

ANSI C Cryptographic API Profile
for SHA-3 Candidate Algorithm Submissions

Revision 2: December 19, 2007

1. Overview

This document specifies the ANSI C interface profile for implementations of SHA-3 candidate algorithms. C
implementations shall support the syntax and parameterization of the interface profile messages as described in this
API. The API consists of one structure and 3 functions to manipulate the structure. The functions specified in this API
have return values listed that are largely used to supply error codes in the event of incomplete execution of the routines.
The error values listed are not meant to be an exhaustive list. If additional error codes are useful for your
implementation, please provide them.

2. hashState

The hashState structure contains all information necessary to describe the current state of the SHA-3 candidate
algorithm. The only required field, hashbitlen, indicates the output size of this particular instantiation of the hash
algorithm. Algorithm specific fields follow the comment in the structure below. These include things like data storage
needed to hold intermediate values, tables, unprocessed data, etc. All implementations must be sure to document any
algorithm-specific parameters and their use.

typedef struct {

int hashbitlen;
/* The following parameters are algorithm specific */
} hashState;

3. Initization

Each SHA-3 submitter will be required to implement this interface because NIST anticipates that some candidate
algorithms will have unique requirements to initialize the hashState structure.

The ANSI C programming interface uses a function called Init() to initialize the hashState structure. As stated
above, the hashState structure contains the hashbitlen of this particular instantiation, as well as any algorithm
specific parameters needed. Implementations shall support, at minimum, hashbitlen values of 224, 256, 384, and
512-bits. Additionally, if an algorithm can support other hash lengths, these should be supported in the code as well.

The initialization function, Init(), is called with the appropriate parameters which get loaded into the hashState
structure. These parameters are then used to perform any data independent setup that is necessary, e.g., initialization of
any intermediate values, initialization of any tables, etc.

 2

 Init()

int Init(hashState *state, int hashbitlen)

Initializes a hashState with the output hash length of this particular instantiation. Additionally, any
data independent setup is performed.

Parameters:

state: a structure that holds the hashState information
hashbitlen: an integer value that indicates the length of the hash output in bits.

Returns:

SUCCESS - on success
BAD_HASHBITLEN - hashbitlen is invalid (e.g., unknown value)

4. Update

The ANSI C programming interface uses a function called Update() to process data using the algorithm’s
compression function. Whatever integral amount of data the Update() routine can process through the compression
function is handled. Any remaining data must be stored for future processing. For example, SHA-1 has an internal
structure of 512-bit data blocks. If the Update() function is called with 768-bits of data the first 512-bits will be
processed through the compression function (with appropriate updating of the chaining values) and 256-bits will be
retained for future processing. If 2048-bits of data were provided, all 2048-bits would be processed immediately.

The Update() function is called with a pointer to the appropriate hashState structure, the data to be processed,
the length of the data to be processed (datalen), and an offset pointer to locate the data within the entire message.
The Update() routine processes as much data as it can, updating all appropriate intermediate values, and returns a
status code. The offset parameter has been provided to facilitate various designs. In particular it may be useful for
parallelizable algorithms.

 Update()

int Update(hashState *state, unsigned char *data, int datalen, int offset)

Process the supplied data.

Parameters:

state: a structure that holds the hashState information
data: the data to be hashed
datalen: the length, in bits, of the data to be hashed
offset: the offset, in bytes, of the data to be hashed within the entire message

Returns:

SUCCESS - on success

 3

5. Finalization

The ANSI C programming interface uses a function called Final() to process any remaining partial block of data
and to perform any output filtering that may be needed to produce the final hash value. For example, SHA-1 requires
appending a “1”-bit to the end of the message followed by an appropriate number of “0”-bits and the length field. This
is all processed through the compression function to produce the final hash value for the message.

The Final() function is called with pointers to the appropriate hashState structure and the storage for the final
hash value to be returned (hashval). The Final() routine performs any post processing that is necessary,
including the handling of any partial blocks, and places the final hash value in hashval. Lastly, an appropriate status
value is returned.

 Final()

int Final(hashState *state, unsigned char *hashval)

Perform any post processing and output filtering required and return the final hash value.

Parameters:
state: a structure that holds the hashState information
hashval: the storage for the final hash value to be returned

Returns:

SUCCESS - on success

 4

6. Additional Information

Return Values:
 SUCCESS 0
 BAD_HASHBITLEN 1
 /* Additional user defined return values */

Sample hashState for SHA-1:

typedef struct {

int hashbitlen;
/* The following parameters are algorithm specific */

// The following are the internal chaining values
unsigned long H[5]; // 5 * 32-bit word

// The following is the internal 512-bit block
unsigned long W[16]; // 16 * 32-bit words

// The following counts the amount of data processed for
// post processing. It is the value placed in the last
// 64-bits of the last block processed
unsigned long bits_processed[2]; // 64-bit counter

// How much of W[] hasn’t been processed yet
// Needed by Final() to handle partial blocks
int unprocessed_bits; // small counter <512
} hashState;

A complete hash of a message can be obtained with the following function:

 int
 Hash(unsigned char *data, int datalen,

unsigned char *hashval, int hashbitlen)
 {
 hashState state;

Init(&state, hashbitlen);
Update(&state, data, datalen, 0);
Final(&state, hashval);

}

