
Bubble Sort
IP Core

Specification

Author: avram ionut

avramionut@opencores.org

Rev. 0.1

March 28, 2014

This page has been intentionally left blank.

Revision History

Rev
.

Date Author Description

0.1 28.03.14 Avram Ionut First release
0.2
0.3

Contents
INTRODUCTION...1

INTERFACE..2

ARCHITECTURE...4

OPERATION...6

CLOCK...8

FINAL CHAPTER..9

1.
Introduction

This is an extreme useful and clear specifications document wannabe.

It describes the interface, internal structure and functionality of Probably the Best
Sorting Module in the World. I am aware that there are people that may not agree to that
so I decided to call it: Bubble Sort. This is in part due to the fact that it implements the
bubble sorting algorithm.

The module is written in Verilog; no VHDL version planned.

Probably the Best Sorting Module in the World in intended to be independent of any bus
so there is no code to ensure the data transfers. It is left to the user of the module to
attach it to the preferred bus.

The internal structure is very simple. It resembles a chain and it is designed for fast clk.

Simple structure brings simple functionality: standard bubble sort algorithm is in place,
no fancy optimizations, only limitations: the module is capable of sorting only unsigned
words of N_BITS bits.

The code is released under LGPL as recommended by opencores.org.

Bubble Sort IP Rev 0.1 1/9

2.
Interface

The interface of the module is:

Signal Direction Comments

clk input No comments

rst input Active high

load_i input Array. Active high. Control the load of new data
inside the sorting module.

writedata_i input Array. Provides new data to the sorting module.

start_i input Active high. Triggers the sorting process.

abort_i input Not used.

readdata_o output Array. Expose sorted data outside the sorting
module.

done_o output Active high. Indicates the end of sorting process.

interrupt_o output Active high. Indicates the validity of the output
data.

The user should make sure there are no additional start_i pulses from the start of sorting
process until the end of sorting indicated by a pulse on interrupt_o.

The user is advised to not read readdata_o until the end of process indicated by a pulse
on interrupt_o. Information on readdata_o wires is garbage during the sorting process
as it reflects the content of registers during shifting process.

Bubble Sort IP Rev 0.1 2/9

The user should consider the ending of sorting process indicated by a pulse of
interrupt_o signal. The signal done_o is exposed to provide an early indication of the
process end.

The user can tie the done_o signal to the interrupt controller and use it to launch the
data reading procedure on a slow system or for systems that have significant latency.

Please see below an imaginary use case of the sorting module:

1. bring valid data to the writedata_i;

2. load data with a positive pulse on load_i;

3. start sorting with a positive pulse on start_i;

4. watch done_o or interrupt_o for positive pulse;

5. retrieve data from readdata_o;

Bubble Sort IP Rev 0.1 3/9

3.
Architecture

The architecture is a chain of simple modules alongside 2 control blocks. The number of
modules is set by parameter K_NUMBERS.

The control blocks are module intgenerator and module rungenerator.

Rungenerator is a shift register controlled by start_i and all_sorted_i signals.

Intgenerator is made from an edge select and a counter.

Stage modules are made from a shift register and a comparator. The size of the shift
register is set by parameter N_BITS. The shift register has parallel load capabilities.

Bubble Sort IP Rev 0.1 4/9

That's all; simple works best.

Bubble Sort IP Rev 0.1 5/9

4.
Operation

Here is described the normal operation of Bubble Sort hardware, assuming the unsorted
data is already loaded in the module, until the moment when all data is sorted. Reset and
abort are not discussed. Load and retrieve of data are straightforward and no further
details are needed.

At the arrival of start_i positive pulse the rungenerator module starts to generate a
continuous train of wide run pulses until brought to stop by the all_sorted_i signal. The
run pulses are delivered to the K_NUMBERS stages by run_o.

During the run pulse, at each clk rising edge, each stage module is taking one bit from
the shift register and compare it with the bit from bit_i input. The compare module inside
each stage is self locking when a valid compare decision can be done. Lets name An the
number stored in internal register of the stage and Bn the number arriving at bit_i input.
The bits of the largest number of An and Bn will be sent out through bit_o output to
reach bit_i input of the next stage. The bits of the smallest number will be sent through
value_o to be stored back in a shift register. This makes a An number that is not moved
by the sorting process to be shifted through next stage module before being brought back
to the holding shift register.

This way, at each run pulse, a stage module is comparing an input number with the one
stored inside and deliver to the next stage the largest of the 2 just as in bubble sort
software algorithm.

Each stage module is also propagating the run signal to the next stage ensuring parallel
operation of stages. The second propagated signal is the swap signal. This is active high
and indicates a swap of numbers taking place during current or a previous stage.

Both run and swap signals provided by the last stage module are used by the
intgenerator module to decide the end of sorting process. Just as in software the bubble
sort, it is considered achieving the goal when no swapping takes place. The intgenerator
stops the run wide pulses by done_o signal generated by missing swap indication at
falling edge of the run signal.

The done_o output of intgenerator linked to the all_sorted_i input of the rungenerator
module is only stopping the generation of run signal, while, due to the chain architecture,
the run pulses previously generated will continue to propagate from stage to stage. Even

Bubble Sort IP Rev 0.1 6/9

if no swapping will take place, the stage modules will be shifting data so the readdata_o
will become valid word by word as the run signal moves away. To indicate all
readdata_o words are ready, the intgenerator module counts the done pulses and when it
reaches the estimated value it generates a pulse on the signal interrupt_o. At this point
the data should be read from the module before writing any new unsorted array.

Bubble Sort IP Rev 0.1 7/9

5.
Clock

This sorting module was built with speed in mind so the clk can be run at high speeds.
Running from the clock of the bus will probably be a bad ideea. To benefit from the
design, a faster clk should be dedicated to this module.

So, even if this module is presented as a synchronous single clk design in practice it
will end as a multi clock project.

Bubble Sort IP Rev 0.1 8/9

6.
Final chapter

The sorting module is simple and this makes it probably the best sorting module in the
world, alongside other features:

– small area required;

– area increases linearly with word size and number of words;

– fclk_max does not depend on the word size or number of words (ok, there is not
absolute independence as far as the placement is affecting fclk_max);

There are some issues; some are by design, like:

– variable duration of sorting dependent on the data to be sorted;

– clock problems due the fast clock imposed by the serial nature of the design;

Some of the limitations are easy to overcome, please see the list below.

For the enthusiastic student/hobbyist:

– can you make it faster (any of: clk speed or number of clk periods is ok as long as
the area does not grow excessively)?

– can you make it work with signed numbers?

– can you extend it to {key,value} ?

– can you implement abort_i functionality?

I hope you will have at least as much fun playing with it as I had writing it.

Thank you.

PS: There is a trick in the code so any student willing to drop it on the homework without
studying it, will have a surprise.

PS PS: Let me rephrase: there is a chance that the module have more than a trick –
nobody is perfect. If you spot any issues please use the email on the front page. Thank
you.

Bubble Sort IP Rev 0.1 9/9

