

ANSI C Cryptographic API Profile
for SHA-3 Candidate Algorithm Submissions

Revision 4: February 5, 2008

1. Overview

This document specifies the ANSI C interface profile for implementations of SHA-3 candidate
algorithms. C implementations shall support the syntax and parameterization of the interface
profile messages as described in this API. The API consists of a few data definitions and one
function to compute hashes. The function specified in this API has return values listed that are
largely used to supply error codes in the event of incomplete execution of the routine. The error
values listed are not meant to be an exhaustive list. If additional error codes are useful for your
implementation, please provide them.

2. Data Definitions

The following typedef is used to specify the arrays that will hold the data to be hashed and the
resulting hash value.

typedef unsigned char BitSequence;

The byte length, n, of a BitSequence will be n = bitlen/8, e.g., an 8-bit message will require 1
BitSequence element and a 13-bit message will require 2 BitSequence elements. BitSequence
arrays will be indexed from 0 to n-1. Sequences of bits are enumerated from 0 to (bitlen-1). The
ith bit of the sequence will be stored in array element i/8. Within a BitSequence array element,
the bits are indexed 0 to 7 with bit 0 being the Most Significant Bit (MSB), i.e., the bit with the
largest numerical value. Therefore, the ith bit of the BitSequence will be found in the i % 8 bit
position of the i/8 bitSequence element.

The following typedef is used to provide the data length of the message to be hashed. It should
be set to the largest integral data type that the target platform and compiler can understand.
Preferably this will be an unsigned 64-bit integer. If the target platform and compiler cannot
handle a 64-bit data type, use a 32-bit unsigned data type instead.

typedef unsigned long long DataLength; // a typical 64-bit value

The following enumeration is to provide return values for the API Hash function. Additional
return values may be added. These values shall be documented.

typedef enum HashReturn { SUCCESS = 0, FAIL = 1, BAD_HASHLEN = 2 };

3. Hash

The ANSI C programming interface uses a function called Hash() to process data using the
candidate algorithm and to return the resulting hash value. The Hash() function is called with

 2

a pointer to the data to be processed, the length of the data to be processed (databitlen), a
pointer to the storage for the resulting hash value (hashval), and a length of the desired hash
value (hashbitlen).

 Hash()

HashReturn Hash(const BitSequence *data, DataLength databitlen,

 BitSequence *hashval, int hashbitlen);

Hash the supplied data and provide the resulting hash value. Set return code as
appropriate.

Parameters:
data: the data to be hashed
databitlen: the length, in bits, of the data to be hashed
hashval: the resulting hash value of the provided data
hashbitlen: the length in bits of the desired hash value

Returns:

SUCCESS - on success
FAIL – arbitrary failure
BAD_HASHLEN – unknown hashlen requested
...

