

Advanced Debug
Interface

Author: Nathan Yawn
nathan.yawn@opencores.org

Rev. 1.0

May 13, 2009

Open Cores Advanced Debug Interface 5/13/2009

Copyright (C) 2008-2009 Nathan Yawn

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license should be included with this document. If not,
the license may be obtained from www.gnu.org, or by writing to the Free Software
Foundation.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.

http://www.opencores.org/ Rev 1.0 Page 2 of 40

http://www.opencores.org/
http://www.gnu.org/

Open Cores Advanced Debug Interface 5/13/2009

History
Rev. Date Author Description
1.0 27/06/08 Nathan Yawn First Draft

http://www.opencores.org/ Rev 1.0 Page 3 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

Table of Contents

INTRODUCTION..5

ARCHITECTURE...7
 2.1 TOP MODULE...9
 2.2 WISHBONE MODULE..10
 2.3 OR1200 CPU MODULE..11

API...13
 3.1 TOP-LEVEL COMMANDS..13

 3.1.1 Module Select command..13

 3.2 WISHBONE COMMANDS..14
 3.2.1 Burst Setup...15

 3.2.2 Burst Write...16

 3.2.3 Burst Read..18

 3.2.4 Register Select..20

 3.2.5 Register Read...21

 3.2.6 Register Write..21

 3.2.7 NOP..22

 3.3 CPU COMMANDS...23
 3.3.1 Burst Setup...24

 3.3.2 Burst Write...25

 3.3.3 Burst Read..26

 3.3.4 Register Select..28

 3.3.5 Register Read...29

 3.3.6 Register Write..29

 3.3.7 NOP..30

 3.4 WISHBONE MODULE REGISTERS...31
 3.4.1 Error Register...31

 3.5 CPU MODULE REGISTERS..33
 3.5.1 Status Register..33

IO PORTS...35
 4.1 TAP PORTS ...35
 4.2 CPU PORTS..36
 4.3 WISHBONE PORTS..36

MODULE CONFIGURATION..38

CRC MODULE..39

http://www.opencores.org/ Rev 1.0 Page 4 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 1
Introduction

The Advanced Debug Interface (ADI) is a hardware module which creates an
interface between a JTAG Test Access Port (TAP) and the system bus and CPU debug
interface(s) of a System on Chip (SoC). It is part of the system which allows software
running on an SoC system to be controlled and debugged by a software debugger such as
GDB, running on a separate host PC. This debugging system allows the SoC to be
debugged via direct hardware connection, and does not require the “GDB stub” software
running on the SoC. A block diagram of this system is shown in Figure 1.

The external interface to the Advanced Debug Interface is based on IEEE Std.
1149.1, Standard Test Access Port and Boundary Scan Architecture. A JTAG TAP is
required to link the ADI to an external JTAG cable. This TAP may be a stand-alone
TAP1, or it may be a specialized unit such as an Altera Virtual JTAG or a Xilinx Internal
BSCAN unit. No TAP is included with the ADI. The ADI appears as a data register
within the TAP.

Internally, the ADI has connections to both a WishBone bus and to one or more
CPU debug interfaces. The WishBone interface does not use any of the burst features of
the bus; it should therefore be compatible with any version of the bus (B.1 or B.3 as of
this writing). The CPU interface is designed to connect to an OR1200 processor, or any
other CPU which uses the same debug interface. Note that there are two versions of the
OR1200 debug interface; the ADI is designed to use the newer version, which includes
the strobe and acknowledge (dbg_stb and dbg_ack) signals.

1 Note that the ADI is incompatible with the stand-alone TAP distributed by OpenCores. Please use the
version modified by the author instead.

http://www.opencores.org/ Rev 1.0 Page 5 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

http://www.opencores.org/ Rev 1.0 Page 6 of 40

Figure 1: Block diagram of the complete debug system hardware

M
B

IS
T

Sc
an

 C
ha

in

B
ou

nd
ar

y
Sc

an
 C

ha
in

Debug Scan Chain

TDI

TDO

TCK

TMS

TRSTn

Advanced Debug Interface

CPU

MUX

JTAG TAP
Controller

FSM

ID

M
od

ul
e

Se
le

ct

CPU sub-module

WB sub-module

FSM

CRC

BIU

M
UX

FSM

CRC

Reg.

Reg.

BIU

System Wishbone Bus

OR1200 CPU

Development
Interface

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 2
Architecture

The Advanced Debug Interface is built with a modular architecture, for flexibility
and expandability. It consists of a top-level module, and several sub-modules designed to
interface with individual SoC subsystems. The sub-modules currently include the
WishBone module and the OR1200 module.

The top-level module contains the sub-modules, and a register to set the active
sub-module. In order to send a command to a sub-module, it must first be made active by
setting this top level register; only one sub-module may be active at a time. Zero or more
instances of any type of sub-module are valid (the default is one WishBone sub-module
and one OR1200 CPU sub-module). The top-level module also contains the input shift
register, which holds incoming serial data from the TAP. The value in the input shift
register is available to all sub-modules. Note that as per the JTAG specification, all serial
transfers are LSB-first.

Sub-modules generally consist of two parts: internal registers, and a bus interface.
Internal module registers may contain information about the status of the module (such as
the error register in the WishBone module), or they may control external I/O lines (such
as the reset and stall lines from the OR1200 module). Each sub-module contains an
index register, which enables one internal register at a time for reading or writing.
Internal registers are selected, read, and written by sending commands to a sub-module
through the TAP.

The bus interface of a sub-module is designed to allow the TAP to read or write
data from or to a bus as quickly as possible. Note that 'bus' in this case does not
necessarily mean a WishBone bus; the bus interface of the OR1200 module connects to
the processor's SPR bus. All bus transactions are 'burst' transactions from the external /
TAP side: a setup command is first sent to a sub-module, then the entire block of data is
streamed into or out of the sub-module without further control action. Different sub-
modules may provide burst transactions using various word lengths. Burst data is CRC-
protected. A block diagram of the general module structure is shown in Figure 2.

http://www.opencores.org/ Rev 1.0 Page 7 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

In order to support JTAG scan chains with more than one device, commands are
usually executed by the sub-modules when the TAP moves through the UPDATE_DR
state. This allows a software driver to add the necessary bits to the end of a serial
bitstream to position the command at the correct place in the scan chain.

The exception to this is burst data, due to its unknown (and potentially very large)
size. To do a burst transaction, a burst command is first sent to a module, and executed
by moving the TAP through the UPDATE_DR state. The next time the TAP goes into
the SHIFT_DR state, 'burst mode' is active. In burst mode, bus data is immediately
clocked into or out of the module, and the next bus transaction (or the end of the
transaction) is determined by internal counters. In order to support multi-device chains, a
“start bit” feature was added to burst mode. During burst writes, the module will not start
its counters or collect write data until after the first '1' (a “start bit”) is encountered in the
bitstream. Since TAP devices in BYPASS mode will initially shift out a '0', this means
that these extra bits from other devices will be ignored by the ADI module. Once the

http://www.opencores.org/ Rev 1.0 Page 8 of 40

Figure 2: General module structure

Bus
Interface

Unit

Address Counter

Word Counter

Bit Counter

Output Shift Register

CRC Unit

Internal Registers

Bus
I/F

Input Shift Reg. Data

Module
TDO

Data out

Data in

Address

General Module Structure

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

module sees the start bit, it begins to capture write data (the start bit is discarded). Burst
reads require no such added feature, as a software cable driver may simply discard the
appropriate number of bits before beginning to capture read data. However, the first
status bit of a burst read may be used as a start bit during burst reads, see the API sections
on burst reads for details.

There are two more things to consider when using the ADI in a scan chain with
multiple devices. First, all other devices should be in BYPASS mode when using the
ADI – otherwise, a false start bit could get sent to the ADI during a burst write,
corrupting the data. Second, the ADI data register is not a through shift register – that is,
the serial TDI input of the ADI is not directly connected to the TDO output. This means
that data shifted into the ADI will never appear at the output. As such, the ADI should
never be active when other devices on the chain are in use.

Three modules are currently implemented. The following sections give details for
each type.

 2.1 Top Module
The top-level module is the simplest of the modules. It does not have a bus

interface, and has only a single register. This register is called the “module select
register”, and is used to select the active sub-module. The top module does not use
command opcodes the way the sub-modules do. Instead, a single bit in the input shift
register (the MSB) indicates whether the command is a write to the select register, or a
command to a sub-module (in which case the command is ignored by the top-level). The
value in the select register cannot be read back.

The top-level module provides enable signals to all sub-modules, based on the
value in the module select register. The value of the input shift register is also provided
to all modules. Finally, the serial TDO output of the ADI is selected from the sub-
module TDO outputs, based on the module select register. A block diagram of the top-
level module is shown in Figure 3.

http://www.opencores.org/ Rev 1.0 Page 9 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 2.2 WishBone Module
The purpose of the WishBone module is to provide a software debugger access to

the SoC's memory system, allowing it to load code, examine and change program data,
and set software breakpoints. The WishBone module has a bus interface which follows
the WishBone standard. Because the JTAG interface is relatively slow, burst accesses on
the WishBone bus interface are not used, therefore the interface should be compatible
with all versions of the WishBone standard (through B.3 as of this writing). The
WishBone module allows 8-, 16-, and 32-bit reads and writes over the WishBone bus
interface. The WishBone Module uses a 32-bit address and a 32-bit data bus, and allows
burst transfers of up to 65535 words (262140 bytes).

Since the JTAG clock is asynchronous to the WishBone bus clock, transactions
are synchronized between clock domains. This clock differential may cause other
problems, however, if the JTAG clock is much faster than the WishBone clock. For
efficient operation, it must be possible to complete a WishBone write (plus 4 JTAG-
domain clock cycles for control and synchronization) in less time than it takes to shift the
next word in via the TAP. The problem is magnified when using 8-bit words. If the bus
is not ready by the time the next word has arrived, then the attempt to write the next word
will fail. This overflow condition can be detected by reading back a status bit after
writing each word in burst mode. If the status bit is true, then the transaction has
succeeded and the burst should continue. If the status bit is false, then an overflow has
occurred, and the software driver should retry part of the burst, starting with last word
written.

http://www.opencores.org/ Rev 1.0 Page 10 of 40

Figure 3: Block diagram of top-level module

Input Shift Register

Module select
register WB Module

CPU0 Module

Top-level module

Data

Enable

Other Modules

TDI

TDO

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

Underflow conditions during burst reads are avoided by use of a “ready” bit,
which is read by the software driver before each word is shifted out of the ADI. When
data is not yet available, the WishBone module shifts out zeros. As soon as a data word
is read from the WishBone bus, the module shifts out a one, indicating that data is ready
(the driver should discard this '1' and all preceding ready bits). Bus data follows
immediately after a true ready bit is sent.

The WishBone module contains a single 33-bit internal register, called the “error
register,” which is used to detect errors on the bus interface. During a burst read or write,
the WishBone error (wb_err) bit is sampled at the end of each bus transaction. If the
error bit is ever true, then the error bit (bit 0) in the error register is set, and the address of
the failed transaction is captured into the other 32 bits of the error register. Once the
error bit has been set, it can only be cleared by performing an internal register write to the
WishBone module, and the addresses of subsequent errors will not be captured. Thus,
when the error bit is set, the error register contains the address of the first bus error
encountered since the bit was last reset.

The error register should be reset before each bus transaction (or after each time
the error bit is found set), then checked after each burst transaction. Because the error bit
is the least-significant bit, a software driver may read only 1 bit in order to determine
whether or not an error condition exists. If true, then the driver may read out the 32-bit
error address, and retry the part of the burst starting from that address.

The WishBone sub-module includes a CRC calculation, which is used to protect
burst data. During burst transactions, an internal word counter determines when all of the
data for a burst has been transferred. If a burst read has just completed, the module then
begins to shift out a 32-bit CRC, which the host may compare to a locally-generated
CRC. If the completed transaction is a burst write, the module accepts a 32-bit CRC
from the host, then shifts out a single bit indicating whether or not the CRC received
matched its internal CRC computation. Note that the CRC is done only on the burst data;
the preceding burst command, and all start and ready bits, are ignored.

The CRC polynomial is 0xEDB88320. This is bitwise-reversed from many
implementations; this is because we compute the CRC LSB-first (also reversed from
other implementations). The LSB-first calculation was used to reduce hardware and
routing requirements in the CRC module.

 2.3 OR1200 CPU Module
The OR1200 CPU sub-module is designed to allow a software debugger to access

the internal registers of a CPU, to stall and reset the processor, and to take control when a
breakpoint occurs in software. The OR1200 module may also allow access to the CPU's

http://www.opencores.org/ Rev 1.0 Page 11 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

hardware breakpoint and watchpoint configuration and trace buffer, if the CPU has been
synthesized with these features – see the OR1000 architecture specification and the
OR1200 implementation document for details.

The OR1200 sub-module is based on the WishBone module, and is therefore
similar. The bus interface connects to the debug interface of the OR1200, which allows
access to the processor's SPR bus. Accesses to this bus are performed by ADI burst
transactions. Reads, writes, clock synchronization, ready bits, status bits, overflow,
underflow, and CRC computations are all handled exactly as they are in the WishBone
module. The OR1200 debug interface bus does not have an error indicator bit. Thus, the
OR1200 module does not have an internal “bus error” register.

The OR1200 module allows the user to set and clear the CPU reset bit, to stall the
CPU, and to capture breakpoints in the CPU. This is done through a module internal
register, called the “CPU status register.” Bit 1 of this register is the reset bit. When this
bit is true, the cpu_rst_o output bit is set true, and vice-versa. This bit is set and cleared
only by internal register writes via the ADI. Note that this bit is synchronized between
clock domains.

Bit 0 of the CPU status register is the stall bit. When set, the cpu_stall_o output
of the ADI is also set, and vice versa. This bit may be set and cleared via internal register
access to the ADI. This bit may also be set by the CPU: when the cpu_bp_i input from
the CPU goes high (indicating a breakpoint), the stall bit in the register is set, and the stall
output set high. This effectively transfers control of the CPU to the ADI, which may
perform various debugging operation before clearing the stall bit via internal register
access, allowing the CPU to continue normal execution.

http://www.opencores.org/ Rev 1.0 Page 12 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 3
API

This section gives information on the commands, opcodes, and data formats of the
Advanced Debug Interface. There are three major sections: the top-level ADI, the
WishBone module, and the CPU module. All commands and registers are shown with
the least-significant bit to the right, and all commands are shifted out LSB-first. Data is
also shifted in to and out of the ADI LSB-first. All commands are interpreted when the
TAP passes through state UPDATE_DR. All commands are interpreted as MSB-aligned.
This means that the minimum number of bits for a command may be shifted into the
ADI, without consideration for the length of the data register.

 3.1 Top-level Commands

 3.1.1 Module Select command

This command is used to select which one of the sub-modules is active. Only the
active sub-module will process commands sent to the ADI. This command should be
sent before any other command is sent to any sub-module.

http://www.opencores.org/ Rev 1.0 Page 13 of 40

Figure 4: Module Select Command format

1 Module
02

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

Bit #
Ac

ce
ss

Description

2 W Top-Level Select
Set to '1' to select the top level module

1:0 W Module
Number of the module to select. The following modules are valid:
0x0 = WishBone module
0x1 = CPU0 module
0x2 = CPU1 module (optional)

Table 1: Module Select command format

 3.2 WishBone Commands
The WishBone sub-module uses a standardized command format. Each

command must have a zero as the MSBit, to differentiate it from a module select
command. In the next four most-significant bit positions is a 4-bit opcode, which
indicates the operation to be performed. Following the opcode are zero or more data
values, whose length and meaning are command-specific. Table 2 summarizes the
opcodes supported in the WishBone module.

OPCODE Operation

0x0 NOP

0x1 Burst Setup Write, 8-bit words

0x2 Burst Setup Write, 16-bit words

0x3 Burst Setup Write, 32-bit words

0x5 Burst Setup Read, 8-bit words

0x6 Burst Setup Read, 16-bit words

0x7 Burst Setup Read, 32-bit words

0x9 Internal register write

0xD Internal register select

Table 2: WishBone module command opcode summary

http://www.opencores.org/ Rev 1.0 Page 14 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 3.2.1 Burst Setup

A burst setup command prepares the WishBone module to do either a read or
write burst, in order to move data to or from a consecutive sequence of addresses on the
WishBone bus. The word size of the burst is decoded from the opcode. The WishBone
module can use an 8-, 16-, or 32-bit word size. After each individual word transfer
during a burst, the address counter in the ADI is incremented according to the word size:
it will be incremented by 1, 2, or 4, for 8-, 16-, and 32-bit words respectively.

After a burst setup command has been executed (in the UPDATE_DR state), the
WishBone module will enter 'burst read' or 'burst write' mode, the next time the TAP
enters SHIFT_DR mode. Whether read or write mode is used depends on the opcode
sent with the burst setup command. Details on burst read and burst write modes are in
the following sections.

http://www.opencores.org/ Rev 1.0 Page 15 of 40

Figure 5: Burst Setup command

0

0 Opcode

16

Address Count

4852

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

Bit #
Ac

ce
ss

Description

52 W Top-Level Select
Set to '0' for all sub-module commands

48:51 W Opcode
Operation to perform. The following are valid burst setup
operations:
0x1 = Burst Write, 8-bit words
0x2 = Burst Write, 16-bit words
0x3 = Burst Write, 32-bit words
0x5 = Burst Read, 8-bit words
0x6 = Burst Read, 16-bit words
0x7 = Burst Read, 32-bit words

47:16 W Address
The first WishBone address which will be read from or written to

0:15 W Count
Total number of words to be transferred. Note that this means that
the total number of bits transferred depends both on this field, and
on the opcode. Must be greater than 0.

Table 3: WishBone module Burst Setup command format

 3.2.2 Burst Write

The next time the ADI is accessed after sending a valid burst write command, the
WishBone module will be in burst write mode. In this mode, commands and data are not
interpreted or executed on transition through UPDATE_DR. Instead, counters are used
to determine position in the bitstream, and a word is written to the WishBone as soon as it
has been transferred in via JTAG. The total length of a burst write transfer depends on
the word size (set by the opcode) and the count fields in the burst setup command; for a
word size of n and a transfer of m words, the total length will be ((n + 1) * m) + 34.

The first bit transferred in a burst write is a '1' start bit. This tells the WishBone
module to begin counting bits, and is required due to the possibility of multiple devices
on the JTAG chain. After the start bit, one word of data is transferred into the ADI,
followed by a status bit, which is transferred out of the ADI, and should be read by the
software driver. The status bit tells the user whether the WishBone was ready to accept
the word just transferred; when true, the bus was ready. When false, the word was not
written to the WishBone, and the software driver should retry the transfer, starting from

http://www.opencores.org/ Rev 1.0 Page 16 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

the failed word. Note that timing of the actual reception of the status bit may vary,
depending on the number of other devices on the JTAG chain.

Data transmission continues to alternate data word and status bit until all words
have been transferred. Immediately following the last status bit, a 32-bit CRC code is
transferred into the WishBone module. This CRC is compared with a CRC computed
internally to the WishBone module. After the CRC is transferred in, a single bit is
transferred out of the ADI, indicating whether or not the CRC written matched the CRC
calculated. A burst write transaction may be aborted at any time by moving the TAP
through the UPDATE_DR state.

The CRC protects only the data bits in a burst transaction; commands and status
bits are not included in the CRC computation. The CRC resets before each burst
transaction. For more information on the CRC calculation, see chapter 6.

WishBone bus errors are captured during a burst, but the information is not
transferred during the burst transaction. After a burst, the user should check the
WishBone module error register to see if a bus error occurred during the burst, and if so,
at what address. See the section on WishBone sub-module internal registers for details
on the error register.

Note that extra bits sent at the end of a burst write are ignored; thus, the user need
not worry about sending a valid or safe operation/opcode at the end of the burst
transaction.

http://www.opencores.org/ Rev 1.0 Page 17 of 40

Figure 6: Burst Write format

0

StatusMatch

(m * (n+1))
+ 1

CRC Data
(word length n)

(m * (n+1))
+ 33

1

Sent m times

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

Bits
Ac

ce
ss

Description

1 bit R Match
'1' if CRC sent matches internal CRC computation, '0' if not

32 bits W CRC
32-bit CRC computed on all of the data bits of the burst

1 bit R Status
'1' if the most recently sent data word was written to the WishBone,
'0' if the bus was not ready. Sent m times, once after each data
word.

n bits W Data
Data word. Length specified by the opcode in the burst setup
command. Sent m times.

1 bit W Start Bit
Set to '1' to indicate the start of a burst write.

Table 4: WishBone module burst write format

 3.2.3 Burst Read

The next time the ADI is accessed after sending a valid burst read command, the
WishBone module will be in burst read mode. In this mode, commands and data are not
interpreted or executed on transition through UPDATE_DR. Instead, counters are used
to determine position in the bitstream, and a word is read from the WishBone while the
previous data word is transferred out via JTAG. The total length of a burst read transfer
depends on the word size (set by the opcode) and the count fields in the burst setup
command; for a word size of n and a transfer of m words, the total length will be ((n + 1)
* m) + 32.

The first bit (or bits) transferred during a burst read is a status bit. This bit
indicates whether or not data from the WishBone is ready to be transferred out via JTAG.
The WishBone module will send '0' bits until a word is ready, then send a single '1' bit.
One data word will follow a '1' status bit. The status bit is used to prevent data underruns
and retries; a retry should never be necessary due to a data underrun in the WishBone
module.

A status bit (or bits) is transferred before each data word. Data transmission
continues to alternate status bits and data words until all words have been transferred.
Immediately following the last data word, a 32-bit CRC code is sent from the WishBone
module to the driver software. The driver software should compare the CRC received

http://www.opencores.org/ Rev 1.0 Page 18 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

with one computed internally, to determine whether or not the complete transaction must
be retried.

The CRC protects only the data bits in a burst transaction; commands and status
bits are not included in the CRC computation. The CRC resets before each burst
transaction. For more information on the CRC calculation, see chapter 6.

WishBone bus errors are captured during a burst, but the information is not
transferred during the burst transaction. After a burst, the user should check the
WishBone module error register to see if a bus error occurred during the burst, and if so,
at what address. See the section on WishBone sub-module internal registers for details
on the error register.

Note that extra bits sent at the end of a burst read are ignored; thus, the user need
not worry about sending a valid or safe operation/opcode at the end of the burst
transaction.

Bits

Ac
ce

ss

Description

32 bits R CRC
32-bit CRC computed on all of the data bits of the burst

n bits R Data
Data word. Length specified by the opcode in the burst setup
command. Sent m times.

1 bit R Status
Read '0' until a word is ready to be sent, then a single '1' bit is sent
before the data word.

Table 5: WishBone module burst read format

http://www.opencores.org/ Rev 1.0 Page 19 of 40

Figure 7: Burst Read format

0

Status

m * (n+1)

CRC Data
(word length n)

Sent m times

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 3.2.4 Register Select

A register select command will make the module-internal register with the given
index active (in the currently selected sub-module). While any register in the current
module can be written with a single command, only the active register can be read.

When the TAP enters CAPTURE_DR mode, the WishBone module captures the
value of the active register into the output shift register, allowing the value to be read
when the TAP is in SHIFT_DR mode. This will happen each time a command is sent to
the WishBone module, unless the previous command was a burst setup.

The register select command uses the same top-level select bit and opcode format
as the other WishBone module commands. In this case, the opcode is followed by a 1-bit
value, which is the index of the register which should be made active. See the API
section on registers for a complete listing of all registers in the WishBone module, and
the meaning of each.

Bit #

Ac
ce

ss

Description

5 W Top-Level Select
Set to '0' for all sub-module commands

4:1 W Opcode
Operation to perform.
0xD = Internal Register Select

0 W Index
Index of the register to make active. The WishBone module uses
a 1-bit index.

Table 6: WishBone module Register Select command format

http://www.opencores.org/ Rev 1.0 Page 20 of 40

Figure 8: Register Select command format

0

0 Opcode Index

15

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 3.2.5 Register Read

There is no specific command to read a module internal register; the value of the
active register is shifted out every time a command is shifted in. In order to read a
particular register, make that register active using the register select command, then read
out the value of the register while sending a NOP command. The length of each register
may vary, and the meaning of each bit is also register-specific. The register data will be
LSB-aligned; that is, the LSB of the register data will be the first bit shifted out of the
ADI. This allows the minimum number of JTAG bits to be transferred. It is legal to read
more bits than the active register has – the additional bits will have undefined value, and
should be discarded. Note that only register data will be transferred out, no command,
index, opcodes, start, or status bits will be sent with it. It is legal to abort a register read
at any time, provided that a valid command (probably a NOP) is in the correct position in
the input shift register.

 3.2.6 Register Write

A register write command contains both a register index, and data to be written to
the register at that index. The register with the given index will become the active
register after this command is executed. Note that the value of the previously active
register will be shifted out as this command is shifted in. The length of the data field is
variable, and depends on the particular register being written. See the API section on
registers for a complete description of the registers, their lengths, and their meanings.

http://www.opencores.org/ Rev 1.0 Page 21 of 40

Figure 9: Register Write command format

0

0 Opcode Index

n+1n+5

Data

n

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

Bit #
Ac

ce
ss

Description

5
+ n

W Top-Level Select
Set to '0' for all sub-module commands

(4:1)
+ n

W Opcode
Operation to perform.
0x9 = Internal Register Write

n W Index
Index of the register to make active. The WishBone module uses
a 1-bit index.

n-1:0 W Data
n bits of data to write to the register specified by Index. n depends
on the register being written.

Table 7: WishBone module Register Write command format

 3.2.7 NOP

A NOP command will perform no operation. It is included as a “safe” command
to shift into the WishBone module while shifting out internal register data. A NOP
command consists of five or more zeros, making it easy to send for any length of data
read.

http://www.opencores.org/ Rev 1.0 Page 22 of 40

Figure 10: NOP command format

0

0 Opcode

n+4

0 or more '0'

n

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

Bit #
Ac

ce
ss

Description

4 + n W Top-Level Select
Set to '0' for all sub-module commands

(3:0)
+ n

W Opcode
Operation to perform.
0x0 = NOP

n:0 W Zero
Zero or more '0' bits

Table 8: WishBone module NOP command format

 3.3 CPU Commands
The CPU sub-module uses the same standardized command format as the

WishBone module. Each command must have a zero as the MSB, to differentiate it from
a module select command. In the next four most-significant bit positions is a 4-bit
opcode, which indicates the operation to be performed. Following the opcode are zero or
more data values, whose length and meaning are command-specific. Table 9 summarizes
the opcodes supported in the CPU module.

OPCODE Operation

0x0 NOP

0x3 Burst Setup Write, 32-bit words

0x7 Burst Setup Read, 32-bit words

0x9 Internal register write

0xD Internal register select

Table 9: CPU module command opcode summary

http://www.opencores.org/ Rev 1.0 Page 23 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 3.3.1 Burst Setup

A burst setup command prepares the CPU module to do either a read or write
burst, in order to move data to or from a consecutive sequence of address on the
OR1200's SPR bus. Because all SPRs are 32-bit registers, all burst transfers in the CPU
module use 32-bit words. After each individual word transfer during a burst, the address
counter in the CPU module is incremented by 1. Note that while the OR1000
architecture defines an SPR address as 16 bits, the OR1200 implementation uses a 32-bit
address in its external debug interface. The ADI is designed to use the 32-bit OR1200
implementation.

After a burst setup command has been executed (in the UPDATE_DR state), the
CPU module will enter 'burst read' or 'burst write' mode, the next time the TAP enters
SHIFT_DR mode. Whether read or write mode is used depends on the opcode sent with
the burst setup command. Details on burst read and burst write modes are in the
following sections.

Bit #

Ac
ce

ss

Description

52 W Top-Level Select
Set to '0' for all sub-module commands

48:51 W Opcode
Operation to perform. The following opcodes are valid burst setup
operations for the CPU module:
0x3 = Burst Write, 32-bit words
0x7 = Burst Read, 32-bit words

47:16 W Address
The first OR1200 SPR address which will be read or written

0:15 W Count
Total number of 32-bit words to be transferred.

Table 10: CPU module Burst Setup command format

http://www.opencores.org/ Rev 1.0 Page 24 of 40

Figure 11: Burst Setup command

0

0 Opcode

16

Address Count

4852

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 3.3.2 Burst Write

The next time the ADI is accessed after sending a valid burst write command, the
CPU module will be in burst write mode. In this mode, commands and data are not
interpreted or executed on transition through UPDATE_DR. Instead, counters are used
to determine position in the bitstream, and a word is written to the CPU SPR bus as soon
as it has been transferred in via JTAG. The total length of a burst write transfer depends
on the count field in the burst setup command; for a transfer of m words, the total length
will be (33 * m) + 34.

The first bit transferred in a burst write is a '1' start bit. This tells the CPU module
to begin counting bits, and is required due to the possibility of multiple devices on the
JTAG chain. After the start bit, one word of data is transferred into the ADI, followed by
a status bit, which is transferred out of the ADI, and should be read by the software
driver. The status bit tells the user whether the OR1200 was ready to accept the word just
transferred; when true, the bus was ready. When false, the word was not written to the
SPR bus, and the software driver should retry the transfer, starting from the failed word.
Note that timing of the actual reception of the status bit may vary, depending on the
number of other devices on the JTAG chain.

Data transmission continues to alternate data word and status bit until all words
have been transferred. Immediately following the last status bit, a 32-bit CRC code is
transferred into the CPU module. This CRC is compared with a CRC computed
internally to the CPU module. After the CRC is transferred in, a single bit is transferred
out of the ADI, indicating whether or not the CRC written matched the CRC calculated.
A burst write transaction may be aborted at any time by moving the TAP through the
UPDATE_DR state.

The CRC protects only the data bits in a burst transaction; commands and status
bits are not included in the CRC computation. The CRC resets before each burst
transaction. For more information on the CRC calculation, see chapter 6.

The OR1200 SPR bus does not provide any sort of error indication beyond ready /
not ready. As such, there is no error register to be tested after a burst (as opposed to the
WishBone module, which has such a register).

Note that extra bits sent at the end of a burst write are ignored; thus, the user need

http://www.opencores.org/ Rev 1.0 Page 25 of 40

Figure 12: Burst Write format

0

StatusMatch

(m * 33) + 1

CRC Data
(32 bits)

(m * 33) + 33

1

Sent m times

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

Bits
Ac

ce
ss

Description

1 bit R Match
'1' if CRC sent matches internal CRC computation, '0' if not

32 bits W CRC
32-bit CRC computed on all of the data bits of the burst

1 bit R Status
'1' if the most recently sent data word was written to the SPR bus,
'0' if the bus was not ready. Sent m times, once after each data
word.

n bits W Data
32-bit data word. Sent m times.

1 bit W Start Bit
Set to '1' to indicate the start of a burst write.

Table 11: CPU module burst write format

 3.3.3 Burst Read

The next time the ADI is accessed after sending a valid burst read command, the
CPU module will be in burst read mode. In this mode, commands and data are not
interpreted or executed on transition through UPDATE_DR. Instead, counters are used
to determine position in the bitstream, and a word is read from the CPU SPR bus while
the previous data word is transferred out via JTAG. The total length of a burst read
transfer depends on the count field in the burst setup command; for a transfer of m words,
the total length will be (33 * m) + 32.

The first bit (or bits) transferred during a burst read is a status bit. This bit
indicates whether or not data from the SPR bus is ready to be transferred out via JTAG.
The CPU module will send '0' bits until a word is ready, then send a single '1' bit. One
data word will follow a '1' status bit. The status bit is used to prevent data underruns and
retries; a retry should never be necessary due to a data underrun in the CPU module.

A status bit (or bits) is transferred before each data word. Data transmission
continues to alternate status bits and data words until all words have been transferred.
Immediately following the last status bit, a 32-bit CRC code is sent from the CPU module
to the driver software. The driver software should compare the CRC received with one
computed internally, to determine whether or not the complete transaction must be
retried.

http://www.opencores.org/ Rev 1.0 Page 26 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

The CRC protects only the data bits in a burst transaction; commands and status
bits are not included in the CRC computation. The CRC resets before each burst
transaction. For more information on the CRC calculation, see chapter 6.

The OR1200 SPR bus does not provide any error indication for failed transactions
beyond ready / not ready. Thus, there is no error register to check after a burst is
completed (as opposed to the WishBone module).

Note that extra bits sent at the end of a burst read are ignored; thus, the user need
not worry about sending a valid or safe operation/opcode at the end of the burst
transaction.

Bits

Ac
ce

ss

Description

32 bits R CRC
32-bit CRC computed on all of the data bits of the burst

n bits R Data
Data word. Length specified by the opcode in the burst setup
command. Sent m times.

1 bit R Status
Read '0' until a word is ready to be sent, then a single '1' bit is sent
before the data word.

Table 12: CPU module burst read format

 3.3.4 Register Select

A register select command will make the module-internal register with the given
index active (in the currently selected sub-module). While any register in the current
module can be written with a single command, only the active register can be read.

http://www.opencores.org/ Rev 1.0 Page 27 of 40

Figure 13: Burst Read format

0

Status

m * 33

CRC Data
(32 bits)

Sent m times

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

When the TAP enters CAPTURE_DR mode, the CPU module captures the value
of the active register into the output shift register, allowing the value to be read when the
TAP is in SHIFT_DR mode. This will happen each time a command is sent to the CPU
module, unless the previous command was a burst setup.

The register select command uses the same top-level select bit and opcode format
as the other module commands. In this case, the opcode is followed by a 1-bit value,
which is the index of the register which should be made active. See the API section on
register for a complete listing of all registers in the CPU module, and the meaning of
each.

Bit #

Ac
ce

ss

Description

5 W Top-Level Select
Set to '0' for all sub-module commands

4:1 W Opcode
Operation to perform.
0xD = Internal Register Select

0 W Index
Index of the register to make active. The CPU module uses a 1-bit
index.

Table 13: CPU module Register Select command format

 3.3.5 Register Read

There is no specific command to read a module internal register; the value of the
active register is shifted out every time a command is shifted in. In order to read a
particular register, make that register active using the register select command, then read
out the value of the register while sending a NOP command. The length of each register
may vary, and the meaning of each bit is also register-specific. The register data will be
LSB-aligned; that is, the LSB of the register data will be the first bit shifted out of the

http://www.opencores.org/ Rev 1.0 Page 28 of 40

Figure 14: Register Select command format

0

0 Opcode Index

15

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

ADI. This allows the minimum number of bits to be transferred over the JTAG, and
allows the user to ignore the total length of the output shift register. It is legal to read
more bits than the active register has – the additional bits will have undefined values, and
should be discarded. Note that only register data will be transferred out; no command,
index, opcodes, start, or status bits will be sent with it. It is legal to abort a register read
at any time, provided that a valid command (probably a NOP) is in the correct position in
the input shift register.

 3.3.6 Register Write

A register write command contains both a register index and data to be written to
the register at that index. The register with the given index will become the active
register after this command is executed. Note that the value of the previously active
register will be shifted out as this command is shifted in. The length of the data field is
variable, and depends on the particular register being written. See the API section on
registers for a complete description of the registers, their lengths, and their meanings.

http://www.opencores.org/ Rev 1.0 Page 29 of 40

Figure 15: Register Write command format

0

0 Opcode Index

n+1n+5

Data

n

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

Bit #
Ac

ce
ss

Description

5
+ n

W Top-Level Select
Set to '0' for all sub-module commands

(4:1)
+ n

W Opcode
Operation to perform.
0x9 = Internal Register Write

n W Index
Index of the register to make active. The CPU module uses a 1-bit
index.

n-1:0 W Data
n bits of data to write to the register specified by Index. n depends
on the register being written.

Table 14: CPU module Register Write command format

 3.3.7 NOP

A NOP command will perform no operation. It is included as a “safe” command
to shift into the CPU module while shifting out internal register data. A NOP command
consists of five or more zeros, making it easy to send for any length of data read.

http://www.opencores.org/ Rev 1.0 Page 30 of 40

Figure 16: NOP command format

0

0 Opcode

n+4

0 or more '0'

n

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

Bit #
Ac

ce
ss

Description

4 + n W Top-Level Select
Set to '0' for all sub-module commands

(3:0)
+ n

W Opcode
Operation to perform.
0x0 = NOP

n:0 W Zero
Zero or more '0' bits
Table 15: CPU module NOP command format

 3.4 WishBone Module Registers
Table 16 summarizes all of the registers contained within the WishBone sub-

module. Note that the data format of a register may be different depending on whether it
is read or written; this saves the user from having to shift in extra bits to fill read-only
values when writing.

Index Register name

0x0 Error register

Table 16: WishBone module register summary

 3.4.1 Error Register

The error register captures WishBone bus errors during burst transactions. Each
time a bus access is completed, the WishBone error indicator bit (wb_err) is tested. If an
error is present, then the error bit in the error register is set to '1', and the address of the
failed access is stored in the rest of the error register. Once the error bit is set, the error
register will retain its value and further WishBone errors will be ignored until the error
bit is reset. The error bit may only be reset by writing a '1' to the error bit via an internal
register write.

When read, the error bit is the first bit shifted out. This allows transferring the
minimum number of bits when testing whether an error has occurred (5 bits must be
transferred in order to send a valid NOP command while reading). If an error has

http://www.opencores.org/ Rev 1.0 Page 31 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

occurred, then an error handling routine in the driver software can read the error register
again to get the 32-bit error address – the value will not change until the error bit is reset.

When written, the error register consists of a single bit, the error bit. This should
be written as '1' in order to clear the error bit and re-enable error detection.

Bit #

Ac
ce

ss

Description

33:1 R Address
When error bit = '1', contains the address of the failed transaction

0 R Err (when read)
Error bit. Set to '1' when a WishBone error has occurred since the
last time the error bit was reset.

0 W Err (when written)
Write as '1' to reset the error bit to '0' and re-enable error detection

Table 17: WishBone module Error Register format

http://www.opencores.org/ Rev 1.0 Page 32 of 40

Figure 17: Wishbone module Error Register, as read

0

ErrAddress

133

Figure 18: Wishbone module Error Register, as written

0

Err

1

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 3.5 CPU Module Registers
Table 18 summarizes all of the registers present within the CPU sub-module.

Index Register name

0x0 Status register

Table 18: CPU module register summary

 3.5.1 Status Register

The status register is used to control the reset line to the CPU, and to detect and
control breakpoint conditions. The format is the same whether read or written.

Bit 1 of the register controls the reset line to the CPU. When written as a '1', reset
to the CPU is active, and the CPU is put into a reset state. When written '0', the reset line
is negated, and the CPU may run normally. The reset bit can only be changed by an
internal register write in the CPU module.

Bit 0 of the status register detects breakpoints, and controls the stall line to the
CPU. When written '1' via internal register write, the stall line to the CPU is made active,
and the CPU stops executing instructions (but retains the ability to resume). When
written '0', the stall line is negated, and the CPU resumes execution. The stall bit will
also be set when the breakpoint output of the CPU goes active. The breakpoint output
will be registered, the stall bit will be set, and the CPU will be held in the stall state by
the ADI. This condition must be detected by polling in the software driver – once stalled
due to a breakpoint, the CPU cannot resume execution until the stall bit is reset to '0' by
an internal register access via JTAG.

http://www.opencores.org/ Rev 1.0 Page 33 of 40

Figure 19: CPU module Status register

0

Stall

1

Rst

2

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

Bit #
Ac

ce
ss

Description

1 R/W Reset
Set to '1' to put the CPU in reset state. Set to '0' to allow the CPU
to restart execution.

0 R/W Stall
Set to '1' to suspend execution in the CPU. Set to '0' to resume.
Will be set to '1' automatically when a breakpoint indicator arrives
from the CPU.
Table 19: CPU module Status Register format

http://www.opencores.org/ Rev 1.0 Page 34 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 4
IO Ports

 4.1 TAP Ports
The Advanced Debug Interface connects to the TAP controller with the signals shown in
Table 20.

Port

W
id

th

 D
ire

ct
io

n

Description

tck_i 1 input Test clock input
tdi_i 1 input Test data input
tdo_o 1 output Test data output
shift_dr_i 1 input TAP controller state “Shift DR”
pause_dr_i 1 input TAP controller state “Pause DR”
update_dr_i 1 input TAP controller state “Update DR”
capture_dr_i 1 Input TAP controller state “Capture DR”
rst_i 1 input Reset signal.
debug_select_i 1 input Instruction DEBUG is activated

Table 20: TAP Ports

http://www.opencores.org/ Rev 1.0 Page 35 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 4.2 CPU Ports
For each CPU module included, one set of I/O lines for that module will be

present. The 'n' in the port name will be replaced with the CPU module number, always
starting from 0. These lines are shown in Table 21.

Port W
id

th

 D
ire

ct
io

n

Description

cpun_clk_i 1 input CPU clock signal.
cpun_addr_o 32 output CPU address
cpun_data_i 32 input CPU data input (data from CPU)
cpun_data_o 32 output CPU data output (data to CPU)
cpun_bp_i 1 input CPU breakpoint
cpun_stall_o 1 output CPU stall (selected CPU is stalled)
cpun_stb_o 1 output CPU strobe

cpun_we_o 1 output CPU write enable signal indicates a write cycle when
asserted high (read cycle when low).

cpun_ack_i 1 input CPU acknowledge (signals end of cycle)
cpun_rst_o 1 output CPU reset output (resets CPU)

Table 21: CPU Ports

 4.3 WISHBONE Ports
The WishBone module, if included, will add a set of WishBone interface signals

to the top-level IO, as described in Table 22.

Port W
id

th

 D
ire

ct
io

n

Description

wb_clk_i 1 input WISHBONE clock
wb_ack_i 1 input WISHBONE acknowledge indicates a normal cycle

http://www.opencores.org/ Rev 1.0 Page 36 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

Port W
id

th

 D
ire

ct
io

n

Description

termination
wb_adr_o 32 output WISHBONE address output

wb_cyc_o 1 output WISHBONE cycle encapsulates a valid transfer
cycle.

wb_dat_i 32 input WISHBONE data input (data from WISHBONE)
wb_dat_o 32 output WISHBONE data output (data to WISHBONE)

wb_err_i 1 input WISHBONE error acknowledge indicates an
abnormal cycle termination

wb_sel_o 4 output WISHBONE select indicates which bytes are valid
on the data bus.

wb_stb_o 1 output WISHBONE strobe indicates a valid transfer.

wb_we_o 1 output WISHBONE write enable indicates a write cycle
when asserted high (read cycle when low).

wb_cab_o 1 output WISHBONE consecutive address burst indicates a
burst cycle. (always false)

wb_cti_o 3 output WISHBONE cycle type identifier indicates type of
cycle (single, burst, end of burst) (always single)

wb_bte_o 2 output WISHBONE burst type extension (always 0)

Table 22: WISHBONE Ports

http://www.opencores.org/ Rev 1.0 Page 37 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 5
Module Configuration

The Advanced Debug Interface supports three options, which allow the user to
configure which sub-modules will be included when the design is synthesized.

Option: DBG_WISHBONE_SUPPORTED
Use: Define this option if you want to include a WishBone module in the ADI. Default
is defined.

Option: DBG_CPU0_SUPPORTED
Use: Define this option if you want to include one or more OR1200 CPU debug
modules. Default is defined.

Option: DBG_CPU1_SUPPORTED
Use: Define this option if you want to include a second OR1200 CPU debug module.
Default is undefined.

One other WishBone-specific option can be found in adbg_wb_defines.v:

Option: DBG_WB_LITTLE_ENDIAN
Use: Define this option when the system CPU uses big-endian byte ordering. When left
undefined, little-endian byte ordering (the OR1200 default) will be used. Default is
undefined.

http://www.opencores.org/ Rev 1.0 Page 38 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

 6
CRC Module

A CRC calculation module is contained within each WishBone and CPU sub-
module. The CRC module is active only during burst read and write transactions. It
calculates a 32-bit CRC on only the data bits of the transaction, starting with the LSB of
the first word transferred, and ending with the MSB of the last word transferred.

In order to simplify the hardware, it was desirable to have the shift performed
during the CRC calculation be in the same direction as the shift required to read out the
CRC serially, LSB-first. This is the reverse of previous CRC implementations. As such,
the CRC polynomial used is also the bitwise-reverse of the standard Ethernet CRC-32
polynomial: 0xEDB88320. A C-language routine for computing a compatible CRC, up
to 32 bits at a time, is reproduced below. When computing a CRC for multiple words,
the output of the last call to compute_crc() should be passed to the next call as
crc_in. When calling compute_crc() for the first word of a burst, crc_in should
be set to 0xFFFFFFFF.

http://www.opencores.org/ Rev 1.0 Page 39 of 40

http://www.opencores.org/

Open Cores Advanced Debug Interface 5/13/2009

#define CRC_POLY 0xEDB88320

uint32_t compute_crc(uint32_t crc_in, uint32_t data_in,
int length_bits)

{
uint32_t crc_out, c, d;
int i;

crc_out = crc_in;
for(i = 0; i < length_bits; i++) {

d = ((data_in >> i) & 0x1) ? 0xffffffff : 0x0;
c = (crc_out & 0x1) ? 0xffffffff : 0x0;
crc_out = crc_out >> 1;
crc_out = crc_out ^ ((d ^ c) & CRC_POLY);

}

return crc_out;
}

http://www.opencores.org/ Rev 1.0 Page 40 of 40

http://www.opencores.org/

	 2.1 Top Module
	 2.2 WishBone Module
	 2.3 OR1200 CPU Module
	 3.1 Top-level Commands
	 3.1.1 Module Select command

	 3.2 WishBone Commands
	 3.2.1 Burst Setup
	 3.2.2 Burst Write
	 3.2.3 Burst Read
	 3.2.4 Register Select
	 3.2.5 Register Read
	 3.2.6 Register Write
	 3.2.7 NOP

	 3.3 CPU Commands
	 3.3.1 Burst Setup
	 3.3.2 Burst Write
	 3.3.3 Burst Read
	 3.3.4 Register Select
	 3.3.5 Register Read
	 3.3.6 Register Write
	 3.3.7 NOP

	 3.4 WishBone Module Registers
	 3.4.1 Error Register

	 3.5 CPU Module Registers
	 3.5.1 Status Register

	 4.1 TAP Ports
	 4.2 CPU Ports
	 4.3 WISHBONE Ports

