Assembler with VHDL User-defined Commands (AVUC)

AVUC 1.0

Date: 18. Jul. 2009

Contents

L. Introduction.................
2. Sintax of the input file

2. 1. User-defined commands

2. 1. 1. Ordinary user-defined commands.............cccccueerrveeeriiieeniieeeniee e e esvee e
2. 1. 2. Conditional Jump COMMANAS........ccccuerriieriieinieriieeenreeee et eees

2. 2. Remaining

AETINITIONS ettt e e e e e e e e e e e e e e e e e e eaaeeeeenanees

2. 2. 1. Constants and IAENTTIEIS ..uuuuueeeeie ettt e et tereeeeeeeeeeeeeeaes
2. 2. 2. VHDL signals declaration, headers and extra code........c.ccceevveerruverruneennne.

2. 3. Program......
3. Call to the Perl script

1. Introduction.

Here is presented avuc.pl, a Perl script that creates a VHDL entity that is able to execute an
assembler program written on an input file (in our example, the input file is max_mem.usm) with
the particularity being that the assembler commands are defined by the user.

The mentioned input file contains not only the program but also the definitions of the assembler
commands, written in VHDL language by the user, with which the program is composed. There are
two predefined commands (jump and nop) and two possible types of commands defined by the user:
conditional jump commands and ordinary commands.

Every ordinary assembler command is defined as a series of timed VHDL language commands that
modify one or more VHDL signals. In that way, the number of clock cycles that takes the execution
of each of these commands is determined by the user.

Once the user has defined all the desired assembler commands, a program using all these
commands can be written.

The user should also declare the internal and the input-output signals so that the VHDL entity could
be built.

In addition, some extra code can be included in order to better complete the function of the
program.

In summary, the user writes an input file with:

e user-defined VHDL assembler commands.

e an assembler program using these commands.

e signal declarations: internal signals and signals for the entity interface (input and output
signals).

e extra VHDL code.

This made, the Perl program avuc.pl takes the input file and creates a VHDL entity that can run the
assembler program.

The program is implemented as a case-when VHDL process, which results in a manufacturer
independent and fully synthesizable ROM (the ROM bus width grows with the base 2 logarithm of
the number of code lines).

The program is started by a rising edge at the interface VHDL input signal avuc_start and can be
ended (standby) by a rising edge at the interface VHDL input signal avuc_rst.

The entity also includes an automatic start-up reset, that brings the program to the end/standby after
power-up (after 32 clocks if all the FPGA flip-flops initialize to zero).

The end of the program is implemented as an infinite loop, so that, to run the program again, a
rising edge on the mentioned input signal avuc_start should be applied.

The state of the program (if it is running or has been finished) can be obtained by another interface
signal, avuc_state (an output signal of the entity). If the program has finished, the value of
avuc_state 18 AVUC_STATE _STOPPED:; if not, its value is AVUC_STATE RUNNING.

These two constants are defined in a separate package avuc_pkg inside the file avuc_pkg.vhd.

If these constants are not to be used by the user, they could be copied to the signal declaration block
and, then, the avuc_pkg should not be used.

This system has been developed to implement complex state machines with many iterations or
conditional jumps, that are easily implemented by means of simple structured programming.

The operations performed by the program are usually not as time-critical as the rest of the VHDL
code and, so, it can be considered for readier analysis that the program is 'slow' with respect to the

'fast' signals that are tested or driven by the program (i. e. the rest of the circuit is 'fast' with respect
to the avuc microprocessor).

2. Sintax of the input file.

The input file is composed of several blocks defined by keywords. Each keyword begins with the
double symbol &3$.

2. 1. User-defined commands.
Most of the commands used by the assembler program are user-defined commands. Out of these,
there are only two predefined commands:

e nop: No operation. Do nothing, it is a clock cycle delay.
e jump label: Jump to the entry point marked by label.

Therefore, commands inside the assembler program can only be one of the predefined commands
(nop and jump) or one of the user-defined commands.

There are two types of user-defined commands: ordinary user-defined commands and conditional
jump user-defined commands.

For the first case, the user has to supply the actions that define the command. For the second case,
the user has to supply the conditions under which the program will jump to the specified label.

2. 1. 1. Ordinary user-defined commands.

Each ordinary user-defined command changes the value of one or more signals (i. e. VHDL
processes are generated that drive these signals).

All the commands that modify a particular VHDL signal (signal drivers) should be grouped
together into a block called opcode_def.

This block should be enclosed by the keywords &8opcode_def and &$end_opcode_def. The names
of the signals to be modified should be declared in the same line after the keyword &$opcode_def.

For example, if the signals s/ and s2 are to be modified by a set of assembler commands, the set of
commands that modify them should be defined inside the block:

Declaration of an opcode_def:

&Sopcode_def sl s2
[set of definitions of assembler commands driving sl and s2]
&Send_opcode_def

Every user-defined command inside the opcode_def block should be preceded by the identifier &$
(i. e., a user-defined command named my_command should be declared as &$my_command,
included inside an opcode_def block).

After the user-defined command declaration, every action over the signals is preceded by the
keyword &3$cycle_def plus a number indicating the clock cycle number at which the action take
place (i. e. 1 for the first clock cycle, 2 for the second clock cycle and so on).

Then, the VHDL code should be written after the &$cycle_def declaration.

Declaration of a user-defined command:

&Suser_command [name of the command, not a keyword]
&Scycle_def 1
[VHDL actions taking place during the the first clock]
&Scycle_def 2
[VHDL actions taking place during the the second clock]
&Scycle_def ...
[VHDL actions taking place during the the following clocks]

So, the definition for a command called ff_pulse that change the signal ff to O, then to 1, and then
again to 0, will be the following:

&Sff_pulse
&Scycle_def 1
ff <= '0"';
&Scycle_def 2
£f <= '1';

&Scycle_def 3
£f <= '0';

(indentation is only used for better understanding).

Of course, the duration of a particular command (the number of clock cycles) depends on how many
&cycle_def declarations it is divided.

The usual case is that several commands operate over the same VHDL signal or signals. So, if the
user wants to define user_commandl, user_command?2, user_command3, ..., commands that drive
the VHDL signals s/ and s2, they should be declared in the following way:

Declaration of opcode_def plus several user commands:

&Sopcode_def sl s2
&Suser_commandl
[&Scycle_def and VHDL definitions]
&Suser_command?2
[&Scycle_def and VHDL definitions]
&Suser_command3
[&Scycle_def and VHDL definitions]
&Sdefault
[only VHDL definitions]
&$Send_opcode_def

The user could also define what is going to do the processor when no command is executed. That is
done by means of the keyword &$default, as shown in the example above. The VHDL definitions
after the &$default declaration would be executed permanently when none of the other user
commands for the corresponding VHDL signals is called.

As an example for a complete &$opcode_def declaration along with commands, here is presented
the definition of two commands that operate over a signal called mem_addr. The first command is
named mem_addr_init, designed to initialize the signal mem_addr, and the second command is
named mem_addr_inc, defined to increment mem_addr by 1.

The definition of these two commands will be:

&$Sopcode_def mem_addr
&Smem_addr_init
&Scycle_def 1
mem_addr <= (others => '0"');
&S$mem_addr_inc
&Scycle_def 1
mem_addr <= mem_addr + 1;
&Send_opcode_def

As both commands only need a clock cycle to complete, there is only a &$cycle_def identifier for
each one.

The user can include VHDL conditions or loops in the definition of the user-defined commands, but
it should be understood that this VHDL code will be used inside a VHDL process and, therefore,
the suitable sintax for processes should be used (if should be used instead of when and case-when
clauses instead of with-select-when ones).

For example:

&S$data_assign
&Scycle_def 1
for i in DATA_WIDTH-1 downto 1 loop

if flag = '1l' then
data (i) <= data_a(i-1);

else
data (i) <= data_a(i);

end if;

end loop;

An ordinary user-defined command could also make use of the autogenerated VHDL signal
usm_data (this signal is also used to carry the jump address in case of a jump command). This
signal is set to the value that is given following an ordinary user-defined command.

For example, if we have a command named set_s3, and we write in the program:
set_s3 12

this means that the internal VHDL signal usm_data will have the value 12 when this command is
executed.

This fact allow us to define the command depending on the usm_data value. Following the example,
we could define set_s3 as:

&Sopcode_def s3
&Sset_s3
&Scycle_def 1
s3 <= usm_data (3 downto 0);

&Send_opcode_def

so that the signal s3 take the value following the command sez_s3 in the program, i. e., 12 in the
example above, so s3 will be 12.

2. 1. 2. Conditional jump commands.

The name of the conditional jump commands is as the name of ordinary commands determined by
the user.

The natural name of these commands could be jump_if _.... So, if the user want to define a jump [to
some other place of the program] if some signal s/ is 1, a suitable name for the command could be
Jump_if_sl_eq_1.

Obviously, the conditional jump commands, when invoked inside a program, always carry an
indication to the point to jump as long as the condition is met. That point is marked by a label, as is
usually done in any language,.

There are two implicit predefined labels (so, these special labels are keywords and should not be
used by the user):

e begin: point to the first line of the program.

e end: point to an internal line that is included automatically after the last line of the program.
This line implements an infinite loop. (i. e. it is an additional line with the command jump
end).

All the conditional jump commands defined by the user should be grouped in a block headed by the
keyword &$jump_opcode_def.

Following the keyword &$jump_opcode_def, all the user-defined conditional jump commands
preceded by the keyword &$condition and its corresponding jump conditions are to be declared:

&S$jump_opcode_def
&Scondition jump_user_commandl
[VHDL boolean condition 1]
&Scondition jump_user_command?2
[VHDL boolean condition 2]
&Scondition jump_user_command3
[VHDL boolean condition 3]

In this way, if the VHDL boolean condition 1 is met, at the moment in wich the command
Jjump_user_commandl is executed, there will be a jump to the specified label.

Here an example is presented:

&S jump_opcode_def
&Scondition Jjump_if_sl_eq O
sl = '0'
&Scondition jump_if_counter_eq_end
counter = COUNTER_END

where s/ and counter are VHDL signals and COUNTER_END is a VHDL constant defined in the
signals declaration or in a package accessible to the entity.

Being made these definitions, we can use through the program the user-defined conditional jump
assembler commands jump_if _counter_eq_end and jump_if _sl_eq_0.

2. 2. Remaining definitions.

In order to generate the VHDL entity properly, some parameters such as the name of the entity and
others should be given. These are defined after the keywords explained through this section.

The lines after a keyword belong to the keyword, finishing when the next keyword is found. As
before, keywords begin with &3.

2. 2. 1. Constants and identifiers.

The general sintax for the constant and identifiers keywords is:
&Skeyword value

The keywords are &$clock, &$entity and &$data_bus_min_width. For instance:

&Sclock my_clock
&Sentity my_entity
&$data_bus_min_width 11

&$clock: Name of the clock used for the program operation, the clock is an input signal of the
entity.

&S$entity: Name of the generated VHDL entity.
&$data_bus_min_width: Minimum data bus (usm_data) width.

The data bus is the autogenerated signal named usm_data and is used for two purposes already
explained:

e As aline address for a jump command.
e As a piece of data for a user-defined ordinary command.

If data_bus_min_width is set to 0, the usm_data width is adjusted to the maximum line address
width in order to carry the address for the jump commands.

So, if you want to use the bus to pass data in user-defined ordinary commands, the maximum width
of the the data you want to pass should be here specified as the minimum data bus width.

2. 2. 2. VHDL signals declaration, headers and extra code.

The format of the lines after each of the keywords presented in this chapter is that of a VHDL code.

&8header: VHDL comment information you want to put at the beginning of the created file
&$include: Lines of VHDL include and use libraries before the entity declaration. For example:
&Sinclude

library work;

use work.avuc_pkg.all;

&8generic: List of generic parameters for the entity. For example:

&Sgeneric
max_delay: integer := 100;
is_fast: boolean := true;

&S8port. List of input/output signals of the entity interface. The autogenerated input or output
signals (like the clock, avuc_start or avuc_rst) should not be included. For example:

&Sport
data_in: in std_logic_vector (7 downto 0);
data_out: out std_logic;

&$sig_declaration: Internal VHDL signals or constants declaration, declared inside the architecture
section of the created entity. For example:

&$sig_declaration
signal data_middle: std_logic_vector (7 downto 0);

constant key_something: std_logic_vector (7 downto 0) := x"3B";

&3extra_code: VHDL extra code to perform additional functions.

2. 3. Program.

The assembler commands that form the executable program should begin after the keyword
&8prog_code. The sintax of each line of the program should be one of the following two, depending
on if it is a jump command or not:

[label:] not_jump_command [usm_data_value]
[label:] jump_command label_to_ jump

where not_jump_command can be a user-defined ordinary command or the predefined command
nop and jump_command can be a user-defined conditional jump command or the predefined
command jump. In any case, assembler commands used in the program are written without the

prefixing symbols &$, used to define them.

There are two predefined commands: jump and nop and two predefined labels: begin and end.

10

3. Call to the Perl script.

Finally, the Perl script avuc.pl should be invoked to process the input file containing the commands
definitions, the program, etc., to give a synthesizable VHDL entity. Its usage is as follows:

avuc.pl [flags] inputfilename

where the flags can be one or more of the following:
-0 output filename
-h show this help

-v verbose
-d debugging information

For example:
avuc.pl -o /home/ferblanco/example/ts.vhd -v /home/ferblanco/example/max_mem.usm

If no output filename is supplied, the output filename is formed with the input filename, with the
extension changed to .vhd.

11

	Contents
	1. Introduction.
	2. Sintax of the input file.
	2. 1. User-defined commands.
	2. 1. 1. Ordinary user-defined commands.
	2. 1. 2. Conditional jump commands.

	2. 2. Remaining definitions.
	2. 2. 1. Constants and identifiers.
	2. 2. 2. VHDL signals declaration, headers and extra code.

	2. 3. Program.

	3. Call to the Perl script.

