

Cereon

CDS 1.0
Assembler reference

Copyright © 2007-2008, Cybernetic Intelligence GmbH
All Rights Reserved

 2

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

Authors:

Andrei Kapustin

Revision history

Date Comment

05 Dec 2007 Initial draft.

08 Jan 2008 Allowed includebin directive to be labelled.

13 Feb 2008 Allowed groups to be renamed.

15 Feb 2008 Allowed using ‘*’ as an operand to refer to the current location.

18 Feb 2008 All name/value properties will now consistently use ‘:=’.

28 July 2008 Added the use directive.
Renamed include path environment variables INCLUDE and
INCLUDEBIN to CDS_1_0_INCLUDE and
CDS_1_0_INCLUDEBIN correspondingly.

 3

1 Contents
1 CONTENTS..3

2 INTRODUCTION..7

3 THE STRUCTURE OF THE SOURCE PROGRAM......................................8
3.1 ELEMENTS OF AN ASSEMBLER PROGRAM ..8

3.1.1 Source files ...8
3.1.2 Source lines ..8

3.1.2.1 Line continuations... 8
3.1.2.2 TAB handling .. 9

3.1.3 Comments ...9
3.1.4 Identifiers..9
3.1.5 Keywords ..10
3.1.6 Constants ..10

3.1.6.1 Integer constants ... 11
3.1.6.1.1 Decimal integer constants .. 11
3.1.6.1.2 Hexadecimal integer constants... 11
3.1.6.1.3 Octal integer constants ... 11
3.1.6.1.4 Binary integer constants ... 11
3.1.6.1.5 Character integer constants ... 12

3.1.6.2 Real constants ... 12
3.1.6.2.1 Decimal real constants ... 12
3.1.6.2.2 Hexadecimal real constants.. 12
3.1.6.2.3 Octal real constants.. 13
3.1.6.2.4 Binary real constants.. 13

3.1.6.3 String constants... 14
3.1.6.3.1 String constant concatenation .. 14

3.1.6.4 Escape sequences.. 14
3.1.6.4.1 Mnemonic escape sequences .. 14
3.1.6.4.2 Numeric escape sequences ... 15
3.1.6.4.3 Literal escape sequences .. 15

3.2 EXPRESSIONS ..15
3.2.1 Operands ..16

3.2.1.1 Constant operands .. 16
3.2.1.2 Named operands ... 16
3.2.1.3 Properties.. 16
3.2.1.4 Current location.. 17

3.2.2 Operators..17
3.2.2.1 Integer operators .. 17
3.2.2.2 Real operators... 19
3.2.2.3 String operators .. 20

3.2.3 Functions ..21
3.2.4 Special expressions...22

3.2.4.1 Using brackets to change evaluation order... 22
3.2.4.2 The conditional expression ... 22

3.2.5 Operator precedence and evaluation order..23
3.2.6 Constant expressions ..24
3.2.7 Deferred expressions ..24

3.3 THE MEMORY MODEL..24
3.3.1 Segments ...25
3.3.2 Sections...25
3.3.3 Naming and joining ..25
3.3.4 Groups ..26
3.3.5 Supported memory models..26

3.3.5.1 ILP64 .. 26
3.3.5.2 LP64.. 26
3.3.5.3 IP32... 27
3.3.5.4 Compatibility between memory models... 27

4 DIRECTIVES...29

 4

4.1 MEMORY MODEL DIRECTIVES ...29
4.1.1 segment…end segment..29

4.1.1.1 Segment stacking... 29
4.1.1.2 Specifying segment properties... 30

4.1.1.2.1 read, write and execute... 30
4.1.1.2.2 code, data and const ... 31
4.1.1.2.3 align .. 31
4.1.1.2.4 address .. 31
4.1.1.2.5 max.. 32
4.1.1.2.6 private, shared and thread.. 32
4.1.1.2.7 preload, loadondemand and noload... 33
4.1.1.2.8 model... 33

4.1.2 section…end section ...34
4.1.2.1 Assigning sections to segments ... 34
4.1.2.2 Section stacking .. 34
4.1.2.3 Specifying section properties .. 35

4.1.2.3.1 read, write and execute... 36
4.1.2.3.2 code, data and const ... 36
4.1.2.3.3 align .. 36
4.1.2.3.4 address .. 37
4.1.2.3.5 max.. 37
4.1.2.3.6 private, shared and thread.. 38
4.1.2.3.7 preload, loadondemand and noload... 38
4.1.2.3.8 model... 39
4.1.2.3.9 combine and common ... 40

4.1.3 model ..40
4.1.4 group … end group...40

4.2 SYMBOL DEFINITION DIRECTIVES..41
4.2.1 proc … end proc ...41
4.2.2 var … end var ...42
4.2.3 equ ..43
4.2.4 public ..43
4.2.5 export..43
4.2.6 import ...44
4.2.7 extern ..45
4.2.8 keep...45
4.2.9 weak..46
4.2.10 size ...46
4.2.11 alias..47
4.2.12 signature ..47
4.2.13 rename ...48

4.3 DATA DEFINITION DIRECTIVES ..48
4.3.1 dd ..48

4.3.1.1 Primitive declarators .. 49
4.3.1.2 Declarator groups... 50
4.3.1.3 Repeat counters... 50

4.4 ASSEMBLY CONTROL DIRECTIVES ...51
4.4.1 include ..51
4.4.2 includebin ...52
4.4.3 if … end if ...53
4.4.4 := ..53
4.4.5 undef ...55
4.4.6 macro..55

4.4.6.1 Specifying parameters in macro calls ... 56
4.4.6.2 Specifying default macro parameter values .. 56
4.4.6.3 Labels in macro calls .. 57
4.4.6.4 Local symbols in macros... 57

4.5 REPORTING DIRECTIVES ..58
4.5.1 error..58
4.5.2 warning...58
4.5.3 assert...58

4.6 MISCELLANEOUS DIRECTIVES ...58
4.6.1 end ..58
4.6.2 entry..59

 5

4.6.3 align..59
4.6.4 target...59
4.6.5 use...60

4.7 PREDEFINED MACROPROCESSOR VARIABLES...60

5 INSTRUCTIONS ...62
5.1 IMPLICIT OPERANDS ..62
5.2 USING EXPRESSIONS..63
5.3 SPECIFYING MEMORY ADDRESSES...63
5.4 USING TYPED REGISTERS...64
5.5 WRITING CHANNEL PROGRAMS...65

5.5.1 Register names..65
5.5.2 Transfer sources and destinations ..65
5.5.3 Writing DMA instructions...66

6 INVOKING THE ASSEMBLER ...67

6.1 ENVIRONMENT VARIABLES ...67
6.1.1 CDS_1_0_ASSEMBLER_OPTIONS...67
6.1.2 CDS_1_0_ASSEMBLER_DEBUG_OPTIONS ...67
6.1.3 CDS_1_0_ASSEMBLER_RELEASE_OPTIONS ..68
6.1.4 CDS_1_0_INCLUDE..68
6.1.5 CDS_1_0_INCLUDEBIN ...68
6.1.6 Custom include contexts ...68

6.2 OPTIONS..68
6.3 OPTION FILES ..69
6.4 OPTION CONFLICTS ...69
6.5 CHARACTER ENCODING ..70
6.6 MESSAGE FILES...70

7 ASSEMBLER OPTIONS..71
7.1 -BANNER...71
7.2 -DEBUG...71
7.3 -DEFINE ..71
7.4 -DEPENDENCIES ..72
7.5 -DEPENDENCIESENCODING ...73
7.6 -DISABLEWARNING ..73
7.7 -ENABLEWARNING ...73
7.8 -ENDIAN..73
7.9 -FORMAT...74
7.10 -FULLMESSAGEPATHS..74
7.11 -HELP..74
7.12 -INCLUDECONTEXT...74
7.13 -INCLUDEPATH ...75
7.14 -INCLUDEBINPATH..75
7.15 -LISTING ...75
7.16 -LISTINGENCODING ..76
7.17 -LOCALE ...76
7.18 -MODEL ..77
7.19 -OUTPUT ...77
7.20 -PREPROCESSOROUTPUT...78
7.21 -PREPROCESSOROUTPUTENCODING..79
7.22 -PROGRESS..79

 6

7.23 -QUIET ..79
7.24 -SOURCEENCODING ..79
7.25 -SOURCETABWIDTH ...80
7.26 -STATISTICS ..80
7.27 -STDERRENCODING...80
7.28 -STDOUTENCODING ..80
7.29 -TARGET ...81
7.30 -UNDEFINE..81
7.31 -UNDEFINESTANDARD ..81
7.32 -VIA..81
7.33 -VIAENCODING...82
7.34 -WARNINGASERROR ..82
7.35 -WARNINGASWARNING ...82
7.36 -WARNINGLEVEL..83
7.37 -WARNINGSASERRORS...83

8 APPENDIX A: GNU FREE DOCUMENTATION LICENSE......................84

 7

2 Introduction
This document is a definitive guide into the Cereon Macro Assembler (henceforth
referred to simply as an “assembler”).

The Cereon Macro Assembler is a typical member of its class, allowing the translation
of programs written in Cereon Assembler Language into an object form to be linked
and executed. However, it also provides some features not normally found in a
common assembler, such as:

• Full support for ISO-10646, specifically including assembler sources.
• Emission of the NGOFF (Next Generation Object File Format) object

modules. While allowing the user to choose from several different output
formats is by no means new for an assembler, the Cereon Macro Assembler is
geared towards emission of NGOFF object modules. Other formats (such as
ELF) are also supported for legacy reasons.

 8

3 The structure of the source program
The source program offered to the assembler is a text file, where each line can either
be empty or contain an instruction, an assembler directive or a comment. Assembler
always assumes the source to be composed from ISO-10646 characters; when this is
not the case (for example, when the source file is an ISO-8859-1 – encoded text file,
which is the most common form for all source programs), the source program is
converted to ISO-10646 before being translated.

3.1 Elements of an assembler program
This chapter defines common elements that can appear in the assembler instructions
and directives.

3.1.1 Source files
As far as the assembler is concerned, a source file is a text file containing the
assembler program or part thereof. Such file can be created and edited by any text
editor available on the platform where development takes place.

By default, assembler assumes that all source files use the character encoding that is
“native” for the host platform (by far the most common character encoding used for
writing programs in all languages is iso-8859-1). However, it is possible, when
invoking the assembler, to specify that an alternative encoding (such as UTF-8 or
even EBCDIC) shall be used to interpret the contents of the source files.

3.1.2 Source lines
An assembler program is a text file consisting of a sequence of logical source lines,
where each logical source line can:

• Contain an assembler instruction or directive (possibly with comment).
• Contain a comment.
• Be empty.

In the simplest case, logical source lines correspond to physical lines contained in a
text file; the platform-specific line separator (ASCII 10 on Unix, ASCII 13 10 on
Windows, etc.) is used to determine physical source line boundaries; however, a
single logical source line can also span several physical source lines if line
continuations are used.

3.1.2.1 Line continuations
If the rightmost non-space character in a physical source line is a backslash ‘\’, then
the immediately following physical source line is considered to be a continuation of
the previous physical source lines, both contributing to the same logical source line.
The continuation line can itself end with a backslash, thus providing further line
continuation. There is no limit on how long a sequence of line continuations can be.

When there are two consecutive physical source lines L1 and L2 such that L2
immediately follows L1 and L1 ends with a backslash, the following rules are used to
combine these two physical source lines into a logical source line:

 9

• The tailing backslash in L1 is discarded as well as all spaces that (optionally)

follow it.
• All leading spaces in L2 are discarded.
• L2 is then appended to the end of L1.

Although spaces are not usually significant in assembler programs, there is a context
where spaces matter: within character and string constants. Therefore, be careful
when breaking a long string constant into several continued lines.

3.1.2.2 TAB handling
Although it is recommended not to use the ASCII TAB character within assembler
sources, it is still possible that some people will do so. The assembler processes TABs
in the assembler sources using the following rules:

• TABs are processed independently for each physical (not logical) source line
in left-to-right order.

• When a TAB character is discovered, it is replaced with a sufficient number of
space characters to advance the position to the next tab stop. Tab stops are pre-
designated positions at fixed intervals within the physical source line (that
interval is also known as tab width). At least one space is always inserted.

• The default tab width is 8 characters (for historical reasons); however, it is
possible, when invoking an assembler, to specify that a different tab width
shall be used.

TABs are replaced with spaces before logical source lines are formed.

3.1.3 Comments
In any source line within an assembler program all characters starting from the
leftmost semicolon character ‘;’ until the end of that line are considered a comment.
These characters appear in the source listing (if one is generated by the assembler),
but have no other significance.

Comments are identified after the logical source lines have been prepared. In
particular, if a physical source line where the comment starts has a continuation, that
entire continuation will be part of the comment.

3.1.4 Identifiers
To an assembler, an identifier is a symbolic name that can be used to refer to an entity
within the source program (e.g. a symbol, a section, an instruction mnemonic, a macro
name, etc.)

In its simplest form, an identifier is written as a sequence of letters and/or digits that
starts with a letter. Since the assembler is ISO-10646-aware:

• Any character belonging to an ISO-10646 category Lu, Ll, Lt, Lm or Lo is
considered a “letter”.

• Any character belonging to an ISO-10646 category Nd, Nl or No is
considered a “digit”.

 10

In addition, the following characters are allowed anywhere within identifiers (each of
these characters is treated as a special “letter”; in particular, a valid identifier can start
with one of those):

• An underscore (‘_’, ISO-10646 code 95).
• A dollar sign (‘$’, ISO-10646 code 36).
• An “at” sign (‘@’, ISO-10646 code 64).
• A dot character (‘.’, ISO-10646 code 46).
• A sequence of two colons (‘::’, ISO-10646 code 58).

Therefore, all of the following identifiers are valid:

x
_x
$x
.text
x@y
a.b.c
x::y::z
::record.field

The assembler also allows the so-called “quoted” identifiers, which are written as an
sequence of arbitrary characters and/or escape sequences enclosed in vertical bars:

|x|
|this is a valid identifier|
|ab\ncd|
|\||

Such “quoted” identifiers are parsed similarly to string constants; in particular, escape
sequences can be used within “quoted” identifiers to denote special or nonprintable
characters.

3.1.5 Keywords
A keyword is an identifier that, when used in a certain context, has a special meaning.
Examples of keywords are instruction and directive mnemonics (such as li.l or
byte), register names (such as r0 or $ip) and operators (such as shl). Keywords
are generally case-insensitive (i.e. instruction mnemonic li.l can also be written as
LI.L, similarly, a register name such as $ip can also be written as $IP).

For a detailed list of instruction mnemonics and register names consult the “Cereon
Architecture Reference Manual”.

3.1.6 Constants
A constant represents its own value. Depending on the type of the value being
represented, assembler allows integer, real and string constants to be written.

 11

3.1.6.1 Integer constants
An integer constant represents an unsigned integer value. The maximum possible
range for an integer constants is from 0 to 264-1; however, in some context the
permitted range of an integer constant will be further reduced (for example, when
used as an operand in a byte data definition directive, the permitted range of an
integer constant is from 0 to 255).

There are several ways to specify an integer constant, described in the following
chapters.

3.1.6.1.1 Decimal integer constants
A decimal integer constant is written as a sequence of decimal digits 0..9. The
following are all valid decimal integer constants:

0
1
18446744073709551615

Note that the latter is the largest permitted integer constant (264-1).

3.1.6.1.2 Hexadecimal integer constants
A hexadecimal integer constant is written as a sequence of hexadecimal digits 0..9,
a..f and A..F (where letters A..F represent hexadecimal digits 10..15 respectively)
immediately preceded by a prefix 0x or 0X. The following are all valid hexadecimal
integer constants:

0x0
0x1
0XFFFFFFFFFFFFFFFF

Note that the latter is the largest permitted integer constant (264-1).

3.1.6.1.3 Octal integer constants
An octal integer constant is written as a sequence of octal digits 0..7 immediately
preceded by a prefix 0. The following are all valid decimal octal constants:

00
01
01777777777777777777777

Note that the latter is the largest permitted integer constant (264-1). Note also that a
plain “0”, when used as a constant, it treated as a decimal constant, hence the need to
write an octal “zero” as “00”; in practice the distinction is negligible, as both “0” and
“00” represent the same value.

3.1.6.1.4 Binary integer constants
A binary integer constant is written as a sequence of binary digits 0..1 immediately
preceded by a prefix 0b or 0B. The following are all valid binary integer constants:

 12

0b0
0b1
0B11
11111111111111

Note that the latter is the largest permitted integer constant (264-1).

3.1.6.1.5 Character integer constants
A character integer constant is written as an arbitrary printable character (except a
single quote ‘ or backslash \, see below) enclosed in single quotes. The value of such
a constant is the ISO-10646 code of the specified character. The following are all
valid character integer constants:

‘ ‘ (space, ISO-10646 code 32)
‘A‘ (letter ‘A’, ISO-10646 code 65)
‘_‘ (underscore, ISO-10646 code 95)

Alternatively, an escape sequence can be written within quotes instead of a single
character. See the “Escape sequences” chapter below for more details.

3.1.6.2 Real constants
A real constant represents a 64-bit IEEE-854 floating point value; however, in some
context this value would be converted to a shorter format (e.g to a 32-bit IEEE-754
floating point value when a real constant is used as an operand in a float directive,
or to a 21-bit reduced-precision floating point value when a real constant is used as an
operand in a li.d instruction).

There are several ways to specify a real constant, described in the following chapters.

3.1.6.2.1 Decimal real constants
A decimal real constant is written as a sequence of decimal digits that contains a
decimal point, an exponent or both:

0.0 (value 0)
12.34 (value 12.34)
1.2e-10 (value 1.2×10-10)
1e10 (value 1×1010)

Note that if a real constant contains an exponent portion, then decimal point is
optional. Note also that the “+” sign is optional for positive exponents, so “1e2” and
“1e+2” both represent the same value.

Decimal real constants can only be used to represent finite IEEE-754 values (i.e.
normalized and denormalized values and zeroes), but not special values, such as NaNs
or infinities.

3.1.6.2.2 Hexadecimal real constants
A hexadecimal real constant is written as a sequence of hexadecimal digits 0..9, a..f
and A..F (where letters A..F represent hexadecimal digits 10..15 respectively)

 13

immediately preceded by a prefix 0x or 0X that contains a decimal point, an exponent
or both. Unlike decimal real constants, the exponent base for hexadecimal real
constants is 16.

0x0.0 (value 0)
0x1.8 (value 1 + 8×16-1 = 1.5)
0xFF.FF (value 255 + 255×16-2 = 255.99609375)
0x1e2 (value 1×162 = 256)

Note that if a real constant contains an exponent portion, then decimal point is
optional. Note also that the “+” sign is optional for positive exponents, so “1e2” and
“1e+2” both represent the same value.

Unlike decimal real constants, hexadecimal real constants can be used to represent all
possible IEEE-754 encodings, including special values, such as NaNs or infinities.
For example, to represent a positive infinity one would write 0x0e+7FF.

3.1.6.2.3 Octal real constants
An octal real constant is written as a sequence of octal digits 0..7 immediately
preceded by a prefix 0 that contains a decimal point, an exponent or both. Unlike
decimal real constants, the exponent base for octal real constants is 8.

00.0 (value 0)
01.4 (value 1 + 4×8-1 = 1.5)
077.77 (value 63 + 63×8-2 = 63.984375)
01e2 (value 1×82 = 64)

Note that if a real constant contains an exponent portion, then decimal point is
optional. Note also that the “+” sign is optional for positive exponents, so “1e2” and
“1e+2” both represent the same value.

Unlike decimal real constants, octal real constants can be used to represent all
possible IEEE-754 encodings, including special values, such as NaNs or infinities.
For example, to represent a positive infinity one would write 00e+3777.

3.1.6.2.4 Binary real constants
A binary real constant is written as a sequence of a binary digits 0..1 immediately
preceded by a prefix 0b or 0B that contains a decimal point, an exponent or both.
Unlike decimal real constants, the exponent base for binary real constants is 2.

0b0.0 (value 0)
0b1.1 (value 1 + 1×2-1 = 1.5)
0b11.11 (value 3 + 3×2-2 = 3.75)
0b1e2 (value 1×22 = 4)

Note that if a real constant contains an exponent portion, then decimal point is
optional. Note also that the “+” sign is optional for positive exponents, so “1e2” and
“1e+2” both represent the same value.

 14

Unlike decimal real constants, binary real constants can be used to represent all
possible IEEE-754 encodings, including special values, such as NaNs or infinities.
For example, to represent a positive infinity one would write 0b0e+11111111111.

3.1.6.3 String constants
A string constant is written as an arbitrary sequence of printable characters (except for
a double quote “ or backslash \) enclosed in double quotes:

““ (empty string)
“a“ (a string containing one character)
“abcde“ (a string containing five characters)

Normally, a string can contain any ISO-10646 characters; however, in certain
contexts the permitted range for string’s characters may be further reduced (for
example, when a string constant is used as an operand of an ascii directive, all
string’s characters must be value ASCII characters).

In addition to “normal” characters a string constant can include the so-called escape
sequences, which represent special characters (such as nonprintable or control
characters).

3.1.6.3.1 String constant concatenation
When several string constants appear immediately one after another, assembler treats
them as a single string constant by concatenating their values. For example, all of the
following forms represent the same string constant:

“a“ “b“ “c“ “d“ “e“ (5 fragments concatenated)
“ab“ “cde“ (2 fragments concatenated)
“abcde“ (a string constant is not fragmented)

3.1.6.4 Escape sequences
An escape sequence is a sequence of characters hat starts with a backslash \. Escape
sequences can occur within character integer constants, string constants and quoted
identifiers; in all of these cases escape sequences are interpreted in the same manner.
Note that, although an escape sequence is written as several characters, it always
represents a single ISO-10646 character.

Depending on the form used, there are mnemonic, numeric and literal escape
sequences.

3.1.6.4.1 Mnemonic escape sequences
Mnemonic escape sequences are used to represent the most frequently used
nonprintable characters. The following table summarizes mnemonic escape sequences
supported by the assembler:

Escape sequence Special character Value
\a Alarm 0716
\b Backspace 0816

 15

\e Escape 1B16
\f Form feed 0C16
\n New line 0A16
\r Carriage return 0D16
\t Horizontal tabulation 0916
\v Vertical tabulation 0B16

3.1.6.4.2 Numeric escape sequences
A numeric escape sequence can be used top specify an arbitrary ISO-10646 code
point. It is written in either octal or hexadecimal form (note that, unlike integer
constants, numeric escape sequences cannot be written in decimal or binary notation).

An octal escape sequence is written as a backslash \ followed by up to 11 octal digits:

\12 (value 0A16, same as \n)
\012 (value 0A16, same as \n)
\37777777777 (value FFFFFFFF16)

A hexadecimal escape sequence is written as a prefix \x or \X followed by up to 8
hexadecimal digits 0..9, a..f and A..F (where letters A..F represent hexadecimal
digits 10..15 respectively):

\xA (value 0A16, same as \n)
\x0A (value 0A16, same as \n)
\xFFFFFFFF (value FFFFFFFF16)

3.1.6.4.3 Literal escape sequences
A literal escape sequence is written as a backslash \ followed by an arbitrary
printable character. Such an escape sequence represents the character that follows the
backslash Among other things, this allows embedding the double quote and backslash
characters into string constants:

“a\\b\“c“ (value a\b“c)

3.2 Expressions
In an assembler program an expression is a specification of how an integer, real or
string value shall be calculated. An expression, when evaluated, always yields a value
of a specific type (i.e. integer, real or string) and, in general, can be used in any place
within an assembler instruction or directive where a value of the corresponding type is
expected.

The simplest form of an expression is just a single constant – such expression
produces the value represented by that constant. However, assembler also allows you
to construct arbitrarily complex expressions if the value you want cannot be
represented by a constant but requires some calculation instead.

In a general form, an expression is a mixture of:

 16

• Operands, which specify the values used in calculating the expression’s result.
• Operators, which specify the rules used for result calculation.
• Function calls, which provide a shorthand notation for commonly used

calculations.

The following sections outline all of these categories.

3.2.1 Operands
An operand is a single value participating in an expression evaluation. Assembler
allows three types of operands – constant operands, named operands and properties.

3.2.1.1 Constant operands
A constant operand is an integer, real or string constant. The type and value of such
operand is the same as the type and value of the corresponding constant.

3.2.1.2 Named operands
A named operand is an identifier that is a segment, section or symbol name. The type
of such operand is always a 64-bit integer; the value of such operand is the address of
the corresponding segment, section or symbol.

3.2.1.3 Properties
A property operand is written as <name>`<property>, where:

• <name> is an identifier that is a segment, section or symbol name.
• The back quote (ISO 10646 code 96) is used as a name/property separator.

Any number of spaces is permitted both before and after the separator;
however, it is recommended that no spaces are used there.

• <property> is an identifier referring to the property of the <name> that is
to be used. Property names are case-insensitive, so x`size can also be
written as x`Size or x`SIZE.

The following table summarizes available properties:

Property Applies to Type Value

size
segments
sections
symbols

integer The size of the corresponding segment,
section or symbol.

start
segments
sections
symbols

integer
The address of the corresponding segment,
section or symbol. When used in expression,
X`start yields the same value as X.

end
segments
sections
symbols

integer

The end address of the corresponding
segment, section or symbol.
X`end is always the same as X`start +
X`size.

defined all names integer

For any name X, X`defined is 1 iff X is a
name of a section, segment, symbol,
macroprocessor variable, macroprocessor
function or macro known to an assembler at

 17

the point where the property is being used, 0
otherwise.

3.2.1.4 Current location
When a single asterisk ‘*’ is used as an operand, it refers to the offset of the current
item within its section.

3.2.2 Operators
Operators use infix or prefix syntax to specify calculations that shall be performed.
Most operators are written using special characters (such as + or *); however, there
are also operators that are written using dedicated keywords (such as shl).

It shall be noted that many operators are overloaded. For example, the + operator can
be used to:

• Add two integer values, yielding an integer result.
• Add two real values, yielding a real result.
• Concatenate two string values, yielding a string result.

3.2.2.1 Integer operators
The following integer operators are provided:

Operator Signature Description

A + B
A : integer
B : integer

result : integer

Adds two signed integer
values, yielding an integer
result.

A – B
A : integer
B : integer

result : integer

Subtracts two signed
integer values, yielding an
integer result.

A * B
A : integer
B : integer

result : integer

Multiplies two signed
integer values, yielding an
integer result.

A / B
A : integer
B : integer

result : integer

Divides a signed integer
value by a signed integer
value, yielding an integer
result. If B = 0, an error
results.

A % B
A : integer
B : integer

result : integer

Divides a signed integer
value by a signed integer
value, yielding an integer
remainder. If B = 0, an
error results.

A shl B
A : integer
B : integer

result : integer

Shifts an unsigned integer
value A left, using B as an
unsigned integer shift
counter, yielding an
integer result.

A shr B A : integer Shifts an unsigned integer

 18

B : integer
result : integer

value A right, using B as
an unsigned integer shift
counter, yielding an
integer result.

A asl B
A : integer
B : integer

result : integer

Shifts a signed integer
value A left, using B as an
unsigned integer shift
counter, yielding an
integer result.

A asr B
A : integer
B : integer

result : integer

Shifts a signed integer
value A right, using B as
an unsigned integer shift
counter, yielding an
integer result.

A and B
A : integer
B : integer

result : integer

Performs the bitwise AND
of two integer values,
yielding an integer result.

A or B
A : integer
B : integer

result : integer

Performs the bitwise OR of
two integer values,
yielding an integer result.

A xor B
A : integer
B : integer

result : integer

Performs the bitwise
Exclusive OR of two
integer values, yielding an
integer result.

A implies B
A : integer
B : integer

result : integer

Performs the bitwise
implication of two
integer values, yielding an
integer result.

A and then B
A : integer
B : integer

result : integer

If A = 0, then yields 0.
Otherwise evaluates B; if B
= 0 then yields 0;
otherwise yields 1.

A or else B
A : integer
B : integer

result : integer

If A <> 0, then yields 1.
Otherwise evaluates B; if B
<> 0 then yields 1;
otherwise yields 0.

A implies then B
A : integer
B : integer

result : integer

If A = 0, then yields 1.
Otherwise evaluates B; if B
<> 0 then yields 1;
otherwise yields 0.

-A
A : integer
B : integer

result : integer

Yields the 2’s complement
of A.

not A
A : integer
B : integer

result : integer

Yields the 1’s complement
of A.

A = B A : integer
B : integer

Yields 1 if A = B;
otherwise yields 0.

 19

result : integer

A <> B
A : integer
B : integer

result : integer

Yields 0 if A = B;
otherwise yields 1.

A < B
A : integer
B : integer

result : integer

Yields 1 if A < B;
otherwise yields 0.
Operands are compared as
signed integer values.

A <= B
A : integer
B : integer

result : integer

Yields 1 if A <= B;
otherwise yields 0.
Operands are compared as
signed integer values.

A > B
A : integer
B : integer

result : integer

Yields 1 if A > B;
otherwise yields 0.
Operands are compared as
signed integer values.

A >= B
A : integer
B : integer

result : integer

Yields 1 if A >= B;
otherwise yields 0.
Operands are compared as
signed integer values.

3.2.2.2 Real operators
The following real operators are provided:

Operator Signature Description

A + B
A : real
B : real

result : real

Adds two real values,
yielding a real result.

A – B
A : real
B : real

result : real

Subtracts two real values,
yielding a real result.

A * B
A : real
B : real

result : real

Multiplies two real values,
yielding a real result.

A / B
A : real
B : real

result : real

Divides a real value by a
real value, yielding a real
result.

-A
A : real
B : real

result : real
Yields the A negated.

A = B
A : real
B : real

result : integer

Yields 1 if A = B;
otherwise yields 0.

A <> B
A : real
B : real

result : integer

Yields 0 if A = B;
otherwise yields 1.

A < B A : real
B : real

Yields 1 if A < B;
otherwise yields 0.

 20

result : integer

A <= B
A : real
B : real

result : integer

Yields 1 if A <= B;
otherwise yields 0.

A > B
A : real
B : real

result : integer

Yields 1 if A > B;
otherwise yields 0.

A >= B
A : real
B : real

result : integer

Yields 1 if A >= B;
otherwise yields 0.

3.2.2.3 String operators
The following real operators are provided:

Operator Signature Description

A + B
A : string
B : string

result : string

Concatenates two string
values, yielding a string
result.

A = B
A : string
B : string

result : integer

Yields 1 if A = B;
otherwise yields 0.

A <> B
A : string
B : string

result : integer

Yields 0 if A = B;
otherwise yields 1.

A < B
A : string
B : string

result : integer

Yields 1 if A < B;
otherwise yields 0. Strings
are compared
lexicographically;
character case is
significant.

A <= B
A : string
B : string

result : integer

Yields 1 if A <= B;
otherwise yields 0. Strings
are compared
lexicographically;
character case is
significant.

A > B
A : string
B : string

result : integer

Yields 1 if A > B;
otherwise yields 0. Strings
are compared
lexicographically;
character case is
significant.

A >= B
A : string
B : string

result : integer

Yields 1 if A >= B;
otherwise yields 0. Strings
are compared
lexicographically;
character case is
significant.

 21

3.2.3 Functions
A function call is written as:

<function name>(<operand1>, … ,<operandn>)

where:

• <function name> is an identifier referring to the function that is being
called.

• Each <operandi> is an expression representing one of the function’s
arguments.

Note that when a function without arguments is called, the brackets must still follow
the function name, only there will be no operands within (e.g. now()).

The following table summarizes all functions provided by the assembler (note that all
function names are case-sensitive):

Function Signature Description

length(A)
A : string
result :
integer

The number of characters in the string
A (i.e. the length of the string).

left(A, B)
A : string
B : integer

result : string

The leftmost B characters of A or, if B
> length(A), the entire A. If B <
0 then an empty string.

right(A, B)
A : string
B : integer

result : string

The rightmost B characters of A or, if
B > length(A), the entire A. If B
< 0 then an empty string.

mid(A, B)
A : string
B : integer

result : string

The substring of A starting with a 0-
based position B and extending until
the end of the string. If B < 0, then
the entire A. If B > length(A),
then an empty string.

mid(A, B, C)

A : string
B : integer
C : integer

result : string

The substring of A starting with a 0-
based position B and extending until
the 0-based position C (not including
the character at position C itself). If B
< 0, then behaves as is B = 0. If B
> length(A), then an empty
string. If C < B, then an empty
string. If C > length(A), then
behaves as if C = length(A).

int(A)
A : real
result :
integer

Returns a signed 64-bit integer value
that is the closest representable value
to A.

int(A) A : string
result :

Extracts the longest left-aligned string
representation of an integer value

 22

integer from the string A, converts it to an
integer and returns the result.
Permitted representations are those
allowed by the assembler syntax for
integer constants.

real(A) A : integer
result : real

Returns a 64-bit real value that is the
closest representable value to A.

real(A) A : string
result : real

Extracts the longest left-aligned string
representation of a real value from the
string A, converts it to a real and
returns the result. Permitted
representations are those allowed by
the assembler syntax for real
constants.

string(A) A : integer
result : string

Creates and returns a decimal integer
string representation of the specified
value.

string(A) A : real
result : string

Creates and returns a decimal integer
string representation of the specified
value.

code(A)
A : string
result :
integer

Returns the ISO-10646 code of the
first (leftmost) character of the
specified string. If the string is empty,
returns 0.

char(A) A : integer
result : string

Returns a string of length 1 whose one
and only character has ISO-10646
code A. If A is outside the range
[0..232), only its lower 32 bits are
used.

lower(A) A : string
result : string

Returns the argument string where all
characters have been converted to
lower case.

upper(A) A : string
result : string

Returns the argument string where all
characters have been converted to
upper case.

3.2.4 Special expressions
In addition to operators, operands and function calls, there are several other syntactic
constructs that can also be used in expressions.

3.2.4.1 Using brackets to change evaluation order
Normally, the order in which expression is evaluated is determined by the precedence
and associativity of operators used therein. However, brackets can be used in
mathematical sense to change the evaluation order; any sub-expression within
brackets is evaluated before its value is used as an operand (e.g. 2 + 2 * 2 = 6,
but (2 + 2) * 2 = 8).

3.2.4.2 The conditional expression
The conditional expression has the form:

 23

A ? B : C

Where:

• A is an expression that yields an integer.
• B and C are expressions that can yield integer, real or string value; however,

both must yield the value of the same type.

When a conditional expression is evaluated:

• A is evaluated first.
• If A <> 0, then B is evaluated and the value yielded by B is also yielded by

the entire conditional expression.
• If A = 0, then C is evaluated and the value yielded by C is also yielded by the

entire conditional expression.

Note that only one of B or C will be evaluated (depending on the value yielded by A).
This allows writing conditional expressions like (Y = 0) ? 0 : (X / Y),
which guards against division-by-zero.

3.2.5 Operator precedence and evaluation order
The following table summarizes the precedence and evaluation order of operators.
Operators are listed in order of decreasing precedence.

Operators Evaluation order
f(e1, …, en) Inside out
+ (unary)
- (unary)
not (unary)

Inside out

* / % Left to right
+ (binary)
- (binary) Left to right

shl
shr
asl
asr

Left to right

=
<>
<
<=
>
>=

Left to right

and
and then

or
or else
xor

Left to right

 24

implies
implies then

?: Inside out

3.2.6 Constant expressions
A constant expression is an expression whose value can be determined at compile
time. Any expression where all operands are constants is a constant expression; in
addition, a constant expression may:

• Use named operands if these operands have constant values (for example, a
constant value may be assigned to a symbol by an equ directive, which will
make that symbol a compile-time constant and allow its use in constant
expressions).

• Use properties which can be determined at compile time (for example, if F is a
name of the procedure defined in the current compilation unit, then F`size
can be used in a constant expression as an operand, because the size of the
function is known to the assembler at compile time. However, if S is a name
of a section or segment, then S`size is not a compile-time constant, as
sections and segments are constructed by linker, yet S`start may be a
compile-time constant is the segment or section in question is assigned an
explicit address in an assembler source).

All expressions that yield real or string results must be constant expressions.

3.2.7 Deferred expressions
A deferred expression is an expression which cannot be fully evaluated by the
assembler at compile time. Typical examples are expressions whose operands are
segment or section sizes, addresses and/or sizes of external symbols, etc.

Only expressions that yield integer results may be deferred. In addition, all sub-
expressions of these deferred expressions that yield real or string results must be
constant expressions. This is just another way of saying that:

• Deferred expressions are evaluated by linker (whether static linker or dynamic
linker is used depends on the linkage model) instead of the assembler.

• The linker (either static or dynamic) can only evaluate integer expressions.

There are few contexts where deferred expressions are not permitted and constant
expressions must be used instead (such as specifying a segment start address); these
contexts mainly occur in assembler directives. All such contexts are explicitly
specified as requiring constant expressions in the chapters of this document describing
corresponding directives. Assembler instructions, on the other hand, allow deferred
expressions wherever a value is needed (i.e. as immediate operands, memory address
offsets, bit field sizes and shift counts, etc.)

3.3 The memory model
Any assembler program written for a Cereon target (indeed, any program written in
any language for a Cereon target) is always written for a flat 64-bit memory model.

 25

Whether physical or virtual 64-bit address space is used is determined by the
properties of the platform where that program is run.

However, when writing a program for a Cereon platform, the programmer operates in
terms of segments and sections.

3.3.1 Segments
In its basics, a segment is a continuous block of memory within the 64-bit address
space, which can contain program code, data, heap, stack, etc. The key characteristic
of a segment is in that the entire address range of a segment has the same access
privileges and is managed by the operating system as one entity. For example, if some
word within a segment has an “execute” permission (i.e. can be executed as an
instruction), then the whole segment has an “execute” permission.

When writing an assembler program, you can specify what segments exist, as well as
access permissions assigned to these segments as well as their other properties (for
example, if you want a segment to start at a specific address within a 64-bit address
space, you can specify that too, etc.)

Note, however, that not all output formats permit segments to be defined in an object
file. For example, when compiling an assembler language program into an ELF object
module, you cannot define any segments in the assembler source, only sections. In
this case the linker is responsible for combining sections into segments (based on
section names, section access permissions, a separate memory map definition file fed
to the linker, etc.)

3.3.2 Sections
To a programmer, a section is a block of code, data or uninitialized memory that is
guaranteed to remain continuous when the program is being executed. Sections are
assigned to segments based either on segment definitions provided in the assembler
source or on whatever assignments the linker makes. Note that, although some object
formats (notably NGOFF) permit assigning sections to segments directly in the
assembler source, it does not mean that all sections must be so assigned. Indeed, it is
still possible to write an assembly language program where some (or even all)
sections are not assigned to segments and let the linker do the work. This, in
particular, allows writing assembler language programs that can be translated into any
supported object file format – just do not define any segments in the assembler
source.

The most important characteristic of a section is its access permissions, which
specifies whether the entire contents of a section can be read as data, written to and/or
executed. Other characteristics of a section may include section name, section
address, maximum size the section is permitted to grow to, etc.

3.3.3 Naming and joining
Both sections and segments can be assigned optional names.

When the linker processes object files to create executable image, all sections defined
in all input object modules that have the same name are assumed to contribute to the

 26

same section (which is produced by either concatenation or overlaying of all
contributing sections). Similarly, all segments defined in all input object modules that
have the same name contribute to the same segment. Naturally, when sections (or
segments) are joined, their attributes must not conflict.

The special case are sections and segments that do not have a name. Such sections and
segments are referred to as “anonymous” sections and segments and are never joined
with each other or any other named section or segment.

3.3.4 Groups
A group is a set of sections that must be treated as a unit. Specifically, when one of
the sections in a group is included into the linked image, all group members must be
included.

Some object formats (such as NGOFF) allow the same section to be a member of
more than one group. In this case, if the section is included into the linked image, then
all sections belonging to all groups of which the original section is a member are
included as well.

3.3.5 Supported memory models
Cereon applications (including those written in assembler language) can utilize one of
the several memory models. Depending on what memory model is chosen, the
program may be limited in what areas of a 64-bit address space it can access.

The following sections describe memory models supported by the assembler.

3.3.5.1 ILP64
The name of this memory model is an abbreviation from “Integer, Long integer and
Pointer are all 64-bit”. In effect, this means that:

• The program can access the entire 64-bit address space (because 64-bit
pointers are used).

• The program can operate with 64-bit integer data (because 64-bit long integers
are used).

• When operating with integer data, the program uses 64-bit integers for
preference.

This memory model offers maximum flexibility, as it uses the entire range of Cereon
features.

3.3.5.2 LP64
The name of this memory model is an abbreviation from “Integer is 32-bit, Long
integer and Pointer are both 64-bit”. In effect, this means that:

• The program can access the entire 64-bit address space (because 64-bit
pointers are used).

• The program can operate with 64-bit integer data (because 64-bit long integers
are used).

 27

• When operating with integer data, the program uses 32-bit integers for
preference. In memory, these integer values will be stored as 32-bit words,
which will then be sign- or zero-extended when loaded into a register.

This memory model may result in smaller programs, as most integer values will
happily fit within 32 bits. The efficiency is not sacrificed, as the Cereon architecture
has been specifically designed to be as efficient working with 32-bit data as with 64-
bit data. The downside is in development and maintenance cost, as the programmer
must then explicitly decide which variables may or may not fit into 32-bits; if the
range of one of those 32-bit variables increases later on, significant pieces of code
may need to be rewritten.

3.3.5.3 IP32
The name of this memory model is an abbreviation from “Integer and Pointer are both
32-bit, but 64-bit Long integer type is also provided”. In effect, this means that:

• The program can access only the lower 4GB of the entire 64-bit address space
(because 32-bit pointers are used). In memory, pointers will be stored as 32-bit
words, which will then be zero-extended when loaded into a register.

• The program can operate with 64-bit integer data (because 64-bit long integers
are used).

• When operating with integer data, the program uses 32-bit integers for
preference. In memory, these integer values will be stored as 32-bit words,
which will then be sign- or zero-extended when loaded into a register.

This memory model is best suited for porting 32-bit applications to Cereon platforms.
Many of these applications are written with implicit assumptions that:

• Integer values are 32 bits long, and
• Conversion between pointers and integers is lossless both ways.

3.3.5.4 Compatibility between memory models
In general, it is dangerous to link together object modules produced for different
memory models, as the resulting image will, most likely, not work correctly.

However, in case you absolutely must do this, remember the following compatibility
chain:

IP32 → LP64 → ILP64

Where the arrow M1→M2 means that:

• It may be safe for an object module that uses memory model M1 to call a
procedure that has been compiled for memory model M2.

• It may be safe for an object module that uses memory model M1 to use a
variable defined in an object module that has been compiled for memory
model M2.

 28

Note that the reverse (i.e. ILP64 procedure calling an IP32 procedure) is guaranteed
to be unsafe. Therefore, an IP32 procedure may not call an ILP64 procedure if the
latter requires a callback (as the callback will also be an IP32 procedure, which
should not be called from IPL64 code).

Therefore, to avoid complications – don’t mix memory models. The assembler allows
you to specify what memory model a particular assembler source is written for
(default is ILP64, as this is the Cereon native memory model), and the linker will
normally complain when you try to mix several memory models into the same
executable (unless you silence it with a dedicated command line option).

 29

4 Directives
This section describes directives implemented by the Cereon assembler. Unlike
instructions (where each instruction translates directly into a single 32-bit Cereon
instruction), directives are used to:

• Define data (both initialized and uninitialized).
• Specify the program’s memory model (segmentation, sections, alignment, etc.)
• Control the translation process (by performing macro expansion, conditional

compilation, issuing messages, etc.)

The following sections describe assembler directives by their functionality areas.

4.1 Memory model directives
These directives specify the memory model that an assembler language program will
use, as well as defining program’s sections and segments.

4.1.1 segment…end segment
This directive has the following form:

[<name>:] segment <properties>
 . . .
[<name>:] end segment

In the simplest case, everything between the segment and end segment
directives belongs to the specified segment (situation may be more complicated if
segment stacking is used, see below). Depending on whether the segment is named or
not, one of two choices is possible:

• If the segment is named, then the <name> used in the end segment
directive must match the <name> used in the segment directive. The
corresponding named segment will appear in an object module and may be
joined with other segments with the same name by linker.

• If the segment is not named, then both segment and end segment
directives must not specify the <name> portion. In this case a new,
anonymous, segment is created and placed into an object module; this
anonymous segment will not be joined with any other segment by the linker.

4.1.1.1 Segment stacking
A segment stacking occurs when the segment … end segment directives appear
within another pair of segment … end segment directives, as in:

.text: segment
 . . .
.data: segment
 . . .
.data: end segment
 . . .

 30

.text: end segment

In this case, the inner segment directive temporarily suspends the enclosing
segment and starts a new one. When the inner end segment directive is processed,
the inner segment is closed and the outer segment is resumed. The behaviour is as if
the inner segment directive saved the “current” segment on a stack and the inner
end segment directive restored it (hence the test “segment stacking”). Segment
… end segment directives can be nested to any depth; however, it is important to
realize that all segments are equal regardless of how or where they are defined.

It is important to ensure that the proper nesting is observed; for example, the
following is an error:

.text: segment
 . . .
.data: segment
 . . .
.text: end segment
 . . .
.data: end segment

4.1.1.2 Specifying segment properties
By default, segments declared in an assembler program are assigned the minimal set
of properties. More often than not this is not enough. Typically, as a programmer you
need to specify at least some of the following properties of a segment, such as:

• The access permissions (i.e. whether the contents of the segment can be read
as data, written to or executed as instructions).

• The address of the segment (which is frequently known at compile-time if the
segment contains ROMable code).

• The required segment alignment.
• The maximum size to which the segment can grow (this can ensure that linker

will not create joined segments that are too large to fit into required memory
areas).

• The memory model used by the segment.

To do this, the segment directive allows you to specify segment properties. Each
segment property is specified by a single operand of a segment directive; use as
many operands as you need and separate them by commas, as in:

.text: segment code, align := 4, model := ip32

The following sections describe permitted operands of the segment directive in
more details. Note that all keywords referring to segment properties (such as read,
align, etc.) are case-insensitive.

4.1.1.2.1 read, write and execute
These properties set individual access permissions for the segment in question. They
are written as one of:

 31

 read
 write
 execute

When used as an operand in a segment directive, these properties set segment’s
read, write and execute permissions correspondingly.

4.1.1.2.2 code, data and const
These properties set combined access permissions for the segment in question, based
on the most commonly needed access permissions for different types of contents.
They are written as one of:

 code
 data
 const

When used as an operand in a segment directive, these properties set segment’s
permissions as follows:

• code sets read and execute permission.
• data sets read and write permissions.
• const sets read permission.

4.1.1.2.3 align
This property specifies the alignment requirement of a segment. It is written as:

 align := <alignment>

where <alignment> is a constant expression yielding an integer value representing
the alignment boundary, which must be a power of 2. For example, the directive

.text: segment code, align := 4

specifies that .text is a code segment (i.e. contains executable instructions) and is
aligned at a 4-byte boundary (since all instructions must be naturally aligned).

Any number of spaces is allowed before and after the ‘=’ operator. If the alignment of
a segment is not explicitly specified, the segment does not have alignment
requirement (i.e. it can start at any address).

4.1.1.2.4 address
This property specifies the constant address of a segment. It is written as:

 address := <address>

where <address> is a constant expression yielding an integer value representing
the segment’s address. For example, the directive

 32

.text: segment code, address := 0xFFFFFFFFFFF00000

specifies that .text is a code segment (i.e. contains executable instructions) and is
located at address 0xFFFFFFFFFFF00000 (which is, probably, the ROM).

Any number of spaces is allowed before and after the ‘:=’ operator. If the address of
a segment is not explicitly specified, the segment can start at any address (as
determined by linker and/or loader).

4.1.1.2.5 max
This property specifies the maximum size the segment can grow to when the linker
performs segment joining. It is written as:

 max := <size>

where <size> is a constant expression yielding an integer value representing the
segment’s maximum permitted size. For example, the directive

.text: segment code, max := 65536

specifies that .text is a code segment (i.e. contains executable instructions) and is
guaranteed not to exceed 64K in size.

Any number of spaces is allowed before and after the ‘:=’ operator. If the maximum
size of a segment is not explicitly specified, the segment can grow to any size.

4.1.1.2.6 private, shared and thread
These properties specify how the memory is allocated for the segment. They are
mutually exclusive and are written as one of:

 private
 shared
 thread

Depending on which property was used, the following memory allocation strategy
will be used for the segment:

• private segments are allocated per process. If several instances of the same
application are running, each instance will have its own, private, copy of the
segment. This is the default allocation mode for global static data.

• shared segments are allocated once per application. If several instances of
the same application are running, they will all have shared access to the same
copy of a shared segment. In effect, shared segments provide statically
allocated shared memory. Code segments will be frequently marked as
shared, since there is no need to keep an identical copy of a program’s code
replicated in each instance of that program that is running.

• thread segments represent the other extreme – in a multithreaded
application each thread will have its own, private, copy of a thread segment.

 33

This permits using thread segments as statically allocated thread-local
storage.

If the memory allocation mode for a given segment is not specified explicitly,
private is assumed.

4.1.1.2.7 preload, loadondemand and noload
These properties specify how the OS loader brings segments into the memory image
of a process. They are mutually exclusive and are written as one of:

 preload
 loadondemand
 noload

Depending on which property was used, the following strategy will be used for the
segment:

• preload segments are brought into memory when an application is started.
By the time an application begins execution, all its preload segments are in
memory.

• loadondemand segments are not loaded when an application starts.
However, the OS keeps track of them; any attempt to use one of these
segments is intercepted by OS, which then loads the segment. These segments
are best suited for information that is not normally needed for the program
execution, but may still be required in some circumstances (such as exception
handlers or debug information).

• noload segments are never automatically loaded into the process’ memory
image. If an application needs to use one of these segments, it must explicitly
ask OS to load it. These segments are best suited for information that is not
needed during program execution, but may still be required in some unusual
circumstances.

If the segment loading mode for a given segment is not specified explicitly,
preload is assumed.

Note that when an assembler-language program is written to run on a bare hardware
(i.e. without OS support), only preload segments will be part of that program’s
memory image.

4.1.1.2.8 model
This property specifies what memory model the segment conforms to. It is written as:

 model := {ilp64|lp64|ip32}

When a segment conforms to a specific memory model, all sections and symbols
within that segment must conform to the same memory model.

Any number of spaces is allowed before and after the ‘:=’ operator. If the memory
model of a segment is not explicitly specified, the current default memory model is

 34

assumed for that segment (as specified by the model directive, see below). Memory
model names (ilp64, lp64 and ip32) are case-insensitive.

4.1.2 section…end section
This directive has the following form:

[<name>:] section <properties>
 . . .
[<name>:] end section

In the simplest case, everything between the section and end section
directives belongs to the specified section (situation may be more complicated if
section stacking is used, see below). Depending on whether the section is named or
not, one of two choices is possible:

• If the section is named, then the <name> used in the end section
directive must match the <name> used in the section directive. The
corresponding named section will appear in an object module and may be
joined with other sections with the same name by linker.

• If the section is not named, then both section and end section
directives must not specify the <name> portion. In this case a new,
anonymous, section is created and placed into an object module; this
anonymous section will not be joined with any other section by the linker.

4.1.2.1 Assigning sections to segments
Depending on whether the section … end section directive is nested within a
segment … end segment directive, two choices are possible.

If this is the case, then the section is assigned to the specified segment (note that
assignment of sections to segments is incompatible with some object file formats
produces by the assembler, such as ELF). If segment stacking is in effect, the section
is assigned to the innermost enclosing segment. Such sections are called bound
sections, because it is always known which segment they will end up assigned to.

If the section … end section directive is not nested within any segment …
end segment directives, then the section is not assigned to any segment. Such
sections are called roaming sections, as it is up to linker (whether static or dynamic) to
decide which segment these sections will ultimately end up in.

4.1.2.2 Section stacking
A section stacking occurs when the section … end section directives appear
within another pair of section … end section directives, as in:

.CODE: section
 . . .
.CONST: section
 . . .
.CONST: end section
 . . .

 35

.CODE: end section

In this case, the inner section directive temporarily suspends the enclosing section
and starts a new one. When the inner end section directive is processed, the inner
section is closed and the outer section is resumed. The behaviour is as if the inner
section directive saved the “current” section on a stack and the inner end
section directive restored it (hence the test “section stacking”). Section … end
section directives can be nested to any depth; however, it is important to realize
that all sections are equal regardless of how or where they are defined.

It is important to ensure that the proper nesting is observed; for example, the
following is an error:

.CODE: section
 . . .
.CONST: section
 . . .
.CODE: end section
 . . .
.CONST: end section

In addition, the following restrictions must be observed:

• It is not permitted to stack a roaming section inside a bound section.
• It is not permitted to stack a bound section inside a roaming section.
• It is not permitted to stack a bound section inside another bound section if the

two are bound to different segments.

While these rules may seem somewhat complicated, in reality there is a simple
interpretation of them – section stacking is not permitted to affect segment stacking.

4.1.2.3 Specifying section properties
By default, sections declared in an assembler program are assigned the minimal set of
properties. More often than not this is not enough. Typically, as a programmer you
need to specify at least some of the following properties of a section, such as:

• The access permissions (i.e. whether the contents of the section can be read as
data, written to or executed as instructions).

• The address of the section (which is frequently known at compile-time if the
section contains ROMable code).

• The required section alignment.
• The maximum size to which the section can grow (this can ensure that linker

will not create joined section that are too large to fit into required memory
areas).

• The memory model used by the section.
• The combination mode for the section if several object modules contain

definitions of the same section.

 36

While some of these properties can be safely inferred (for example, sections inherit
access permissions and memory model from the segment to which they are assigned),
there are still situations where:

• Properties inherited from the containing segment are not what the programmer
wants.

• A section is a roaming section, which cannot inherit anything from its segment
because it is not assigned to any.

To help in these situations, the section directive allows you to specify section
properties. Each section property is specified by a single operand of a section
directive; use as many operands as you need and separate them by commas, as in:

.CODE: section code, align := 4, model := ip32

The following sections describe permitted operands of the section directive in
more details. Note that all keywords referring to section properties (such as read,
align, etc.) are case-insensitive.

4.1.2.3.1 read, write and execute
These properties set individual access permissions for the section in question. They
are written as one of:

 read
 write
 execute

When used as an operand in a section directive, these properties set section’s read,
write and execute permissions correspondingly.

4.1.2.3.2 code, data and const
These properties set combined access permissions for the section in question, based
on the most commonly needed access permissions for different types of contents.
They are written as one of:

 code
 data
 const

When used as an operand in a section directive, these properties set section’s
permissions as follows:

• code sets read and execute permission.
• data sets read and write permissions.
• const sets read permission.

4.1.2.3.3 align
This property specifies the alignment requirement of a section. It is written as:

 37

 align := <alignment>

where <alignment> is a constant expression yielding an integer value representing
the alignment boundary, which must be a power of 2. For example, the directive

.CODE: section code, align := 4

specifies that .CODE is a code section (i.e. contains executable instructions) and is
aligned at a 4-byte boundary (since all instructions must be naturally aligned).

Any number of spaces is allowed before and after the ‘:=’ operator. If the alignment
of a section is not explicitly specified, the section does not have alignment
requirement (i.e. it can start at any address).

It is not safe for an alignment constraint of a section to exceed an alignment constraint
of its containing segment. Therefore, if an attempt is made to define a bound section
with an alignment constraint exceeding that of its containing segment, a warning is
issued and the segment’s alignment constraint is increased to match that of the bound
section in question. Needless to say, this is not a recommended programming practice.

4.1.2.3.4 address
This property specifies the constant address of a section. It is written as:

 address := <address>

where <address> is a constant expression yielding an integer value representing
the section’s address. For example, the directive

.CODE: section code, address := 0xFFFFFFFFFFF00000

specifies that .CODE is a code section (i.e. contains executable instructions) and is
located at address 0xFFFFFFFFFFF00000 (which is, probably, the ROM).

Any number of spaces is allowed before and after the ‘:=’ operator. If the address of
a segment is not explicitly specified, the segment can start at any address (as
determined by linker and/or loader).

When assigning addresses to bound sections and their containing segments, one shall
remember that:

• A bound section must be entirely within an address range of its containing
segment.

• Different segments cannot intersect.
• Different sections cannot intersect.

4.1.2.3.5 max
This property specifies the maximum size the section can grow to when the linker
performs section joining. It is written as:

 38

 max := <size>

where <size> is a constant expression yielding an integer value representing the
section’s maximum permitted size. For example, the directive

.CODE: section code, max := 65536

specifies that .CODE is a code segment (i.e. contains executable instructions) and is
guaranteed not to exceed 64K in size.

Any number of spaces is allowed before and after the ‘:=’ operator. If the maximum
size of a segment is not explicitly specified, the segment can grow to any size.

4.1.2.3.6 private, shared and thread
These properties specify how the memory is allocated for the section. They are
mutually exclusive and are written as one of:

 private
 shared
 thread

Depending on which property was used, the following memory allocation strategy
will be used for the section:

• private sections are allocated per process. If several instances of the same
application are running, each instance will have its own, private, copy of the
section. This is the default allocation mode for global static data.

• shared sections are allocated once per application. If several instances of the
same application are running, they will all have shared access to the same
copy of a shared section. In effect, shared sections provide statically
allocated shared memory. Code sections will be frequently marked as
shared, since there is no need to keep an identical copy of a program’s code
replicated in each instance of that program that is running.

• thread sections represent the other extreme – in a multithreaded application
each thread will have its own, private, copy of a thread section. This
permits using thread sections as statically allocated thread-local storage.

If the memory allocation mode for a given roaming section is not specified explicitly,
private is assumed. If the memory allocation mode for a given bound section is not
specified explicitly, it is inherited from the bound section’s containing segment.

A section is not permitted to reside in a segment if the two have different memory
allocation modes.

4.1.2.3.7 preload, loadondemand and noload
These properties specify how the OS loader brings sections into the memory image of
a process. They are mutually exclusive and are written as one of:

 preload

 39

 loadondemand
 noload

Depending on which property was used, the following strategy will be used for the
section:

• preload sections are brought into memory when an application is started.
By the time an application begins execution, all its preload sections are in
memory.

• loadondemand sections are not loaded when an application starts.
However, the OS keeps track of them; any attempt to use one of these sections
is intercepted by OS, which then loads the section. These sections are best
suited for information that is not normally needed for the program execution,
but may still be required in some circumstances (such as exception handlers or
debug information).

• noload sections are never automatically loaded into the process’ memory
image. If an application needs to use one of these sections, it must explicitly
ask OS to load it. These sections are best suited for information that is not
needed during program execution, but may still be required in some unusual
circumstances.

If the section loading mode for a given roaming section is not specified explicitly,
preload is assumed. If the section loading mode for a given bound section is not
specified explicitly, it is inherited from the bound section’s containing segment.

A section is not permitted to reside in a segment if the two have different memory
loading mode.

Note that when an assembler-language program is written to run on a bare hardware
(i.e. without OS support), only preload sections will be part of that program’s
memory image.

4.1.2.3.8 model
This property specifies what memory model the section conforms to. It is written as:

 model := {ilp64|lp64|ip32}

When a section conforms to a specific memory model, all symbols within that
segment must conform to the same memory model.

Any number of spaces is allowed before and after the ‘:=’ operator. If the memory
model of a roaming section is not explicitly specified, the current default memory
model is assumed for that section (as specified by the model directive, see below). If
the memory model of a bound section is not explicitly specified, it is inherited from
the bound section’s containing segment. Memory model names (ilp64, lp64 and
ip32) are case-insensitive.

 40

4.1.2.3.9 combine and common
These properties specify how the linker combines several definitions of the same
section that originate in several different object modules. They are mutually exclusive
and are written as one of:

 combine
 common

Depending on which property was used, the following strategy will be used by the
linker:

• combine means that all definitions of the section coming from all object
modules will be concatenated together, forming a larger section. A typical
example where this behaviour is necessary is when linking code sections –
each object module will have its own .CODE section containing that object
module’s code, and all these .CODE sections must be concatenated to produce
a large .CODE section containing all of the application’s code.

• common means that all definitions of the section coming from all object
modules will be overlaid. The size of the resulting section is the same as the
size of the largest overlay. In addition, there must be no conflict as to what the
initial contents of each byte of the resulting section is. A typical example of
when this is useful is when compiling C++ templates. The compiler will
normally produce a single code section for each template and place it in every
object module where it is used. During linking, all definitions of each template
are overlaid, resulting in the executable image containing only one copy of
each template.

If a combination mode of a section is not specified explicitly, combine is assumed.

4.1.3 model
This directive has the following form:

 model {ilp64|lp64|ip32}

The directive sets the default memory model to the specified value. All subsequent
section and segment directives that do not have the model property explicitly
specified will be assigned that default memory model.

At the beginning of the compilation unit, the default memory model is as specified
from the assembler command line. If the default memory model is not specified from
the assembler command line, the default memory model at the beginning of the
compilation unit is ilp64.

4.1.4 group … end group
This directive has the following form:

[<name>:] group
 <section name>
 . . .

 41

 <section name>
 [<name>:] end group

This directive specifies that all sections whose names appear between the group and
end group directives belong to the specified group.

Depending on whether the group is named or not, one of two choices is possible:

• If the group is named, then the <name> used in the end group directive
must match the <name> used in the group directive. The corresponding
named group will appear in an object module and may be joined with other
groups with the same name by linker.

• If the group is not named, then both group and end group directives must
not specify the <name> portion. In this case a new, anonymous, group is
created and placed into an object module; this anonymous group will not be
joined with any other group by the linker.

Group members are specified by writing one member section name per line within the
group … end group directives. For example, the following anonymous group
contains 2 member sections proc1::code and proc1::const:

 group
 proc1::code
 proc1::const
 end group

No other assembler constructs (such as other directives or instructions) are allowed
between the group and end group directives.

4.2 Symbol definition directives
Symbol definition directives are used to specify properties of symbols used in the
assembler program.

4.2.1 proc … end proc
This directive has the following form:

<name>: proc
 . . .
<name>: end proc

where <name> is a name of the procedure being defined and must be the same in
both proc and end proc directives.

This directive has two purposes:

• Defining the boundaries of a procedure, and
• Specifying the symbol that shall be used to refer to the procedure’s address.

 42

Typically, the proc … end proc directive would encompass instructions (and
literal pools, if necessary) of a single procedure, as in:

foo: proc
 jr $ra ; just return at once
foo: end proc

Therefore, each proc … end proc directive must appear within some section.

In addition to defining the address of the procedure’s naming symbol to be the address
of the procedure’s first instruction, the proc … end proc directive also defines
the “size” of the symbol. This is done automatically (as the assembler always knows
how many bytes of code and/or data were written between proc and end proc
directives) and is called implicit symbol size specification (as opposed to explicit
symbol size specification, see size directive).

4.2.2 var … end var
This directive has the following form:

<name>: var
 . . .
<name>: end var

where <name> is a name of the variable being defined and must be the same in both
var and end var directives.

This directive has two purposes:

• Defining the boundaries of a variable, and
• Specifying the symbol that shall be used to refer to the variable’s address.

Typically, the var … end var directive would encompass data definition
directives, as in:

foo: var
 dd L(10)
 dd [4]B(0)
 dd A(“string”)
foo: end var

Therefore, each var … end var directive must appear within some section.

In addition to defining the address of the variable’s naming symbol to be the address
of the variable’s first data byte, the var … end var directive also defines the
“size” of the symbol. This is done automatically (as the assembler always knows how
many bytes of data were written between var and end var directives) and is called
implicit symbol size specification (as opposed to explicit symbol size specification, see
size directive).

 43

4.2.3 equ
This directive has the following form:

<name>: equ <expression>

where each <name> is a name of a symbol not otherwise defined in this compilation
unit and <expression> is an expression yielding an integer value.

The directive tells the assembler that the address of the symbol with given <name> is
the value of the <expression>.

Regardless of what object file format is used as assembler’s output, any constant
expression is permitted as the symbol’s value, so the following directives are always
valid:

X: equ 1
Y: equ X * 10

(Note that the definition of Y refers to X; however, this is valid as the value of X is a
compile-time constant).

Depending on the object file format produced, assembler may also allow deferred
expressions for specification of symbol values, as in:

.text: section
 . . .
.text: end section

X: equ .text + 1 ; address of the 2nd byte of the section

Currently, the only object file format that permits deferred expressions in equ
directives is NGOFF.

4.2.4 public
This directive has the following form:

 public <name1>, …, <namen>

where each <namei> is a name of a symbol defined in this compilation unit.

The directive specifies public visibility for the listed symbols. Normally, symbols
defined in a compilation unit are not visible outside the compilation unit’s boundaries.
However, when made public, symbols become visible to other compilation units
(where they must be declared with an extern directive, see below, in order to be
used).

4.2.5 export
This directive has the following form:

 44

 export <name1>, …, <namen>

where each <namei> is a name of a symbol defined in this compilation unit.

The directive specifies export visibility for the listed symbols. This is quite similar to
public visibility (as declared by public directive), but there is also a difference.
When several object modules are linked together to produce an executable module,
they can use each other’s public symbols; however, none of these symbols will be
visible outside the linked executable module. These object modules can also use each
other’s export symbols; however, all these export symbols will then also be visible
outside of the executable module. This is important for dynamic linking, where
dynamic-link libraries must provide global symbols that their clients can use.

4.2.6 import
This directive has the following form:

 import <name1>, …, <namen>

where each <namei> is a name of a symbol not defined or declared as external (see
next chapter) in this compilation unit.

The directive specifies import visibility for the listed symbols. What this means is that
these symbols are not defined explicitly in this compilation unit or any other
compilation units that will be linked together to form an executable module. Instead,
the linker sets up the executable module for dynamic linking, to bring in the dynamic-
link library exporting the actual definition of these symbols at load time.

In order to have enough information to prepare the executable module for dynamic
linking, the linker must know which dynamic-link libraries are to be used. This is
achieved by giving the linker one or more import libraries along with all necessary
object modules. Each import library is, basically, a set of rules such as “imported
symbol S1 can be found in dynamic-link library L1, imported symbol S2 can be found
in dynamic-link library L2, and so on.

There is also a qualified form of the import directive:

 import <name1> from <library1>, …, <namen> from
<libraryn>

When this form is used, it tells the assembler that at load time the actual definition of
each <namei> will be exported by the dynamic-link library <libraryi>. The
linker has all the information it needs to prepare such symbols for dynamic linking, so
no import libraries are needed.

Naturally, a mixed form is also possible, as in:

 import X, Y from “mydll”, Z

 45

It is permitted for several compilation units to import the same symbol, provided
that there is no disagreement on what library that symbol is imported from. For
example, if one compilation unit contains the directive:

 import X

and another compilation unit contains the directive:

 import X from “mydll”

then, when the two corresponding object modules are linked together, the two
imported symbols will be recognized as a double importing of the same symbol from
a known dynamic-link library, so no import library will be needed.

4.2.7 extern
This directive has the following form:

 extern <name1>, …, <namen>

where each <namei> is a name of a symbol not defined or imported in this
compilation unit.

The directive specifies external visibility for the listed symbols. This means that, as
far as the current compilation unit is concerned, the actual definitions of these
symbols exist in some other compilation unit and it’s up to the linker to find one.

Note that external symbols used by a compilation unit can be resolved to any of the
following:

• A public symbol defined by some other compilation unit (resolution is
performed by the linker when an executable module is made).

• An exported symbol defined by some other compilation unit (resolution is
performed by the linker when an executable module is made).

• An imported symbol defined by some other compilation unit (partial
resolution is performed by the linker when an executable module is made, but
final resolution will be made by dynamic linker when the executable module is
loaded into memory).

4.2.8 keep
This directive has the following form:

 keep <name1>, …, <namen>

where each <namei> is a name of a local symbol (i.e. a symbol defined in this
compilation unit but not made publicly visible by public or export directives).

Normally, local symbols do not make it into an object module or, if they need to be
present in an object module (for example, if used as relocation targets), their names
are stripped. This helps to reduce the size of an object module at the cost of making

 46

some tasks more difficult (for example, listing the contents of an object module will
not tell you where the boundaries between private functions are, etc.)

The keep directive instructs the assembler to make sure that specific local symbols
must make their way into the produced object module (even if removing them would
have been safe otherwise) and that these symbols will retain their names.

4.2.9 weak
This directive has the following form:

 weak <name1>, …, <namen>

where each <namei> is a name of a global symbol (i.e. a symbol mentioned in a
public, export, import or extern directive).

The weak directive instructs the assembler that all global symbols mentioned therein
are weak globals.

There are two cases, depending on whether the weak symbol is defined in the current
compilation unit or not:

• If the symbol appears in a public or export directive, it is defined in this
compilation unit. Marking such symbol as “weak” results in a weak definition.
Such definition is ignored by linker (both static and dynamic) if another
definition of the same symbol exists. If there are only weak definitions of a
symbol, one of them is chosen arbitrarily.

• If the symbol appears in an import or extern directive, it is defined in
some other compilation unit. Marking such symbol as “weak” results in a
weak reference. When the linker (whether static or dynamic) fails to resolve a
weak reference (because, typically, such definition does not exist), it silently
assumes that the symbol’s value is 0 and does not search available libraries for
a potential definition.

4.2.10 size
This directive has the following form:

 size <name1> := <value1>, …, <namen> := <valuen>

where each <namei> is a name of a symbol and <valuei> is a constant expression
yielding an integer result.

The size directive assigns explicit sizes to the symbols as specified. For some
symbols this may be necessary (for example, there is no other way to assign size to a
symbol defined by an equ directive), otherwise the default means of assigning sizes
to symbols must be overridden (for example, a procedure name symbol will be
implicitly assigned size according to how many bytes of code and data occur between
proc and end proc directives, but the programmer may have different intentions).

 47

4.2.11 alias
This directive has the following form:

 alias <name1> := <alias1>, …, <namen> := <aliasn>

where each <namei> is a name of a symbol and <aliasi> is a constant expression
yielding a string result.

The alias directive assigns aliases to symbols as specified. An alias of a symbol is
an arbitrary string that is used instead of the symbol’s name in all messages about the
symbol. For example, if a compilation unit contains directives:

 extern _SPL___package_c_cfunction
 alias _SPL___package_c_cfunction:=”package::function”

and, at link time, the definition of the symbol _SPL___package_c_cfunction
is not found, then the actual error message issued by the linker would be along the
lines of “the symbol package::function is not found”, which is far more
informative to the programmer than if the symbol name was used.

The main purpose of aliases, as the above example suggests, is to free both static and
dynamic linker from having to perform name unmangling in case an error message
must be issued. However, it is also possible to utilize symbol alias information for
other purposes (for example, when disassembling an object module, it makes it
possible to replace mangled symbol names with their aliases which are familiar to the
programmer, etc.)

Note that any symbol known within a compilation unit (including external and
imported symbols) can be explicitly assigned an alias. If an external or imported
symbol is assigned an alias that is different from an alias of the actual definition of
that symbol, it is unspecified whether an error or warning will be reported or the
situation will be handled silently.

Note, also, that some object file formats (such as ELF) do not permit symbol aliasing.

4.2.12 signature
This directive has the following form:

 signature <name1> := <sig1>, …, <namen> := <sign>

where each <namei> is a name of a symbol and <sigi> is a constant expression
yielding a string result.

A signature is an arbitrary string that can be assigned to a symbol. When several
object modules assign signatures to the same symbol, all these signatures must match,
otherwise a “signature mismatch” error is reported by the linker. The primary purpose
of symbol signatures is to encode the information about symbol’s type, thus to allow
for type-safe linking of separately compiled program fragments.

 48

4.2.13 rename
This directive has the following form:

 rename <name1> := <global1>, …, <namen> := <globaln>

where each <namei> is a name of a symbol, segment, section or group and
<globali> is a global name of the corresponding symbol, segment, section or
group.

The rename directive allows symbols, segments and sections to be named in the
source program differently than in the resulting object module. Consider:

.text1: section
 . . .
.text1: end section

.text2: section
 . . .
.text2: end section

 global .text1 := .text, .text2 := .text

In the source program, there are two different sections .text1 and .text2.
However, both are renamed, so the generated object module will contain two separate
sections named .text.

4.3 Data definition directives
Data definition directives are used to reserve (and, possibly, initialize) data memory.

4.3.1 dd
This directive has the following form:

 [<name>:] dd <declarator1>, …, <declaratorn>

where:

• <name>, if specified, is a symbol that, when used as an operand in an
expression, will yield the address of the first data byte defined by the directive.

• Each of the operands <declaratori> is a specification of some initialized
or uninitialized data area that must be inserted into the object program.

Since the directive defines actual contents, it must appear within section boundaries
(i.e. between section and end section directives).

The following sections describe various forms in which declarators can be written.

 49

4.3.1.1 Primitive declarators
A primitive declarator specifies a data area containing a single value that can be either
initialized or uninitialized. It has one of the forms:

 <data type>
 <data type><initializer>

where:

• <data type> is a (case-insensitive) mnemonic specification of the type and
alignment of a value, and

• An optional <initializer>, if present, specifies the actual value. If there
is no initializer, the data area is left uninitialized.

The following <data type> mnemonics are supported:

• B (byte) – the primitive declarator defines one byte of data memory. If the
initializer is specified, it must be an expression yielding an integer result in
range -27..28-1.

• H (half-word) – the primitive declarator defines one half-word of data
memory. If the initializer is specified, it must be an expression yielding an
integer result in range -215..216-1. The data item must be naturally aligned.

• HU (half-word unaligned) – the primitive declarator defines one half-word of
data memory. If the initializer is specified, it must be an expression yielding
an integer result in range -215..216-1. The data item does not have to be
naturally aligned.

• W (word) – the primitive declarator defines one word of data memory. If the
initializer is specified, it must be an expression yielding an integer result in
range -231..232-1. The data item must be naturally aligned.

• WU (word unaligned) – the primitive declarator defines one word of data
memory. If the initializer is specified, it must be an expression yielding an
integer result in range -231..232-1. The data item does not have to be naturally
aligned.

• L (long word) – the primitive declarator defines one long word of data
memory. If the initializer is specified, it must be an expression yielding an
integer result in range -263..264-1. The data item must be naturally aligned.

• LU (long word unaligned) – the primitive declarator defines one long word of
data memory. If the initializer is specified, it must be an expression yielding
an integer result in range -263..264-1. The data item does not have to be
naturally aligned.

• F (float) – the primitive declarator defines one word of data memory. If the
initializer is specified, it must be a constant expression yielding a real result,
which is stored in 32-bit real format. The data item must be naturally aligned.

• FU (float unaligned) – the primitive declarator defines one word of data
memory. If the initializer is specified, it must be a constant expression yielding
a real result, which is stored in 32-bit real format. The data item does not have
to be naturally aligned.

 50

• D (double) – the primitive declarator defines one long word of data memory. If
the initializer is specified, it must be a constant expression yielding a real
result, which is stored in 64-bit real format. The data item must be naturally
aligned.

• DU (double unaligned) – the primitive declarator defines one long word of data
memory. If the initializer is specified, it must be a constant expression yielding
a real result, which is stored in 64-bit real format. The data item does not have
to be naturally aligned.

• A (ASCII) – the primitive declarator defines a string of ASCII characters. If
the initializer is specified, it must be a constant expression yielding a string
result, which is stored using 1 byte per character. If no initializer is specified,
the declarator results in 1 uninitialized ASCII character.

• U (Unicode) – the primitive declarator defines a string of Unicode BMP
characters. If the initializer is specified, it must be a constant expression
yielding a string result, which is stored using 2 bytes per character. If no
initializer is specified, the declarator results in 1 uninitialized Unicode BMP
character. The string must be naturally aligned.

• UU (Unicode unaligned) – the primitive declarator defines a string of Unicode
BMP characters. If the initializer is specified, it must be a constant expression
yielding a string result, which is stored using 2 bytes per character. If no
initializer is specified, the declarator results in 1 uninitialized Unicode BMP
character. The string does not have to be naturally aligned.

• I (ISO-10646) – the primitive declarator defines a string of ISO-10646
characters. If the initializer is specified, it must be a constant expression
yielding a string result, which is stored using 4 bytes per character. If no
initializer is specified, the declarator results in 1 uninitialized ISO-10646
character. The string must be naturally aligned.

• IU (ISO-10646 unaligned) – the primitive declarator defines a string of ISO-
10646 characters. If the initializer is specified, it must be a constant expression
yielding a string result, which is stored using 4 bytes per character. If no
initializer is specified, the declarator results in 1 uninitialized ISO-10646
character. The string does not have to be naturally aligned.

4.3.1.2 Declarator groups
A declarator group is a comma-separated sequence of declarators enclosed in brackets
which syntactically behaves as a single declarator. For example, the declarator group:

 (L0, B1, B2, H3, W)

Is, semantically, a single declarator that defines 16 bytes of data memory:

• A long word with the value 0.
• Two consecutive bytes with values 1 and 2, respectively.
• A half-word with the value 3.
• An uninitialized word.

4.3.1.3 Repeat counters
A repeat counter is an instruction to an assembler to repeatedly process a declarator
some given number of times. It is written as:

 51

 [<repeat counter>]<declarator>

where:

• <repeat counter> is a constant expression yielding an integer result, and
• <declarator> is the declarator to be repeated.

The value N yielded by the <repeat counter> expression is treated as an
unsigned integer repeat counter, and the net effect is as if N consecutive
<declarator>s have been specified. For example, the declarator

 [5] L0

is the same as

 (L0, L0, L0, L0, L0)

Note that any declarator, including a declarator group, can be repeated; similarly,
repeating is not confined to only one declarator level; therefore, the following
declarator:

 [2](B0,[3]B1)

is the same as

 (B0, B1, B1, B1, B0, B1, B1, B1)

4.4 Assembly control directives
Directives described in this section affect the assembler’s behaviour and compilation
sequence.

4.4.1 include
This directive has one of the following forms:

 include <header>
 include <header> from <context>

where:

• <header> is a constant expression yielding a string result, which is
interpreted as a name of the header file to include, and

• <context> is an identifier representing the name of an include context to
include the header from.

Both directives cause the contents of the textual header file to be processed in place of
the include directive. The <header> string gives the name of the header file; the
difference between the two forms is in how the header file is located.

 52

The first form (without explicit include context specification) is called an unqualified
include and allows either absolute or relative <header> file name. If the
<header> file name is absolute, the corresponding header file is included. If,
however, the <header> file name is relative, the following locations are searched
for the header file, in order, until the header file with the required name is found:

1. The directory containing the source file where the include directive occurs.
2. If the source file was itself included by another source, the directory where

that another source resides, and so on up the inclusion stack.
3. The list of designated include directories. This list consists of all directories

specified by the CDS_1_0_INCLUDE environment variable and all
directories explicitly designated for the purpose with a dedicated command
line option.

4. The current working directory.

The second form (with explicit include context specification) is called a qualified
include and allows only relative <header> file names. The header file is searched
only in the directories associated with the include context having the specified
<context> name. The initial set of known include contexts is defined by
environment variables (each environment variable whose value is a directory or a list
of directories is treated as a default include context) and can further be extended or
modified with dedicated assembler command line option.

4.4.2 includebin
This directive has one of the following forms:

[<name>:] includebin <filename>
[<name>:] includebin <filename> from <context>

where:

• <name>, if specified, is a symbol that, when used as an operand in an
expression, will yield the address of the first data byte included by the
directive.

• <filename> is a constant expression yielding a string result, which is
interpreted as a name of the header file to include, and

• <context> is an identifier representing the name of an include context to
include the file from.

Both directives cause the contents of the binary file to be included in place of the
includebin directive. Since this, effectively, amounts to defining out-of-line data
at the current location, includebin directives must be nested within section …
end section directives. The <filename> string gives the name of the file; the
difference between the two forms is in how the file is located.

The first form (without explicit include context specification) is called an unqualified
include and allows either absolute or relative <filename>. If the <filename> is
absolute, the contents of the corresponding file is included. If, however, the

 53

<filename> is relative, the following locations are searched for the file, in order,
until the file with the required name is found:

5. The directory containing the source file where the includebin directive
occurs.

6. If the source file was itself included by another source, the directory where
that another source resides, and so on up the inclusion stack.

7. The list of designated include directories. This list consists of all directories
specified by the CDS_1_0_INCLUDEBIN environment variable and all
directories explicitly designated for the purpose with a dedicated command
line option.

8. The current working directory.

The second form (with explicit include context specification) is called a qualified
include and allows only relative <filename>s. The file is searched only in the
directories associated with the include context having the specified <context>
name. The initial set of known include contexts is defined by environment variables
(each environment variable whose value is a directory or a list of directories is treated
as a default include context) and can further be extended or modified with dedicated
assembler command line option.

4.4.3 if … end if
This directive has the following form:

 if <expression1>
 <statements1>
 else if <expression2>
 <statements2>
 . . .
 else
 <statementsn>
 end if

where each <expressioni> is a constant expression yielding an integer result and
each <statementsi> is an arbitrary sequence of directives and instructions.

The if… end if directive controls conditional compilation of the fragments of the
program. All <expressioni> expressions are evaluated in sequence until one of
them yields a non-zero result, the corresponding sequence of <statementsi> is
then compiled. If all <expressioni> yield a zero result, then the
<statementsn> following the else delimiter are compiled instead. An if …
end if directive can have an arbitrary number of else if clauses. If there are no
statements in the else clause, the else delimiter can be omitted as well.

It is permitted to nest if … end if directives to an arbitrary depth.

4.4.4 :=
This directive has one of the following forms:

 54

<identifier> := <value>
<identifier>(<param1>, …, <paramn>) := <value>

where:

• <identifier> is a name of the macroprocessor variable or function being
defined,

• Each <parami> is a name of one parameter of a macroprocessor function
being defined, and

• <value> is an arbitrary sequence of characters.

In its first form, the directive defines a macroprocessor variable with the specified
name and value, as in:

LIMIT := 10

Each occurrence of the macroprocessor variable in subsequent source lines will be
textually replaced with its value, so the following two instructions occurring after the
above definition are the same:

 li.l $t1, 10
 li.l $t1, LIMIT

In its second form, the directive defines a macroprocessor function with the specified
name, number of parameters and body, as in:

SQUARE(x) := (x)*(x)

Each call of the macroprocessor function in subsequent source lines will be textually
replaced with its body, so the following two instructions occurring after the above
definition are the same:

 li.l $t1, (10)*(10)
 li.l $t1, SQUARE(10)

The following additional restrictions are imposed by the assembler:

• All macroprocessor variables and functions live in the same namespace, also
shared with macros. Therefore, it is not possible to have both a
macroprocessor variable and a macroprocessor function with the same name to
coexist (or a macroprocessor variable and macro with the same name).

• It is possible to redefine a macroprocessor variable or function with another
:= directive; the old definition is then lost.

• Both macroprocessor variables and macroprocessor functions constitute a
textual replacement of their occurrences in directives and statements with their
values, any actual calculation specified in the body of a macroprocessor
variable or function is performed after all replacements have been made (this
is the reason why, in the definition of the “SQUARE(x) := (x)*(x)”
macroprocessor function the parameter x in the function body is enclosed in

 55

brackets – to allow calls like SQUARE(a+b) to correctly expand to
(a+b)*(a+b) and not, incorrectly, to a+b*a+b).

4.4.5 undef
This directive has the following form:

 undef <identifier1>, …, <identifiern>

where each <identifieri> is a name of a macroprocessor variable,
macroprocessor function or macro.

The directive causes the assembler to discard the definition of each of the listed
macroprocessor variables, macroprocessor functions and/or macros. If some (or all) of
the identifier do not refer to an existing definition of any of these entities, no error is
reported.

4.4.6 macro
This directive has the following form:

<name>: macro <parameter1>, …, <parametern>
 <macro body>
<name>: end macro

where:

• <name> is the name assigned to the macro. The <name> mentioned in the
end macro directive must match the <name> in the macro directive.

• Each <parameteri> is one macro parameter of the form:
 <name>[:=<value>]
where <name> is a name of the macro parameter and <value>, if specified,
is the default value of the macro parameter.

This directive defines a new macro with the specified name, parameters and body
(macro body can be an arbitrary sequence of directives and/or instructions). Consider:

move.l: macro x,y
 l.l $t0, x
 s.l $t0, y
move.l: end macro

Once a macro is defined, it can be used in a manner similar to an instruction; for
example, the following statement later in the program:

 move.l 8[$s1], 16[$s1]

will be macro-expanded to:

 l.l $t0, 8[$s1]
 s.l $t0, 16[$s1]

 56

Note that all occurrences of each macro parameter within the macro body are replaced
with corresponding macro call arguments when macro expansion is performed.

4.4.6.1 Specifying parameters in macro calls
When calling a macro, its argument list consists of zero or more comma-separated
macro arguments. Each macro argument specifies the value for one parameter of the
macro being called and can be either a positional or named macro argument.

A positional macro argument is just an arbitrary string, as in the above example. This
string is used as a value of the macro parameter at the corresponding position in the
macro parameters list (hence the name “positional”).

A named macro argument has a form <name>:=<value>, where <name> is the
name of the macro parameter whose value is specified and <value> is the arbitrary
string to assign to that macro parameter as value.

Unlike positional macro arguments, named macro arguments can occur in any order,
so the following three macro calls are equivalent:

 move.l 8[$s1], 16[$s1]
 move.l x:=8[$s1], y:=16[$s1]
 move.l y:=16[$s1], x:=8[$s1]

The following restrictions are imposed on macro arguments lists:

• In a macro argument list, all positional macro arguments must occur before
any named macro arguments.

• The value of each macro parameter can be specified at most once.

4.4.6.2 Specifying default macro parameter values
A default value of a macro parameter is the value assigned to that parameter if the
macro call does not have a corresponding macro argument. Consider the “increment”
macro:

inc.l: macro reg, by:=1
 addi.l reg, by
inc.l: end macro

The following macro call:

 inc.l $t0, 2

then expands to

 addi.l $t0, 2

thus incrementing $t0 by 2. However, it is also possible to call the same macro
without specifying an explicit value for the by macro parameter:

 inc.l $t0

 57

in which case the default value is used, resulting in

 addi.l $t0, 1

All macro parameters that do not have default values must have their values explicitly
specified in each macro call; otherwise an error is reported.

4.4.6.3 Labels in macro calls
If a macro call is labelled, the label is assigned to the first statement within the macro
body; therefore a macro call:

lab: inc.l $t0, 2

expands to

lab:
 addi.l $t0, 2

4.4.6.4 Local symbols in macros
It is sometimes necessary to use local symbols (instruction and directive labels) within
a macro body. The straightforward approach, as in:

sort.l: macro r1, r2
 bge.l r1, r2, done
 mov.l $t0, r1
 mov.l r1, r2
 mov.l r2, $t0
done:
sort.l: end macro

does not work, because each macro call would result in the expanded macro body
defining the same symbol done over and over again.

To help in situations such as the one above, the exclamation sign ! can be used within
macro bodies to assist in generation of unique local names. The assembler assigns a
unique ID to each macro call (subsequent calls of the same macro will have different
call IDs). Any occurrence of an exclamation sign ! within a macro body is replaced
with the macro call ID when a macro call is made and macro expansion is performed.
Syntactically, a macro call ID is a valid identifier, which allows concatenating it with
further identifier fragments to generate local symbol names unique for a given macro
call; therefore, the example above becomes:

sort.l: macro r1, r2
 bge.l r1, r2, !done
 mov.l $t0, r1
 mov.l r1, r2
 mov.l r2, $t0
!done:
sort.l: end macro

 58

4.5 Reporting directives
Directives described in this section are used to issue messages during program
assembly.

4.5.1 error
This directive has the following form:

 error <message>

where <message> is a constant expression yielding a string result.

This directive causes the assembler to issue the user-defined error <message>.

4.5.2 warning
This directive has the following form:

 warning <message>

where <message> is a constant expression yielding a string result.

This directive causes the assembler to issue the user-defined warning <message>.

4.5.3 assert
This directive has the following form:

 assert <assertion>

where <assertion> is a constant expression yielding an integer.

This directive is used for checking compile-time conditions. It first evaluates the
<assertion>. If the <assertion> evaluates to a non-zero value, no further
action is taken. If, however, it evaluates to zero, an error is reported.

4.6 Miscellaneous directives
Directives described in this section do not belong to any specific group.

4.6.1 end
This directive has the following form:

 end

It signifies the end of the compilation unit. Note that the end directive cannot be
labelled or have operands.

In an absence of the end directive, the entire contents of the assembler source file
(along with all included headers) is considered to belong to the compilation unit. If,
however, the end directive is present, the assembler stops to process the source right

 59

after the logical source line where the end directive occurred; the format and contents
of the subsequent logical source lines is irrelevant.

4.6.2 entry
This directive has the following form:

 entry <symbol name>

When encountered in a translation unit, this directive specifies that the <symbol
name> is a symbol designated as the program’s entry point (note that a section,
segment or group name cannot be used here). Several object modules may specify the
program’s entry point, provided they do not disagree on what symbol is designated as
one.

Note that there is no requirement that the symbol designated as an entry point is local
to a compilation unit – it may be public, exported, external or even imported.

4.6.3 align
This directive has the following form:

[<name>:] align <expression>

where:

• <name>, if specified, is a symbol that, when used as an operand in an
expression, will yield the address of the first data byte reserved by the
directive.

• The <expression> is a constant expression that specifies the required
alignment, which must be a constant expression yielding an integer result that
is a power of 2.

The directive reserves zero or more uninitialized bytes, as necessary to ensure that the
following instruction or directive starts at an <expression>-byte boundary (for
example, “align 8” means “align at a 8-byte boundary, etc.)

Normally, it is not safe for a section to contain align directives with higher
alignment requirements than section’s own alignment. If this happens, the assembler
will issue a warning and increase the section’s alignment requirement to match that of
the align directive. Needless to say, this is not a recommended programming
practice.

Since the directive may introduce actual padding bytes, it must appear within section
boundaries (i.e. between section and end section directives).

4.6.4 target
This directive has the following form:

 target <name>

 60

where <name> is an identifier of the target for which the compilation unit shall be
translated. A dedicated assembler command line option “-Help:Targets” can be
used to list all supported targets.

The target directive specifies that the following instructions and directives shall be
translated under the assumption that the specified CPU will be the target platform.
Among other things, this affects the availability of various assembly program
elements depending on what optional features the selected target offers. For example,
if the selected target does not have a Performance Monitoring feature, then
instructions that access performance monitoring registers will not be permitted.

It is allowed for a compilation unit to contain any number of target directives; the
scope of each target directive extends from the directive itself to the closest
following target directive or the end of compilation unit, whatever occurs first.

4.6.5 use
This directive has the following form:

 use <library>, … , <library>

where each <library> is a string constant expression specifying the name of the
library that shall be search by the linker for external symbols.

4.7 Predefined macroprocessor variables
When an assembler starts processing of a translation unit, a number of
macroprocessor variables is already defined. These include:

• Standard macroprocessor variables (unless some or all of then were un-defined
using a dedicated command line option), and

• Macroprocessor variables explicitly defined with a dedicated command line
option.

The following standard macroprocessor variables are currently defined:

Variable Description

TARGET_ISA_VERSION

The value of this variable is a numeric
string representing the Cereon ISA version
implemented by the target CPU, currently
1.

TARGET_BYTE_ORDER

The value of this variable is a string
constant “big” or “little”, depending
on whether the translation is performed for
a big-endian or little-endian target.

TARGET_HAS_MONITORING

The value of this variable is a numeric
string 1 or 0, depending on whether the
target CPU has a Performance Monitoring
feature or not.

 61

TARGET_HAS_VM

The value of this variable is a numeric
string 1 or 0, depending on whether the
target CPU has a Virtual Memory feature or
not.

TARGET_HAS_PM

The value of this variable is a numeric
string 1 or 0, depending on whether the
target CPU has a Protected Memory feature
or not.

TARGET_HAS_UNALIGNED

The value of this variable is a numeric
string 1 or 0, depending on whether the
target CPU has an Unaligned Operand
feature or not.

TARGET_HAS_DEBUG
The value of this variable is a numeric
string 1 or 0, depending on whether the
target CPU has a Debug feature or not.

TARGET_HAS_FP

The value of this variable is a numeric
string 1 or 0, depending on whether the
target CPU has a Floating Point feature or
not.

TARGET_HAS_BASE
The value of this variable is a numeric
string 1 or 0, depending on whether the
target CPU has a Base feature or not.

BUILD_MODE

The value of this variable is a string
constant “debug” or “release”,
depending on whether the translation is
performed in debug or release mode.

 62

5 Instructions
In a typical assembler program, most of the logical source lines will contain
instructions, where each such source line translates into exactly one Cereon
instruction.

The general form of an instruction line is:

[<label>:] <opcode> [<operands>] [;<comment>]

where:

• <label> is an optional identifier that labels the instruction. When used as an
operand in an expression, the value of <label> is the address of the
corresponding instruction.

• <opcode> is a mnemonic operation code identifying the instruction.
• <operands>, if present are instruction operands. If the instruction has more

than one operand, individual operands are separated by commas ‘,’.
• <comment>, if present, is a comment that starts at the leftmost semicolon ‘;’

and continues until the end of the logical source line.

Any number of spaces (and/or TABs) is permitted:

• Before and after the <label>.
• Between the colon ‘:’ and <opcode>.
• Between the last operand (or <opcode>, if the instruction has no operands)

and the semicolon ‘;’ that starts the comment.

For the complete list of Cereon instructions and their operands, consult the “Cereon
Architecture Reference Manual”.

A special case is a source line that contains no instruction, but only label (and,
optionally, a comment). This label refers to the closest following instruction. For
example, in the following code snippet x, y and z will all have the same value – the
address of the li.l instruction:

x:
y:
z: li.l $t0, 1

5.1 Implicit operands
Each Cereon instruction has a specific number of operands. However, it is commonly
the case that the destination register of an instruction is the same as the 1st operand
register, as in:

 add.l r0, r0, r1
 addi.l $a0, $a0, 10
 not.l $t1, $t1

 63

To make writing an assembler language program easier, the following syntactic
shortcuts are permitted:

• If, in a 3-operand instruction, the destination register is the same as the 1st
operand register, the destination register can be omitted.

• If, in a 2-operand instruction, the destination register is the same as the
operand register, the destination register can be omitted.

Therefore, the three instructions above can be rewritten as:

 add.l r0, r1
 addi.l $a0, 10
 not.l $t1

Note that, although conditional branch instructions have two register operands, the
above rule does not apply to them, as neither of the register operands is a destination
register.

5.2 Using expressions
In general, an expression yielding a value of an integer or real type can be used
wherever an instruction requires, correspondingly, an integer or real value as part of
its operand:

 addi.l $a0, 2+3*4
 li.l $t0, x+3[$s0]
 li.f $fs1, 2.0 / 4

5.3 Specifying memory addresses
Cereon instructions that use memory address as one of their operand fall into two
categories:

• Load and store instructions, where memory address is specified as a base
register plus constant offset.

• Jump and branch instructions, where memory address is specified as a
constant offset to the instruction’s $ip register.

In an assembler language program, there are two forms a memory operand can take:

• An explicit specification of base register and offset, written as
<offset>[<base register>], where <offset> is an arbitrary
expression yielding an integer result (deferred expressions are allowed here as
well as constant expressions), and <base register> is an integer register
(e.g. “4[$t0]” or “x+y[$ip]”. If the offset is 0, it can be omitted entirely
(e.g. “[$s0]” is the same as “0[$s0]”).

• An implicit memory address is represented by an arbitrary expression yielding
an integer result. The assembler decides what base register to use.

 64

The combination of two addressing modes (register-based or $ip-relative) and two
address formats (explicit base or implicit base) gives four choices:

• A load or store instruction which uses explicit base specification for the
memory address, as in “l.l $t0, 4[$t1]”. The <base register>
and <offset> portions of the address specification are translated directly
into values that occupy corresponding instruction fields. Note that the
<offset> is limited in range to [-215..215-1], as the corresponding instruction
field is only 16 bits long.

• A jump or branch instruction which uses explicit base specification for the
memory address, as in “j 100[$ip]”. Since these instructions implicitly
use $ip as the base register, the use of any other register as a base is not
allowed. Note also that Cereon architecture requires that any instruction
reading from the $ip register sees the value of the immediately following
instruction there, so “j [$ip]” means “jump to the next instruction”, which
is just a more expensive way of saying “nop”. The <offset> portion of the
memory address is stored into the offset portion of the jump or branch
instruction. Note that the offset range is also limited by what can be
represented in an instruction.

• A load or store instruction that uses an address with an implicit base, such as
“l.l $t0, x” to load a 64-bit value from the memory area labelled by x
into $t0. Cereon assembler currently always assumes that $ip is used as an
implicit base, so the data area labelled by x must reside in the same section as
the load instruction and be within [-215..215-1] bytes range of it.

• A jump or branch instruction that uses an address with an implicit base, such
as “jal x” to call a procedure labelled by x. Normally, the jump or branch
target must reside in the same segment as the jump or branch instruction that
uses it and be reachable (for example, if a branch target is more than 215
instructions away from the branch instruction, there is no possible way to
perform the branch, as branch instructions are limited to [-215..215-1]
instructions branch range). However, the linker is smart enough to generate
long branch veneers (described in the corresponding section of this document)
to effectively lift this restriction; as far as an assembler language programmer
is concerned, a jump or branch instruction can transfer control to anywhere in
the 64-bit address space.

5.4 Using typed registers
As specified in the “Cereon Architecture Reference Manual”, each general-purpose
register has three names:

• A numeric name (such as r0, r15, etc.), which specifies the register number
(in range [0..31]) but does not tell how the contents of the register is
interpreted.

• An integer name (such as $a0, $t0 or $ip), which not only refers to a
specific register, but also tells the assembler that the register is treated as
containing an integer value.

• A real name (such as $fa0 or $ft0), which not only refers to a specific
register, but also tells the assembler that the register is treated as containing a

 65

real value. Note that some registers (such as $sp or $ip) do not have
corresponding real names, as these registers are never supposed to contain real
values.

When writing assembler instructions, remember that:

• An instruction that expects one of its operands to be an integer register will
allow you to use either numeric or integer register name for that operand, but
not a real register name.

• An instruction that expects one of its operands to be a real register will allow
you to use either numeric or real register name for that operand, but not an
integer register name.

Therefore, the following instructions are valid:

 li.l r0, 100
 li.l $rv, 100
 add.l r0, $sp, r1
 li.d r0, 100.0
 li.d $frv, 100.0
 add.d r0, $fs1, r1

whereas the following instructions are not:

 li.l $frv, 100 ; $frv is not an integer register name
 add.l r0, $fa1, r1 ; $fa1 is not an integer register name
 li.d $rv, 100.0 ; $rv is not a real register name
 add.d r0, $s1, r1 ; $s1 is not a real register name

5.5 Writing channel programs
To simplify writing channel programs for targets equipped with DMA channels, the
assembler allows writing channel programs mnemonically, as described in the
following sections.

5.5.1 Register names
In DMA instructions, registers of a DMA channel are referred to by their numeric
names r0 .. r3.

5.5.2 Transfer sources and destinations
Many DMA instructions require the source and/or destination of a data transfer to be
specified. There are 4 different forms a source or destination of a DMA data transfer
can take; consequently, there are 4 syntactic forms that can be used in an assembler
program:

• <register>, where <register> is a DMA register name. The source (or
destination) of a DMA data transfer is an I/O port whose number resides in the
lower 16 bit of the corresponding DMA register.

 66

• [<register>], where <register> is a DMA register name. The source
(or destination) of a DMA data transfer is a memory address which resides in
the corresponding DMA register.

• [<register>++], where <register> is a DMA register name. The
source (or destination) of a DMA data transfer is a post-incremented memory
address which resides in the corresponding DMA register.

• [--<register>], where <register> is a DMA register name. The
source (or destination) of a DMA data transfer is a pre-decremented memory
address which resides in the corresponding DMA register.

For example, the following instruction reads 100 bytes from the I/O port whose
number is in DMA register r0 and stores these bytes to 100 consecutive memory
addresses starting at address in DMA register r1:

 dma.t.b [r1++], r0, 100

5.5.3 Writing DMA instructions
Each DMA instruction occupies a single line and has a form similar to a “normal”
CPU instruction, i.e.:

[<label>:] <DMA opcode> [<operands>] [;<comment>]

where:

• <label> is an optional identifier that labels the DMA instruction. When
used as an operand in an expression, the value of <label> is the address of
the corresponding DMA instruction.

• <opcode> is a mnemonic operation code identifying the DMA instruction.
• <operands>, if present are instruction operands. If the instruction has more

than one operand, individual operands are separated by commas ‘,’.
• <comment>, if present, is a comment that starts at the leftmost semicolon ‘;’

and continues until the end of the logical source line.

As a general rule, there must be one operand for each individual field of a DMA
instruction encoding. The form of this operand depends on the contents of the
corresponding DMA instruction field:

• If the field is a 2-bit DMA register designator, the corresponding operand must
be a DMA register name.

• If the field is a 4-bit specification of a source or destination of a DMA data
transfer, the corresponding operand must be a data source/destination specifier
in one of the forms described above.

• If the field is an immediate field, the corresponding operand must be an
expression yielding an integer result that lies in the range representable within
the field in question. Both constant and deferred expressions are allowed.

 67

6 Invoking the assembler
The general form of assembler invocation is:

cerasm [-<option> ...] [--] <filename>...

where:

• cerasm is the name of the assembler executable. Depending on the host OS
the actual name of the assembler executable file may be different (for
example, on Windows it is cerasm.exe).

• Each -<option> specifies a command line option that adjusts some facet of
the assembler behaviour.

• Each <filename> must be a name of an assembler source file (the
recommended filename extension for assembler source files is .asm). Note
that assembler does not presently support integrated linking.

• An option terminator (two consecutive dashes --), if present in the command
line as an independent option, marks the end of the options list; all subsequent
parameters are treated as assembler source file names even if they start with a
dash.

6.1 Environment variables
During operation, assembler uses a number of OS environment variables, all of which
are described below.

6.1.1 CDS_1_0_ASSEMBLER_OPTIONS
If this environment variable is defined, its value must be a list of assembler options in
the same format as used in the assembler command line during assembler invocation.

When an assembler processes the command line, all options specified by the
CDS_1_0_ASSEMBLER_OPTIONS environment variable are processed as if they
were explicitly specified in the assembler’s command line; the only exception to that
rule is in that if some option defined by the CDS_1_0_ASSEMBLER_OPTIONS
environment variable conflicts with another option explicitly specified in the
assembler command line, the former is ignored. This behaviour allows using the
CDS_1_0_ASSEMBLER_OPTIONS environment variable to set the most commonly
needed assembler options, which can be overridden in each particular case if
necessary.

For example, if the value of the CDS_1_0_ASSEMBLER_OPTIONS environment
variable is “-Endian:Big”, assembler will always generate code for a big-endian
target unless invoked with an option “-Endian:Little”.

6.1.2 CDS_1_0_ASSEMBLER_DEBUG_OPTIONS
This environment variable, if defined, is used in a manner similar to
CDS_1_0_ASSEMBLER_OPTIONS, except assembler options specified therein are
only effective when performing a debug build. If some options specified in

 68

CDS_1_0_ASSEMBLER_OPTIONS and
CDS_1_0_ASSEMBLER_DEBUG_OPTIONS are in conflict, those specified by
CDS_1_0_ASSEMBLER_DEBUG_OPTIONS take precedence; however, both have
lower priority than options explicitly specified in the assembler’s command line.

6.1.3 CDS_1_0_ASSEMBLER_RELEASE_OPTIONS
This environment variable, if defined, is used in a manner similar to
CDS_1_0_ASSEMBLER_OPTIONS, except assembler options specified therein are
only effective when performing a release build. If some options specified in
CDS_1_0_ASSEMBLER_OPTIONS and
CDS_1_0_ASSEMBLER_RELEASE_OPTIONS are in conflict, those specified by
CDS_1_0_ASSEMBLER_RELEASE_OPTIONS take precedence; however, both
have lower priority than options explicitly specified in the assembler’s command line.

6.1.4 CDS_1_0_INCLUDE
This environment variable, if defined, must have as its value a list of directories where
header files included by unqualified include directives are looked for. Note that
these directories have lower priority than those designated for unqualified include
headers lookup with corresponding command line options.

6.1.5 CDS_1_0_INCLUDEBIN
This environment variable, if defined, must have as its value a list of directories where
files included by unqualified includebin directives are looked for. Note that these
directories have lower priority than those designated for unqualified includebin
lookup with corresponding command line options.

6.1.6 Custom include contexts
It is possible to define other environment variables to designate non-standard include
contexts. Each of these environment variables must have as its value the list of
directories comprising the corresponding include context and is made available to the
assembler as an include context with the same name as an environment variable in
question.

6.2 Options
An assembler option has one of the following forms:

-<option keyword>
-<option keyword>:<option parameters>

Where <option keyword> is a keyword identifying the option and <option
parameters>, if present, specifies additional information for the option.

Both option keywords and option parameters are generally case-insensitive except
where character case matters (for example, when specifying file or directory names as
option parameters on a Unix host, where file system is case-sensitive).

For some options both forms (i.e. with and without option parameters) are permitted;
for example the “-Listing:<listing file name>” option, which tells the

 69

assembler to produce a source listing into the specified file, can also be written as
simply “-Listing”, in which case the listing file name is derived from the
assembler source file name by replacing its .asm filename extension with .lst.

6.3 Option files
Quite frequently a need arises to specify the same set of options for a large number of
assembler invocations. If these options are specific to a given assembler project, the
facilities provided by the CDS_1_0_ASSEMBLER_OPTIONS environment variable
and related variables are insufficient (as they affect all assembler invocations);
instead, option files can be set up and used.

An option file is a text file that contains one or more assembler options. To improve
readability, line breaks and extra spaces are allowed between options in an arbitrary
manner.

When invoking the assembler, a dedicated –Via:<option file name> option
is used to tell the assembler to read an option file, treating all assembler options
specified therein as if they occurred in the assembler command line. For example, if
an option file is named options and contains the following lines:

-Endian:Big
-Debug

then invoking the assembler with the following command line:

cerasm –Via:options source.asm

has the same effect as:

cerasm -Endian:Big -Debug source.asm

Any number of option files can be specified; the maximum length of an option file is
not limited except by available memory.

A special case is an option file including other option files (the -Via:<option
file name> command line option can, like any other option, occur within an
option file). Such inclusion is permitted as long as option file dependencies do not
cause an inclusion cycle.

6.4 Option conflicts
Unlike most existing assemblers, the Cereon assembler is very strict about its
command line. In particular, it is not permitted to specify two conflicting options in
the same assembler invocation, so the following will cause a command-line error:

cerasm –Endian:Big –Endian:Little source.asm

Most existing assemblers will allow similar invocations (i.e. with conflicting options),
automatically resolving these conflicts in an arbitrary manner (e.g. some assemblers
may choose the 1st definition of a conflicting option, while other assemblers will use

 70

the last definition), sometimes with a warning. It is, however, a firm belief of the
Cereon assembler authors that conflicting command line options shall not be
permitted at all, as any strategy used for automatic conflict resolution makes the
invocation result dependent upon the order in which assembler options are specified.

The only situation where option conflicts are resolved automatically is when options
explicitly specified in the assembler command line (or in option files included by a –
via option that occurs in the assembler command line) are in conflict with options
specified by the CDS_1_0_ASSEMBLER_OPTIONS,
CDS_1_0_ASSEMBLER_DEBUG_OPTIONS or
CDS_1_0_ASSEMBLER_RELEASE_OPTIONS environment variables (or in option
files included by a –Via option that occurs in one of these environment variables). In
this case, options specified in the assembler command line are always chosen; this
behaviour permits explicit overriding of any implicit assembler options.

6.5 Character encoding
Normally, assembler expects all textual input (i.e. source files, headers and option
files) to use the “native” character encoding of the host OS and produces all textual
output (source listing, dependency files, error and warning messages, etc.) using the
same encoding. The definition of a “native” encoding is specific to a given OS (for
example, on Linux hosts the “native” encoding is selected when a host is configured).

It is, however, possible to specify that a different encoding shall be used on a per-text-
type basis (i.e. “an encoding for source files and headers”, “an encoding for option
files”, “an encoding for error and warning messages”, etc.)

6.6 Message files
All messages issued by the assembler (i.e. banners, statistics, warnings, errors, etc.)
are stored in a textual message file. In the minimum configuration the assembler can
operate entirely without message files, in which case built-in English Neutral
messages are issued. Additional message files can also be provided in a particular
assembler installation, containing the assembler messages localized for a specific
culture.

When invoking an assembler, a dedicated command line option –
Locale:<locale ID> can be used to specify the culture for which assembler
messages shall be tailored. For example, invoking assembler with an option –
Locale:de will cause all assembler messages, including diagnostics, to be issued in
German (provided, of course, that the corresponding message file is available).

Message files always use UTF-8 encoding.

 71

7 Assembler options
This section contains a complete description of each assembler option.

The following notation is used when describing assembler options:

[x] – The element x is optional.
[x …] – The element x can be repeated 0 or more times.
{ x | y } – Either x or y can be chosen.

7.1 -Banner
This option has the following format:

-Banner[:{On|Off}]

When used, this option turns on (-Banner:On) or off (-Banner:Off) the printing
of the version and copyright banner when the assembler is invoked; a default form -
Banner is equivalent to -Banner:On, which is also the default assembler
behaviour.

7.2 -Debug
This option has the following format:

-Debug[:{On|Off}]

When used, this option specifies whether the translation shall be performed in debug
(-Debug:On) or release (-Debug:Off) mode; a default form -Debug is
equivalent to -Debug:On. The default assembler behaviour (when this option is not
specified) is to perform compilation in release mode.

When compiling in debug mode:

• The macroprocessor variable BUILD_MODE is defined as the string
“debug”.

• Debug information is generated and placed into an object file.

When compiling in release mode:

• The macroprocessor variable BUILD_MODE is defined as the string
“release”.

• Debug information is not generated.

Note that object modules created in debug and release modes are binary compatible
(i.e. can be linked together, whether statically or dynamically).

7.3 -Define
This option has the following format:

 72

-Define:<name>[=<value>]

When used, this option causes a macroprocessor variable to be defined with the
specified value; if a value is omitted the macroprocessor variable is defined with an
empty string as its value.

It is explicitly permitted to define standard macroprocessor variables (such as
TARGET_ISA_VERSION) with this option; these definitions take precedence over
default definitions that would otherwise be provided by the assembler.

7.4 -Dependencies
This option has the following format:

-Dependencies[:<destination>]

When used, this option causes a textual file containing all dependencies of a
compilation unit to be written. This file lists the main source file of a compilation unit
as well as all headers directly or indirectly included and all files directly or
indirectly includebined, with one fully qualified (i.e. with drive and full path) file
name per line.

Dependency files are emitted in the “native” character set for the host OS unless
another character set is selected with –DependencyEncoding option.

Depending on the exact form of the option’s parameter, the dependencies file may be
written to several different locations:

• If the <destination> parameter is not specified, the name of the
dependencies file is derived from the name of the main assembler source file
by replacing the filename extension (typically .asm) with .dep. The
dependencies file is written into the same directory where the corresponding
assembler source file resides.

• If the <destination> parameter is specified and ends with a path
component separator, it is assumed to refer to a directory where the
dependencies file shall be written; the name of the dependency file is derived
from the name of the main assembler source file by replacing the filename
extension (typically .asm) with .dep. The destination directory is created
automatically if it does not already exist. Non-absolute directory names are
considered to be relative to the current working directory, not to the assembler
source file’s location.

• If the <destination> parameter is specified and does not end with a path
component separator, it is assumed to refer to a file where the dependencies
shall be written. Note that when assembler is invoked to compile more than
one compilation unit, this feature cannot be used, as it will cause dependency
file conflict. Non-absolute file names are considered to be relative to the
current working directory, not to the assembler source file’s location.

• If the <destination> parameter is a single dash ‘-‘, the list of
dependencies is written to the standard output; in this case the character set

 73

used for the dependencies output is that selected for the standard output with
the –StdoutEncoding option.

7.5 -DependenciesEncoding
This option has the following format:

-DependenciesEncoding:<encoding>

When used, this option causes dependency files to be written using the specified
encoding (character set). The <encoding> parameter must be one of the encoding
names supported by the assembler, use the “cerasm –Help:Encodings”
command to list supported encodings.

If this option is not specified, dependency files are written using the “native”
character set of the host OS. The same effect can be achieved by using this option
with a special native parameter, as in

-DependenciesEncoding:Native

7.6 -DisableWarning
This option has the following format:

-DisableWarning:<warning ID>[,<warning ID> …]

When used, this option causes warnings with the specified ID not to be issued. Any
number of comma-separated warning IDs can be specified in the same –
DisableWarning option; similarly, it is permitted to have more than one –
DisableWarning option in the same command line.

7.7 -EnableWarning
This option has the following format:

-EnableWarning:<warning ID>[,<warning ID> …]

When used, this option causes warnings with the specified ID to be issued. Any
number of comma-separated warning IDs can be specified in the same –
EnableWarning option; similarly, it is permitted to have more than one –
EnableWarning option in the same command line.

7.8 -Endian
This option has the following format:

-Endian:{Big|Little}

When used, this option causes the assembler to generate code suitable for a big-endian
(-Endian:Big) or little-endian (-Endian:Little) target, correspondingly. If
the target endianness is not specified explicitly and the target only permits one
endianness, that endianness is used. If the target endianness is not specified explicitly

 74

and the target can operate in both big-endian and little-endian modes, big-endian is
assumed.

7.9 -Format
This option has the following format:

-Format:<output format>

When used, this option instructs the assembler to emit the output (i.e. the object
module) in the specified format. Use the “cerasm –Help:Formats” command to
list supported formats.

7.10 -FullMessagePaths
This option has the following format:

-FullMessagePaths[:{On|Off}]

When used, this option specifies whether source file names where error and warning
messages are anchored shall be printed in fully qualified (-
FullMessagePaths:On) or relative (-FullMessagePaths:Off) form; a
default form -FullMessagePaths is equivalent to -FullMessagePaths:On.
The default assembler behaviour (when this option is not specified) is to print anchor
file names in a short (relative) form.

7.11 -Help
This option has the following format:

-Help[:<subject>]

When used, it causes the help on the specific subject to be printed. Possible
<subject> choices are:

• -Help (no subject) – prints the assembler command line & options reference.
• -Help:Targets – prints the list of supported target platforms.
• -Help:Formats – prints the list of supported output formats.
• -Help:Encodings – prints the list of supported character sets.
• -Help:Locales – prints the list of supported message locales.

7.12 -IncludeContext
This option has the following format:

-IncludeContext:<name>=<directory list>

When used, it defined the include context with the specified name to be defined and
associated with the specified list of directories where header files are located. The
<directory list> is a list of full paths of one or more directories separated by a
host OS – specific path list separator (: on Unix, ; on Windows, etc.)

 75

An include context defined from the assembler command line overrides a definition
made by an environment variable (if one exists); this allows any include context to be
redefined for one compilation only.

7.13 -IncludePath
This option has the following format:

-IncludePath:<directory list>

When used, it adds the specified directories to the list of directories where unqualified
include headers are searched. The <directory list> is a list of full paths of
one or more directories separated by a host OS – specific path list separator (: on
Unix, ; on Windows, etc.)

Include directories specified with this option have higher priority than those specified
with the CDS_1_0_INCLUDE environment variable (if one is defined).

7.14 -IncludebinPath
This option has the following format:

-IncludebinPath:<directory list>

When used, it adds the specified directories to the list of directories where unqualified
includebin files are searched. The <directory list> is a list of full paths of
one or more directories separated by a host OS – specific path list separator (: on
Unix, ; on Windows, etc.)

Include directories specified with this option have higher priority than those specified
with the CDS_1_0_INCLUDEBIN environment variable (if one is defined).

7.15 -Listing
This option has the following format:

-Listing[:<destination>]

When used, this option causes a textual file containing the source listing of a
compilation unit to be written.

Source listing files are emitted in the “native” character set for the host OS unless
another character set is selected with –ListingEncoding option.

Depending on the exact form of the option’s parameter, the source listing file may be
written to several different locations:

• If the <destination> parameter is not specified, the name of the source
listing file is derived from the name of the main assembler file by replacing
the filename extension (typically .asm) with .lst. The source listing file is

 76

written into the same directory where the corresponding assembler source file
resides.

• If the <destination> parameter is specified and ends with a path
component separator, it is assumed to refer to a directory where the source
listing file shall be written; the name of the source listing file is derived from
the name of the main assembler source file by replacing the filename
extension (typically .asm) with .lst. The destination directory is created
automatically if it does not already exist. Non-absolute directory names are
considered to be relative to the current working directory, not to the assembler
source file’s location.

• If the <destination> parameter is specified and does not end with a path
component separator, it is assumed to refer to a file where the source listing
shall be written. Note that when assembler is invoked to compile more than
one compilation unit, this feature cannot be used, as it will cause source listing
file conflict. Non-absolute file names are considered to be relative to the
current working directory, not to the assembler source file’s location.

• If the <destination> parameter is a single dash ‘-‘, the source listing is
written to the standard output; in this case the character set used for the listing
is that selected for the standard output with the –StdoutEncoding option.

7.16 -ListingEncoding
This option has the following format:

-ListingEncoding:<encoding>

When used, this option causes source listing files to be written using the specified
encoding (character set). The <encoding> parameter must be one of the encoding
names supported by the assembler, use the “cerasm –Help:Encodings”
command to list supported encodings.

If this option is not specified, source listing files are written using the “native”
character set of the host OS. The same effect can be achieved by using this option
with a special native parameter, as in

-ListingEncoding:Native

7.17 -Locale
This option has the following format:

-Locale:<locale ID>

When used, this option causes all assembler messages and diagnostics to be written
using the specified locale instead of the default locale. The <locale ID> can have
one of the following forms:

• -Locale:<language>, where <language> is a 2-letter ISO-639
language code – causes assembler messages to be written using the neutral
locale for the specified language.

 77

• -Locale:<language>_<country>, where <language> is a 2-letter
ISO-639 language code and <country> is a 2-letter ISO-3166 country code
– causes assembler messages to be written using the culture locale for the
specified language and country.

• -Locale:<language>_<country>_<variant>, where
<language> is a 2-letter ISO-639 language code, <country> is a 2-letter
ISO-3166 country code and <variant> is an arbitrary locale variant string –
causes assembler messages to be written using the full locale for the specified
language, country and variant.

• -Locale:Native – causes assembler messages to be written using the
“native” locale of the host OS.

• -Locale:Invariant – causes assembler messages to be written using an
invariant (culture-independent) locale.

If this option is not specified, the –Locale:Invariant is assumed. An attempt to
instruct the assembler to produce output and messages using a locale for which the
assembler message file is not available causes the locale’s parent to be used; if there is
no message file for that parent locale, then its parent is used in turn, etc; if all else
fails, an invariant locale is used for assembler output and messages.

7.18 -Model
This option has the following format:

-Model:{ilp64|lp64|ip32}

When used, this option sets the default memory model to be used for all compilation
units. If the option is not specified, ILP64 memory model is used as a default.

7.19 -Output
This option has the following format:

-Output:<destination>

When used, this option causes the result of the translation (typically an object file) to
be written to the specified destination.

Depending on the exact form of the option’s parameter, the output file may be written
to several different locations:

• If the <destination> parameter is not specified, the name of the output
file is derived from the name of the main assembler source file by replacing
the filename extension (typically .asm) with .rel.

• If the <destination> parameter is specified and ends with a path
component separator, it is assumed to refer to a directory where the output file
shall be written; the name of the output file is derived from the name of the
main assembler source file by replacing the filename extension (typically
.asm) with .rel. Non-absolute directory names are considered to be relative
to the current working directory, not to the assembler source file’s location.

 78

• If the <destination> parameter is specified and does not end with a path
component separator, it is assumed to refer to an output file itself. Non-
absolute file names are considered to be relative to the current working
directory, not to the assembler source file’s location.

• If the <destination> parameter is a single dash ‘-‘, then an output file is
not written; this mode can be used to perform syntactic & semantic checks of
assembler sources without producing an output file.

7.20 -PreprocessorOutput
This option has the following format:

-PreprocessorOutput[:<destination>]

When used, this option causes a textual file containing the preprocessed form of each
compilation unit to be written.

Preprocessor output files are emitted in the “native” character set for the host OS
unless another character set is selected with –PreprocessorOutputEncoding
option.

Depending on the exact form of the option’s parameter, the preprocessor output may
be written to several different locations:

• If the <destination> parameter is not specified, the name of the
preprocessor output file is derived from the name of the main assembler
source file by replacing the filename extension (typically .asm) with .pre.
The preprocessor output file is written into the same directory where the
corresponding assembler source file resides.

• If the <destination> parameter is specified and ends with a path
component separator, it is assumed to refer to a directory where the
preprocessor output file shall be written; the name of the preprocessor output
file is derived from the name of the main assembler source file by replacing
the filename extension (typically .asm) with .pre. The destination directory
is created automatically if it does not already exist. Non-absolute directory
names are considered to be relative to the current working directory, not to the
assembler source file’s location.

• If the <destination> parameter is specified and does not end with a path
component separator, it is assumed to refer to a file where the preprocessor
output shall be written. Note that when the assembler is invoked to compile
more than one compilation unit, this feature cannot be used, as it will cause
preprocessor output file conflict. Non-absolute file names are considered to be
relative to the current working directory, not to the assembler source file’s
location.

• If the <destination> parameter is a single dash ‘-‘, preprocessor output is
written to the standard output; in this case the character set used for the
preprocessor output is that selected for the standard output with the –
StdoutEncoding option.

 79

7.21 -PreprocessorOutputEncoding
This option has the following format:

-PreprocessorOutputEncoding:<encoding>

When used, this option causes assembler to write preprocessor output using the
specified encoding (character set). The <encoding> parameter must be one of the
encoding names supported by the assembler, use the “cerasm –
Help:Encodings” command to list supported encodings.

If this option is not specified, the preprocessor output is written using the “native”
character set of the host OS. The same effect can be achieved by using this option
with a special native parameter, as in

-PreprocessorOutputEncoding:Native

7.22 -Progress
This option has the following format:

-Progress[:{On|Off}]

When used, this option turns on (-Progress:On) or off (-Progress:Off) the
printing of source file names of all compilation units as they are processed; a default
form -Progress is equivalent to -Progress:On, which is also the default
assembler behaviour.

7.23 -Quiet
This option has the following format:

-Quiet[:{On|Off}]

The –Quiet:On option is a shortcut for the –Banner:Off –Progress:Off and
–Statistics:Off option combination. Similarly, the –Quiet:Off option is a
shortcut for the –Banner:On –Progress:On and –Statistics:On option
combination.

7.24 -SourceEncoding
This option has the following format:

-SourceEncoding:<encoding>

When used, this option causes assembler to assume that all source and header files use
the specified encoding (character set). The <encoding> parameter must be one of
the encoding names supported by the assembler, use the “cerasm –
Help:Encodings” command to list supported encodings.

 80

If this option is not specified, all source and header files are assumed to be using the
“native” character set of the host OS. The same effect can be achieved by using this
option with a special native parameter, as in

-SourceEncoding:Native

7.25 -SourceTabWidth
This option has the following format:

-SourceTabWidth:<value>

When used, this option causes assembler to assume that tab characters encountered in
source and header files are equivalent to just enough spaces to advance the line
position to the next tab stop and that tab stops are <value> columns apart.
Historically, the most frequently used tab width was 8 columns; however, many
recent IDEs and editors use tab width of 4 (or even 2) for source files.

If this option is not specified, all source and header files are assumed to be using the
default tab width of 8.

7.26 -Statistics
This option has the following format:

-Statistics[:{On|Off}]

When used, this option turns on (-Statistics:On) or off (-Statistics:Off)
the printing of translation statistics at the end of assembler invocation; a default form
-Statistics is equivalent to -Statistics:On, which is also the default
assembler behaviour.

7.27 -StderrEncoding
This option has the following format:

-StderrEncoding:<encoding>

When used, this option causes assembler to issue all error and warning messages
using the specified encoding (character set). The <encoding> parameter must be
one of the encoding names supported by the assembler, use the “cerasm –
Help:Encodings” command to list supported encodings.

If this option is not specified, all error and warning messages are written using the
“native” character set of the host OS. The same effect can be achieved by using this
option with a special native parameter, as in

-StderrEncoding:Native

7.28 -StdoutEncoding
This option has the following format:

 81

-StdoutEncoding:<encoding>

When used, this option causes assembler to issue all standard output using the
specified encoding (character set). The <encoding> parameter must be one of the
encoding names supported by the assembler, use the “cerasm –
Help:Encodings” command to list supported encodings.

If this option is not specified, all standard output written by the assembler uses the
“native” character set of the host OS. The same effect can be achieved by using this
option with a special native parameter, as in

-StdoutEncoding:Native

7.29 -Target
This option has the following format:

-Target:<target platform>

When used, this option instructs the assembler to perform compilation for the
specified target. Use the “cerasm –Help:Targets” command to list supported
targets.

If the target is not explicitly specified from the command line, the assembler assumes
the most restrictive target (i.e. Base feature only).

7.30 -Undefine
This option has the following format:

-Undefine:<name>

When used, this option causes a standard macroprocessor variable to be not defined
by default.

7.31 -UndefineStandard
This option has the following format:

-UndefineStandard[:{On|Off}]

When used, this option specifies whether all standard macroprocessor variables
normally defined by the assembler shall be defined (-UndefineStandard:OFF)
or not defined (-UndefineStandard:On) when the translation starts.; a default
form -UndefineStandard is equivalent to -UndefineStandard:On, while
the default assembler behaviour is to define all standard macroprocessor variables.

7.32 -Via
This option has the following format:

 82

-Via:<option file name>

When used, this option instructs the assembler to read the specified option file and
process all command line options contained therein as if they were specified directly
in the assembler’s command line in place of a –Via option.

Option files are assumed to be text files that use a “native” character set of the host
OS; however, it is possible to instruct the assembler to use a different encoding for
option files with the –ViaEncoding option.

Option files can contain within them references to other option files (i.e. –Via
options are permitted within option files) as long as option file references do not form
a cycle.

7.33 -ViaEncoding
This option has the following format:

-ViaEncoding:<encoding>

When used, this option causes assembler to assume that all option files use the
specified encoding (character set). The <encoding> parameter must be one of the
encoding names supported by the assembler, use the “cerasm –
Help:Encodings” command to list supported encodings.

If this option is not specified, all option files are assumed to be using the “native”
character set of the host OS. The same effect can be achieved by using this option
with a special native parameter, as in

-ViaEncoding:Native

7.34 -WarningAsError
This option has the following format:

-WarningAsError:<warning ID>[,<warning ID> …]

When used, this option causes warnings with the specified ID to be treated as errors.
Any number of comma-separated warning IDs can be specified in the same –
WarningAsError option; similarly, it is permitted to have more than one –
WarningAsError option in the same command line. In particular, a warning issued
as an error causes the assembler to exit with a nonzero exit code, signalling a
compilation error.

Note that treatment of certain (or all) warnings as errors does not affect warning
filtering – a warning message simply becomes an error message if it is decided that a
warning message must be issued.

7.35 -WarningAsWarning
This option has the following format:

 83

-WarningAsWarning:<warning ID>[,<warning ID> …]

When used, this option causes warnings with the specified ID to not be treated as
errors. Any number of comma-separated warning IDs can be specified in the same –
WarningAsWarning option; similarly, it is permitted to have more than one –
WarningAsWarning option in the same command line.

Note that treatment of certain (or all) warnings as errors does not affect warning
filtering – a warning message simply becomes an error message if it is decided that a
warning message must be issued.

7.36 -WarningLevel
This option has the following format:

-WarningLevel:{0|1|2|3|4}

When used, this option selects the specified warning level. Generally, the higher the
warning level the more warnings are issued; warning level 0 causes all warnings to be
suppressed, while warning level 4 causes all warnings to be reported.

If the option is not specified, the default warning level is 2.

7.37 -WarningsAsErrors
This option has the following format:

-WarningsAsErrors[:{On|Off}]

When used, this option turns on (-WarningsAsErrors:On) or off (-
WarningsAsErrors:Off) the treatment of all warnings as errors; a default form
-WarningsAsErrors is equivalent to -WarningsAsErrors:On, while -
WarningsAsErrors:Off is the assembler default. In particular, a warning issued
as an error causes the assembler to exit with a nonzero exit code, signalling a
compilation error.

Note that treatment of certain (or all) warnings as errors does not affect warning
filtering – a warning message simply becomes an error message if it is decided that a
warning message must be issued.

 84

8 Appendix A: GNU Free Documentation
License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document "free" in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and publisher
a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is not
limited to software manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of
this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the
Document to the Document's overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus, if the Document is in

 85

part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then
there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released
under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in
an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of
text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, "Title Page"
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ
in another language. (Here XYZ stands for a specific section name mentioned below,
such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To
"Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

 86

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for
copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document's license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the
last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

 87

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these things in the Modified
Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use the
same title as a previous version if the original publisher of that version gives
permission.

• B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all of its
principal authors, if it has fewer than five), unless they release you from this
requirement.

• C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.
• F. Include, immediately after the copyright notices, a license notice giving the

public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document's license notice.

• H. Include an unaltered copy of this License.
• I. Preserve the section Entitled "History", Preserve its Title, and add to it an

item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled "History" in
the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on. These
may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if
the original publisher of the version it refers to gives permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve
the Title of the section, and preserve in the section all the substance and tone
of each of the contributor acknowledgements and/or dedications given therein.

 88

• L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part of
the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be
included in the Modified Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to
conflict in title with any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version's license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements
of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement of
any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work
in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.

 89

In the combination, you must combine any sections Entitled "History" in the various
original documents, forming one section Entitled "History"; likewise combine any
sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You
must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an "aggregate" if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation's users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document's Cover Texts may be placed on covers that bracket the Document within
the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers, provided
that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or
"History", the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

 90

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or any later
version" applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a draft)
by the Free Software Foundation. If the Document does not specify a version number
of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation.

	1 Contents
	Introduction
	3 The structure of the source program
	3.1 Elements of an assembler program
	3.1.1 Source files
	3.1.2 Source lines
	3.1.2.1 Line continuations
	3.1.2.2 TAB handling

	3.1.3 Comments
	3.1.4 Identifiers
	3.1.5 Keywords
	3.1.6 Constants
	3.1.6.1 Integer constants
	3.1.6.1.1 Decimal integer constants
	3.1.6.1.2 Hexadecimal integer constants
	3.1.6.1.3 Octal integer constants
	3.1.6.1.4 Binary integer constants
	3.1.6.1.5 Character integer constants

	3.1.6.2 Real constants
	3.1.6.2.1 Decimal real constants
	3.1.6.2.2 Hexadecimal real constants
	3.1.6.2.3 Octal real constants
	3.1.6.2.4 Binary real constants

	3.1.6.3 String constants
	3.1.6.3.1 String constant concatenation

	3.1.6.4 Escape sequences
	3.1.6.4.1 Mnemonic escape sequences
	3.1.6.4.2 Numeric escape sequences
	3.1.6.4.3 Literal escape sequences

	3.2 Expressions
	3.2.1 Operands
	3.2.1.1 Constant operands
	3.2.1.2 Named operands
	3.2.1.3 Properties
	3.2.1.4 Current location

	3.2.2 Operators
	3.2.2.1 Integer operators
	3.2.2.2 Real operators
	3.2.2.3 String operators

	3.2.3 Functions
	3.2.4 Special expressions
	3.2.4.1 Using brackets to change evaluation order
	3.2.4.2 The conditional expression

	3.2.5 Operator precedence and evaluation order
	3.2.6 Constant expressions
	3.2.7 Deferred expressions

	3.3 The memory model
	3.3.1 Segments
	3.3.2 Sections
	3.3.3 Naming and joining
	3.3.4 Groups
	3.3.5 Supported memory models
	3.3.5.1 ILP64
	3.3.5.2 LP64
	3.3.5.3 IP32
	3.3.5.4 Compatibility between memory models

	4 Directives
	4.1 Memory model directives
	4.1.1 segment…end segment
	4.1.1.1 Segment stacking
	4.1.1.2 Specifying segment properties
	4.1.1.2.1 read, write and execute
	4.1.1.2.2 code, data and const
	4.1.1.2.3 align
	4.1.1.2.4 address
	4.1.1.2.5 max
	4.1.1.2.6 private, shared and thread
	4.1.1.2.7 preload, loadondemand and noload
	4.1.1.2.8 model

	4.1.2 section…end section
	4.1.2.1 Assigning sections to segments
	4.1.2.2 Section stacking
	4.1.2.3 Specifying section properties
	4.1.2.3.1 read, write and execute
	4.1.2.3.2 code, data and const
	4.1.2.3.3 align
	4.1.2.3.4 address
	4.1.2.3.5 max
	4.1.2.3.6 private, shared and thread
	4.1.2.3.7 preload, loadondemand and noload
	4.1.2.3.8 model
	4.1.2.3.9 combine and common

	4.1.3 model
	4.1.4 group … end group

	4.2 Symbol definition directives
	4.2.1 proc … end proc
	4.2.2 var … end var
	4.2.3 equ
	4.2.4 public
	4.2.5 export
	4.2.6 import
	4.2.7 extern
	4.2.8 keep
	4.2.9 weak
	4.2.10 size
	4.2.11 alias
	4.2.12 signature
	4.2.13 rename

	4.3 Data definition directives
	4.3.1 dd
	4.3.1.1 Primitive declarators
	4.3.1.2 Declarator groups
	4.3.1.3 Repeat counters

	4.4 Assembly control directives
	4.4.1 include
	4.4.2 includebin
	4.4.3 if … end if
	4.4.4 :=
	4.4.5 undef
	4.4.6 macro
	4.4.6.1 Specifying parameters in macro calls
	4.4.6.2 Specifying default macro parameter values
	4.4.6.3 Labels in macro calls
	4.4.6.4 Local symbols in macros

	4.5 Reporting directives
	4.5.1 error
	4.5.2 warning
	4.5.3 assert

	4.6 Miscellaneous directives
	4.6.1 end
	4.6.2 entry
	4.6.3 align
	4.6.4 target
	4.6.5 use

	4.7 Predefined macroprocessor variables

	5 Instructions
	5.1 Implicit operands
	5.2 Using expressions
	5.3 Specifying memory addresses
	5.4 Using typed registers
	5.5 Writing channel programs
	5.5.1 Register names
	5.5.2 Transfer sources and destinations
	5.5.3 Writing DMA instructions

	6 Invoking the assembler
	6.1 Environment variables
	6.1.1 CDS_1_0_ASSEMBLER_OPTIONS
	6.1.2 CDS_1_0_ASSEMBLER_DEBUG_OPTIONS
	6.1.3 CDS_1_0_ASSEMBLER_RELEASE_OPTIONS
	6.1.4 CDS_1_0_INCLUDE
	6.1.5 CDS_1_0_INCLUDEBIN
	6.1.6 Custom include contexts

	6.2 Options
	6.3 Option files
	6.4 Option conflicts
	6.5 Character encoding
	6.6 Message files

	7 Assembler options
	7.1 -Banner
	7.2 -Debug
	7.3 -Define
	7.4 -Dependencies
	7.5 -DependenciesEncoding
	7.6 -DisableWarning
	7.7 -EnableWarning
	7.8 -Endian
	7.9 -Format
	7.10 -FullMessagePaths
	7.11 -Help
	7.12 -IncludeContext
	7.13 -IncludePath
	7.14 -IncludebinPath
	7.15 -Listing
	7.16 -ListingEncoding
	7.17 -Locale
	7.18 -Model
	7.19 -Output
	7.20 -PreprocessorOutput
	7.21 -PreprocessorOutputEncoding
	7.22 -Progress
	7.23 -Quiet
	7.24 -SourceEncoding
	7.25 -SourceTabWidth
	7.26 -Statistics
	7.27 -StderrEncoding
	7.28 -StdoutEncoding
	7.29 -Target
	7.30 -Undefine
	7.31 -UndefineStandard
	7.32 -Via
	7.33 -ViaEncoding
	7.34 -WarningAsError
	7.35 -WarningAsWarning
	7.36 -WarningLevel
	7.37 -WarningsAsErrors

	8 Appendix A: GNU Free Documentation License

