IX/IY) or by the internal state (HALT, ALU,…)

PLA checker tool lets you set or unset any of these modifiers:

The modifier buttons directly correspond to modifiers in the PLA table and let you simulate the exact

PLA logic behavior as you are executing various tool dumps.

The tool keeps a history of commands that are typed in; a number displayed at the front of a prompt

“>>>” is a location in the history buffer. Pressing PgUp and PgDown selects a command from the history

buffer; ESC clears the command line.

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 17

Arduino Tools

Directory “tools\Arduino\Z80_dongle” contains firmware for the Arduino Mega connected to a Zilog

Z80 through a custom dongle. This setup can be used to pace Z80 in a controlled way and to execute

individual instructions and monitor bus activity. You can read more about that dongle at

www.baltazarstudios.com.

It was heavily used to generate tables for the correct bus behavior. These tables and Python scripts to

create them are checked in the directory “tools\dongle”.

http://www.baltazarstudios.com/

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 18

Integration

This section describes how to integrate the A-Z80 CPU into your own project.

The method is tested with Altera design tools (Quartus), but it should be relatively easy for someone

skilled in the art to use any other vendor (for example Xilinx).

The process of integration involves adding all relevant source files. For the convenience, all files needed

to synthesize a CPU are copied into the cpu/deploy/* folder.

Important note: The files in cpu/deploy/* are manually copied from various sub-modules within the cpu

project. If you are changing any cpu module, you either need to manually refresh this copy or do not use

files from the “deploy” folder but pick them directly from various cpu modules.

Two fully working sample implementations (basic host and zxspectrum) provide good starting points.

The basic host uses files picked from various cpu modules and zxspectrum uses files from the deploy

folder.

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 19

Interface

The top-level file “cpu\toplevel\z80_top_direct_n.sv” exports the following interface:

module z80_top_direct_n(
 output wire nM1,
 output wire nMREQ,
 output wire nIORQ,
 output wire nRD,
 output wire nWR,
 output wire nRFSH,
 output wire nHALT,
 output wire nBUSACK,

 input wire nWAIT,
 input wire nINT,
 input wire nNMI,
 input wire nRESET,
 input wire nBUSRQ,

 input wire CLK,
 output wire [15:0] A,
 inout wire [7:0] D
);

This pinout is 100% identical to the Zilog Z80 package. The interface implements Z80 bus timings and

features tri state buses. (While this is admittedly not optimal for an FPGA implementation, the goal of

the project was to mimic the actual Z80 silicon).

Your design should include all core files listed above and instantiate a “z80_top_direct_n” module.

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 20

Sample Implementations

Two working implementations are included. They are both located in the “host” directory and use the

Altera DE1 FPGA development board.

Warning: The synthesis and fMax numbers as shown might vary depending on your tool version, applied

timing constraints and the exact configuration.

Simple host
A “basic host” board contains A-Z80 CPU, 16 KB RAM configured as single port Cyclone RAM cells and a

unidirectional implementation of the UART for the text output. Since the board’s architecture is so

simple, there is also a corresponding ModelSim configuration used in verification.

File Description

host\basic\host_board.qpf Quartus project file for FPGA

host\...\simulation\modelsim\ test_host.mpf ModelSim project file for simulation

host\basic\host_board_fpga.sv Top-level board source file for FPGA implementation

host\basic\host_board_ModelSim.sv Top-level board source file for ModelSim board model

host\basic\test_host.sv ModelSim test bench for the simulation model

This host board can load and run any Z80 executable (for example, one of those in “tools\zmac”

directory). Programs can print to UART and, on a physical DE1 board, the text is seen through the

attached serial terminal. In the simulation environment the text is written in a ModelSim output

window. Error! Reference source not found. shows the output of the “tools\zmac\hello_world.asm”

eing captured through the serial port.

Image 2: "Hello, World"

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 21

This is a synthesis result of the simple host design on an Altera DE1 board:

Since the CPU CLK is derived from the pll_clk, the effective A-Z80 fMax for this compilation is 19.86 MHz.

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 22

Sinclair ZX Spectrum
This project fully implements a Sinclair ZX Spectrum 48K computer from the year 1982.

The model codes in Verilog all parts that make up that computer. Directory “host\zxspectrum\ula”

contains blocks (drivers) for the keyboard, video signal using the VGA, sound, RAM memory, clocks etc.

There are 2 system ROM images included in the “host\zxspectrum\rom” directory – the original ZX

Spectrum ROM and an improved, so-called “Gosh Wonderful” ROM – merged into a single image which

is to be flashed into the DE1’s flash memory starting at the address 0. Use a flash tool that came with

your DE1 board software to flash this data.

The following table shows the function of buttons and switches; when a switch is activated, a red LED

above it glows.

Button and Switch Description

KEY0 Reset

KEY1 Issues NMI

SW0 Selects “Gosh Wonderful ROM” image versus the original ROM image

SW1 Disables interrupts

SW2 Turbo mode (3.5 MHz x 2 = 7.0 MHz)

Function of green LEDs is to show:

GREEN LED Description

LEDG0-LEDG4 Kempston joystick UP, DOWN, LEFT, RIGHT, FIRE is pressed

LEDG5 A key is pressed

LEDG6 When blinking, a speaker or line-in is active

Image 3 shows a game “Manic Miner” being loaded through the audio line-in connector into the FPGA

board visible in the middle and a Kempston compatible joystick in the foreground.

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 23

Image 3 : Sinclair ZX Spectrum on Altera DE1

This is a synthesis result of the ZX Spectrum host design on Altera DE1 board:

Although the computer runs at 3.5 MHz, the clk_cpu fMax for this compilation is 10.65 MHz.

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 24

Advanced Topics

Modifying the A-Z80 CPU
If you want to make a change to any instruction’s timing or a sequence of micro-operations, do it in the

file “cpu\control\Timings.xlsm”. This is a Microsoft Excel spreadsheet file that contains timing tables for

each instruction group. Vertical columns are operations on specific blocks. Instruction groups are listed

by the M and T-clocks providing the exact timing for each set of operations.

Micro-operations are represented by short tokens (for example, “PC” or “mr”, etc.) and defined in the

file “cpu\control\timing_macros.i”. In that file, every token is translated into one or more concrete

control signals or operations.

If you change the timing spreadsheet, export it into a TAB-delimited file. The spreadsheet contains a

macro to do that for you: click on the “Developer” menu and run Macros:

Running “CopyToCSV” macro will replace the existing CSV file which is ok: both are checked in although

one is generated from another.

Next step is to create a Verilog file from those timings by running a python script

“cpu\control\genmatrix.py”. That script reads in the CSV file containing timing tables and generates

“exec_matrix.vh” file that implements actual Verilog code to control the timings.

All Python scripts in this project can be run in-place without the need to specify any arguments.

If you change any schematic file and your change adds or removes global input or output signals, you

need to run two Python scripts to recreate global includes:

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 25

“cpu\control\genref.py” – generates global include files using all exported module signals:

 “exec_module.vh” contains input/output definitions to be included in the module def.

 “exec_zero.vh” contains Verilog code to set all input wires to zero.

“cpu\toplevel\genglobals.py” – generates a list of global wire defines:

 “globals.vh” contains Verilog code that defines all global signal wires.

Quartus project files (*.qpf, *.qsf) in “cpu\alu”, “cpu\bus”, “cpu\control” and “cpu\registers”

directories are non-functional and just conveniently hold sets of module files together. Quartus project

in the “cpu\toplevel” directory only contains a top-level schematic diagram and is also not functional.

They are only containers to hold files.

In order to compile a project, look in a sample project such is “host\basic\host_board.qpf”.

When modifying a schematic (most of the A-Z80 blocks are designed at the schematic level), open a

corresponding Quartus container project (for example, when modifying a schematic in the ALU block,

open “cpu\alu\test_alu.qpf”), change the schematics, compile it (to make sure it has no errors) and

then export it to both the Verilog equivalent and a symbol file, as shown below:

Verilog code is used to compile with the rest of A-Z80 core files while symbol files are (at the moment)
optional but could be used in the future to create a schematic top-level.

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 26

File Generators

This section describes scripts and processes that generate various files. These generated files should not
be edited manually.

Building the CPU

Process: cpu/control/Timings.xlsm

Generates file: cpu/control/Timings.csv

Uses files: -

This is a MS Excel spreadsheet that defines a matrix of timings vs. operations for each group of
instructions. The spreadsheet contains an embedded macro that exports that data in a suitable format;
go to the Developer tab, and in the Code group, click Macros. Run a macro “Timings.CopyToCSV”.

Process: cpu/control/genmatrix.py

Generates file: cpu/control/exec_matrix.vh

Uses files: Timings.csv, timing_macros.i

This script reads the A-Z80 instruction timing data from a (generated) spreadsheet text file and creates a
Verilog include file which defines the control block execution logic matrix. Token keywords in the timing
spreadsheet are substituted using a list of keys stored in the timing macros file.

Process: cpu/control/genref.py

Generates file: cpu/control/exec_module.vh, exec_zero.vh

Uses files: top_level_files.txt + list of files in that file

This script reads a whole list of files from the “top_level_files.txt” and processes each file to extract

selected names of wires defined in their respective modules to be used to easily define and initialize

them.

Process: cpu/toplevel/genglobals.py

Generates file: cpu/toplevel/globals.vh

Uses files: top_level_files.txt + list of files in that file

This script reads a whole list of files from the “top_level_files.txt” and processes each file to extract

selected names of wires defined in their respective modules to be used as global wires.

Process: tools/z80_pla_checker.exe

Generates file: Verilog PLA decode module

Uses files: PLA and opcode defines from resource folder

This executable program reads a PLA table in a simple format (reverse-engineered from a picture of a
die) and generates a Verilog PLA decode module.

A-Z80 CPU User’s Guide

BaltazarStudios.com Page 27

Verification/Tests

Process: cpu/toplevel/genfuse.py

Generates file: cpu/toplevel/test_fuse.vh

Uses files: fuse/tests.in, tests.expected, regress.in, regress.expected

This script creates a Fuse test in Verilog from several test description files.

Process: tools/zmac/make_fpga.bat, make_modelsim.bat

Generates file: Compiled HEX files

Uses files: Z80 assembler source files

These DOS batch files compile and create HEX files from any Z80 assembler source files dropped onto it.

They speed up running and testing of Z80 programs.

