) OpenCores

ao068000
Specification

Author: Aleksander Osman

E[Ngw% alfik@poczta.fin
ﬂﬂi

Rev. 1.2
January 16, 2011

http://www.opencores.org/

O

OpenCores 2068000 Specification

16. Jan. 2011

This page has been intentionally left blank.

WWW.0PEeNCcores.org Rev 1.0

http://www.opencores.org/

Rev.

1.0

1.1

1.2

Revision History

Date Author Description

28.03.2010 Aleksander Osman First Draft

DBcc opcode microcode fix. Wishbone SEL
11.12.2010 Aleksander Osman signal fix. Project directory structure
simplification.

Aleksander Osman, Core area optimization: biggest gain in ALU
15.01.2011 . . o o ; .
Frederic Requin multiplication and division reimplementation.

Contents

INTRODUCTION ceeeeesseseecensennnnene]l
FEATURES. ...cciiiiiiiie oottt e ettt ettt e e et ettt aaaaesereeaesaeeeaeeeeeeeeeeeaasassssssasassasereresesestanneessesrnnnns 1
WISHBONE COMPATIBILITYceeiiiiiiiiiieieieieieteiaeeteeeeeeeeeeeeeeeeeeeeeeeeessesesssssssssssssasasseseeeeeseeseseeessesesssesssssssrnses 1
L 6 TR 2
SIMILAR PROJECTS.....uuuvvreeeeeetereeeeeesisseeeseenissssseeanissessesssssesesessessssseseesisssessessssssssssssmsseseesssnsssseseseneeeesseseeeensees 2
LLUIMITATIONS. .. cutttvteee e ettt e e eeett e e e eeeate e e e eetaaeeeeeeeaaaaeeeeeesasaeeeeeeaataseseesesaaeeeeeenasaseeeeeanaaseseeeesstaseeeesassresesennaes 3
TODO .. et e ettt e e e ettt e e e s et et e e e e e —— e e e e e e ettt e e e e e ——teeeeea———teessea b aareaeeaeaeeaeaeeraaaraes 3
N S LT RUURR 3
REQUIREMENTS.....ctvviiieieiiieeeeeeeetteeeeeeeetee e e e eeetaaeeeeeestareeeeeeeasaeeeeeeessaseeeeeastaaeseeeensssseeeeesssseeeeeeasrasesesessseeerrees 3
GLOSSARYcuutvveeeeeeiiureeeeeeeeiteeeeeeeestaaeeeseeattaseaeeeeassseeeeesasraseeesaataasaeeeenssaseeeeeessseseseenssaseeeeansssssnnnnnnnnnnnneeesens 4

ARCHITECTURE ceeeensd
AOOBO00.......c.eeeieiiieeeeteee ettt e e e et e e e e e e e e e e —— e e e e e e ———eeeeaa————tee e e ———teeeean ittt eese i —rteeeeanraareessannaas 5
BUS_CONTROL.+1vuttvvvtvereeerereeeeeseeeeseessesessssssssssssssssssssssssssssseseeeesesessesesesssssssssssssssssnsnns 5
REGISTERS . ..ceeettttteteeeeeesssesssssssssssssseseseseseseeeesesessessssssassssssssssssssssssesesesesaessesesssssssssssnsssassssssssssssssssnnnnsessssssnnnns 6
MEMORY _REGISTERS.ceuvvereeeeeesuureeeseesisssseseesnssssssessonssssessemssssssssenisssssessssssssesessosissssesssmssssseseessssessessseseseeeeees 6
DECODER...10ettteteteeeeeeeeeeeesesesesssssresssessssssseseseseeeeeeeeseaemesesesssssssssssssssssseseseeeeeeeeeeeememesassssssssssssssssssssseseeeesssssnnnnss 7
(€] 7] i (0] AT 7
FN 0 SRR 7
MICROCODE_BRANCH. ... utvveeeeeesuureeeeeenitseeseeeesssseeseessssesseeesissssseeesossssessssesssssesesssssssseemssssssessemnsssseeessmsissesesennns 7

OPERATION ceverneessecceeenneesd
SETTING UP THE CORE....ceiiiiiiieieeieeeeeeiesssssssessseeeereeeessseeeeeeeeeseeaeaasasssssssssssssssssssssesesaeseseeeeseemesssssssssssssssnssesesssnes 9
RESETTING THE CORE......ceieeeuittittttitteeeeeeeeeeeeeeeeeeeeeeeeeeaesesssssssssasasesesereeseseaeaeeeeeeeesesesassasssssssssssssnseeseeessrrrnaees 10
PROCESSOR MODES......uvviiiiiiiiutiieeeeeiiteeeeeeeeitaeeeeeeesaseeeeeestsseeeeeeestssseeeeesssseseeeasassseeeeaastsseeeseassssssssssssssnnsnnnnnen 11
PROCESSOR STATES......cuuvviiieiieiireieeeeeeitteeeeeeeetreeeeeesiabeeeeeesetaseeeeeeetseseeeeestsseeeeeaassssseeeesissssesessasseseeseensssssnnsrnes 11

REGISTERS 12

CLOCKS 13

JO PORTS ..o eeeteteteeeeeeeeeteeeteeeeeeeeseeesssssesssesesssasssssssssssssssssssssses 14
WISHBONE IO PORTS.....coiiiiiiiiiiee ettt e et e e e e st e e e e ssaaaeeessesaaaseessssnsseeesssssnssanssennnnnnnns 14
OTHER T PORTS....coiiiiiiiiii ettt ettt e et ettt e e eee it e e e e e e aaaeeeeeeeataseeeeenaareaeeeaeaaeaeaaeseeeeeeeeees 15

REFERENCES 17

1.

Introduction

The OpenCores 2068000 IP Core is a Motorola MC68000 compatible processor.

Features

CISC processor with microcode,

WISHBONE revision B.3 compatible MASTER interface,

Not cycle exact with the MC68000, some instructions take more cycles to
complete, some less,

Uses about 4810 LE on Altera Cyclone II and about 45600 bits of RAM for
microcode,

Tested against the WinUAE M68000 software emulator. Every 16-bit instruction
was tested with random register contents and RAM contents (Processor
verification). The result of execution was compared,

Contains a simple prefetch which is capable of holding up to 5 16-bit instruction
words,

Documentation generated by Doxygen (www.doxygen.org) with doxverilog patch
(http://developer.berlios.de/projects/doxverilog/). The specification 18
automatically extracted from the Doxygen HTML output.

WISHBONE compatibility

Version: WISHBONE specification Revision B.3,
General description: 32-bit WISHBONE Master interface,
WISHBONE signals described in IO Ports,

file://./doxygen/html/page_spec_ports.html
http://developer.berlios.de/projects/doxverilog/
file://./doxygen/html/page_verification.html
file://./doxygen/html/page_verification.html
file://./doxygen/html/classao68000.html

Use

Supported cycles: Master Read/Write, Master Block Read/Write, Master Read-
Modify-Write for TAS instruction, Register Feedback Bus Cycles as described in
chapter 4 of the WISHBONE specification,

Use of ERR_I: on memory access a€*“ bus error, on interrupt acknowledge:
spurious interrupt,

Use of RTY_I: on memory access a€*“ repeat access, on interrupt acknowledge:
generate auto-vector,

WISHBONE data port size: 32-bit,

Data port granularity: 8-bits,

Data port maximum operand size: 32-bits,

Data transfer ordering: BIG ENDIAN,

Data transfer sequencing: UNDEFINED,

Constraints on CLK T signal: described in Clocks, maximum frequency: about 90
MHz.

The 2068000 is used as the processor for the OpenCores aoOCS project -
Wishbone Amiga OCS SoC(http://opencores.org/project.ao0cs).

It can also be used as a processor in a System-on-Chip booting Linux kernel
version 2.6.33.1 up to init program lookup (System-on-Chip example with

2068000 running Linux).

Similar projects

Other free soft-core implementations of M68000 microprocessor include:

OpenCores TG68 (http://www.opencores.org/project.tgb8) - runs Amiga software,
used as part of the Minimig Core,

Suska Atari VHDL WF_68K00_IP Core (http://www.experiment-s.de/en) - runs
Atari software,

OpenCores K68 (http://www.opencores.org/project.k68) - no user and supervisor
modes distinction, executes most instructions, but not all.

OpenCores ae68 (http://www.opencores.org/project,ae68) - no files uploaded as of
27.03.2010.

http://www.opencores.org/project,ae68
http://www.opencores.org/project,k68
http://www.experiment-s.de/en
http://www.opencores.org/project,tg68
file://./doxygen/html/page_soc_linux.html
file://./doxygen/html/page_soc_linux.html
http://opencores.org/project,aoocs
file://./doxygen/html/classao68000.html
file://./doxygen/html/page_spec_clocks.html

Limitations

* Microcode not optimized: some instructions take more cycles to execute than the
original MC68000,

* TRACE not tested,
* The core is still large compared to other implementations.

TODO

* Optimize the desgin and microcode,
* Count the exact cycle count for every instruction,

e Test TRACE,
¢ Write more documentation.

Status

e April 2010: Tested with WinUAE software MC68000 emulator,

* April 2010: Booted Linux kernel up to 1nit process lookup,

* December 2010: Runs as a processor in OpenCores a0OCS project,

* January 2011: Core area optimization by over 33% (Thanks to Frederic Requin).

Requirements

* Icarus Verilog simulator (http://www.icarus.com/eda/verilog/) is required to
compile the tbh 2068000 testbench/wrapper,

* Access to Altera Quartus II instalation directory (directory eda/sim_lib/) is
required to compile the th 2068000 testbench/wrapper,

* GCC (http://gce.gnu.org) is required to compile the WinUAE MC68000 software
emulator,

* Java runtime (http:/java.sun.com) is required to run the a068000 tool
(2068000 _tool documentation),

» Java SDK (http://java.sun.com) is required to compile the a068000 tool
(2068000 _tool documentation),

* Altera Quartus II synthesis tool (http://www.altera.com) is required to synthesise
the soc_for_ linux System-on-Chip (System-on-Chip example with a068000

running Linux).

file://./doxygen/html/page_soc_linux.html
file://./doxygen/html/page_soc_linux.html
http://www.altera.com/
file://./doxygen/html/page_tool.html
http://java.sun.com/
file://./doxygen/html/page_tool.html
http://java.sun.com/
http://gcc.gnu.org/
http://www.icarus.com/eda/verilog/

Glossary

* 2068000 - the 2068000 IP Core processor,
* MC68000 - the original Motorola MC68000 processor.

file://./doxygen/html/classao68000.html
file://./doxygen/html/classao68000.html

2.

Architecture

anGE000
WISHBOME bus lus_control alu
registers MEemaory_registers
€ . Ea
> na | | Dnand An
registers
decoder condition
Interrupt input > + h 4 + microcode
R €~ microcode_branch
[=Ey =}
eset output [5] <
Blocked output [%€

Figure 1: Simplified block diagram of a068000 top module.
2068000

2068000 top level module.

This module contains only instantiations of sub-modules and wire declarations.

file://./doxygen/html/classao68000.html
file://./doxygen/html/classao68000.html
file://./doxygen/html/classao68000.html

bus control

Initiate WISHBONE MASTER bus cycles.

The bus_control module is the only module that has contact with signals from outside of
the IP core. It is responsible for initiating WISHBONE MASTER bus cycles. The cycles
can be divided into:

* memory read cycles (supervisor data, supervisor program, user data, user program
)

* memory write cycles (supervisor data, user data),

* interrupt acknowledge.

Every cycle is supplemented with the following tags:

» standard WISHBONE cycle tags: SGL_O, BLK_O, RMW_O,
» register feedback WISHBONE address tags: CTI_O and BTE_O,
* 2068000 specific cycle tag: fc_o which is equivalent to MC68000 function codes.

The bus_control module is also responsible for registering interrupt inputs and initiating
the interrupt acknowledge cycle in response to a microcode request. Microcode requests a
interrupt acknowledge at the end of instruction processing, when the interrupt privilege
level is higher than the current interrupt privilege mask, as specified in the MC68000
User's Manual.

Finally, bus_control controls also two 2068000 specific core outputs:

* blocked output, high when that the processor is blocked after encountering a
double bus error. The only way to leave this block state is by reseting the 2068000
by the asynchronous reset input signal.

* reset output, high when processing the RESET instruction. Can be used to reset
external devices.

registers

Microcode controlled registers.

Most of the 2068000 IP core registers are located in this module. At every clock cycle the
microcode controls what to save into these registers. Some of the more important
registers include:

* operandl, operand?2 registers are inputs to the ALU,

* address, size, do_read_flag, do_write_flag, do_interrupt_flag registers tell the
bus_control module what kind of bus cycle to perform,

* pc register stores the current program counter,

file://./doxygen/html/classbus__control.html
file://./doxygen/html/classao68000.html
file://./doxygen/html/classao68000.html
file://./doxygen/html/classao68000.html
file://./doxygen/html/classbus__control.html
file://./doxygen/html/classbus__control.html
file://./doxygen/html/classao68000.html
file://./doxygen/html/classbus__control.html
file://./doxygen/html/classbus__control.html

* ir register stores the current instruction word,
* ea_mod, ea_type registers store the currently selected addressing mode.

memory reqisters

Contains the microcode ROM and DO-D7, AO-A7 registers.

The memory registers module contains:

* data and address registers (D0O-D7, AO-A7) implemented as an on-chip RAM.
* the microcode implemented as an on-chip ROM.

Currently this module contains altsyncram instantiations from Altera Megafunction/LPM
library.

decoder

Decode instruction and addressing mode.

The decoder is an instruction and addressing mode decoder. For instructions it takes as
input the ir register from the registers module. The output of the decoder, in this case, is a
microcode address of the first microcode word that performs the instruction.

In case of addressing mode decoding, the output is the address of the first microcode
word that performs the operand loading or saving. This address is obtained from the
currently selected addressing mode saved in the ea_mod and ea_type registers in the
registers module.

condition

Condition tests.

The condition module implements the condition tests of the MC68000. Its inputs are the
condition codes and the currently selected test. The output is binary: the test is true or
false. The output of the condition module is an input to the microcode branch module,
that decides which microcode word to execute next.

alu

Arithmetic and Logic Unit.

The alu module is responsible for performing all of the arithmetic and logic operations of
the 2068000 processor. It operates on two 32-bit registers: operand] and operand2 from

file://./doxygen/html/classao68000.html
file://./doxygen/html/classmicrocode__branch.html
file://./doxygen/html/classmemory__registers.html
file://./doxygen/html/classmemory__registers.html

the registers module. The output is saved into a result 32-bit register. This register is
located in the alu module.

The alu module also contains the status register (SR) with the condition code register.
The microcode decides what operation the alu performs.

microcode branch

Select the next microcode word to execute.

The microcode branch module is responsible for selecting the next microcode word to
execute. This decision is based on the value of the current microcode word, the value of
the interrupt privilege level, the state of the current bus cycle and other internal signals.

The microcode branch module implements a simple stack for the microcode addresses.
This makes it possible to call subroutines inside the microcode.

file://./doxygen/html/classmicrocode__branch.html
file://./doxygen/html/classmicrocode__branch.html
file://./doxygen/html/classmicrocode__branch.html

3.

Operation

The 2068000 IP Core is designed to operate in a similar way as the original MC68000.
The most import differences are:

* the core IO ports are compatible with the WISHBONE specification,

* the execution of instructions in the ao68000 core is not cycle-exact with the
original MC68000 and usually takes a few cycles longer.

Setting up the core

The 2068000 IP Core has an WISHBONE MASTER interface. All standard memory
access bus cycles conform to the WISHBONE specification. These cycles include:

* instruction fetch,
¢ data read,
* data write.

The cycles are either Single, Block or Read-Modify-Write (for the TAS instruction).
When waiting to finish a bus cycle the 2068000 reacts on the following input signals:

* ACK_I: the cycle is completed successfully,

* RTY_I: the cycle is immediately repeated, the processor does not continue its
operation before the current bus cycle is finished. In case of the Read-Modify-
Write cycle - only the current bus cycle is repeated: either the read or write.

* ERRL_I: the cycle is terminated and a bus error is processed. In case of double bus
error the processor enters the blocked state.

There is also a special bus cycle: the interrupt acknowledge cycle. This cycle is a reaction
on receiving a external interrupt from the ipl_i inputs. The processor only samples the
ipl_i lines after processing an instruction, so the interrupt lines have to be asserted for

file://./doxygen/html/classao68000.html
file://./doxygen/html/classao68000.html
file://./doxygen/html/classao68000.html
file://./doxygen/html/classao68000.html

some time before the core reacts. The interrupt acknowledge cycle is performed in the
following way:

* ADR Oissetto { 27b111_1111_1111_1111_1111_1111_1111, 3 bits indicating
the interrupt priority level for this cycle },

e SEL Oissetto4blll1,

* fc_oissetto 3'bll1 to indicate a CPU Cycle as in the original MC68000.

The 2068000 reacts on the following signals when waiting to finish a interrupt
acknowledge bus cycle:

* ACKL_I: the cycle is completed successfully and the interrupt vector is read from
DAT _I[7:0],

* RTY_IL the cycle is completed successfully and the processor generates a auto-
vector internally,

* ERR_I: the cycle is terminated and the processor starts processing a spurious
interrupt exception.

Every bus cycle is supplemented with output tags:

* WISHBONE standard tags: SGL_O, BLK_O, RMW_O, CTI_O, BTE_O,

* 2068000 custom tag: fc_o that operates like the Function Code of the original
MC68000.

The 2068000 core has two additional outputs that are used to indicate the state of the
processor:

* reset_o is a external device reset signal. It is asserted when processing the RESET
instruction. It is asserted for 124 bus cycles. After that the processor returns to
normal instruction processing.

* blocked_o is an output that indicates that the processor is blocked after a double
bus error. When this output line is asserted the processor is blocked and does not
process any instructions. The only way to continue processing instructions is to
reset the core.

Resetting the core

The 2068000 core is reset with a asynchronous reset_n input. After deasserting the signal,
the core starts its standard startup sequence, which is similar to the one performed by the
original MC68000:

* the value of the SSP register is read from address 0,
¢ the value of the PC is read from address 1.

An identical sequence is performed when powering up the core for the first time.

file://./doxygen/html/classao68000.html
file://./doxygen/html/classao68000.html
file://./doxygen/html/classao68000.html
file://./doxygen/html/classao68000.html

Processor modes

The 2068000 core has two modes of operation - exactly like the original MC68000:

* Supervisor mode
* User mode.

Performing a privileged instruction when running in user mode results in a privilege
exception, just like in MC68000.

Processor states

The 2068000 core can be in one of the following states:

* instruction processing, which includes group 2 exception processing,
* group 0 and group 1 exception processing,

» external device reset state when processing the RESET instruction,

* blocked state after a double bus error.

file://./doxygen/html/classao68000.html
file://./doxygen/html/classao68000.html

4.

Registers

The 2068000 IP Core is a WISHBONE Master and does not contain any registers
available for reading or writing from outside of the core.

file://./doxygen/html/classao68000.html

d.

Rates (MHz)

Name Source Remarks

Max Min Resolution

CLK_I 90 - - -

Table 1: List of clocks.

Input Port

Clocks

Description

System clock.

6.

10 Ports

WISHBONE IO Ports

Port
CLK_I
reset_n
CYC_O
ADR_O
DAT_O
DAT_I
SEL_O
STB_O
WE_O

ACK_I

ERR_I

Width Direction Description

1
1
1
30
32
32

Input
Input
Output
Output
Output
Input
Output
Output
Output

Input

Input

WISHBONE Clock Input

Asynchronous Reset Input

WISHBONE Master Cycle Output
WISHBONE Master Address Output
WISHBONE Master Data Output
WISHBONE Master Data Input
WISHBONE Master Byte Select
WISHBONE Master Strobe Output
WISHBONE Master Write Enable Output
WISHBONE Master Acknowledge Input:

* on normal cycle: acknowledge,

* on interrupt acknowledge cycle: external vector
provided on DAT_I[7:0].

WISHBONE Master Error Input

* on normal cycle: bus error,
* on interrupt acknowledge cycle: spurious interrupt.

RTY I 1
SGL_O 1
BLK O 1
RMW_ |
@)

CTLO 3
BTE O 2
fc_ o 3

Input

Output

Output

Output

Output

Output

Output

Other 10 Ports

WISHBONE Master Retry Input

* on normal cycle: retry bus cycle,
* on interrupt acknowledge: use auto-vector.

WISHBONE Cycle Tag, TAG_TYPE: TGC_O, Single Bus
Cycle.

WISHBONE Cycle Tag, TAG_TYPE: TGC_O, Block Bus
Cycle.

WISHBONE Cycle Tag, TAG_TYPE: TGC_O, Read-
Modify-Write Cycle.

WISHBONE Address Tag, TAG_TYPE: TGA_O, Cycle
Type Identifier, Incrementing Bus Cycle or End-of-Burst
Cycle.

WISHBONE Address Tag, TAG_TYPE: TGA_O, Burst
Type Extension, always Linear Burst.

Custom TAG_TYPE: TGC_O, Cycle Tag, Processor
Function Code:

e 1 - user data,

e 2 - user program,

* 5 - supervisor data : all exception vector entries
except reset,

* 6 - supervisor program : exception vector for reset,

* 7 - cpu space: interrupt acknowledge.

Table 1: List of WISHBONE IO ports.

Port Width Direction Description

ipl_i 3

reset_o 1

blocked_o 1

Input

Output

Output

Interrupt Priority Level Interrupt acknowledge cycle:

* ACK_I: interrupt vector on DAT_I[7:0],
e ERR_I: spurious interrupt,
* RTY_I: auto-vector.

External device reset. Output high when processing the
RESET instruction.

Processor blocked indicator. The processor is blocked after

a double bus error.

Table 2: List of Other 10 ports.

7.

References

. Specification for the: WISHBONE System-on-Chip (SoC) Interconnection
Architecture for Portable IP Cores.

Revision: B.3.

Released: September 7, 2002.

Available from: http://www.opencores.org.

. M68000 8-/16-/32-Bit Microprocessors Userd€™s Manual.
Ninth Edition.

Freescale Semiconductor, Inc.

Available from: http://www.freescale.com.

. MOTOROLA M68000 FAMILY Programmerd€™s Reference Manual (Includes
CPU32 Instructions).

MOTOROLA INC., 1992. M68000PM/AD REV.1.

Available form: http://www freescale.com.

. a068000 Doxygen(Design) Documentation.

file://./doxygen/html/classao68000.html
http://www.freescale.com./
http://www.freescale.com./
http://www.opencores.org./

