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 1 
Introduction

The Advanced Debug Interface (ADI) is  a hardware module which creates an 
interface between a JTAG Test Access Port (TAP) and the system bus and CPU debug 
interface(s) of a System on Chip (SoC).  It is part of the system which allows software 
running on an SoC system to be controlled and debugged by a software debugger such as 
GDB, running on a  separate  host  PC.  This debugging system allows the SoC to be 
debugged via direct hardware connection, and does not require the “GDB stub” software 
running on the SoC.  A block diagram of this system is shown in Figure 1. 

The external interface to the Advanced Debug Interface is based on IEEE Std. 
1149.1, Standard Test Access Port and Boundary Scan Architecture.  A JTAG TAP is 
required to link the ADI to an external JTAG cable.  This TAP may be a stand-alone 
TAP1, or it may be a specialized unit such as an Altera Virtual JTAG or a Xilinx Internal 
BSCAN unit.  No TAP is included with the ADI.  The ADI appears as a data register 
within the TAP.

Internally, the ADI has connections to both a WishBone bus and to one or more 
CPU debug interfaces.  The WishBone interface does not use any of the burst features of 
the bus; it should therefore be compatible with any version of the bus (B.1 or B.3 as of 
this writing).  The CPU interface is designed to connect to an OR1200 processor, or any 
other CPU which uses the same debug interface.  Note that there are two versions of the 
OR1200 debug interface; the ADI is designed to use the newer version, which includes 
the strobe and acknowledge (dbg_stb and dbg_ack) signals.

1 Note that the ADI is incompatible with the stand-alone TAP distributed by OpenCores.  Please use the 
version modified by the author instead. 
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Figure 1: Block diagram of the complete debug system hardware
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 2 
Architecture

The Advanced Debug Interface is built with a modular architecture, for flexibility 
and expandability.  It consists of a top-level module, and several sub-modules designed to 
interface  with  individual  SoC  subsystems.  The  sub-modules  currently  include  the 
WishBone module and the OR1200 module.

The top-level module contains the sub-modules, and a register to set the active 
sub-module.  In order to send a command to a sub-module, it must first be made active by 
setting this top level register; only one sub-module may be active at a time.  Zero or more 
instances of any type of sub-module are valid (the default is one WishBone sub-module 
and one OR1200 CPU sub-module).  The top-level module also contains the input shift 
register, which holds incoming serial data from the TAP.  The value in the input shift 
register is available to all sub-modules.  Note that as per the JTAG specification, all serial 
transfers are LSB-first.

Sub-modules generally consist of two parts: internal registers, and a bus interface. 
Internal module registers may contain information about the status of the module (such as 
the error register in the WishBone module), or they may control external I/O lines (such 
as the reset and stall lines from the OR1200 module).   Each sub-module contains an 
index  register,  which  enables  one  internal  register  at  a  time  for  reading  or  writing. 
Internal registers are selected, read, and written by sending commands to a sub-module 
through the TAP.

The bus interface of a sub-module is designed to allow the TAP to read or write 
data  from or  to  a  bus  as  quickly  as  possible.   Note  that  'bus'  in  this  case  does  not 
necessarily mean a WishBone bus; the bus interface of the OR1200 module connects to 
the processor's SPR bus.  All bus transactions are 'burst' transactions from the external / 
TAP side:  a setup command is first sent to a sub-module, then the entire block of data is 
streamed into or out of the sub-module without further control action.  Different sub-
modules may provide burst transactions using various word lengths.  Burst data is CRC-
protected.  A block diagram of the general module structure is shown in Figure 2.
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In order to support JTAG scan chains with more than one device, commands are 
usually executed by the sub-modules when the TAP moves through the UPDATE_DR 
state.   This  allows a software driver  to  add the necessary bits  to the end of  a serial 
bitstream to position the command at the correct place in the scan chain.

The exception to this is burst data, due to its unknown (and potentially very large) 
size.  To do a burst transaction, a burst command is first sent to a module, and executed 
by moving the TAP through the UPDATE_DR state.  The next time the TAP goes into 
the SHIFT_DR state,  'burst  mode'  is  active.   In burst  mode,  bus data  is  immediately 
clocked  into  or  out  of  the  module,  and  the  next  bus  transaction  (or  the  end  of  the 
transaction) is determined by internal counters.  In order to support multi-device chains, a 
“start bit” feature was added to burst mode.  During burst writes, the module will not start 
its counters or collect write data until after the first '1' (a “start bit”) is encountered in the 
bitstream.  Since TAP devices in BYPASS mode will initially shift out a '0', this means 
that these extra bits from other devices will be ignored by the ADI module.  Once the 
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Figure 2: General module structure
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module sees the start bit, it begins to capture write data (the start bit is discarded).  Burst 
reads require no such added feature, as a software cable driver may simply discard the 
appropriate  number of bits  before beginning to capture read data.   However,  the first 
status bit of a burst read may be used as a start bit during burst reads, see the API sections 
on burst reads for details.

There are two more things to consider when using the ADI in a scan chain with 
multiple devices.  First, all other devices should be in BYPASS mode when using the 
ADI  –  otherwise,  a  false  start  bit  could  get  sent  to  the  ADI  during  a  burst  write, 
corrupting the data.  Second, the ADI data register is not a through shift register – that is, 
the serial TDI input of the ADI is not directly connected to the TDO output.  This means 
that data shifted into the ADI will never appear at the output.  As such, the ADI should 
never be active when other devices on the chain are in use.

Three modules are currently implemented.  The following sections give details for 
each type.

 2.1 Top Module
The top-level  module is  the simplest  of the modules.   It  does not  have a bus 

interface,  and   has  only a  single  register.   This  register  is  called  the  “module  select 
register”,  and is used to select  the active sub-module.   The top module does not use 
command opcodes the way the sub-modules do.  Instead, a single bit in the input shift 
register (the MSB) indicates whether the command is a write to the select register, or a 
command to a sub-module (in which case the command is ignored by the top-level).  The 
value in the select register cannot be read back.

The top-level module provides enable signals to all sub-modules, based on the 
value in the module select register.  The value of the input shift register is also provided 
to all  modules.   Finally,  the serial  TDO output of the ADI is selected from the sub-
module TDO outputs, based on the module select register.  A block diagram of the top-
level module is shown in Figure 3.
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 2.2 WishBone Module
The purpose of the WishBone module is to provide a software debugger access to 

the SoC's memory system, allowing it to load code, examine and change program data, 
and set software breakpoints.  The WishBone module has a bus interface which follows 
the WishBone standard.  Because the JTAG interface is relatively slow, burst accesses on 
the WishBone bus interface are not used, therefore the interface should be compatible 
with  all  versions  of  the  WishBone  standard  (through  B.3  as  of  this  writing).   The 
WishBone module allows 8-, 16-, and 32-bit reads and writes over the WishBone bus 
interface.  The WishBone Module uses a 32-bit address and a 32-bit data bus, and allows 
burst transfers of up to 65535 words (262140 bytes).

Since the JTAG clock is asynchronous to the WishBone bus clock, transactions 
are  synchronized  between  clock  domains.   This  clock  differential  may  cause  other 
problems, however, if  the JTAG clock is much faster than the WishBone clock.  For 
efficient operation,  it  must  be possible to complete a WishBone write (plus 4 JTAG-
domain clock cycles for control and synchronization) in less time than it takes to shift the 
next word in via the TAP.  The problem is magnified when using 8-bit words.  If the bus 
is not ready by the time the next word has arrived, then the attempt to write the next word 
will  fail.   This overflow condition  can be detected by reading back a  status bit  after 
writing  each  word  in  burst  mode.   If  the  status  bit  is  true,  then  the  transaction  has 
succeeded and the burst should continue.  If the status bit is false, then an overflow has 
occurred, and the software driver should retry part of the burst, starting with last word 
written.
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Figure 3: Block diagram of top-level module
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Underflow conditions  during burst  reads  are  avoided by use of  a  “ready”  bit, 
which is read by the software driver before each word is shifted out of the ADI.  When 
data is not yet available, the WishBone module shifts out zeros.  As soon as a data word 
is read from the WishBone bus, the module shifts out a one, indicating that data is ready 
(the  driver  should  discard  this  '1'  and  all  preceding  ready  bits).   Bus  data  follows 
immediately after a true ready bit is sent.

The WishBone module contains a single 33-bit internal register, called the “error 
register,” which is used to detect errors on the bus interface.  During a burst read or write, 
the WishBone error (wb_err) bit is sampled at the end of each bus transaction.  If the 
error bit is ever true, then the error bit (bit 0) in the error register is set, and the address of 
the failed transaction is captured into the other 32 bits of the error register.  Once the 
error bit has been set, it can only be cleared by performing an internal register write to the 
WishBone module, and the addresses of subsequent errors will not be captured.  Thus, 
when the error bit  is set,  the error register  contains the address of the first  bus error 
encountered since the bit was last reset.

The error register should be reset before each bus transaction (or after each time 
the error bit is found set), then checked after each burst transaction.  Because the error bit 
is the least-significant bit, a software driver may read only 1 bit in order to determine 
whether or not an error condition exists.  If true, then the driver may read out the 32-bit 
error address, and retry the part of the burst starting from that address.

The WishBone sub-module includes a CRC calculation, which is used to protect 
burst data.  During burst transactions, an internal word counter determines when all of the 
data for a burst has been transferred.  If a burst read has just completed, the module then 
begins to shift out a 32-bit CRC, which the host may compare to a locally-generated 
CRC.  If the completed transaction is a burst write, the module accepts a 32-bit CRC 
from the host, then shifts out a single bit indicating whether or not the CRC received 
matched its internal CRC computation.  Note that the CRC is done only on the burst data; 
the preceding burst command, and all start and ready bits, are ignored.

The  CRC  polynomial  is  0xEDB88320.   This  is  bitwise-reversed  from  many 
implementations;  this  is  because we compute  the  CRC LSB-first  (also reversed from 
other  implementations).   The LSB-first  calculation  was used to  reduce  hardware  and 
routing requirements in the CRC module.

 2.3 OR1200 CPU Module
The OR1200 CPU sub-module is designed to allow a software debugger to access 

the internal registers of a CPU, to stall and reset the processor, and to take control when a 
breakpoint occurs in software.  The OR1200 module may also allow access to the CPU's 
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hardware breakpoint and watchpoint configuration and trace buffer, if the CPU has been 
synthesized  with  these  features  –  see  the  OR1000  architecture  specification  and  the 
OR1200 implementation document for details.

The  OR1200 sub-module  is  based on the  WishBone module,  and  is  therefore 
similar.  The bus interface connects to the debug interface of the OR1200, which allows 
access to the processor's SPR bus.  Accesses to this bus are performed by ADI burst 
transactions.   Reads,  writes,  clock  synchronization,  ready  bits,  status  bits,  overflow, 
underflow, and CRC computations are all handled exactly as they are in the WishBone 
module.  The OR1200 debug interface bus does not have an error indicator bit.  Thus, the 
OR1200 module does not have an internal “bus error” register.

The OR1200 module allows the user to set and clear the CPU reset bit, to stall the 
CPU, and to capture breakpoints in the CPU.  This is done through a module internal 
register, called the “CPU status register.”  Bit 1 of this register is the reset bit.  When this 
bit is true, the cpu_rst_o output bit is set true, and vice-versa.  This bit is set and cleared 
only by internal register writes via the ADI.  Note that this bit is synchronized between 
clock domains.

Bit 0 of the CPU status register is the stall bit.  When set, the cpu_stall_o output 
of the ADI is also set, and vice versa.  This bit may be set and cleared via internal register 
access to the ADI.  This bit may also be set by the CPU:  when the cpu_bp_i input from 
the CPU goes high (indicating a breakpoint), the stall bit in the register is set, and the stall 
output set high.  This effectively transfers control of the CPU to the ADI, which may 
perform various  debugging operation before clearing the stall  bit  via  internal  register 
access, allowing the CPU to continue normal execution.
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 3 
API

This section gives information on the commands, opcodes, and data formats of the 
Advanced  Debug Interface.   There  are  three  major  sections:   the  top-level  ADI,  the 
WishBone module, and the CPU module.  All commands and registers are shown with 
the least-significant bit to the right, and all commands are shifted out LSB-first.  Data is 
also shifted in to and out of the ADI LSB-first.  All commands are interpreted when the 
TAP passes through state UPDATE_DR.  All commands are interpreted as MSB-aligned. 
This means that the minimum number of bits for a command may be shifted into the 
ADI, without consideration for the length of the data register.

 3.1 Top-level Commands

 3.1.1 Module Select command

This command is used to select which one of the sub-modules is active.  Only the 
active sub-module will process commands sent to the ADI.  This command should be 
sent before any other command is sent to any sub-module.
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Bit #
Ac

ce
ss

Description

2 W Top-Level Select
Set to '1' to select the top level module

1:0 W Module
Number of the module to select.  The following modules are valid:
0x0 = WishBone module
0x1 = CPU0 module
0x2 = CPU1 module (optional)

Table 1: Module Select command format

 3.2 WishBone Commands
The  WishBone  sub-module  uses  a  standardized  command  format.   Each 

command  must  have  a  zero  as  the  MSBit,  to  differentiate  it  from  a  module  select 
command.   In  the  next  four  most-significant  bit  positions  is  a  4-bit  opcode,  which 
indicates the operation to be performed.  Following the opcode are zero or more data 
values,  whose  length  and  meaning  are  command-specific.   Table  2 summarizes  the 
opcodes supported in the WishBone module.

OPCODE Operation

0x0 NOP

0x1 Burst Setup Write, 8-bit words

0x2 Burst Setup Write, 16-bit words

0x3 Burst Setup Write, 32-bit words

0x5 Burst Setup Read, 8-bit words

0x6 Burst Setup Read, 16-bit words

0x7 Burst Setup Read, 32-bit words

0x9 Internal register write

0xD Internal register select

Table 2: WishBone module command opcode summary
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 3.2.1 Burst Setup

A burst setup command prepares the WishBone module to do either a read or 
write burst, in order to move data to or from a consecutive sequence of addresses on the 
WishBone bus.  The word size of the burst is decoded from the opcode.  The WishBone 
module can use an 8-, 16-,  or 32-bit  word size.   After each individual  word transfer 
during a burst, the address counter in the ADI is incremented according to the word size: 
it will be incremented by 1, 2, or 4, for 8-, 16-, and 32-bit words respectively.

After a burst setup command has been executed (in the UPDATE_DR state), the 
WishBone module will enter 'burst read' or 'burst write'  mode, the next time the TAP 
enters SHIFT_DR mode.  Whether read or write mode is used depends on the opcode 
sent with the burst setup command.  Details on burst read and burst write modes are in 
the following sections.
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Bit #
Ac

ce
ss

Description

52 W Top-Level Select
Set to '0' for all sub-module commands

48:51 W Opcode
Operation  to  perform.  The  following  are  valid  burst  setup 
operations:
0x1 = Burst Write, 8-bit words
0x2 = Burst Write, 16-bit words
0x3 = Burst Write, 32-bit words
0x5 = Burst Read, 8-bit words
0x6 = Burst Read, 16-bit words
0x7 = Burst Read, 32-bit words

47:16 W Address
The first WishBone address which will be read from or written to

0:15 W Count
Total number of words to be transferred.  Note that this means that 
the total number of bits transferred depends both on this field, and 
on the opcode.  Must be greater than 0.

Table 3: WishBone module Burst Setup command format

 3.2.2 Burst Write

The next time the ADI is accessed after sending a valid burst write command, the 
WishBone module will be in burst write mode.  In this mode, commands and data are not 
interpreted or executed on transition through UPDATE_DR.  Instead, counters are used 
to determine position in the bitstream, and a word is written to the WishBone as soon as it 
has been transferred in via JTAG.  The total length of a burst write transfer depends on 
the word size (set by the opcode) and the count fields in the burst setup command; for a 
word size of n and a transfer of m words, the total length will be ((n + 1) * m) + 34.

The first bit transferred in a burst write is a '1' start bit.  This tells the WishBone 
module to begin counting bits, and is required due to the possibility of multiple devices 
on the JTAG chain.  After the start bit,  one word of data is transferred into the ADI, 
followed by a status bit, which is transferred out of the ADI, and should be read by the 
software driver.  The status bit tells the user whether the WishBone was ready to accept 
the word just transferred; when true, the bus was ready.  When false, the word was not 
written to the WishBone, and the software driver should retry the transfer, starting from 
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the failed word.  Note that  timing of the actual  reception of the status bit  may vary, 
depending on the number of other devices on the JTAG chain.

Data transmission continues to alternate data word and status bit until all words 
have been transferred.  Immediately following the last status bit, a 32-bit CRC code is 
transferred into the WishBone module.  This CRC is compared with a CRC computed 
internally  to  the  WishBone module.   After  the CRC is  transferred  in,  a  single  bit  is 
transferred out of the ADI, indicating whether or not the CRC written matched the CRC 
calculated.  A burst write transaction may be aborted at any time by moving the TAP 
through the UPDATE_DR state.

The CRC protects only the data bits in a burst transaction; commands and status 
bits  are  not  included  in  the  CRC  computation.   The  CRC  resets  before  each  burst 
transaction.  For more information on the CRC calculation, see chapter 6.

WishBone  bus  errors  are  captured  during  a  burst,  but  the  information  is  not 
transferred  during  the  burst  transaction.   After  a  burst,  the  user  should  check  the 
WishBone module error register to see if a bus error occurred during the burst, and if so, 
at what address.  See the section on WishBone sub-module internal registers for details 
on the error register.

Note that extra bits sent at the end of a burst write are ignored; thus, the user need 
not  worry  about  sending  a  valid  or  safe  operation/opcode  at  the  end  of  the  burst 
transaction.
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Bits
Ac

ce
ss

Description

1 bit R Match
'1' if CRC sent matches internal CRC computation, '0' if not

32 bits W CRC
32-bit CRC computed on all of the data bits of the burst 

1 bit R Status
'1' if the most recently sent data word was written to the WishBone, 
'0' if the bus was not ready.  Sent  m times, once after each data 
word.

n bits W Data
Data word.   Length specified  by the opcode in  the burst  setup 
command.  Sent m times.

1 bit W Start Bit
Set to '1' to indicate the start of a burst write.

Table 4: WishBone module burst write format

 3.2.3 Burst Read

The next time the ADI is accessed after sending a valid burst read command, the 
WishBone module will be in burst read mode.  In this mode, commands and data are not 
interpreted or executed on transition through UPDATE_DR.  Instead, counters are used 
to determine position in the bitstream, and a word is read from the WishBone while the 
previous data word is transferred out via JTAG.  The total length of a burst read transfer 
depends on the word size (set  by the opcode) and the count fields in the burst setup 
command; for a word size of n and a transfer of m words, the total length will be ((n + 1) 
* m) + 32.

The first  bit  (or  bits)  transferred  during a  burst  read is  a  status  bit.   This  bit 
indicates whether or not data from the WishBone is ready to be transferred out via JTAG. 
The WishBone module will send '0' bits until a word is ready, then send a single '1' bit. 
One data word will follow a '1' status bit.  The status bit is used to prevent data underruns 
and retries; a retry should never be necessary due to a data underrun in the WishBone 
module.

A status  bit  (or bits)  is  transferred before each data  word.   Data transmission 
continues to alternate status bits and data words until all words have been transferred. 
Immediately following the last data word, a 32-bit CRC code is sent from the WishBone 
module to the driver software.  The driver software should compare the CRC received 
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with one computed internally, to determine whether or not the complete transaction must 
be retried.

The CRC protects only the data bits in a burst transaction; commands and status 
bits  are  not  included  in  the  CRC  computation.   The  CRC  resets  before  each  burst 
transaction.  For more information on the CRC calculation, see chapter 6.

WishBone  bus  errors  are  captured  during  a  burst,  but  the  information  is  not 
transferred  during  the  burst  transaction.   After  a  burst,  the  user  should  check  the 
WishBone module error register to see if a bus error occurred during the burst, and if so, 
at what address.  See the section on WishBone sub-module internal registers for details 
on the error register.

Note that extra bits sent at the end of a burst read are ignored; thus, the user need 
not  worry  about  sending  a  valid  or  safe  operation/opcode  at  the  end  of  the  burst 
transaction.

Bits

Ac
ce

ss

Description

32 bits R CRC
32-bit CRC computed on all of the data bits of the burst 

n bits R Data
Data word.   Length specified  by the opcode in  the burst  setup 
command.  Sent m times.

1 bit R Status
Read '0' until a word is ready to be sent, then a single '1' bit is sent 
before the data word.

Table 5: WishBone module burst read format
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Figure 7: Burst Read format
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 3.2.4 Register Select

A register select command will make the module-internal register with the given 
index active (in the currently selected sub-module).  While any register in the current 
module can be written with a single command, only the active register can be read.

When the TAP enters CAPTURE_DR mode, the WishBone module captures the 
value of the active register into the output shift register, allowing the value to be read 
when the TAP is in SHIFT_DR mode.  This will happen each time a command is sent to 
the WishBone module, unless the previous command was a burst setup.

The register select command uses the same top-level select bit and opcode format 
as the other WishBone module commands.  In this case, the opcode is followed by a 1-bit 
value,  which is  the index of the register  which should be made active.   See the API 
section on registers for a complete listing of all registers in the WishBone module, and 
the meaning of each.

Bit #

Ac
ce

ss

Description

5 W Top-Level Select
Set to '0' for all sub-module commands

4:1 W Opcode
Operation to perform.
0xD = Internal Register Select

0 W Index
Index of the register to make active.  The WishBone module uses 
a 1-bit index.

Table 6: WishBone module Register Select command format
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 3.2.5 Register Read

There is no specific command to read a module internal register; the value of the 
active register  is shifted out every time a command is shifted in.   In order to read a 
particular register, make that register active using the register select command, then read 
out the value of the register while sending a NOP command.  The length of each register 
may vary, and the meaning of each bit is also register-specific.  The register data will be 
LSB-aligned; that is, the LSB of the register data will be the first bit shifted out of the 
ADI.  This allows the minimum number of JTAG bits to be transferred.  It is legal to read 
more bits than the active register has – the additional bits will have undefined value, and 
should be discarded.  Note that only register data will be transferred out, no command, 
index, opcodes, start, or status bits will be sent with it.  It is legal to abort a register read 
at any time, provided that a valid command (probably a NOP) is in the correct position in 
the input shift register.

 3.2.6 Register Write

A register write command contains both a register index, and data to be written to 
the  register  at  that  index.   The register  with  the  given  index will  become the  active 
register  after  this command is executed.   Note that  the value of the  previously active 
register will be shifted out as this command is shifted in.  The length of the data field is 
variable, and depends on the particular register being written.  See the API section on 
registers for a complete description of the registers, their lengths, and their meanings.
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Figure 9: Register Write command format

0

0 Opcode Index

n+1n+5

Data

n

http://www.opencores.org/


Open Cores Advanced Debug Interface 5/13/2009

Bit #
Ac

ce
ss

Description

5
+ n

W Top-Level Select
Set to '0' for all sub-module commands

(4:1)
+ n

W Opcode
Operation to perform.
0x9 = Internal Register Write

n W Index
Index of the register to make active.  The WishBone module uses 
a 1-bit index.

n-1:0 W Data
n bits of data to write to the register specified by Index.  n depends 
on the register being written.

Table 7: WishBone module Register Write command format

 3.2.7 NOP

A NOP command will perform no operation.  It is included as a “safe” command 
to  shift  into  the WishBone module  while  shifting out  internal  register  data.   A NOP 
command consists of five or more zeros, making it easy to send for any length of data 
read.
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Figure 10: NOP command format
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Bit #
Ac

ce
ss

Description

4 + n W Top-Level Select
Set to '0' for all sub-module commands

(3:0)
+ n

W Opcode
Operation to perform.
0x0 = NOP

n:0 W Zero
Zero or more '0' bits

Table 8: WishBone module NOP command format

 3.3 CPU Commands
The  CPU  sub-module  uses  the  same  standardized  command  format  as  the 

WishBone module.  Each command must have a zero as the MSB, to differentiate it from 
a  module  select  command.   In  the  next  four  most-significant  bit  positions  is  a  4-bit 
opcode, which indicates the operation to be performed.  Following the opcode are zero or 
more data values, whose length and meaning are command-specific.  Table 9 summarizes 
the opcodes supported in the CPU module.

OPCODE Operation

0x0 NOP

0x3 Burst Setup Write, 32-bit words

0x7 Burst Setup Read, 32-bit words

0x9 Internal register write

0xD Internal register select

Table 9: CPU module command opcode summary
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 3.3.1 Burst Setup

A burst setup command prepares the CPU module to do either a read or write 
burst,  in  order  to  move  data  to  or  from  a  consecutive  sequence  of  address  on  the 
OR1200's SPR bus.  Because all SPRs are 32-bit registers, all burst transfers in the CPU 
module use 32-bit words.  After each individual word transfer during a burst, the address 
counter  in  the  CPU  module  is  incremented  by  1.   Note  that  while  the  OR1000 
architecture defines an SPR address as 16 bits, the OR1200 implementation uses a 32-bit 
address in its external debug interface.  The ADI is designed to use the 32-bit OR1200 
implementation.

After a burst setup command has been executed (in the UPDATE_DR state), the 
CPU module will enter 'burst read' or 'burst write' mode, the next time the TAP enters 
SHIFT_DR mode.  Whether read or write mode is used depends on the opcode sent with 
the  burst  setup  command.   Details  on  burst  read  and  burst  write  modes  are  in  the 
following sections.

Bit #

Ac
ce

ss

Description

52 W Top-Level Select
Set to '0' for all sub-module commands

48:51 W Opcode
Operation to perform.  The following opcodes are valid burst setup 
operations for the CPU module:
0x3 = Burst Write, 32-bit words
0x7 = Burst Read, 32-bit words

47:16 W Address
The first OR1200 SPR  address which will be read or written

0:15 W Count
Total number of 32-bit words to be transferred.

Table 10: CPU module Burst Setup command format
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Figure 11: Burst Setup command
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 3.3.2 Burst Write

The next time the ADI is accessed after sending a valid burst write command, the 
CPU module will be in burst write mode.  In this mode, commands and data are not 
interpreted or executed on transition through UPDATE_DR.  Instead, counters are used 
to determine position in the bitstream, and a word is written to the CPU SPR bus as soon 
as it has been transferred in via JTAG.  The total length of a burst write transfer depends 
on the count field in the burst setup command; for a transfer of m words, the total length 
will be (33 * m) + 34.

The first bit transferred in a burst write is a '1' start bit.  This tells the CPU module 
to begin counting bits, and is required due to the possibility of multiple devices on the 
JTAG chain.  After the start bit, one word of data is transferred into the ADI, followed by 
a status bit,  which is transferred  out of the ADI, and should be read by the software 
driver.  The status bit tells the user whether the OR1200 was ready to accept the word just 
transferred; when true, the bus was ready.  When false, the word was not written to the 
SPR bus, and the software driver should retry the transfer, starting from the failed word. 
Note that timing of the actual  reception of the status bit  may vary,  depending on the 
number of other devices on the JTAG chain.

Data transmission continues to alternate data word and status bit until all words 
have been transferred.  Immediately following the last status bit, a 32-bit CRC code is 
transferred  into  the  CPU  module.   This  CRC  is  compared  with  a  CRC  computed 
internally to the CPU module.  After the CRC is transferred in, a single bit is transferred 
out of the ADI, indicating whether or not the CRC written matched the CRC calculated. 
A burst write transaction may be aborted at any time by moving the TAP through the 
UPDATE_DR state.

The CRC protects only the data bits in a burst transaction; commands and status 
bits  are  not  included  in  the  CRC  computation.   The  CRC  resets  before  each  burst 
transaction.  For more information on the CRC calculation, see chapter 6.

The OR1200 SPR bus does not provide any sort of error indication beyond ready / 
not ready.  As such, there is no error register to be tested after a burst (as opposed to the 
WishBone module, which has such a register).

Note that extra bits sent at the end of a burst write are ignored; thus, the user need 
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Bits
Ac

ce
ss

Description

1 bit R Match
'1' if CRC sent matches internal CRC computation, '0' if not

32 bits W CRC
32-bit CRC computed on all of the data bits of the burst 

1 bit R Status
'1' if the most recently sent data word was written to the SPR bus, 
'0' if the bus was not ready.  Sent  m times, once after each data 
word.

n bits W Data
32-bit data word.  Sent m times.

1 bit W Start Bit
Set to '1' to indicate the start of a burst write.

Table 11: CPU module burst write format

 3.3.3 Burst Read

The next time the ADI is accessed after sending a valid burst read command, the 
CPU module will  be in burst  read mode.   In this  mode,  commands and data are not 
interpreted or executed on transition through UPDATE_DR.  Instead, counters are used 
to determine position in the bitstream, and a word is read from the CPU SPR bus while 
the previous data word is transferred out via JTAG.  The total  length of a burst read 
transfer depends on the count field in the burst setup command; for a transfer of m words, 
the total length will be (33 * m) + 32.

The first  bit  (or  bits)  transferred  during a  burst  read is  a  status  bit.   This  bit 
indicates whether or not data from the SPR bus is ready to be transferred out via JTAG. 
The CPU module will send '0' bits until a word is ready, then send a single '1' bit.  One 
data word will follow a '1' status bit.  The status bit is used to prevent data underruns and 
retries; a retry should never be necessary due to a data underrun in the CPU module.

A status  bit  (or bits)  is  transferred before each data  word.   Data transmission 
continues to alternate status bits and data words until all words have been transferred. 
Immediately following the last status bit, a 32-bit CRC code is sent from the CPU module 
to the driver software.  The driver software should compare the CRC received with one 
computed  internally,  to  determine  whether  or  not  the  complete  transaction  must  be 
retried.
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The CRC protects only the data bits in a burst transaction; commands and status 
bits  are  not  included  in  the  CRC  computation.   The  CRC  resets  before  each  burst 
transaction.  For more information on the CRC calculation, see chapter 6.

The OR1200 SPR bus does not provide any error indication for failed transactions 
beyond  ready /  not  ready.   Thus,  there  is  no error  register  to  check after  a  burst  is 
completed (as opposed to the WishBone module).

Note that extra bits sent at the end of a burst read are ignored; thus, the user need 
not  worry  about  sending  a  valid  or  safe  operation/opcode  at  the  end  of  the  burst 
transaction.

Bits

Ac
ce

ss

Description

32 bits R CRC
32-bit CRC computed on all of the data bits of the burst 

n bits R Data
Data word.   Length specified  by the opcode in  the burst  setup 
command.  Sent m times.

1 bit R Status
Read '0' until a word is ready to be sent, then a single '1' bit is sent 
before the data word.

Table 12: CPU module burst read format

 3.3.4 Register Select

A register select command will make the module-internal register with the given 
index active (in the currently selected sub-module).  While any register in the current 
module can be written with a single command, only the active register can be read.
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When the TAP enters CAPTURE_DR mode, the CPU module captures the value 
of the active register into the output shift register, allowing the value to be read when the 
TAP is in SHIFT_DR mode.  This will happen each time a command is sent to the CPU 
module, unless the previous command was a burst setup.

The register select command uses the same top-level select bit and opcode format 
as the other module commands.  In this case, the opcode is followed by a 1-bit value, 
which is the index of the register which should be made active.  See the API section on 
register for a complete listing of all registers in the CPU module, and the meaning of 
each.

Bit #

Ac
ce

ss

Description

5 W Top-Level Select
Set to '0' for all sub-module commands

4:1 W Opcode
Operation to perform.
0xD = Internal Register Select

0 W Index
Index of the register to make active.  The CPU module uses a 1-bit 
index.

Table 13: CPU module Register Select command format

 3.3.5 Register Read

There is no specific command to read a module internal register; the value of the 
active register  is shifted out every time a command is shifted in.   In order to read a 
particular register, make that register active using the register select command, then read 
out the value of the register while sending a NOP command.  The length of each register 
may vary, and the meaning of each bit is also register-specific.  The register data will be 
LSB-aligned; that is, the LSB of the register data will be the first bit shifted out of the 
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Figure 14: Register Select command format
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ADI.  This allows the minimum number of bits to be transferred over the JTAG, and 
allows the user to ignore the total length of the output shift register.  It is legal to read 
more bits than the active register has – the additional bits will have undefined values, and 
should be discarded.  Note that only register data will be transferred out; no command, 
index, opcodes, start, or status bits will be sent with it.  It is legal to abort a register read 
at any time, provided that a valid command (probably a NOP) is in the correct position in 
the input shift register.

 3.3.6 Register Write

A register write command contains both a register index and data to be written to 
the  register  at  that  index.   The register  with  the  given  index will  become the  active 
register  after  this command is executed.   Note that  the value of the  previously active 
register will be shifted out as this command is shifted in.  The length of the data field is 
variable, and depends on the particular register being written.  See the API section on 
registers for a complete description of the registers, their lengths, and their meanings.
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Bit #
Ac

ce
ss

Description

5
+ n

W Top-Level Select
Set to '0' for all sub-module commands

(4:1)
+ n

W Opcode
Operation to perform.
0x9 = Internal Register Write

n W Index
Index of the register to make active.  The CPU module uses a 1-bit 
index.

n-1:0 W Data
n bits of data to write to the register specified by Index.  n depends 
on the register being written.

Table 14: CPU module Register Write command format

 3.3.7 NOP

A NOP command will perform no operation.  It is included as a “safe” command 
to shift into the CPU module while shifting out internal register data.  A NOP command 
consists of five or more zeros, making it easy to send for any length of data read.
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Bit #
Ac

ce
ss

Description

4 + n W Top-Level Select
Set to '0' for all sub-module commands

(3:0)
+ n

W Opcode
Operation to perform.
0x0 = NOP

n:0 W Zero
Zero or more '0' bits
Table 15: CPU module NOP command format

 3.4 WishBone Module Registers
Table  16 summarizes  all  of  the registers  contained  within the WishBone sub-

module.  Note that the data format of a register may be different depending on whether it 
is read or written; this saves the user from having to shift in extra bits to fill read-only 
values when writing.

Index Register name

0x0 Error register

Table 16: WishBone module register summary

 3.4.1 Error Register

The error register captures WishBone bus errors during burst transactions.  Each 
time a bus access is completed, the WishBone error indicator bit (wb_err) is tested.  If an 
error is present, then the error bit in the error register is set to '1', and the address of the 
failed access is stored in the rest of the error register.  Once the error bit is set, the error 
register will retain its value and further WishBone errors will be ignored until the error 
bit is reset.  The error bit may only be reset by writing a '1' to the error bit via an internal 
register write.

When read, the error bit is the first bit shifted out.  This allows transferring the 
minimum number of bits when testing whether an error has occurred (5 bits  must be 
transferred  in  order  to  send a  valid  NOP command  while  reading).   If  an  error  has 
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occurred, then an error handling routine in the driver software can read the error register 
again to get the 32-bit error address – the value will not change until the error bit is reset.

When written, the error register consists of a single bit, the error bit.  This should 
be written as '1' in order to clear the error bit and re-enable error detection.

 

Bit #

Ac
ce

ss

Description

33:1 R Address
When error bit = '1', contains the address of the failed transaction

0 R Err (when read)
Error bit.  Set to '1' when a WishBone error has occurred since the 
last time the error bit was reset.

0 W Err (when written)
Write as '1' to reset the error bit to '0' and re-enable error detection

Table 17: WishBone module Error Register format
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 3.5 CPU Module Registers
Table 18 summarizes all of the registers present within the CPU sub-module.

Index Register name

0x0 Status register

Table 18: CPU module register summary

 3.5.1 Status Register

The status register is used to control the reset line to the CPU, and to detect and 
control breakpoint conditions.  The format is the same whether read or written.

Bit 1 of the register controls the reset line to the CPU.  When written as a '1', reset 
to the CPU is active, and the CPU is put into a reset state.  When written '0', the reset line 
is negated, and the CPU may run normally.   The reset bit can only be changed by an 
internal register write in the CPU module.

Bit 0 of the status register detects breakpoints, and controls the stall line to the 
CPU.  When written '1' via internal register write, the stall line to the CPU is made active, 
and  the  CPU stops  executing  instructions  (but  retains  the  ability  to  resume).   When 
written '0', the stall line is negated, and the CPU resumes execution.  The stall bit will 
also be set when the breakpoint output of the CPU goes active.  The breakpoint output 
will be registered, the stall bit will be set, and the CPU will be held in the stall state by 
the ADI.  This condition must be detected by polling in the software driver – once stalled 
due to a breakpoint, the CPU cannot resume execution until the stall bit is reset to '0' by 
an internal register access via JTAG.
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Bit #
Ac

ce
ss

Description

1 R/W Reset
Set to '1' to put the CPU in reset state.  Set to '0' to allow the CPU 
to restart execution.

0 R/W Stall
Set to '1' to suspend execution in the CPU.  Set to '0' to resume. 
Will be set to '1' automatically when a breakpoint indicator arrives 
from the CPU.
Table 19: CPU module Status Register format
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 4 
IO Ports

 4.1 TAP Ports 
The Advanced Debug Interface connects to the TAP controller with the signals shown in 
Table 20.

Port

W
id

th

  D
ire

ct
io

n

Description

tck_i 1 input Test clock input
tdi_i 1 input Test data input
tdo_o 1 output Test data output
shift_dr_i 1 input TAP controller state “Shift DR”
pause_dr_i 1 input TAP controller state “Pause DR”
update_dr_i 1 input TAP controller state “Update DR”
capture_dr_i 1 Input TAP controller state “Capture DR”
rst_i 1 input Reset signal. 
debug_select_i 1 input Instruction DEBUG is activated

Table 20: TAP Ports
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 4.2 CPU Ports
For each CPU module  included,  one set  of  I/O lines  for  that  module  will  be 

present.  The 'n' in the port name will be replaced with the CPU module number, always 
starting from 0.  These lines are shown in Table 21.

Port   W
id

th

 D
ire

ct
io

n

Description

cpun_clk_i 1 input CPU clock signal.
cpun_addr_o 32 output CPU address
cpun_data_i 32 input CPU data input (data from CPU)
cpun_data_o 32 output CPU data output (data to CPU)
cpun_bp_i 1 input CPU breakpoint
cpun_stall_o 1 output CPU stall (selected CPU is stalled)
cpun_stb_o 1 output CPU strobe

cpun_we_o 1 output CPU write enable signal indicates a write cycle when 
asserted high (read cycle when low).

cpun_ack_i 1 input CPU acknowledge (signals end of cycle)
cpun_rst_o 1 output CPU reset output (resets CPU)

Table 21: CPU Ports

 4.3 WISHBONE Ports
The WishBone module, if included, will add a set of WishBone interface signals 

to the top-level IO, as described in Table 22.

Port   W
id

th

  D
ire

ct
io

n

Description

wb_clk_i 1 input WISHBONE clock
wb_ack_i 1 input WISHBONE acknowledge indicates a normal cycle 
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Port   W
id

th

  D
ire

ct
io

n

Description

termination
wb_adr_o 32 output WISHBONE address output

wb_cyc_o 1 output WISHBONE  cycle  encapsulates  a  valid  transfer 
cycle.

wb_dat_i 32 input WISHBONE data input (data from WISHBONE)
wb_dat_o 32 output WISHBONE data output (data to WISHBONE)

wb_err_i 1 input WISHBONE  error  acknowledge  indicates  an 
abnormal cycle termination

wb_sel_o 4 output WISHBONE select  indicates  which  bytes  are  valid 
on the data bus. 

wb_stb_o 1 output WISHBONE strobe indicates a valid transfer.

wb_we_o 1 output WISHBONE   write  enable  indicates  a  write  cycle 
when asserted high (read cycle when low).

wb_cab_o 1 output WISHBONE consecutive address burst  indicates a 
burst cycle. (always false)

wb_cti_o 3 output WISHBONE  cycle  type  identifier  indicates  type  of 
cycle (single, burst, end of burst) (always single)

wb_bte_o 2 output WISHBONE burst type extension (always 0)

Table 22: WISHBONE Ports
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 5 
Module Configuration

The Advanced Debug Interface supports three options, which allow the user to 
configure which sub-modules will be included when the design is synthesized.

Option:  DBG_WISHBONE_SUPPORTED
Use:  Define this option if you want to include a WishBone module in the ADI.  Default 
is defined.

Option:  DBG_CPU0_SUPPORTED
Use:   Define  this  option  if  you  want  to  include  one  or  more  OR1200  CPU  debug 
modules.  Default is defined.

Option: DBG_CPU1_SUPPORTED
Use:  Define this option if you want to include a second OR1200 CPU debug module. 
Default is undefined.

One other WishBone-specific option can be found in adbg_wb_defines.v:

Option: DBG_WB_LITTLE_ENDIAN
Use:  Define this option when the system CPU uses big-endian byte ordering.  When left 
undefined,  little-endian  byte  ordering  (the  OR1200 default)  will  be  used.   Default  is 
undefined.
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 6 
CRC Module

A CRC calculation module is contained within each WishBone and CPU sub-
module.  The CRC module is active only during burst read and write transactions.  It 
calculates a 32-bit CRC on only the data bits of the transaction, starting with the LSB of 
the first word transferred, and ending with the MSB of the last word transferred.

In order to simplify the hardware, it  was desirable to have the shift performed 
during the CRC calculation be in the same direction as the shift required to read out the 
CRC serially, LSB-first.  This is the reverse of previous CRC implementations.  As such, 
the CRC polynomial used is also the bitwise-reverse of the standard Ethernet CRC-32 
polynomial:  0xEDB88320.  A C-language routine for computing a compatible CRC, up 
to 32 bits at a time, is reproduced below.  When computing a CRC for multiple words, 
the output  of the last  call  to  compute_crc() should be passed to the next call  as 
crc_in.  When calling compute_crc() for the first word of a burst, crc_in should 
be set to 0xFFFFFFFF.
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#define CRC_POLY 0xEDB88320

uint32_t compute_crc(uint32_t crc_in, uint32_t data_in, 
int length_bits) 

{
uint32_t crc_out, c, d;
int i;

crc_out = crc_in;
for(i = 0; i < length_bits; i++) {

d = ((data_in >> i) & 0x1) ? 0xffffffff : 0x0;
c = (crc_out & 0x1) ? 0xffffffff : 0x0;
crc_out = crc_out >> 1;
crc_out = crc_out ^ ((d ^ c) & CRC_POLY);

}

return crc_out;
}
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