

OPEN SOURCE VHDL VERIFICATION METHODOLOGY
User’s Guide

Rev. 1.2

2012-01-05

Abstract

This document describes OPEN SOURCE VHDL VERIFICATION

METHODOLOGY (OS-VVM) that combines two VHDL
packages: RANDOMPKG and COVERAGEPKG.

OS-VMM allows flexible, user friendly generation of
random numbers and implementation of functional
coverage in VHDL.

The key feature of this methodology is the ability to
control random stimulus generation based on the
current coverage results.

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 2 www.aldec.com

Table of Contents

OPEN SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide ... 1

Abstract ... 1

Table of Contents .. 2

Introduction ... 4

Random Number Generation Background .. 4

Functional Coverage Background .. 4

Protected Types ... 5

Preparing OS-VVM library ... 7

RANDOMPKG Package Files .. 7

COVERAGEPKG Package Files .. 7

Compiling Packages ... 7

Using RANDOMPKG Package .. 7

Special Data Types ... 8

Handling Seeds .. 8

Distribution-Specific Methods ... 9

Universal Methods ... 9

Summary .. 11

Using COVERAGEPKG Package .. 11

Special Data Types ... 11

Generating Bins ... 12

Creating Cover Points .. 13

Creating Crosses .. 13

Sampling Data .. 14

Checking Coverage Status .. 14

Reporting ... 14

Intelligent Stimulus Randomization ... 15

Summary .. 15

FIFO Example Description ... 16

FIFO Example Architecture .. 16

Test Flow .. 16

Random delay ... 17

Burst Write Transaction .. 17

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 3 www.aldec.com

Coverage Monitor .. 18

Timeout check ... 19

Reporting and stopping the simulation .. 19

Running the example in Active-HDL .. 19

Running the example in Riviera-PRO ... 22

Matrix Example Description .. 22

Introduction ... 22

Data Generation .. 23

Functional Coverage .. 23

Reporting ... 24

Contacting Aldec ... 25

Resources .. 25

About Aldec, Inc. ... 25

About SynthWorks .. 25

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 4 www.aldec.com

Introduction

Modern digital designs, especially those describing complete systems, frequently require the use of
random stimulus generation and functional coverage in their verification.

Random stimulus is needed to model behavior of the environment in which implemented design is
supposed to work or (together with functional coverage) to provide fast alternative to directed tests.
Programming languages usually provide basic features supporting random number generation and users
have to do some serious coding to get the stream of random numbers they really need.

Many verification procedures created for large designs produce large amount of output data that is hard
to analyze, no matter if directed tests or constrained random tests were implemented. The concept of
Functional Coverage addresses this issue by enabling description and verification of coverage goals
based on the values of critical variables collected during simulation. Some languages offer built-in
facilities supporting functional coverage, others (like VHDL) require manual coding to achieve the same
results.

Open Source VHDL Verification Methodology provides two packages created by Jim Lewis, Director of
VHDL Training at SynthWorks: RANDOMPKG and COVERAGEPKG. The packages can support stand-alone
randomization and functional coverage, but the strongest feature of OS-VMM is the ability to control
random stimulus generation based on the current status of the functional coverage.

Random Number Generation Background

Excellent Random Number Generator (RNG), also known as True Random Number Generator (TRNG) is
the key source of data in numerous applications. The TRNG generating numbers from a given value
range should meet two requirements:

 No bias: all numbers in the range should appear with equal probability.

 No period: there should be no repeating patterns in the generated stream of numbers.

Pseudo-Random Number Generator (PNRG) keeps the “no bias” requirement, but reduces the second
requirement to “very long period”, i.e. it generates very long, repeating sequence of equally distributed
random numbers.

One very popular class of PRNG is called Linear Congruential Generator (LCG) and creates next random
number by applying simple linear formula to the previously generated number. It means that initial
number called seed must be specified to start the entire sequence of random numbers.

VHDL is equipped with LCG-based UNIFORM function available in the MATH_REAL package. Since the
function combines two LCGs, it requires two positive integer seeds and it generates pseudo-random real
numbers normalized to (0.0, 1.0) interval.

LGCs are considered sufficient for generation of simulation stimulus, but should not be used for
cryptography and advanced statistical applications. The RANDOMPKG package uses MATH_REAL.UNIFORM
by default, but can be modified to incorporate user-provided, better quality (but slower) algorithms,
such as Mersenne Twister.

Functional Coverage Background

Functional Coverage is a kind of metric showing how much of the design specification was exercised.
The quality of coverage results depends heavily on the test plan, i.e. 100% functional coverage means
100% of features that were selected for testing. Closely related code coverage is usually a tool function

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 5 www.aldec.com

and can be fully automated; Functional Coverage requires careful preparation of the test and analysis of
the results, so it cannot be fully automated.

Functional coverage data is collected by sampling values during simulation.

 Cover points are one-dimensional expressions (sometimes just variables) sampled during
coverage data collection.

 Bins are the ranges of values within cover point for which coverage data is accumulated, i.e.
detection of any value from the range increments coverage count for the bin.

 Crosses are multi-dimensional expressions that can be treated as Cartesian product of cover
points or just collections of multi-dimensional bins. They collect cross-coverage data in the
shape of pairs, triples, etc. of values sampled from multiple variables.

As an example, let’s consider VHDL testbench collecting 8-bit data from 8  8 matrix of sensors. If both
sensor data and sensor indices are generated randomly, we can create:

 cover point for sensor data with 16 bins of equal size (0..15, 16..31, 32..47, etc.),

 cross for index data with 64 one-value bins ((0,0), (0,1),…,(1,0), (1,1), etc.)

We can specify minimal coverage count required for each bin. Global coverage goal will be achieved if all
bins reached required minimal count.

Protected Types

All packages and other pieces of code presented in this document rely on protected types – VHDL
concept similar to classes known from other programming languages.

Protected types facilitate encapsulation in VHDL code:

 combination of pieces of data (properties) and operations that can be performed on them
(methods) into one object,

 hiding of implementation-specific data from the end-user.

Users that never worked with protected types can easily imagine them as special version of record types
that allow procedures and functions in addition to regular data fields.

Here’s sample declaration and body of a protected type:

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 6 www.aldec.com

type FlagsPT is protected -- declaration
 procedure set; -- procedure method
 procedure reset; ; -- procedure method
 impure function is_set return BOOLEAN; ; -- function method
end protected FlagsPT;

type FlagsPT is protected body -- body
 variable flag : BOOLEAN := False; -- private property
 procedure set is
 begin
 flag := True;
 end;
 procedure reset is
 begin
 flag := False;
 end;
 impure function is_set return BOOLEAN is
 begin
 return flag;
 end;
end protected body FlagsPT;

The public part of protected type is described in protected..end protected section (declaration);
only items visible here are directly accessible to variables of the protected type.

The protected type body (protected body..end protected body section) is the implementation of
the protected type. It contains full descriptions of all methods mentioned in the declaration and private
data fields and subprograms accessible only via methods.

Protected types can be used with variables only: either local to processes or subprograms or shared
variables declared in the architectures. Public items from the type declaration can be accessed using
variable_name.method_name notation.

test : process
 variable myflag : FlagsPT;
 begin
 report "!!! Setting 'myflag'!!!";
 myflag.set;
 if myflag.is_set then
 report "'myflag' is set.";
 end if;
 report "!!! Resetting 'myflag'!!!";
 myflag.reset;
 if not myflag.is_set then
 report "'myflag' is set now.";
 end if;
 wait;
 end process;

Please note that the end user of the FlagsPT type is shielded from the internal representation of the
flag value. We can change it from Boolean to Integer or Bit (with appropriate modifications of methods)
and the process using variable myflag will still look and work the same.

Protected types in OS-VVM shield end user from quite arcane data structures and subprograms
supporting randomization and coverage.

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 7 www.aldec.com

Preparing OS-VVM library

RANDOMPKG Package Files

The RANDOMPKG package consists of three VHDL sources:

 SORTLISTPKG_INT.VHD

 RANDOMBASEPKG.VHD

 RANDOMPKG.VHD

The first two files contain auxiliary declarations for the main package described in the third file. In
normal circumstances only the contents of RANDOMPKG.VHD should be referenced in end-user designs.

COVERAGEPKG Package Files

The COVERAGEPKG package is described in one COVERAGEPKG.VHD VHDL source.

Since the package supports intelligent randomization of stimulus, it must have the access to the
packages RandomPkg and RandomBasePkg mentioned in the previous section. Typically both random
packages and the coverage package are compiled to the same library.

Compiling Packages

Sources of both packages should be compiled in the order specified above, using options enabling
support of VHDL 2008 standard (if available). The minimal language version required for successful
compilation is VHDL 2002.

It should be always possible to compile sources to the same library as the files of the design that use OS-
VVM packages. In this case, design units can reference those packages like this:

use work.RandomPkg.all;
use work.CoveragePkg.all;

If the package is to be used frequently in multiple different designs, users should consider compiling
package files to a separate binary library OSVVM that can be referenced without compilation. In Aldec
simulators the following commands can be used in the console:

alib –global OSVVM $aldec/vlib/OSVVM/OSVVM.lib
set worklib OSVVM
acom -2008 SortListPkg_int.vhd RandomBasePkg.vhd RandomPkg.vhd
acom -2008 CoveragePkg.vhd

The first command creates new, global library OSVVM in standard tool folder. The second command
makes that library a working library for the next command. The third and fourth commands compile
sources, assuming that they are located in the current directory.

Check the tool documentation if you are using different vendor simulator.

Using RANDOMPKG Package

The package allows generation of random numbers of real, integer, standard_logic_vector,
unsigned and signed type. Distribution and range of generated values can be specified, together with
exclusions (unwanted values). It is also possible to specify series of values from which one should be
selected randomly; each value in the series can have unique weight that decides if it is selected more or
less frequently than the others.

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 8 www.aldec.com

To ensure uniqueness of random number sequences and to allow repeatable simulation results the
package provides subprograms that control RNG seed.

Special Data Types

To handle ‘series of numbers’ parameters, the package defines two types:

 DistRecType – a record with integer fields Value and Weight;

 DistType – an unconstrained array DistRecType elements.

To allow specification, storage and retrieval of random distribution type used by RNG functions, special
enumeration type RandomDistType is declared:

type RandomDistType is (NONE, UNIFORM, FAVOR_SMALL, FAVOR_BIG, NORMAL, POISSON);

For practical applications NONE value has the same effect as UNIFORM, but allows checking if current
distribution has default value (NONE) or was changed by the code.

While UNIFORM, NORMAL and POISSON distributions behave as described in the literature, FAVOR_BIG
and FAVOR_SMALL use square root function internally to get expected non-uniform results.

To specify not only distribution type, but also its numerical parameters, the following RandomParmType
record type is declared:

type RandomParmType is record
 Distribution : RandomDistType ;
 Mean : Real ;
 StdDeviation : Real ;
end record ;

After all auxiliary declarations, the package declares protected type RandomPType that handles RNG
operations via its methods described in the following sections.

Please note that to avoid decreasing quality of generated random numbers users should declare
variables of RandomPType type as local with the narrowest possible scope. Such variables should be
used to generate stream of values for one specific application/design object and should not be shared.

Handling Seeds

The package automates handling of seeds required by RNG. To enable flexible initialization of the
generators, dedicated InitSeed procedure method is provided in three versions: with S (string), I
(integer) and IV (integer_vector) arguments. For some forms of constant values of seed the
method call can be ambiguous, so it is recommended to qualify those values or specify both formal
parameter name and its value. In case of multiple random variables (objects) used in the same design
unit, it is recommended to use attribute specific to variable location for seeding RNG:

RNGvar.InitSeed(RNGvar'instance_name);

To store or transfer seed values between random variables, function method GetSeed and procedure
method SetSeed were created; both are using RandomSeedType type to represent seed value.

RNGvarA.SetSeed(RNGvarB.GetSeed);

For users accustomed to SystemVerilog, GetSeed and SetSeed methods functionality is also available in
equivalent SeedRandom method that can be called as bot function and procedure.

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 9 www.aldec.com

Distribution-Specific Methods

If the test code requires clear indication of the distribution of values generated by given method call,
there are several dedicated methods that can be used.

If the required distribution is Uniform, Favor_small or Favor_big, methods with the distribution
name can be used. All three are accept Min and Max arguments (integer or real) to specify desired
value range and return random number of the argument type. There is also version of each function
method that accepts third argument Exclude of integer_vector type to allow exclusion of some
numbers from the specified range.

A := RandVarA.Uniform(1,6); -- no exclusions
B := RandVarB.Favor_big(0,255,(44, 77)); -- two exclusions

The function method called Normal returns random value of real or integer type with normal
distribution. The real type version requires Mean and StdDeviation arguments to specify distribution
parameters and can also accept Min and Max arguments to specify value range. The integer type
version requires Mean, StdDeviation, Min and Max arguments and can accept optional Exclude
argument of integer_vector type to exclude some values from the generated range.

X := RandVarX.Normal(128.0, 16.0, 0.0, 256.0);

The method called Poisson returns random value of real or integer type with Poisson distribution.
The real type version requires Mean distribution parameter and can also accept Min and Max
arguments to specify value range. The integer type version requires Mean, Min and Max arguments and
can accept optional Exclude argument of integer_vector type to exclude some values from the
generated range.

Y := RandVarY.Poisson(16.0, 0, 63);

Please note that for Normal and Poisson, distribution parameters are always real, while Min and Max
match the returned value type.

Universal Methods

The package is also equipped with a group of methods generating integral values of

 integer,

 std_logic_vector,

 unsigned,

 signed

data types.

Methods with names starting with Rand- accept value range or set of values restrictions of generated
numbers.

Methods starting with Dist- accept series of values and weight or just weights. If just the vector
containing N weights is specifies, it is assumed that they apply to the generated values from the 0..N-1
range. Numbers with greater weights are generated with higher probability than numbers with smaller
weights.

While the type of generated value is suggested by remainder of function name (RandInt, RandSlv,
DistUnsigned, DistSigned, etc.), the distribution used during generation is stored in the internal
status variable and can be changed during the run of the test.

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 10 www.aldec.com

Dedicated procedure method SetRandomParm allows dynamic change of the distribution used by
universal functions. Its argument is either solitary record of RandomParmType or a group of three
values: enumeration value of RandomDistType, Mean and Deviation of real type.

Matching GetRandomParm function method returns current distribution as RandomParmType or
RandomDistType value.

RandVar.SetRandomParm(NORMAL, 10.0, 2.0);
Dist := RandVar.GetRandomParm;

Arguments of universal function methods allow specification of the range (or set) of values that can be
generated, exclusions and size of the generated vector value.

First arguments of all universal functions are obligatory and describe basic range or set of values that
should be generated.

Universal Function Name Basic Range or Set Arguments

Rand* Range: Min, Max integer values

Rand* Set of values: integer_vector

Dist* N weights for integers from 0..N-1 range: integer_vector

DistVal* Pairs of value and weight: DistType

Optional integer_vector argument that follows obligatory arguments specifies exclusions from the
value range or set.

For functions returning vector value (*Slv, *Unsigned, *Signed), the size of the vector must be
specified as the last argument.

DataInt := RV.RandInt(0, 7); -- Generate integer from the range 0 to 7.
DataInt := RV.RandInt(1, 13, (3, 7, 11)); -- range 1 to 13, exclude 3, 7, 11.
DataSlv := RV.RandSlv(0, 9, 5); -- std_logic_vector, range 0 to 9, 5-bit long.
DataInt := RV.RandInt((-5, -1, 3, 7, 11), (-1, 7)); -- set of 5 values,
 -- two values excluded.
DataInt := RV.DistInt((7, 2, 1)); -- numbers 0, 1, 2 with weights 7, 2, 1.
DataInt := RV.DistValInt(((1, 7), (3, 2), (5, 1)), (1=>3)); -- set of three
 -- values with weights, one value excluded.

Remaining universal methods can be treated as convenience functions, since they do not provide
additional functionality, just different selection of arguments:

impure function RandReal(Min, Max: Real) return real ;
impure function RandReal return real ; -- 0.0 to 1.0
impure function RandReal(Max: Real) return real ; -- 0.0 to Max
impure function RandInt (Max : integer) return integer ;
impure function RandSlv (Size : natural) return std_logic_vector ;
impure function RandSlv (Max, Size : natural) return std_logic_vector ;
impure function RandUnsigned (Size : natural) return Unsigned ;
impure function RandUnsigned (Max, Size : natural) return Unsigned ;
impure function RandSigned (Size : natural) return Signed ;
impure function RandSigned (Max : integer; Size : natural) return Signed ;

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 11 www.aldec.com

Summary

The most typical flow of the RANDOMPKG package usage looks like this:

Stage Description

Attaching
package

use work.RandomPkg.all;
use my_packages.RandomPkg.all;

Declaring object variable RndX : RandomPType;

Initialization RndX.InitSeed(RndX'instance_name);

Generation
X := RndX.Uniform(1,6);
X := RndX.Normal(5.0, 2.0, 1, 9);

RndX.SetRandomParm(NORMAL, 4.0, 1.0);
X := RndX.RandInt(0, 8);

 Universal methods default to Uniform distribution if SetRandomParm was not called.

 Supported distributions include Uniform, Favor_small, Favor_big, Normal and Poisson.

 Generated values are real, integer, std_logic_vector, unsigned or signed.

 Random variables should not be shared between different processes.

 If multiple random variables are used, they should be initialized with different seeds.

Using COVERAGEPKG Package

The package allows creation of data structures required for functional coverage collection and provides
subprograms that manipulate data during preparation, data collection and reporting stages. Beginning
users can quickly create coverage models by following simple coding pattern:

1. Declare coverage object.
2. Generate bins and add them to a cover point or cross structure in the object.
3. Collect coverage data (at any convenient sampling event).
4. Use coverage data to control stimulus randomization.
5. Check if coverage achieved. Repeat steps 3 & 4 if needed.
6. Write report.

Experienced VHDL programmers can easily add new functionality such as traversing coverage data
structures and creating extensive reporting/post-processing routines.

Special Data Types

To simplify creation of bins as series of min..max value ranges, the package creates two auxiliary data
types: RangeType record type and unconstrained array type of RangeType elements called
RangeArrayType.

type RangeType is record
 min : integer ;
 max : integer ;
end record ;
type RangeArrayType is array (integer range <>) of RangeType ;

In addition to value range, full bin specification requires some additional pieces of information. While
the package uses dynamic data structures internally to store this kind of information, it also provides
some additional data types that help users to enter bin data manually.

type CovBinBaseType is record
 BinVal : RangeArrayType(1 to 1) ;
 Action : integer ;
 Count : integer ;

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 12 www.aldec.com

 AtLeast : integer ;
 Weight : integer ;
end record ;
type CovBinType is array (natural range <>) of CovBinBaseType;
-- 'Action' field values for 'CovBinBaseType'
 constant COV_COUNT : integer := 1 ;
 constant COV_IGNORE : integer := 0 ;
 constant COV_ILLEGAL : integer := -1 ;

The CovBinBaseType record type stores:

 bin value range in the BinVal field,

 number of bin hits in the Count field,

 counting action (increment) in the Action field,

 coverage goal (minimal required value of Count) in the AtLeast field,

 randomization weight in the Weight field.

The CovBinBaseType is the element type of the unconstrained array type CovBinType describing one-
dimensional structures of cover points.

To support manual entry of N dimensional bins used in crosses, the package defines a family of array
types named CovMatrixNType with elements of CovMatrixNBaseType (with values of N in 2..9 range).

The dynamic coverage data structures and subprograms to operate them are packaged in a protected
type CovPType. User of the package should declare one variable (object) of this type for each cover
point or cross in the design. Variables can be local to the processes, but should be declared as shared
variables in the architecture if coverage data collection and reporting/processing are done in different
processes.

shared variable XCov : CovPType;

Generating Bins

To allow more flexible operations on bins, GenBin functions are defined as independent subprograms in
the COVERAGEPKG package, not as the methods of CovPType protected type.

The signature of the base version of GenBin function is shown below:

function GenBin(
 constant AtLeast : in integer ; -- coverage goal
 constant Weight : in integer ; -- randomization weight
 constant Min, Max : in integer ; -- range of covered values
 constant NumBin : in integer -- number of bins in a range
) return CovBinType ;

Please note that the number of items in the array returned by the function call is equal NumBin.

There are overloaded versions of GenBin function created for easier bin creation:

function GenBin(AtLeast : integer ; Min, Max, NumBin : integer)
 return CovBinType ;
function GenBin(Min, Max, NumBin : integer) return CovBinType ;
function GenBin(Min, Max : integer) return CovBinType ;
function GenBin(A : integer) return CovBinType ;

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 13 www.aldec.com

Two argument version of the function creates Max-Min+1 bins covering one value each. One argument
version creates one bin covering argument value.

The GenBin function creates bins with Action field set to COV_COUNT (=1). If users need bins with
values that should be ignored, they should use IgnoreBin function instead. It is available in 5 variants
mirroring GenBin, but setting Action field to COV_IGNORE (=0). Please note that two argument version
creates just one bin covering the entire range.

When users need bins that should trigger error when hit, they should use IllegalBin function. It does
not set AtLeast/Weight fields and sets Action field to COV_ILLEGAL (=-1).

Results of all bin-generating function calls can be concatenated using “&” operator to create longer bin
structures.

Creating Cover Points

To create dynamic, one-dimensional cover point data structure within coverage object, users should call
AddBins method of the CovPType type. This procedure is available in 3 versions:

procedure AddBins (
 AtLeast : integer ;
 Weight : integer ;
 CovBin : CovBinType
) ;
procedure AddBins (AtLeast : integer ; CovBin : CovBinType) ;
procedure AddBins (CovBin : CovBinType) ;

The three-argument version of the procedure lets users to specify goal and randomization weight. The
remaining two versions assume that goal and weight are 1 if not specified. The CovBin argument in the
AddBins method call is usually specified as a call of GenBin function:

XCov.AddBins(2, 1, GenBin(0, 255, 16));

The AddBins method can be called incrementally, i.e. subsequent calls will add new bins to the ones
created by the previous calls.

Creating Crosses

To create dynamic, multi-dimensional cross data structure within coverage object, users should call
AddCross method of the CovPType type. This procedure is available in 3 versions similar to AddBins,
but accepting from 2 to 20 arguments of CovBinType type (one for each dimension of the cross). Sample

method call creating two-dimensional cross with 8  8 matrix of 1 value bins is shown below:

XYCov.AddCross(GenBin(0, 7), GenBin(0, 7));

Slightly more complicated cross structure is can be created by this call:

XYCov.AddCross(3, GenBin(0, 3, 2), GenBin(0, 3, 2));

This time four bins are created: (0..1)(0..1), (0..1)(2..3), (2..3)(0..1) and (2..3)(2..3). Each bin covers
four pairs of values and requires 3 hits to achieve coverage goal.

The AddCross method can also be called incrementally, e.g. to build cross structure row-by-row or
column-by-column. The number of cross dimensions should not change in the incremental calls.

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 14 www.aldec.com

Sampling Data

The procedure method called ICover should be called to collect data whenever sampling event occurs.
Depending on the design where coverage data is collected, the sampling event can be a clock edge, the
end of bus transaction or some other, suitable event. The method accepts integer argument for objects
containing cover points and integer vector argument for objects containing crosses. The use of
conversion function may be required if sampled data is non-integer.

DCov.ICover(to_integer(Data));
XYCov.ICover((X, Y));

Checking Coverage Status

Users should call function method IsCovered to check if coverage goal was achieved.

impure function IsCovered (PercentCov : real := 100.0) return boolean ;

If no argument is specified in the method call (or if it is set to 100.0), all individual bin goals must be
achieved to guarantee True result. Specifying lower percentage threshold gives True results when some
individual bin goals were not reached yet.

Most typical use of IsCovered method is the exit condition in the loop collecting coverage data:

while not DCov.IsCovered loop
 . . . –- data collection

If more data about coverage status is needed, the following function method can be used:

impure function CountCovHoles (PercentCov : real := 100.0) return integer ;

The function returns the number of holes – bins that have not reached their goals.

Reporting

The detailed report of all bins contents can be printed to the console using WriteBin method call. The
method is overloaded to allow writing the same report to a file; user has to specify output file name and
(optionally) file open kind in this case.

DCov.WriteBin ("Dcovrep.txt", OpenKind => WRITE_MODE);

If open kind is not specified, new data will be appended at the end of current file contens.

To report only uncovered bins (coverage holes) the following procedure methods can be used:

procedure WriteCovHoles (PercentCov : real := 100.0) ;
procedure WriteCovHoles (FileName : string; PercentCov : real := 100.0 ;
 OpenKind : File_Open_Kind := APPEND_MODE) ;
procedure WriteCovHoles (AtLeast : in integer) ;
procedure WriteCovHoles (FileName : string; AtLeast : in integer ;
 OpenKind : File_Open_Kind := APPEND_MODE) ;

If current coverage database must be saved and post processed (or reloaded) later, WriteCovDb
method can be used:

DCov.WriteCovDb ("Dcovdb.txt", OpenKind => WRITE_MODE);

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 15 www.aldec.com

Intelligent Stimulus Randomization

One of the key features of the package is the ability to randomize stimulus based on current coverage
results. The base function method created for this purpose is:

impure function RandCovPoint (PercentCov : real := 100.0) return integer_vector;

The operation of the function can be described like this:

 Create list of all bins with current coverage below specified PercentCov value.

 Use RANDOMPKG features to generate random value (integer_vector) that belongs to one of the
uncovered bins.

Please note that the random number generator should be properly initialized (seeded) to guarantee
high quality of generated numbers. To initialize generator, users should call InitSeed method once
before the first call of RandCovCoint. The value of instance_name attribute of the coverage variable
can be used as the reliable seed:

XYCov.InitSeed(XYCov'instance_name);
 . . .
while not XYCov.IsCovered loop
 wait until rising_edge(CLK);
 (X, Y) := XYCov.RandCovPoint;
 . . .

Without the use of intelligent coverage – just with randomly selected values from the set of N – we need
approximately NlogN trials to select each value at least once. With intelligent coverage the number of
trials is reduced to N. It means that in typical cases intelligent coverage reduces time to achieve
coverage goal to less than 50%.

Summary

This document presented most important information needed to use the COVERAGEPKG package.
Additional information about advanced features and support for legacy versions can be found in the
official package documentation. The typical usage patterns of the package summed up here:

Stage Description

Attaching
package

use work.CoveragePkg.all;
use my_packages.CoveragePkg.all;

Declaring object shared variable CovX, XYCov : CovPType;

Generating bins
GenBin(0,7); -- 8 bins, 1 value each
GenBin(0,255,16); -- 16 equal size bins

Creating cover
points/crosses

CovX.AddBins(GenBin(0,31,8));
CovX.AddBins(GenBin(32,47,1));

XYCov.AddCross(GenBin(0,7), GenBin(0,7));

Sampling CovX.ICover(X);

Status Check if CovX.IsCovered then

Hole Count NotCov := CovX.CountCovHoles;

Randomize Stim. X := CovX.RandCovPoint; -- pick uncovered values

Print Report CovX.WriteBin; -- can be quite long...

Dump Database CovX.WriteCovDb ("covdb.txt", OpenKind => WRITE_MODE);

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 16 www.aldec.com

 Coverage object should be declared as shared variable if it is used in more than one process (e.g.
data collection and reporting). It can be declared as local process variable otherwise.

 Sampling event is outside of the scope of this coverage package: any event-detecting condition
can be used to trigger ICover call.

 Proper seeding of random number generator is needed when stimulus randomization is used.

FIFO Example Description

With the FIFO design we illustrate the usage of OS-VVM’s Randomization and Coverage packages to
build a self-checking, self-adjusting testbench.

FIFO Example Architecture

The FIFO design includes both DUT (Design Under Test), i.e. the FIFO memory model itself, and the
testbench parts. With DUT being simple we put the focus on the testbench to demonstrate the usage of
randomization and functional coverage OS-VVM’s packages.

The testbench includes three main processes. The TestFlow process generates the burst write
transactions for the FIFO. It randomizes the length of the burst write operation as well as the value of
each word in those bursts. The CoverageMonitor process collects functional coverage statistics and also
provides the feedback for random generation to increase the probability of hitting the uncovered points.

The ReadInf process will read the data from the FIFO whenever it is not empty.

Test Flow

The TestFlow process operates at the transaction level. There is a random delay cycle before each burst
transaction starts. The delay range is dynamically adjusted which helps to either empty out or fill the
fifo.

FifoRandBurstWrite is a procedure that generates burst write transactions to the fifo.

At the end of each burst transaction the functional coverage (FC) is being calculated and compared to
the goal, which is by default set to 100%. If the goal is not reached and the FC has not improved since

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 17 www.aldec.com

the last transaction then the random range for the delay cycle and the burst length will get adjusted,
and then next cycle starts.

Random delay

The duration of the delay cycle is randomly generated using RandomPkg’s RandInt (Min, Max : integer)
function:

delay := RV.RandInt(mindelay, maxdelay);
wait for delay * clk_period;

RandInt function returns a random integer value in the given range. In this example we are using
mindelay and maxdelay variables to control the duration of the wait cycle.

Burst Write Transaction

FifoRandBurstWrite procedure generates the bursts of the fifo write transactions. The data that is being
written is generated using RandomPkg’s RandSlv(Min, Max, Size : natural) function that returns a value
of std_logic_type in the given range [min..max] and with the given size. In our example the 8-bit word
values are generated in the range between 0 and 255.

for i in 1 to len loop
--Creating the random value to be sent to fifo
wordgen := RV.RandSlv(0, 255, 8);
--writing the word to fifo
FifoWriteWord(wordgen, FifoWrInf);
end loop;

FifoWriteWord function implements the write transaction to the fifo DUT. Each write transaction
happens on the rising edge of a clock signal and takes one clock cycle.

procedure FifoWriteWord (
 word : in std_logic_vector(7 downto 0);
 signal FifoWrInf : out FifoWrInfType) is

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 18 www.aldec.com

begin
 --setting the bus for fifo
 FifoWrInf.we <= '1';
 FifoWrInf.datain <= word;
 wait until rising_edge(clk);
 --clearing write enable
 FifoWrInf.we <= '0';
end procedure;

The FifoWriteWord transactions are applied to the DUT through the FifoWrInf variable of VHDL record
type:

type FifoWrInfType is record
 we : std_logic;
 datain : std_logic_vector(data_width-1 downto 0);
end record;
signal FifoWrInf : FifoWrInfType;

Coverage Monitor

The CoverageMonitor process collects the functional coverage throughout the simulation. The
functional coverage of the current example is based on the following three points:

1. fifo gets full – based on full signal
2. fifo gets empty – based on empty signal
3. write transaction while fifo is full: based on simultaneously active we and full signals

The following condition is considered illegal:

4. read attempt from the empty fifo

At the beginning of the CoverageMonitor procedure we create bins for each of the above conditions.

We only add bins for logic value ‘1’ for the first two coverage points as we don’t care for when those
signals are low. This means that the point will be covered when the signals associated with those
coverage points (see below) will get assigned value ‘1’ during the simulation.

-- coverage point 1 - for fifo's full signal (High)
cp1_full.AddBins(GenBin(1));
-- coverage point 2- for fifo's empty signal (High)
cp2_empty.AddBins(GenBin(1));

The third coverage point has being added a cross condition with two bins. Both bins only care for logic
value ‘1’. Coverage point 3 will be considered covered when two signals associated with the respective
bins (see below) will simultaneously get value ‘1’ during the simulation.

-- coverage point 3 - cross coverage for simultaneous FifoWrInfType.we and full
signal
cp3_cross_we_full.AddCross(GenBin(1), GenBin(1));

In the 4th coverage point we create illegal bin for the condition that never supposed to happen: reading
from an empty fifo.

-- coverage point 4 - creating illegal bin when empty and re are high at the same
time
cp4_illegal_re_empty.AddBins(IllegalBin(1));

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 19 www.aldec.com

Once all bins have been added to the respective cover points the ‘while’ loop starts and runs until the
first three points are covered:

--collecting coverage
MainCovLoop: while not (cp1_full.IsCovered and cp2_empty.IsCovered and
cp3_cross_we_full.IsCovered) loop

Inside the while loop we will sample each point if the coverage goal has not been reached yet (IsCovered
=False) and only if it is the first occurrence in the current transaction (status_notFull = '1'). When FIFO
gets full (full = ‘1’) we clear the status_notFull flag that will disable the coverage counter from
incrementing coverage on the consecutive clock edges. In other words if fifo’s full signal was high for N
clock cycles, we want that to be considered as a single occurrence rather than N occurrences.

Then we check if the coverage goal has been reached (cp1_full.IsCovered) and display the respective
message on the console with the time stamp and, later, detailed bin’s information by the WriteBin
procedure.

--check if cp1 is covered
if not (cp1_full.IsCovered = FALSE and status_notFull = '1') then

--if not then sample it
cp1_full.ICover(to_integer(full)) ;
if (full = '1') then

status_notFull := '0';
if (cp1_full.IsCovered) then

Message("Covered condition *FIFO Full* @ " & time'image(now));
 else

Message("Hit condition *FIFO Full* @ " & time'image(now));
end if;
cp1_full.WriteBin;

end if;
end if;

The same checks and sampling are performed for the 2nd and 3rd cover points.

Timeout check

 At the end of each cycle of the coverage monitor loop we check for the timeout and exit the loop if the
current simulation time exceeds the TimeOut value:

exit MainCovLoop when now >= TimeOut;

The timeout check has been used to prevent the test from running forever when it cannot hit all the
coverage points.

Reporting and stopping the simulation

Once either all points are covered or the timeout value is exceeded, the CoverageMonitor process exits
the MainCovLoop loop, performs final reporting to the console and stops the simulation by assigning
end_sim to ‘1’. All testbench processes suspend their execution when end_sim is assigned to ‘1’ which
stops the simulation.

Running the example in Active-HDL

Follow the steps below to compile and simulate the FIFO example in Aldec’s Active-HDL version 8.3 or
later.

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 20 www.aldec.com

1. Launch Active-HDL and create a new workspace and design by going to menu File | New |
Workspace. Check ‘Create an Empty Design’ option while going through the process. While
creating a new design avoid using ‘-’ in design name.

E.g. Wrong Names: OS-VVM, fifo-1

 Right Names: OSVVM, fifo_1

2. Once the design and workspace have been created you need to copy the items from the
following two folders in the OSVVM root folder and place them to the src folder of your Active-
HDL design:

1) The entire packages folder with the included files
2) The FIFO source files located in OSVVM\example\FIFO\src folder

3. After the above files were copied to the Active-HDL’s src folder, you need to add the source files
to your Active-HDL design. The best way to do that is to right click on the design name in Active-
HDL’s Design Browser window and select “Refresh Contents” from the context menu. Select “All
file” option at the top. This should checkmark the packages folder and all other vhd and do files
in the Source folder view:

4. Press OK button to get all your source files added to the design.

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 21 www.aldec.com

5. Change your VHDL compilation settings by going to Design | Settings | Compilation | VHDL. Set
Standard version to VHDL 1076-2008 as shown below:

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 22 www.aldec.com

6. After that you can right click on your design name and select Compile All with File Reorder
option. This will get all source files compiled.

7. Initialize your simulation using tb_top as your top level entity.

8. Switch to the Structure tab of the Design Browser and add the signals from the DUT instance to
the Waveform. In the Structure tab browse to DUT, right click on it and select add to waveform.

9. Click on Run (Alt+F5) button to run the simulation.

10. Once the simulation is finished you can observe the following signals in the Waveform viewer:

 wr_clk, wr_en, wr_data – for write transactions

 rd_clk, rd_en, rd_data – for read transactions

11. In the Console window you may observe the messages about the cover points with the time
stamps as well as the final report at the end of the simulation.

Running the example in Riviera-PRO

Follow the steps below to compile and simulate the FIFO example in Aldec’s Riviera-PRO version
2011.02 or later.

1. You can either create a copy of the original design or run directly in OSVVM/example/FIFO
folder.

2. Launch Riviera-PRO and set the current directory (File | Change Directory) to where you stored
the example: <YourPath>/example/FIFO

3. In the File Browser window of Riviera-PRO expand the src folder so that you can see the files
inside, right click on the runme.do file and select Execute from the context menu. Observe the
compilation and simulation messages in the console.

4. The runme.do script logs all of the design signals so they will be available at any point of the
simulation. Switch to the Debug perspective of Riviera-PRO (by using the Debug perspective
button at the bottom of your Riviera-PRO main window). In Debug perspective you will see the
Hierarchy Viewer and the Object Viewer on the right.

5. Once the DUT signals are added to the waveform you can observe the signals such as

 wr_clk, wr_en, wr_data – for write transactions

 rd_clk, rd_en, rd_data – for read transactions
6. In the Console window you may observe the messages about the cover points with the time

stamp as well as the final report at the end of the simulation.

Matrix Example Description

Introduction

This design has been created for demonstration of the advanced features of the functional coverage
package. The design represents the abstract model of 8x8 matrixes of sensors. Each sensor has an 8 bit
data register. The data for the registers is generated randomly. The testbench is checking for two types
of coverage:

1. Picking up a sensor node randomly until all sensors are picked. The intelligent coverage feature
has been used to accomplish that.

2. Data coverage is collected across all sensor registers to make sure all data ranges were hit by the
random generator.

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 23 www.aldec.com

Data Generation

8-bit binary data is generated randomly with Normal distribution; operator of the simulator can modify
mean value, standard deviation and increment of standard deviation of the distribution using three
generic parameters:

 DataMean

 DataSDstart

 DataSDinc

The SensorData is randomly generated using RandomPkg’s Normal (Mean, StdDeviation, Min, Max: real)
function:

Rsens.Normal(DataMean, DataSD, 1, 255);

Above function returns real values between 1 and 255 with given mean and standard deviation. Normal
is a Gaussian distribution of the data.

This randomly generated data is written inside 8x8 matrix indices. To speed up coverage goal
achievement, test produces first batch of sensor data using DataMean and DataSDstart values as
distribution parameters. If coverage is not achieved, current DataSD (standard deviation) value is
incremented by DataSDinc to flatten Normal distribution curve and improve coverage. Setting DataSDinc
to 0.0 turns this feature off and increases number of iterations needed to achieve coverage. The test
prints number of iterations needed to fully cover all data values at the end of simulation.

Functional Coverage

Sensor data is collected by randomly selecting sensor indices in the 8x8 matrix for coverage purpose and
all indices are also checked against coverage. If generic parameter Intelligent is set to true, index
coverage results are used to control selection of the next index pair. If the generic is set to false, indices
are generated with uniform distribution, which more than doubles the number of iterations needed to
achieve index coverage.

(X, Y) := XYCov.RandCovPoint;

XYCov is shared variable used to handle coverage package procedures. RandCovPoint randomizes only
uncovered indices if Intelligent is set to true. If Intelligent is set to false then X and Y values are selected
randomly every time irrespective of coverage using functions:

X := Rxy.RandInt(0,7);

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 24 www.aldec.com

Y := Rxy.RandInt(0,7);

Irrespective of Intelligent generic above, the values read from the matrix of sensors are checked for the
data coverage:

DCov.ICover(sensors.get(X, Y)); -- collect coverage for data

DCov is a shared variable and ICover is a procedure which is used to cover different bins.

The indices coverage is also being collected:

XYCov.ICover((X, Y));

The indices coverage is being used as the loop iterator merely to demonstrate the intelligent coverage
feature.

Reporting
XYCov.WriteCovDb ("quicktest_XYcovdb.txt", OpenKind => WRITE_MODE);

WriteCovDB is used to generate database file for later use.

Compilation and simulation script contains three simulation commands (two of them commented out)
with different values of generics set for given simulation run. The middle command gives decent results
with intelligent features turned on. The other two produce long, un-optimized simulation and fast,
maximally optimized simulation.

 OPEN-SOURCE VHDL VERIFICATION METHODOLOGY User’s Guide

Rev. 1.2 ©2012 Aldec, Inc.
2012-01-05 Page 25 www.aldec.com

Contacting Aldec

To contact Aldec with any questions about OS-VVM please visit www.aldec.com/support, log in (or
register) and open a new support case with your question.

Resources

OS-VVM page on the Aldec website:
http://www.aldec.com/en/solutions/functional_verification/os_vvm

About Aldec, Inc.

Established in 1984, Aldec Inc. is an industry leader in Electronic Design Verification and offers a
patented technology suite including: RTL Design, RTL Simulators, Hardware-Assisted Verification, Design
Rule Checking, IP Cores, DO-254 Functional Verification and Military/Aerospace solutions. Continuous
innovation, superior product quality and total commitment to customer service comprise the
foundation of Aldec’s corporate mission. For more information, visit www.aldec.com.

About SynthWorks

SynthWorks provide trainings in leading edge VHDL verification techniques, including transaction based
testing, bus functional modeling, self-checking, data structures (linked-lists, scoreboards, memories),
directed, algorithmic, constrained random, and coverage driven random testing, and functional
coverage. For more information, visit www.synthworks.com

http://www.aldec.com/support
http://www.aldec.com/en/solutions/functional_verification/os_vvm
http://www.aldec.com/
http://www.synthworks.com/

