

Altera Virtual JTAG
(Test Access Port)

Author: Nathan Yawn
nathan.yawn@opencores.org

Rev. 1.0

July 18, 2008

Open Cores Altera Virtual JTAG 5/16/2009

Copyright (C) 2008-2009 Nathan Yawn

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license should be included with this document. If not, the license may be obtained from
www.gnu.org, or by writing to the Free Software Foundation.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

Rev 1.0 Page 2 of 10

http://www.gnu.org/

Open Cores Altera Virtual JTAG 5/16/2009

History
Rev. Date Author Description
1.0 18/07/2008 Nathan Yawn First Draft

Rev 1.0 Page 3 of 10

Open Cores Altera Virtual JTAG 5/16/2009

Contents
1. INTRODUCTION..5

2. OPERATION..6
2.1. ALTERA SLD_VIRTUAL_JTAG MEGAFUNCTION ..6
2.2. INSTRUCTIONS...6
2.3. COMMUNICATING WITH THE SLD_VIRTUAL_JTAG...7

3. IO PORTS...8
3.1. DEBUG PORTS...8

4. REGISTERS...9
4.1. REGISTER LIST..9
4.2. VIRTUAL IR (INSTRUCTION REGISTER)...9

5. INTEGRATED SYSTEM..10

Rev 1.0 Page 4 of 10

Open Cores Altera Virtual JTAG 5/16/2009

1
Introduction

The Altera Virtual JTAG core is used for development purposes (hardware and software
debugging). It uses the Altera sld_virtual_jtag megafunction to allow debugging of an OpenRisc-based
System-on-Chip (SoC) using the same JTAG interface IO pins used to upload the bitstream to the
FPGA. This core can only be used in Altera FPGAs which support the sld_virtual_jtag megafunction.
Before continuing with this document, it is recommended that you familiarize yourself with the IEEE
1149.1 specification (JTAG and Boundary Scan), and also that you read the Altera document
“sld_virtual_jtag Megafunction User Guide.”

The altera_virtual_jtag core is designed to replace the “jtag” Test Access Port (TAP) core in an
Altera-based system. It is designed to provide an interface between the FPGA's JTAG pins and the SoC
debug core. In particular, the altera_virtual_jtag core is designed to interface with the Advanced Debug
Interface (adv_dbg_if core). Other debug cores may require modification in order to work with this
one. Note that while the virtual JTAG core provides only a single device enable output (for the debug
core), it is a fully functional JTAG TAP, and other Data Register chains could easily be added.

Rev 1.0 Page 5 of 10

Open Cores Altera Virtual JTAG 5/16/2009

2
Operation

This section describes the operation of the altera_virtual_jtag core. The altera_virtual_jtag core
relies heavily on the Altera sld_virtual_jtag megafunction for its operation. In fact, the core is primarily
a thin wrapper and instruction decoder for the megafunction.

2.1. Altera sld_virtual_jtag Megafunction
This megafunction is designed to allow a user-defined JTAG scan chain to be accessed through

the same pins used to upload a configuration bitstream to the FPGA. It consists of two components.
The “hard TAP” is the chip's primary JTAG TAP, with external TCK, TMS, TDI, and TDO pins. The
hard TAP is implemented in VLSI as part of the FPGA chip, and cannot be changed by configuring the
FPGA. The “virtual TAP” is implemented using FPGA LUT and register resources. It has no external
access pins; the virtual TAP IR and DR are accessed through the hard TAP. This allows a virtual TAP
to be created with any length of IR, and any number of DRs.

In order to write a value to the virtual TAP IR, a user must write a VIR instruction to the hard
TAP IR. This makes the virtual IR active as a Data Register of the hard TAP. A value can then be
shifted into the virtual IR using a data shift. Once the virtual IR has been set, the virtual DR can be
made active by placing a VDR instruction in the hard TAP's IR.

2.2. Instructions
The altera_virtual_jtag instantiates an sld_virtual_jtag with a virtual IR 4 bits long, the same

length used by the “jtag” core. Because the hard TAP in the FPGA provides all of the standard JTAG
instructions (BYPASS, MBIST, IDCODE, etc.), the virtual TAP does not support them, in order to save
logic. The virtual TAP supports only a single instruction, DEBUG (IR=1000b), which is used to
communicate with the SoC debug interface (see the documentation for the adv_dbg_if for details). The
value for this instruction was also selected to match the value used by the “jtag” core.

The debug interface core is connected as the Data Register (DR) of the virtual JTAG when the
DEBUG instruction is active in the virtual IR. Data from the altera_virtual_jtag core to the debug core
is assumed to be latched on the rising edge of the TCK ouput clock. Data from the debug core to the
virtual jtag core is latched on the falling edge of TCK.

Rev 1.0 Page 6 of 10

Open Cores Altera Virtual JTAG 5/16/2009

2.3. Communicating with the sld_virtual_jtag
Altera does not publish details on communication with the sld_virtual_jtag megafunction.

However, using Altera's command-line JTAG communication tool, it is possible to determine the
procedure necessary to drive the sld_virtual_jtag. The following conventions should be used:

● The VIR instruction is 0x0E for all currently known Altera FPGAs. Placing this (10-bit)
value in the hard TAP's IR will make the virtual IR active.

● One bit is added to the length of the virtual IR specified in the sld_virtual_jtag instantiation.
Thus, the virtual IR length of the altera_virtual_jtag core is actually 5. A '1' must be placed
into this extra bit, in the MSB position. To make the virtual DEBUG instruction active, the
5-bit value “11000” must be shifted into the virtual IR.

● The VDR instruction is 0x0C for all currently known Altera FPGAs. Placing this (10-bit)
value in the hard TAP's IR will make the virtual DR active. The virtual DR is directly
connected as the hard DR, no bits are added.

Note that these conventions have only been tested for the altera_virtual_jtag core, and may
not work for other uses of the sld_virtual_jtag megafunction. In particular, the added '1' bit required
in the virtual IR may change if more than one virtual JTAG device is used in the system (e.g.
SignalProbe, SignalTap, or a second sld_virtual_jtag).

Rev 1.0 Page 7 of 10

Open Cores Altera Virtual JTAG 5/16/2009

3
IO Ports

This section describes the top-level ports of the altera_virtual_jtag core. Because all of the
JTAG signals come through the sld_virtual_jtag megafunction, the only ports from the core are used
to interface to the debug core.

3.1. Debug Ports

Port

 W
id

th

 D
ire

ct
io

n

Description

tck_o 1 output JTAG clock signal

test_logic_reset_o 1 output TAP controller state “Test Logic Reset”, acts as
reset signal to sub-modules (debug unit etc.)

run_test_idle_o 1 output TAP controller state “Run Test / Idle”
shift_dr_o 1 output TAP controller state “Shift DR”
pause_dr_o 1 output TAP controller state “Pause DR”
capture_dr_o 1 output TAP controller state “Capture DR”
update_dr_o 1 output TAP controller state “Update DR”

debug_select_o 1 output Debug select, true when DEBUG instruction
active in the virtual IR

tdo_o 1 output TDO signal, connects to all TDI signals of sub-
modules (i.e. debug module)

debug_tdi_i 1 input TDI signal from debug module
Table 1: Debug Ports

Rev 1.0 Page 8 of 10

Open Cores Altera Virtual JTAG 5/16/2009

4
Registers

This section specifies all registers in the Altera Virtual JTAG core.

4.1. Register List

Name

 W
id

th

 A
cc

es
s

Description

Virtual IR 5 R/W Virtual Instruction Register

Table 2: Register List

4.2. Virtual IR (Instruction Register)

Bit #

 A
cc

es
s

Description

4 R/W Must be written as '1', required by sld_virtual_jtag
3:0 R/W Data Register to make active.

1000 = DEBUG

Table 3: IR Register

This register is always read as 10101b.

Rev 1.0 Page 9 of 10

Open Cores Altera Virtual JTAG 5/16/2009

5
Integrated System

The Altera Virtual JTAG core is just one part of the complete debugging system. To be useful,
the system-on-chip must also include a compatible debug core (i.e. the adv_dbg_if core), a WishBone
bus, and an OR1200 CPU (or a CPU with a compatible debug interface). Externally, the debugging
system must include a JTAG cable, GDB (the GNU Debugger program), a GDB-to-JTAG bridge
program (i.e. adv_jtag_bridge), and an optional graphical front-end to GDB, such as DDD or Eclipse.
A block diagram of this system is shown in Figure 1.

Rev 1.0 Page 10 of 10

Figure 1: Complete Debug System Block Diagram

OR1200
CPU

Advanced
Debug

Interface

Altera
Virtual
JTAG

JTAG Cable

Advanced JTAG
Bridge

GDB

GDB Front-end
(DDD, Eclipse)

W
i
s
h
b
o
n
e

sld_virtual_jtag

FPGA Hardware

PC Workstation Software

