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2 Overview
This document is a definitive guide into the version 1 of the Cereon computer 
architecture.

2.1 Main features
The Cereon architecture addresses the needs of the medium-to-large scale 
workstations and servers. Hence, the main features of the Cereon architecture include:

 A fully 64-bit architecture, which provides applications with an access to 
virtually unlimited memory. In the past, there have been some negative 
experience in getting 64-bit architectures to handle 8-, 16- and 32-bit data 
efficiently; however, Cereon has been specifically designed to overcome these 
problems.

 The Cereon instruction set is simple and orthogonal, which allows Cereon 
processors to be implemented with a very small number of electronic 
components as compared to other 64-bit architectures currently on the market.

 A simple orthogonal RISC instruction set is an ideal target for code generation 
by compilers.

 As Cereon processors are cheap, it is expected that multi-core and 
multiprocessor configurations will be commonplace. The Cereon architecture 
further assists in creating multiprocessor configurations by providing semi-
independent I/O and memory access facilities, which reduces the number of 
conflicts between tasks running on different processors.

The unique feature of the Cereon architecture is in that, unlike other architectures, 
where data processing instructions each perform a single operation, Cereon data 
processing instructions allow specifying optional pre- and post-processing data 
conversions. While not having any effect on execution speed (as convert-operation-
convert datapath is still significantly shorter than critical data paths involving memory 
access), this allows programs operating on 8-, 16- and 32-bit data items to be as 
efficient as those operating on 64-bit items – something which is very rare amongst 
64-bit architectures.



17

3 Introduction to Cereon
Cereon architecture follows a Reduced Instruction Set Computer (RISC) paradigm, 
incorporating the following common RISC features:

 A large number of registers that can be uniformly accessed.
 A load/store architecture.
 Simple and uniform memory addressing modes.
 Uniform instruction lengths and formats.

3.1 Architecture
An overall architecture of a Cereon processor and its immediate environment is 
illustrated on the following diagram:
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Individual elements of the Cereon architecture are:

 Processor cores – units that actually fetches, decodes and executes 
instructions. Historically a processor with only one core is by far the most 
common; however, recent advances in processor design led to the proliferation 
of two- (or even more) core processors.

 Memory bus interface – is used by processor cores (and other processor 
components, such as DMA channels) to transfer data from and to the main 
memory. The memory bus interface connects to a high-speed memory bus. In 
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a system with more than one processor, each processor will have an 
independent connection to the same memory bus.

 I/O bus interface – is used by the processor to talk to the outside world in a 
uniform and efficient manner. The I/O bus interface connects, through a 
dedicated I/O bus, to a number of I/O ports.

 I/O ports – are connection points where external device controllers are 
attached.

 DMA channel – provides means of transferring data between external devices 
and main memory without using the resources of a processor core. In effect, a 
DMA channel is a miniature processor core which, unlike general purpose
Cereon processor core, is geared towards executing data transfer instructions.

Other Cereon architectural elements not shown on the diagram above are:

 Caches and write buffers – are used to retain frequently used data within the 
processor instead of accessing it from main memory. Instructions and data can 
be cached separately or in the same cache.

 Translation-lookaside buffers – are used to speed up virtual address 
translation.

 Branch prediction tables – are used to make instruction prefetching efficient in 
the presence of conditional branch instructions.

Depending on the processor model, each processor core can have its own private copy 
of the above data structures, or a single copy can be shared between several processor 
cores. For example, a configuration is possible where each processor core in a 4-core 
processor has its own TLB, but all 4 cores share the same branch prediction table and 
cache.

3.2 Features
The Cereon architecture is modular. It consists of:

 The Cereon Base functionality, which is present in all Cereon processors. This 
functionality includes support for general purpose instructions and registers, 
control registers, etc.

 A number of optional features, which can be present or absent in a specific 
processor in a more-or-less independent manner. Currently these features are:
 Floating point feature – permits hardware support for floating point

calculations.
 Debug feature – provides hardware support for advanced debugging.
 Unaligned operand feature – allows operands of load and store instructions 

not to be naturally aligned.
 Virtual memory feature – provides hardware support for page-based 

virtual memory with adjustable page table structure and page size.
 Protected memory feature – provides a lightweight alternative to a virtual 

memory.
 Performance monitoring feature – provides hardware support for 

performance monitoring and program event counting.
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3.3 Registers
The Cereon processor has the following internal registers:

 32 64-bit general purpose registers r0..r31. Of these 32 registers two 
registers (instruction pointer and return address register) have a special 
hardware-enforced purpose, while the remaining 30 registers are free for 
programmer to access as he sees fit, to store either integer or floating point
data.

 32 64-bit control registers, c0..c31. These registers are used to maintain 
the current state of a processor and manage interrupts.

 A 64-bit hidden $flags register, used to track unusual situations that can 
occur during program execution.

 (If debug feature is present) 32 64-bit debug registers, d0..d31. These 
registers are used to track debug events that may occur during program 
execution.

 (If performance monitoring feature is present) 32 64-bit performance 
monitoring registers, m0..m31. These registers are used to count various 
program events.

The following diagram illustrates the Cereon registers available to a programmer:
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3.4 Interrupts
Cereon supports 6 types of interrupts:

 Timer interrupts, that are generated internally by processor’s high-
performance timer.

 I/O interrupts, that are generated by external I/O hardware.
 Supervisor Call (SVC) interrupts, that provide the standard means for the user-

mode code to call a system service.
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 Program interrupts, which occur when a program attempts to perform an 
illegal action.

 External interrupts, which originate from sources external to a particular 
processor. Examples of external interrupts include system resets and 
interprocessor signals.

 Hardware interrupts, which occur when a hardware error is detected.

When an interrupt occurs, the processor that services that interrupt stops whatever its 
doing, records its current state in dedicated control registers and switches to the 
interrupt handler defined with more dedicated control registers. The process of 
handling an interrupt does not incur any memory accesses and, therefore, allows for 
very fast interrupt response times.

For more details on Cereon interrupt handling, refer to the “Interrupts and exceptions” 
chapter of this document.

3.5 Processor state
A dedicated set of control registers is used to record the current processor state, 
which, among other things, includes information about:

 Whether the processor is currently operating or is idle and just sits there 
waiting for an interrupt.

 Whether the processor operates in Kernel or User mode.
 Whether the processor accesses memory in big-endian or little-endian mode.
 Which IEEE-754 rounding and error handling modes are currently in effect.
 Whether trap handling is currently in effect or not. Traps allow direct support 

for debugging the machine code at a single instruction level.
 Whether paged or segmented virtual memory is in effect and, if it is, how it is 

implemented.
 Which of the 6 interrupt types are currently allowed to occur.
 The ID of the currently executing process.

3.6 Processor identification
Each processor core in a Cereon machine is assigned a unique 16-bit number. The 
upper 8 bits of this number refer to a particular processor, the lower 8 bits identify a 
specific processor core within that processor. As a consequence, all cores in a multi-
core processor have the same 8 upper bits in their IDs. Among other things, this 
allows OS kernels to determine if they run on a “true” multiprocessor machine or on a 
multi-core/multi-threaded machine and adjust their behaviour accordingly (for 
example, on a multi-threaded machine the OS task scheduler may assign several 
threads of the same application to execute on different cores within the same
processor, on the assumption that since these threads will often access the same data, 
using the same cache for these threads may increase performance).
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4 Programmer’s model

4.1 Data types
Cereon processor supports the following data types:

 Byte – 8-bit integer.
 Half-word – 16-bit integer.
 Word – 32-bit integer.
 Long word – 64-bit integer.
 Reduced-precision real – 21-bit floating point value.
 Single precision real – 32-bit IEEE-754 floating point value.
 Double precision real – 64-bit IEEE-754 floating point value.

4.1.1 Integer types

All integer values can be interpreted as either unsigned integer value or signed integer 
values that use 2’s complement code for negative values. The exact interpretation 
used in each specific case depends upon the instruction that works with these values.

4.1.2 Real types

In all three formats, the following rules are used to interpret the value of a real 
number (in the formulas below d is 31 for a reduced-precision value, 127 for a single 
precision value and 1023 for a double precision value):



22

 If e = 0 and m = 0, then the value is +0.0 regardless of the s bit.
 If e = 0 and m ≠ 0, then the value is s×0.m×2-d. This is a positive (s = 0) or 

negative (s = 1) denormalized value
 If e ≠ 0 and e ≠ 2×d+1, then the value is s×1.m×2e-d. This is a positive (s = 

0) or negative (s = 1) normalized value.
 If e = 2×d+1 and m = 0, then the value is a positive (s = 0) or negative (s = 1) 

infinity.
 If e = 2×d+1, m ≠ 0 and the leftmost bit of m is 0, then the value is a signalling

NaN (Not-a-Number).
 If e = 2×d+1, m ≠ 0 and the leftmost bit of m is 1, then the value is a quiet 

NaN (Not-a-Number).

Note that single- and double precision real numbers are represented in a IEEE-754 
format. The reduced-precision format allows placing small real constants (such as 0, 
1, 0.5 and -1.25) as immediate operands into instructions instead of having to load 
them from memory.

4.2 Processor modes
The control registers recording the current processor state store several more or less 
independent characteristics, the combination of which defines the current processor
mode.

4.2.1 Kernel vs. User
In a Kernel mode, the entire set of Cereon facilities is available to the processor. In 
User mode, some of these facilities are disabled and a PROGRAM interrupt occurs if 
they are used. Examples of such facilities include accessing processor’s control 
registers, performing I/O operations, etc. – in other words, anything that shall remain 
under control of an operating system.

The following table summarizes differences between Kernel and User mode.

Feature
Processor in Kernel 

mode
Processor in User 

mode

Direct access to processor 
control registers

Enabled
Disabled (causes an 

exception)

Access to Kernel virtual 
memory pages (in virtual 

mode only)
Subject to access control

Disabled (causes an 
exception)

Access to User virtual 
memory pages (in virtual 

mode only)
Enabled Subject to access control

Use of privileged processor 
instructions

Enabled
Disabled (causes an 

exception)
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4.2.2 Real vs. Virtual
In Real mode, all memory addresses generated by processor for both instruction and 
data access are physical memory addresses. Memory protection is not performed; i.e. 
instructions can be executed from any memory location and have free read/write 
access to entire available physical memory (note, however, that specific Cereon 
models may impose hardcoded access restrictions on memory areas in Real mode as 
well, such as requiring the upper half of the real address space to be read-only, etc.)
An attempt to access the memory address at which no memory exists (or an attempt to 
write to read-only memory) will still cause an exception.

In Virtual mode, all memory addresses are virtual memory addresses; these are 
translated into physical memory addresses using the virtual address translation 
mechanism described in the corresponding section of this manual (using protected 
memory or virtual memory mechanisms). In addition, all memory accesses are subject 
to access control, which depends on current processor state and whether a memory 
area being accessed is designated as Kernel or User memory area:

Processor 
mode

Virtual memory 
area marked as

Memory access validity

Kernel Kernel
Access is allowed based on access flags 
associated with virtual memory page.

Kernel User Any type of memory access is allowed.

User Kernel Memory access is not allowed.

User User
Access is allowed based on access flags 
associated with virtual memory page.

4.2.3 Big-endian vs. Little-endian
Depending on whether the processor is in big- or little-endian mode, values that 
occupy more than one byte in memory are expected to be stored with the most 
significant byte first (big-endian mode) or the least significant byte first (little-endian 
mode). Note that, although a processor can always determine whether it is currently in 
big- or little-endian mode, it may or may not be able to switch to the opposite mode 
depending on the processor model (the switch is only possible while in Kernel mode).

4.2.4 Working vs. Idle
When in Working mode the processor is executing instructions normally. When in 
Idle mode the processor is not executing any instructions. In the latter case, the 
processor can be re-activated and brought back to a Working mode by an incoming 
interrupt.

4.3 Registers
The Cereon processor has the following internal registers:

 32 64-bit general purpose registers r0..r31.
 32 64-bit control registers, c0..c31.
 A 64-bit hidden $flags register.
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 32 64-bit debug registers, d0..d31 (if Debug feature is available).
 32 64-bit performance monitoring registers, m0..m31 (if Performance 

monitoring feature is available).

4.3.1 General purpose registers
General purpose registers are numbered from r0 to r31. Each general purpose
register can contain a 64-bit value, which is interpreted as signed integer, unsigned 
integer or double precision real value depending on instructions that use the register.

In assembly-language programs, general purpose registers can be specified by their 
numbers r0..r31. In addition, these registers are assigned symbolic names, which 
reflect conventions for their use. These symbolic names, apart from designating a 
specific register, reflect on the interpretation of its contents, so $rv refers to r0
containing an integer value, while $frv refers to r0 containing a real value. This 
provides an additional measure of safety for an assembler-language programmer.

The table below summarizes assignment of symbolic names to general purpose
registers and their usage.

Register Symbolic name Usage convention

r0 $rv, $frv Procedure return value
r1 $a0, $fa0 Parameter register
r2 $a1, $fa1 Parameter register
r3 $a2, $fa2 Parameter register
r4 $a3, $fa3 Parameter register
r5 $t0, $ft0 Temporary register
r6 $t1, $ft1 Temporary register
r7 $t2, $ft2 Temporary register
r8 $t3, $ft3 Temporary register
r9 $t4, $ft4 Temporary register
r10 $t5, $ft5 Temporary register
r11 $t6, $ft6 Temporary register
r12 $t7, $ft7 Temporary register
r13 $s0, $fs0 Saved temporary register
r14 $s1, $fs1 Saved temporary register
r15 $s2, $fs2 Saved temporary register
r16 $s3, $fs3 Saved temporary register
r17 $s4, $fs4 Saved temporary register
r18 $s5, $fs5 Saved temporary register
r19 $s6, $fs6 Saved temporary register
r20 $s7, $fs7 Saved temporary register
r21 $s8, $fs8 Saved temporary register
r22 $s9, $fs9 Saved temporary register
r23 $s10, $fs10 Saved temporary register
r24 $s11, $fs11 Saved temporary register
r25 $s12, $fs12 Saved temporary register
r26 $gp Global data pointer
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r27 $sp Stack pointer
r28 $fp Frame pointer
r29 $dp Display pointer
r30 $ra Procedure return address
r31 $ip Instruction pointer

All general purpose registers are free for the programmer to use as he sees fit, except 
$ra and $ip, which have a special purpose. However, there exists a convention as to 
what different general purpose registers are used for; this convention is reflected in 
the symbolic name of these general purpose registers. In particular, this convention is 
the reason why $gp, $sp, $fp, $dp, $ra and $ip register names do not name a 
floating point counterpart – as values in these registers shall, by convention, always 
be pointers instead of numeric.

Note, that use of general purpose registers for floating point calculations is only 
allowed if the processor has a floating point feature.

4.3.1.1 $rv/$frv
By convention, when a procedure must return an integer, real or pointer result, it is 
returned in $rv (integer/pointer) or $frv (real), extended to 64 bits.

4.3.1.2 $a0..$a3/$fa0..$fa3
By convention, the first four integer, real or pointer arguments for a procedure call are 
placed into these registers by the caller, extended to 64 bits.

4.3.1.3 $t0..$t7/$ft0..$ft7
By convention, these registers are used as temporary registers for storing intermediate 
results. When a procedure call is performed, these registers are not expected to retain 
their values upon return, so the caller must take care of saving these registers before 
the call and restoring them after the call if necessary.

4.3.1.4 $s0..$s12/$fs0..$fs12
By convention, these registers are used as permanent registers for keeping values with 
a long lifetime. When a procedure call is performed, these registers are expected to 
retain their values upon return, so the callee must take care of saving these registers 
when called and restoring them before return if it wishes to use them.

4.3.1.5 $gp
By convention, this register contains a pointer to a global static data area of the 
currently executing program. If the specific toolchain does not use this register for 
that purpose, $gp can be used as another temporary register; however, such use is not 
generally recommended as it would make the code incompatible with other toolchains 
that do use $gp as a global static data pointer.

4.3.1.6 $sp
By convention, this register contains a pointer to the lowest memory address occupied 
by the stack. By the same convention, stacks shall start at higher addresses and grow 
down.
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4.3.1.7 $fp
By convention, this register contains a pointer to a fixed location within the topmost 
procedure activation frame in the stack.

4.3.1.8 $dp
By convention, this register contains a display pointer to a display data containing the 
static chain for the currently executing procedure. If the language in question does not 
support nonlocal nonstatic data (C and C++ are such languages), or static chains are 
implemented using a technique other that displays, $dp can be used as another 
temporary register; however, such use is not generally recommended as it would 
make the code incompatible with other code that does use $dp as a display pointer.

4.3.1.9 $ra

When a jump-and-link (jal or jalr) instruction is executed to call a subroutine, the 
address of the instruction immediately following the jal/jalr instruction is stored 
into the $ra register. When the subroutine has finished, it must use the contents of 
$ra to return to the caller by performing an indirect register jump there.

4.3.1.10 $ip

The $ip register is an instruction pointer, used by the processor to fetch instructions 
for execution. At any time, it contains the address of the next instruction to be
executed. Any explicit change to the contents of $ip (such as loading it from 
memory, or adding a constant to it) causes a jump.

An instruction reading from $ip always reads the address of the immediately 
following instruction, i.e. the address of the current instruction + 4. An instruction 
writing to $ip performs an unconditional jump to the specified address.

4.3.2 Control registers
Control registers are numbered from c0 to 31. Each control register can contain a 64-
bit value, whose interpretation is register-specific.

In assembly-language programs, control registers can be specified by their numbers. 
In addition, these registers are assigned symbolic names, which reflect their usage. 
Note, that control registers have specific uses enforced by hardware. The table below 
summarizes assignment of symbolic names to control registers and their usage.

Register Symbolic name Usage convention

c0 $state Current processor state.
c1 $pth Page table header pointer
c2 $itc Interval timer counter.
c3 $cc Cycle counter
c4 $isaveip.tm The saved $ip for TIMER interrupt.
c5 $isavestate.tm The saved state for TIMER interrupt.
c6 $ihstate.tm The new state for TIMER interrupt handler.
c7 $iha.tm The address of the TIMER interrupt handler.
c8 $isaveip.io The saved $ip for IO interrupt.
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c9 $isavestate.io The saved state for IO interrupt.
c10 $ihstate.io The new state for IO interrupt handler.
c11 $iha.io The address of the IO interrupt handler.
c12 $isc.io The Interrupt Status Code associated with the 

IO interrupt.
c13 $isaveip.svc The saved $ip for SVC interrupt.
c14 $isavestate.svc The saved state for SVC interrupt.
c15 $ihstate.svc The new state for SVC interrupt handler.
c16 $iha.svc The address of the SVC interrupt handler.
c17 $isaveip.prg The saved $ip for PROGRAM interrupt.
c18 $isavestate.prg The saved state for PROGRAM interrupt.
c19 $ihstate.prg The new state for PROGRAM interrupt 

handler.
c20 $iha.prg The address of the PROGRAM interrupt 

handler.
c21 $isc.prg The Interrupt Status Code associated with the 

PROGRAM interrupt.
c22 $isaveip.ext The saved $ip for EXTERNAL interrupt.
c23 $isavestate.ext The saved state for EXTERNAL interrupt.
c24 $ihstate.ext The new state for EXTERNAL interrupt 

handler.
c25 $iha.ext The address of the EXTERNAL interrupt 

handler.
c26 $isc.ext The Interrupt Status Code associated with the 

EXTERNAL interrupt.
c27 $isaveip.hw The saved $ip for HARDWARE interrupt.
c28 $isavestate.hw The saved state for HARDWARE interrupt.
c29 $ihstate.hw The new state for HARDWARE interrupt

handler.
c30 $iha.hw The address of the HARDWARE interrupt 

handler.
c31 $isc.hw The Interrupt Status Code associated with the 

HARDWARE interrupt.

Individual control registers are described below.

4.3.2.1 $state
This register describes the current state of the processor. It has the following format:
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The meaning of individual fields within the $state register is explained below.

4.3.2.1.1 K (Kernel mode)
When this bit is 1, the processor is running in Kernel mode; otherwise, the processor 
is running in the User mode.

4.3.2.1.2 V (Virtual mode)
When this bit is 1, the processor is running in Virtual mode; otherwise, the processor 
is running in the Real mode. If the processor supports either protected or virtal 
memory feature (the two are mutually exclusive), the corresponding address 
translation mechanism is used in Virtual mode. If the processor does not have either 
of these features, it cannot operate in a Virtual mode; an attempt to switch such a 
processor into a Virtual mode causes an OPERAND exception.

4.3.2.1.3 T (Trap mode) and P (Pending trap)
When the T bit is 1 the processor traps are enabled, otherwise traps are disabled. 
When traps are enabled, the TRAP interrupt occurs before the execution of each 
instruction unless PROGRAM interrupts are disabled.

The P flag is checked after execution of each instruction. If it is 0, no extra actions are 
taken. If it is 1, it is set to 0 and T is set to 1.

When returning from the TRAP interrupt handler, the interrupt handler sets the T flag 
to 0, and the P flag to 1. This behaviour ensures that, once a TRAP interrupt is 
handled, the processor will be able to execute one instruction before the next TRAP
interrupt occurs.

4.3.2.1.4 B (Big-endian)
When this bit is 1, the processor uses the big-endian byte ordering when transferring
data to and from memory; otherwise the little-endian byte ordering is used.

4.3.2.1.5 W (Working)
When this bit is 1, the processor is in Working mode; otherwise it is in Idle mode.

4.3.2.1.6 D (Debug events)

When this bit is 1, debug events are enabled and can cause PROGRAM exceptions. 
When it is 0, debug exceptions do not occur. If the processor has no debug feature, 
this bit is ignored.
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Note that if a debug exception is triggered and a PROGRAM interrupt is disabled, the 
processor reacts in the same way as if any other (i.e. non-debug) exception has 
occurred while the PROGRAM interrupt is masked, namely halt the processor. 
Therefore, debug events shall only be enabled whenever PROGRAM interrupt is 
enabled.

4.3.2.1.7 R (real opeRand)

When this bit is 1, FOPERAND exceptions are enabled. When it is 0, FOPERAND
exceptions do not occur; signalling NaN results are produced instead. If the processor 
has no floating point feature, this bit is ignored.

4.3.2.1.8 Z (real division by Zero)

When this bit is 1, FZDIV exceptions are enabled. When it is 0, FZDIV exceptions do 
not occur; infinite results are produced instead. If the processor has no floating point
feature, this bit is ignored.

4.3.2.1.9 E (real ovErflow)

When this bit is 1, FOVERFLOW exceptions are enabled. When it is 0, FOVERFLOW
exceptions do not occur; infinite results are produced instead. If the processor has no 
floating point feature, this bit is ignored.

4.3.2.1.10 U (real Underflow)

When this bit is 1, FUNDERFLOW exceptions are enabled. When it is 0, 
FUNDERFLOW exceptions do not occur; zero result is produced instead. If the 
processor has no floating point feature, this bit is ignored.

4.3.2.1.11 I (real Inexact)

When this bit is 1, FINEXACT exceptions are enabled. When it is 0, FINEXACT
exceptions do not occur; result is rounded instead using the current rounding mode. If 
the processor has no floating point feature, this bit is ignored.

4.3.2.1.12 N (iNteger division by zero)

When this bit is 1, ZDIV exceptions are enabled. When it is 0, ZDIV exceptions do 
not occur; an attempt to perform an integer division by zero results in both quotient 
and remainder of 0.

4.3.2.1.13 O (integer Overflow)

When this bit is 1, IOVERFLOW exceptions are enabled. When it is 0, IOVERFLOW
exceptions do not occur; wraparound happens instead.

4.3.2.1.14 RM (Rounding Mode)
The contents of these 2 bits specified the floating point rounding mode currently in 
effect:

 00 – rounding is performed towards the nearest representable value, with 
“even” values preferred whenever there are two nearest representable values.

 01 – rounding is performed towards the negative infinity (down).
 10 – rounding is performed towards the positive infinity (up).
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 11 – rounding is performed towards zero (chop).

If the processor has no floating point feature, these bits are ignored.

4.3.2.1.15 IM (Interrupt Mask)
This field contains 6 1-bit flags specifying which interrupts are allowed to occur. Bit 
(N-26) corresponds to interrupt N. For more details on Cereon interrupt handling, 
refer to the “Interrupts and exceptions” chapter of this document.

4.3.2.1.16 CID (Context ID)
This field contains the current 32-bit context ID. This value is used for virtual address 
translation.

4.3.2.2 $pth
This register contains the pointer to a page table header data structure. It is only used 
when processor is in virtual mode. For more details on Cereon virtual memory 
facilities, refer to the “Virtual memory feature” and “Protected memory feature” 
chapter of this document.

4.3.2.3 $itc
This register contains the 64-bit interval timer counter. Its value is examined during 
each CPU cycle, using the following algorithm:

 If $itc = 0, no further actions are taken.
 If $itc > 1, the value of $itc is decremented by 1.
 If $itc = 1 and the TIMER interrupt is enabled and can occur, the value of 

$itc is set to 0 and a TIMER interrupt occurs.
 If $itc = 1 and the TIMER interrupt is disabled, or cannot occur 

immediately (because current instruction is in the middle of execution) the 
$itc remains unchanged (i.e. 1), this ensures that the TIMER interrupt will 
occur when the processor is ready for it.

4.3.2.4 $cc
This register contains the 64-bit cycle counter. Its value is incremented by 1 each 
CPU cycle. Note, that an instruction taking more than one cycle to execute (because, 
for example, it is stalled to wait for a data to arrive from memory) will observe the 
$cc incremented by more than 1 after its execution is complete. This allows, among 
other things:

 Precise measurement of execution times for individual instructions.
 Detection of how many cycles a pending TIMER interrupt was delayed for.

Note that when processor is in Idle mode the cycle counter is not incremented with 
each cycle.
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4.3.3 Debug registers
Debug registers are numbered from d0 to d31. Each debug register can contain a 64-
bit value. Debug registers are described in detail in the “Debug feature” chapter of 
this document.

4.3.4 Performance monitoring registers
Performance monitoring registers are numbered from m0 to m31. Each performance 
monitoring register can contain a 64-bit value. Performance monitoring registers are 
described in detail in the “Performance monitoring feature” chapter of this document.

4.3.5 $flags register
This register acts as a sticky accumulator of flags describing various unusual 
situations that can occur during instruction execution. Its main purpose is to provide 
user code with an indication of whether a certain condition (such as overflow) 
occurred during the execution of a sequence of instructions. Typically, an application 
will reset $flags, execute a sequence of operations (usually arithmetics) and then 
check the corresponding bits of the $flags register to, for example, find out if an 
integer overflow (or a floating-point underflow) had occurred during the sequence. 
This provides a lightweight alternative to unusual arithmetic situations handled via 
exceptions.

The $flags register has the following format:

The meaning of individual fields within the $flags register is explained below.

4.3.5.1.1 R (real opeRand)
Whenever an attempt is made to perform a floating-point operation with one or both 
operands being incorrect (such as NaN, or negative operand for sqrt), this bit is set 
to 1, regardless of whether a FZDIV exception occurs or not. If the processor has no 
floating point feature, this bit is never set up to 1 by hardware.

4.3.5.1.2 Z (real division by Zero)
Whenever an attempt is made to perform a floating-point division by 0, this bit is set 
to 1, regardless of whether a FZDIV exception occurs or not. If the processor has no 
floating point feature, this bit is never set up to 1 by hardware.

4.3.5.1.3 E (real ovErflow)
Whenever an overflow occurs during a floating-point operation, this bit is set to 1, 
regardless of whether a FOVERFLOW exception occurs or not. If the processor has no 
floating point feature, this bit is never set up to 1 by hardware.

4.3.5.1.4 U (real Underflow)
Whenever an underflow occurs during a floating-point operation, this bit is set to 1, 
regardless of whether a FUNDERFLOW exception occurs or not. If the processor has 
no floating point feature, this bit is never set up to 1 by hardware.
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4.3.5.1.5 I (real Inexact)
Whenever a floating-point operation produces an inexact result, this bit is set to 1, 
regardless of whether a FINEXACT exception occurs or not. If the processor has no 
floating point feature, this bit is never set up to 1 by hardware.

4.3.5.1.6 N (iNteger division by zero)
Whenever an attempt is made to perform an integer division by 0, this bit is set to 1, 
regardless of whether a ZDIV exception occurs or not.

4.3.5.1.7 O (integer Overflow)
Whenever an overflow occurs during an integer operation, this bit is set to 1, 
regardless of whether a IOVERFLOW exception occurs or not.

4.4 Memory
The Cereon architecture uses a single flat address space of 264 8-bit bytes. Memory 
addresses are treated as unsigned integer numbers running from 0 to 264-1.

All address calculations are performed using unsigned 64-bit integer arithmetic. That, 
in particular, means that:

 An overflow encountered during address calculation can cause an 
IOVERFLOW exception (if one is enabled) and always sets the N flag of 
$state to 1.

 Addresses wrap around if an integer overflow occurs and an IOVERFLOW
exception is disabled.

4.4.1 Alignment
Unless an unaligned operand feature is available, all memory accesses must be 
naturally aligned. Specifically:

 A byte can be loaded from or stored to any memory address.
 A short word can be loaded from or stored to any memory address that is a 

multiple of 2.
 A word can be loaded from or stored to any memory address that is a multiple 

of 4. The same applies to single precision real values and instructions, since 
these are also 32 bits long.

 A long word can be loaded from or stored to any memory address that is a 
multiple of 8. The same applies to double precision real values, since these are 
also 64 bits long.

Any attempt to load or store a value that is not naturally aligned causes a DALIGN
exception, unless the unaligned operand feature is available.

If the unaligned operand feature is available, an item of data can be loaded from or 
stored to at any address (instructions must be aligned at a 4-byte boundary regardless 
of whether the unaligned operand feature is available or not). In this case the 
processor checks if the operand is properly aligned before performing a load or store. 
If it is, then the load/store operation proceeds normally. If, on the other hand, the 
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address is not naturally aligned, the processor performs a series of byte, half-word 
and/or word loads/stores, required to simulate the unaligned load/store. The exact 
rules of how an unaligned load/store is broken into a sequence of aligned loads/stores 
is processor-specific (for example, when asked to store a word W at address 3, one 
big-endian processor may choose to store the high byte of W at address 3, then the 
middle half-word of W at address 4, then the low byte of W at address 6, while 
another processor may choose to emit 4 byte stores, one for each byte of W, in a 
reverse sequence).

If an unaligned load is performed, it is guaranteed that the value being loaded, or 
pieces thereof, are not placed into the recipient register until the entire sequence of 
necessary aligned loads is completed. Specifically, if an exception occurs during an 
unaligned load, no register is modified.

If an unaligned store is performed, it is undefined whether, should an exception occur 
in the middle of the store sequence, none, some, or all bytes of memory affected by 
the store are actually modified.

Although an exception can occur during unaligned load or store, these instructions are 
not otherwise interruptible. Specifically, if a processor has initiated a sequence of 
aligned stores to simulate an unaligned store, and a TIMER interrupt is due while the 
sequence has not yet been completed, the TIMER interrupt will remain pending until 
the sequence is complete (or an exception occurs, making further stores impossible).

Only non-atomic single data item load/store instructions (both integer and floating-
point) are affected by the presence of an unaligned operand feature. The operands of 
ldm, stm and xchg.l instructions must always be aligned at a 8-byte boundary, 
regardless of whether an unaligned operand feature is available or not.

4.4.2 Caches and write buffers
Cereon implementations can choose to reduce memory traffic by:

 Pre-fetching instructions that follow the currently executed instruction.
 Cache instructions and data loaded from memory in either two separate caches 

(one for instruction, another for data) or in a single shared cache for both.
 Defer writing data back to memory until the memory bus is free.

A specific implementation of a Cereon processor may choose to include an arbitrary 
combination of an instruction/data caches and/or write buffers. The exact policies 
governing the behaviour of these caches and write buffers is, also, specific to a given 
processor model.

4.4.3 Memory barriers
In order to ensure memory consistency when it is necessary, Cereon provides 
dedicated cache-control and memory barrier instructions. Specifically:

 An instruction memory barrier ensures that the instruction to be executed after 
the current one comes from memory and not from instruction cache or 
prefetch buffer.
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 A data memory barrier ensures that all data written by processor to memory 
are actually committed to memory, and that all data subsequently read by 
processor will come from memory and not a cache.

Memory barrier instructions may not have the full set of effects described above if the 
processor does not support the required features (for example, if a processor model 
has a write-through cache, then executing the data memory barrier will not cause any 
data to be written to the memory).
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5 Cereon instruction set
This chapter describes all instructions of the Cereon instruction set.

5.1 Instruction format
All Cereon instructions are 4 bytes long and are always aligned on 4-byte boundaries.
There are 4 instruction formats supported:

5.1.1 I-type (Immediate)
Immediate instructions are used for operations where one of the operands is a constant 
encoded within the instruction itself. The same instruction format is also used for 
load, store and conditional branch instructions.

Individual fields within the instruction have the following meanings:
 op – the operation code, specifies the action performed by this instruction.
 r1 and r1 – each of these fields specifies a general purpose register.
 immediate – this 16-bit operand can specify a signed or unsigned integer 

value (in arithmetic or compare instructions), a branch distance in branch 
instructions or address displacement in load/store instructions.

5.1.2 L-type (Long immediate)
Long immediate instructions are used to load constants into registers. As only one 
register is always involved, the constant field is extended, which allows for constants 
of a wider range. The same format is also used for load/store multiple instruction.

Individual fields within the instruction have the following meanings:
 op – the operation code, specifies the action performed by this instruction.
 r1 – this field specifies a general purpose register (whether a general purpose

register is treated as storing an integer or a real value depends on the operation 
code).

 immediate – this 20-bit operand can specify a signed or unsigned integer 
value or a real value (in arithmetic or compare instructions), or a register mask 
for load/store multiple instruction.

5.1.3 J-type (jump)
Instructions of this form are used for long jumps.
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Individual fields within the instruction have the following meanings:
 op – the operation code, specifies the action performed by this instruction.
 target – this 26-bit signed integer value specifies the jump target 

displacement.

5.1.4 R-type (register)
Instructions of this format constitute the majority of Cereon instructions. They are 
used to perform arithmetical and logical operations on data, to manage control, debug 
and performance monitoring registers, etc.

Individual fields within the instruction have the following meanings:
 op – the operation code, specifies the action performed by this instruction.
 r1, r2 and r3 – each of these fields specifies a general purpose, control,

debug or performance monitoring register (whether general purpose, control,
debug or performance monitoring register is used depends on the operation 
code, as does whether a general purpose register is treated as storing an integer 
or a real value). If the operation does not use some of these registers, the 
corresponding field must be 0.

 function – this 5-bit field represents a sub-function for come operation 
codes.

 sa – this 6-bit field specifies the shift amount for immediate shifts.

5.2 Instruction mnemonics
A mnemonic instruction name is a name that uniquely identifies the instruction. It is 
these mnemonic instruction names that are used in an assembler-language program.

All mnemonic names of Cereon instructions have the following format:

<operation>[.<data type>]

where:

 <operation> is a mnemonic name of the operation to be carried out (e.g. 
“mov” represents data movement, “add” represents addition, and so on).

 <data type> portion specifies the type of the instruction operands and/or 
results. Note that for some instructions (i.e. “jal” [jump and link], or “svc” 
[supervisor call]) there is no need to specify operand and/or result data types, 
as they either don’t have explicit operands and/or results, or always work on 
operands and/or results of the same size. In this case, the data type suffix is 
omitted entirely.

If the <data type> suffix is present, it encodes one or more data types as a 
sequence of one of more data type specifiers. The following data type specifiers are 
used:
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Specifier Data type

b Signed 8-bit byte.

ub Unsigned 8-bit byte.

h Signed 16-bit half-word.

uh Unsigned 16-bit half-word.

w Signed 32-bit word.

uw Unsigned 32-bit word.

l Signed 64-bit long word.

ul Unsigned 64-bit long word.

f Single precision (32-bit) floating point value.

d Double precision (64-bit) floating point value.

r General purpose register contents (64-bit).

c Control register contents (64-bit).

g Debug register contents (64-bit).

m Performance monitoring register contents (64-bit).

5.3 Instruction set matrix
The following tables contain all Cereon instructions together with their operation 
codes.

The following notation is used in instruction encoding tables:

Symbol Meaning

- The instruction is not supported and is guaranteed never to be 
supported in the future.

* Reserved for future use.

italic field 
name

Operations or codes denoted by this symbol denote a field 
class. The instruction must be further decoded by examining 
additional fields.

5.3.1 Encoding of the opcode field
Opcode Bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 li.l COP1 addi.l subi.l muli.l divi.l modi.l j

1 001 li.d lir addi.ul subi.ul muli.ul divi.ul modi.ul jal
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2 010 seqi.l snei.l slti.l slei.l sgti.l sgei.l slti.ul slei.ul

3 011 andi.l ori.l xori.l impli.l ldm stm sgti.ul sgei.ul

4 100 l.b l.ub l.h l.uh l.w l.uw l.l xchg

5 101 s.b s.h s.w s.l l.f l.d s.f s.d

6 110 beq.l bne.l blt.l ble.l bgt.l bge.l blt.ul ble.ul

7 111 beq.d bne.d blt.d ble.d bgt.d bge.d bgt.ul bge.ul

5.3.2 COP1 opcode encoding of the function field
function Bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 SHIFT1 SHIFT2 bfi.l bfi.l bfe.l bfe.l bfe.ul bfe.ul

1 01 BASE1 BASE2 BASE3 BASE4 BASE5 * * *

2 10 FP1 DBG1 PM1 * * * * *

3 11 * * * * * * * *

5.3.3 SHIFT1 encoding of the r3 field
function Bits 13..11

0 1 2 3 4 5 6 7

bits 15..14 000 001 010 011 100 101 110 111

0 00 shli.b shli.ub shli.h shli.uh shli.w shli.uw shli.l *

1 01 shri.b shri.ub shri.h shri.uh shri.w shri.uw shri.l *

2 10 asli.b asli.ub asli.h asli.uh asli.w asli.uw asli.l *

3 11 asri.b asri.ub asri.h asri.uh asri.w asri.uw asri.l *

5.3.4 SHIFT2 encoding of the r3 field
function Bits 13..11

0 1 2 3 4 5 6 7

bits 15..14 000 001 010 011 100 101 110 111

0 00 roli.b roli.ub roli.h roli.uh roli.w roli.uw roli.l *

1 01 rori.b rori.ub rori.h rori.uh rori.w rori.uw rori.l *

2 10 beqi.l bnei.l blti.l blei.l bgti.l bgei.l * *

3 11 * * blti.ul blei.ul bgti.ul bgei.ul * *

5.3.5 BASE1 function encoding of the shift amount field
Opcode Bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 mov.cr mov.rc * * * * * *
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1 001 iitlb idtlb iitlbe idtlbe iitlbc idtlbc iitlbec idtlbec

2 010 imb dmb * * imbc dmbc * *

3 011 iret halt cupid sigp * * * *

4 100 tstp setp * * * * * *

5 101 in.b in.h in.w in.l out.b out.h out.w out.l

6 110 in.ub in.uh in.uw * * * * *

7 111 * * * * * * * -

5.3.6 BASE2 function encoding of the shift amount field
Opcode Bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 mov.l cvt.bl cvt.ubl cvt.hl cvt.uhl cvt.wl cvt.uwl nop

1 001 and.b and.ub and.h and.uh and.w and.uw and.l swap.h

2 010 or.b or.ub or.h or.uh or.w or.uw or.l swap.uh

3 011 xor.b xor.ub xor.h xor.uh xor.w xor.uw xor.l swap.w

4 100 not.b not.ub not.h not.uh not.w not.uw not.l swap.uw

5 101 brev.b brev.ub brev.h brev.uh brev.w brev.uw brev.l swap.l

6 110 seq.l sne.l slt.l sle.l sgt.l sge.l clz ctz

7 111 jr jalr slt.ul sle.ul sgt.ul sge.ul clo cto

5.3.7 BASE3 function encoding of the shift amount field
Opcode Bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 add.b sub.b mul.b div.b mod.b abs.b neg.b impl.b

1 001 add.ub sub.ub mul.ub div.ub mod.ub * cpl2.ub impl.ub

2 010 add.h sub.h mul.h div.h mod.h abs.h neg.h impl.h

3 011 add.uh sub.uh mul.uh div.uh mod.uh * cpl2.uh impl.uh

4 100 add.w sub.w mul.w div.w mod.w abs.w neg.w impl.w

5 101 add.uw sub.uw mul.uw div.uw mod.uw * cpl2.uw impl.uw

6 110 add.l sub.l mul.l div.l mod.l abs.l neg.l impl.l

7 111 add.ul sub.ul mul.ul div.ul mod.ul * cpl2.ul *

5.3.8 BASE4 encoding of the r3 field
function Bits 13..11

0 1 2 3 4 5 6 7

bits 15..14 000 001 010 011 100 101 110 111

0 00 addi.b addi.ub addi.h addi.uh addi.w addi.uw modi.b modi.ub
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1 01 subi.b subi.ub subi.h subi.uh subi.w subi.uw modi.h modi.uh

2 10 muli.b muli.ub muli.h muli.uh muli.w muli.uw modi.w modi.uw

3 11 divi.b divi.ub divi.h divi.uh divi.w divi.uw * *

5.3.9 BASE5 function encoding of the shift amount field
Opcode Bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 shl.b shr.b asl.b asr.b rol.b ror.b * *

1 001 shl.h shr.h asl.h asr.h rol.h ror.h * *

2 010 shl.w shr.w asl.w asr.w rol.w ror.w * *

3 011 shl.ub shr.ub asl.ub asr.ub rol.ub ror.ub * *

4 100 shl.uh shr.uh asl.uh asr.uh rol.uh ror.uh * *

5 101 shl.uw shr.uw asl.uw asr.uw rol.uw ror.uw * *

6 110 shl.l shr.l asl.l asr.l rol.l ror.l * *

7 111 getfl setfl rstfl * * svc brk invi

5.3.10 FP1 function encoding of the shift amount field
Opcode Bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 mov.d cvt.df * * * * * *

1 001 add.d sub.d mul.d div.d abs.d neg.d sqrt.d *

2 010 add.f sub.f mul.f div.f abs.f neg.f sqrt.f *

3 011 seq.d sne.d slt.d sle.d sgt.d sge.d * *

4 100 cvt.fb cvt.fh cvt.fw cvt.fl cvt.fub cvt.fuh cvt.fuw cvt.ful

5 101 cvt.bf cvt.hf cvt.wf cvt.lf cvt.ubf cvt.uhf cvt.uwf cvt.ulf

6 110 cvt.db cvt.dh cvt.dw cvt.dl cvt.dub cvt.duh cvt.duw cvt.dul

7 111 cvt.bd cvt.hd cvt.wd cvt.ld cvt.ubd cvt.uhd cvt.uwd cvt.uld

5.3.11 DBG1 function encoding of the shift amount field
Opcode Bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 mov.gr mov.rg * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 * * * * * * * *
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5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

5.3.12 PM1 function encoding of the shift amount field
Opcode Bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 mov.mr mov.rm * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 * * * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

5.4 Instruction set reference
The following sections give detailed description of each Cereon instruction. For each 
instruction the following information is provided:

 Symbolic instruction name.
 Instruction bit pattern.
 The description of instruction’s effect.
 The list of conditions which can cause exceptions during instruction 

execution. Note that these do not include exceptions that can occur during 
instruction fetch (IADDRESS, IACCESS, IALIGN, PAGETABLE, 
IPAGEFAULT, IOVERFLOW) or decoding (OPCODE).

The following abbreviations are used when describing the instruction set:

? The instruction bit is ignored and can have any value.

R<N> The contents of a general purpose register N (0<=N<=31)
interpreted as an integer value

F<N> The contents of a general purpose register N (0<=N<=31)
interpreted as a real value

C<N> The contents of a control register N (0<=N<=31)

D<N> The contents of a debug register N (0<=N<=31)

M<N> The contents of a performance monitoring register N (0<=N<=31)

imm The 16-bit immediate field of the instruction
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target The 26-bit target field of the instruction

addr The 64-bit address of a memory operand in an I-type instruction, 
calculated as R<r2>+imm. The imm is sign-extended to 64 bits 
before an address is calculated.

jaddr The 64-bit jump target address in a J-type instruction, calculated as 
$ip+(target<<2). The target is sign-extended to 64 bits 
before an address is calculated.

baddr The 64-bit jump target address in a I-type branch instruction, 
calculated as $ip+(imm<<2). The imm is sign-extended to 64 bits 
before an address is calculated. Note that when a branch instruction 
is executed, $ip already points to the instruction immediately 
following the branch, so imm = 0 causes no actual branch.
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6 The Cereon Base
This section describes instructions provided as a part of the Cereon Base 
functionality. These instructions are always available in every Cereon processor.

6.1 Unsupported instructions

6.1.1 invi (invalid Instruction)

All instructions that match the above bit pattern cause an OPCODE exception when 
executed. All these bit patterns are guaranteed never to be used in future Cereon ISA 
versions for valid instructions.

6.2 Data movement

6.2.1 mov.l (move long word)

Sets R<r1> = R<r2>.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.2.2 mov.cr (move control register to general purpose
register)

Sets R<r1> = C<r2>.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.2.3 mov.rc (move general purpose register to control 
register) [privileged]

Sets C<r1> = R<r2>.

Causes a PRIVILEGED exception if the K bit of $state is 0
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Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.2.4 li.l (load lmmediate long word)

Loads the integer immediate value, sign-extended to 64 bits, into R<r1>.

6.2.5 swap.h (swap bytes in half-word)

The lower 2 bytes of R<r2> are swapped and placed into the lower 2 bytes of 
R<r1>. These lower 2 bytes of R<r1> are then sign-extended to 64 bits.

This instruction is used to convert 16-bit signed integer values between big-endian 
and little-endian representation.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.2.6 swap.uh (swap bytes in unsigned half-word)

The lower 2 bytes of R<r2> are swapped and placed into the lower 2 bytes of 
R<r1>. These lower 2 bytes of R<r1> are then zero-extended to 64 bits.

This instruction is used to convert 16-bit unsigned integer values between big-endian 
and little-endian representation.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.2.7 swap.w (swap bytes in word)

The lower 4 bytes of R<r2> are swapped and placed into the lower 4 bytes of 
R<r1>. These lower 4 bytes of R<r1> are then sign-extended to 64 bits.

This instruction is used to convert 32-bit integer values between big-endian and little-
endian representation.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
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6.2.8 swap.uw (swap bytes in unsigned word)

The lower 4 bytes of R<r2> are swapped and placed into the lower 4 bytes of 
R<r1>. These lower 4 bytes of R<r1> are then zero-extended to 64 bits.

This instruction is used to convert 16-bit integer values between big-endian and little-
endian representation.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.2.9 swap.l (swap bytes in long word)

All 8 bytes of R<r2> are swapped and placed into R<r1>. 

This instruction is used to convert 64-bit integer values between big-endian and little-
endian representation.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.3 Arithmetic instructions

6.3.1 add.b (add byte)

Sets R<r1> = R<r2> + R<r3>. Lower bytes of both operands are treated as 
signed 8-bit integer quantities that are sign-extended to 64 bits before the operation, 
the result is truncated to 8 lower bits and then sign-extended to 64 bits. Highest 7 
bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.2 add.ub (add unsigned byte)
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Sets R<r1> = R<r2> + R<r3>. Lower bytes of both operands are treated as 
unsigned 8-bit integer quantities that are zero-extended to 64 bits before the operation, 
the result is truncated to 8 lower bits and then zero-extended to 64 bits. Highest 7 
bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.3 add.h (add half-word)

Sets R<r1> = R<r2> + R<r3>. Lower half-words of both operands are treated 
as signed 16-bit integer quantities that are sign-extended to 64 bits before the 
operation, the result is truncated to 16 lower bits and then sign-extended to 64 bits. 
Highest 6 bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.4 add.uh (add unsigned half-word)

Sets R<r1> = R<r2> + R<r3>. Lower half-words of both operands are treated 
as unsigned 16-bit integer quantities that are zero-extended to 64 bits before the 
operation, the result is truncated to 16 lower bits and then zero-extended to 64 bits. 
Highest 6 bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.5 add.w (add word)

Sets R<r1> = R<r2> + R<r3>. Lower words of both operands are treated as 
signed 32-bit integer quantities that are sign-extended to 64 bits before the operation, 



47

the result is truncated to 32 lower bits and then sign-extended to 64 bits. Highest 4 
bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.6 add.uw (add unsigned word)

Sets R<r1> = R<r2> + R<r3>. Lower words of both operands are treated as 
unsigned 32-bit integer quantities that are zero-extended to 64 bits before the 
operation, the result is truncated to 32 lower bits and then zero-extended to 64 bits. 
Highest 4 bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.7 add.l (add long word)

Sets R<r1> = R<r2> + R<r3>. Operands are treated as signed 64-bit integer 
quantities.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.8 add.ul (add unsigned long word)

Sets R<r1> = R<r2> + R<r3>. Operands are treated as unsigned 64-bit integer 
quantities.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.
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6.3.9 sub.b (subtract byte)

Sets R<r1> = R<r2> - R<r3>. Lower bytes of both operands are treated as 
signed 8-bit integer quantities that are sign-extended to 64 bits before the operation, 
the result is truncated to 8 lower bits and then sign-extended to 64 bits. Highest 7 
bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.10 sub.ub (subtract unsigned byte)

Sets R<r1> = R<r2> - R<r3>. Lower bytes of both operands are treated as 
unsigned 8-bit integer quantities that are zero-extended to 64 bits before the operation, 
the result is truncated to 8 lower bits and then zero-extended to 64 bits. Highest 7 
bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.11 sub.h (subtract half-word)

Sets R<r1> = R<r2> - R<r3>. Lower half-words of both operands are treated 
as signed 16-bit integer quantities that are sign-extended to 64 bits before the 
operation, the result is truncated to 16 lower bits and then sign-extended to 64 bits. 
Highest 6 bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.
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6.3.12 sub.uh (subtract unsigned half-word)

Sets R<r1> = R<r2> - R<r3>. Lower half-words of both operands are treated 
as unsigned 16-bit integer quantities that are zero-extended to 64 bits before the 
operation, the result is truncated to 16 lower bits and then zero-extended to 64 bits. 
Highest 6 bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.13 sub.w (subtract word)

Sets R<r1> = R<r2> - R<r3>. Lower words of both operands are treated as 
signed 32-bit integer quantities that are sign-extended to 64 bits before the operation, 
the result is truncated to 32 lower bits and then sign-extended to 64 bits. Highest 4 
bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.14 sub.uw (subtract unsigned word)

Sets R<r1> = R<r2> - R<r3>. Lower words of both operands are treated as 
unsigned 32-bit integer quantities that are zero-extended to 64 bits before the 
operation, the result is truncated to 32 lower bits and then zero-extended to 64 bits. 
Highest 4 bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.
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6.3.15 sub.l (subtract long word)

Sets R<r1> = R<r2> - R<r3>. Operands are treated as signed 64-bit integer 
quantities.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.16 sub.ul (subtract unsigned long word)

Sets R<r1> = R<r2> - R<r3>. Operands are treated as unsigned 64-bit integer 
quantities.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.17 mul.b (multiply byte)

Sets R<r1> = R<r2> * R<r3>. Lower bytes of both operands are treated as 
signed 8-bit integer quantities that are sign-extended to 64 bits before the operation, 
the result is truncated to 8 lower bits and then sign-extended to 64 bits. Highest 7 
bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.18 mul.ub (multiply unsigned byte)
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Sets R<r1> = R<r2> * R<r3>. Lower bytes of both operands are treated as 
unsigned 8-bit integer quantities that are zero-extended to 64 bits before the operation, 
the result is truncated to 8 lower bits and then zero-extended to 64 bits. Highest 7 
bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.19 mul.h (multiply half-word)

Sets R<r1> = R<r2> * R<r3>. Lower half-words of both operands are treated 
as signed 16-bit integer quantities that are sign-extended to 64 bits before the 
operation, the result is truncated to 16 lower bits and then sign-extended to 64 bits. 
Highest 6 bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.20 mul.uh (multiply unsigned half-word)

Sets R<r1> = R<r2> * R<r3>. Lower half-words of both operands are treated 
as unsigned 16-bit integer quantities that are zero-extended to 64 bits before the 
operation, the result is truncated to 16 lower bits and then zero-extended to 64 bits. 
Highest 6 bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.21 mul.w (multiply word)

Sets R<r1> = R<r2> * R<r3>. Lower words of both operands are treated as 
signed 32-bit integer quantities that are sign-extended to 64 bits before the operation, 
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the result is truncated to 32 lower bits and then sign-extended to 64 bits. Highest 4 
bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.22 mul.uw (multiply unsigned word)

Sets R<r1> = R<r2> * R<r3>. Lower words of both operands are treated as 
unsigned 32-bit integer quantities that are zero-extended to 64 bits before the 
operation, the result is truncated to 32 lower bits and then zero-extended to 64 bits. 
Highest 4 bytes of both operands are ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.23 mul.l (multiply long word)

Sets R<r1> = R<r2> * R<r3>. Operands are treated as signed 64-bit integer 
quantities.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.24 mul.ul (multiply unsigned long word)

Sets R<r1> = R<r2> * R<r3>. Operands are treated as unsigned 64-bit integer 
quantities.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.
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6.3.25 div.b (divide byte)

Sets R<r1> = R<r2> / R<r3>. Lower bytes of both operands are treated as 
signed 8-bit integer quantities that are sign-extended to 64 bits before the operation, 
the result is truncated to 8 lower bits and then sign-extended to 64 bits. Highest 7 
bytes of both operands are ignored.

Sets the N bit of $flags to 1 if the lower byte of R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and the lower byte of R<r3>=0.

6.3.26 div.ub (divide unsigned byte)

Sets R<r1> = R<r2> / R<r3>. Lower bytes of both operands are treated as 
unsigned 8-bit integer quantities that are zero-extended to 64 bits before the operation, 
the result is truncated to 8 lower bits and then zero-extended to 64 bits. Highest 7 
bytes of both operands are ignored.

Sets the N bit of $flags to 1 if the lower byte of R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and the lower byte of R<r3>=0.

6.3.27 div.h (divide half-word)

Sets R<r1> = R<r2> / R<r3>. Lower half-words of both operands are treated 
as signed 16-bit integer quantities that are sign-extended to 64 bits before the 
operation, the result is truncated to 16 lower bits and then sign-extended to 64 bits. 
Highest 6 bytes of both operands are ignored.

Sets the N bit of $flags to 1 if the lower half-word of R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and the lower half-word of 
R<r3>=0.
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6.3.28 div.uh (divide unsigned half-word)

Sets R<r1> = R<r2> / R<r3>. Lower half-words of both operands are treated 
as unsigned 16-bit integer quantities that are zero-extended to 64 bits before the 
operation, the result is truncated to 16 lower bits and then zero-extended to 64 bits. 
Highest 6 bytes of both operands are ignored.

Sets the N bit of $flags to 1 if the lower half-word of R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and the lower half-word of 
R<r3>=0.

6.3.29 div.w (divide word)

Sets R<r1> = R<r2> / R<r3>. Lower words of both operands are treated as 
signed 32-bit integer quantities that are sign-extended to 64 bits before the operation,
the result is truncated to 32 lower bits and then sign-extended to 64 bits. Highest 7 
bytes of both operands are ignored.

Sets the N bit of $flags to 1 if the lower word of R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and the lower word of 
R<r3>=0.

6.3.30 div.uw (divide unsigned word)

Sets R<r1> = R<r2> / R<r3>. Lower words of both operands are treated as 
unsigned 32-bit integer quantities that are zero-extended to 64 bits before the 
operation, the result is truncated to 32 lower bits and then zero-extended to 64 bits. 
Highest 4 bytes of both operands are ignored.

Sets the N bit of $flags to 1 if the lower word of R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and the lower word of 
R<r3>=0.
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6.3.31 div.l (divide long word)

Sets R<r1> = R<r2> / R<r3>. Operands are treated as signed 64-bit integer 
quantities.

Sets the N bit of $flags to 1 if R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and R<r3>=0.

6.3.32 div.ul (divide unsigned long word)

Sets R<r1> = R<r2> / R<r3>. Operands are treated as unsigned 64-bit integer 
quantities.

Sets the N bit of $flags to 1 if R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and R<r3>=0.

6.3.33 mod.b (modulo byte)

Sets R<r1> = R<r2> - (R<r2> / R<r3>) * R<r3>. Lower bytes of both 
operands are treated as signed 8-bit integer quantities that are sign-extended to 64 bits 
before the operation, the result is truncated to 8 lower bits and then sign-extended to 
64 bits. Highest 7 bytes of both operands are ignored.

Sets the N bit of $flags to 1 if the lower byte of R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and the lower byte of R<r3>=0.

6.3.34 mod.ub (modulo unsigned byte)

Sets R<r1> = R<r2> - (R<r2> / R<r3>) * R<r3>. Lower bytes of both 
operands are treated as unsigned 8-bit integer quantities that are zero-extended to 64 
bits before the operation, the result is truncated to 8 lower bits and then zero-extended 
to 64 bits. Highest 7 bytes of both operands are ignored.
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Sets the N bit of $flags to 1 if the lower byte of R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and the lower byte of R<r3>=0.

6.3.35 mod.h (modulo half-word)

Sets R<r1> = R<r2> - (R<r2> / R<r3>) * R<r3>. Lower half-words of 
both operands are treated as signed 16-bit integer quantities that are sign-extended to 
64 bits before the operation, the result is truncated to 16 lower bits and then sign-
extended to 64 bits. Highest 6 bytes of both operands are ignored.

Sets the N bit of $flags to 1 if the lower half-word of R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and the lower half-word of 
R<r3>=0.

6.3.36 mod.uh (modulo unsigned half-word)

Sets R<r1> = R<r2> - (R<r2> / R<r3>) * R<r3>. Lower half-words of 
both operands are treated as unsigned 16-bit integer quantities that are zero-extended 
to 64 bits before the operation, the result is truncated to 16 lower bits and then zero-
extended to 64 bits. Highest 6 bytes of both operands are ignored.

Sets the N bit of $flags to 1 if the lower half-word of R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and the lower half-word of 
R<r3>=0.

6.3.37 mod.w (modulo word)

Sets R<r1> = R<r2> - (R<r2> / R<r3>) * R<r3>. Lower words of both 
operands are treated as signed 32-bit integer quantities that are sign-extended to 64 
bits before the operation, the result is truncated to 32 lower bits and then sign-
extended to 64 bits. Highest 4 bytes of both operands are ignored.

Sets the N bit of $flags to 1 if the lower word of R<r3>=0.
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Causes a ZDIV exception if an N bit if $state is 1 and the lower word of 
R<r3>=0.

6.3.38 mod.uw (modulo unsigned word)

Sets R<r1> = R<r2> - (R<r2> / R<r3>) * R<r3>. Lower words of both 
operands are treated as unsigned 32-bit integer quantities that are zero-extended to 64 
bits before the operation, the result is truncated to 32 lower bits and then zero-
extended to 64 bits. Highest 4 bytes of both operands are ignored.

Sets the N bit of $flags to 1 if the lower word of R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and the lower word of 
R<r3>=0.

6.3.39 mod.l (modulo long word)

Sets R<r1> = R<r2> - (R<r2> / R<r3>) * R<r3>. Operands are treated 
as signed 64-bit integer quantities.

Sets the N bit of $flags to 1 if R<r3>=0.

Causes a ZDIV exception if an N bit if $state is 1 and the lower byte of R<r3>=0.

6.3.40 mod.ul (modulo unsigned long word)

Sets R<r1> = R<r2> - (R<r2> / R<r3>) * R<r3>. Operands are treated 
as unsigned 64-bit integer quantities.

Sets the N bit of $flags to 1 if R<r3>=0.

Causes a ZDIV exception an N bit if $state is 1 and if R<r3>=0.

6.3.41 abs.b (absolute value byte)
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Set R<r1> = |R<r2>|. The lower byte of an operand is treated as a signed 8-bit 
integer quantity, which is sign-extended to 64 bits before the operation. The result is 
truncated to 8 lower bits and then sign-extended to 64 bits.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation (this can occur when the lower byte of an operand is 
0x80).

6.3.42 abs.h (absolute value half-word)

Set R<r1> = |R<r2>|. The lower half-word of an operand is treated as a signed 16-
bit integer quantity, which is sign-extended to 64 bits before the operation. The result 
is truncated to 16 lower bits and then sign-extended to 64 bits.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation (this can occur when the lower half-word of an operand is 
0x8000).

6.3.43 abs.w (absolute value word)

Set R<r1> = |R<r2>|. The lower word of an operand is treated as a signed 32-bit 
integer quantity, which is sign-extended to 64 bits before the operation. The result is 
truncated to 32 lower bits and then sign-extended to 64 bits.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation (this can occur when the lower word of an operand is 
0x80000000).
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6.3.44 abs.l (absolute value long word)

Set R<r1> = |R<r2>|. Operand is treated as a signed 64-bit integer quantity.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation (this can occur when the operand is 
0x8000000000000000).

6.3.45 neg.b (negate byte)

Set R<r1> = -R<r2>. The lower byte of an operand is treated as a signed 8-bit 
integer quantity, which is sign-extended to 64 bits before the operation. The result is 
truncated to 8 lower bits and then sign-extended to 64 bits.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation (this can occur when the lower byte of an operand is 
0x80).

6.3.46 cpl2.ub (2’s complement of an unsigned byte)

Set R<r1> = 2’s complement of R<r2>. The lower byte of an operand is treated as 
an unsigned 8-bit integer quantity, which is zero-extended to 64 bits before the 
operation. The result is truncated to 8 lower bits and then zero-extended to 64 bits.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.3.47 neg.h (negate half-word)
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Set R<r1> = -R<r2>. The lower half-word of an operand is treated as a signed 16-
bit integer quantity, which is sign-extended to 64 bits before the operation. The result 
is truncated to 16 lower bits and then sign-extended to 64 bits.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation (this can occur when the lower half-word of an operand is 
0x8000).

6.3.48 cpl2.uh (2’s complement of an unsigned half-word)

Set R<r1> = 2’s complement of R<r2>. The lower half-word of an operand is 
treated as an unsigned 16-bit integer quantity, which is zero-extended to 64 bits before 
the operation. The result is truncated to 16 lower bits and then zero-extended to 64 
bits.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.3.49 neg.w (negate word)

Set R<r1> = -R<r2>. The lower word of an operand is treated as a signed 32-bit 
integer quantity, which is sign-extended to 64 bits before the operation. The result is 
truncated to 32 lower bits and then sign-extended to 64 bits.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation (this can occur when the lower word of an operand is 
0x80000000).

6.3.50 cpl2.uw (2’s complement of an unsigned word)

Set R<r1> = 2’s complement of R<r2>. The lower word of an operand is treated 
as an unsigned 32-bit integer quantity, which is zero-extended to 64 bits before the 
operation. The result is truncated to 32 lower bits and then zero-extended to 64 bits.
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Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.3.51 neg.l (negate long word)

Set R<r1> = -R<r2>. Operand is treated as a signed 64-bit integer quantity.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation (this can occur when the operand is 
0x8000000000000000).

6.3.52 cpl2.ul (2’s complement of an unsigned long word)

Set R<r1> = 2’s complement of R<r2>. Operand is treated as an unsigned integer 
quantity.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.3.53 addi.b (add immediate byte)

Sets R<r1> = R<r2> + op3. Lower byte of the R<r2> operand is treated as 
signed 8-bit integer quantity that is sign-extended to 64 bits before the operation, op3
is treated as signed 6-bit integer quantity that is sign-extended to 64 bits before the 
operation, the result is truncated to 8 lower bits and then sign-extended to 64 bits. 
Highest 7 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.54 addi.ub (add immediate unsigned byte)
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Sets R<r1> = R<r2> + op3. Lower byte of the R<r2> operand is treated as 
unsigned 8-bit integer quantity that is zero-extended to 64 bits before the operation, 
op3 is treated as unsigned 6-bit integer quantity that is zero-extended to 64 bits 
before the operation, the result is truncated to 8 lower bits and then zero-extended to 
64 bits. Highest 7 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.55 addi.h (add immediate half-word)

Sets R<r1> = R<r2> + op3. Lower half-word of the R<r2> operand is treated 
as signed 16-bit integer quantity that is sign-extended to 64 bits before the operation, 
op3 is treated as signed 6-bit integer quantity that is sign-extended to 64 bits before 
the operation, the result is truncated to 16 lower bits and then sign-extended to 64 bits. 
Highest 6 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.56 addi.uh (add immediate unsigned half-word)

Sets R<r1> = R<r2> + op3. Lower half-word of the R<r2> operand is treated 
as unsigned 16-bit integer quantity that is zero-extended to 64 bits before the 
operation, op3 is treated as unsigned 6-bit integer quantity that is zero-extended to 64 
bits before the operation, the result is truncated to 16 lower bits and then zero-
extended to 64 bits. Highest 6 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.
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6.3.57 addi.w (add immediate word)

Sets R<r1> = R<r2> + op3. Lower word of the R<r2> operand is treated as 
signed 32-bit integer quantity that is sign-extended to 64 bits before the operation, 
op3 is treated as signed 6-bit integer quantity that is sign-extended to 64 bits before 
the operation, the result is truncated to 32 lower bits and then sign-extended to 64 bits. 
Highest 4 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.58 addi.uw (add immediate unsigned word)

Sets R<r1> = R<r2> + op3. Lower word of the R<r2> operand is treated as 
unsigned 32-bit integer quantity that is zero-extended to 64 bits before the operation, 
op3 is treated as unsigned 6-bit integer quantity that is zero-extended to 64 bits 
before the operation, the result is truncated to 32 lower bits and then zero-extended to 
64 bits. Highest 4 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.59 addi.l (add immediate long word)

Sets R<r1> = R<r2> + immediate. Operands are treated as signed 64-bit 
integer quantities. The immediate operand is sign-extended to 64 bits before 
addition.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.
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6.3.60 addi.ul (add immediate unsigned long word)

Sets R<r1> = R<r2> + immediate. Operands are treated as unsigned 64-bit 
integer quantities. The immediate operand is zero-extended to 64 bits before 
addition.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.61 subi.b (subtract immediate byte)

Sets R<r1> = R<r2> - op3. Lower byte of the R<r2> operand is treated as 
signed 8-bit integer quantity that is sign-extended to 64 bits before the operation, op3
is treated as signed 6-bit integer quantity that is sign-extended to 64 bits before the 
operation, the result is truncated to 8 lower bits and then sign-extended to 64 bits. 
Highest 7 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.62 subi.ub (subtract immediate unsigned byte)

Sets R<r1> = R<r2> - op3. Lower byte of the R<r2> operand is treated as 
unsigned 8-bit integer quantity that is zero-extended to 64 bits before the operation, 
op3 is treated as unsigned 6-bit integer quantity that is zero-extended to 64 bits 
before the operation, the result is truncated to 8 lower bits and then zero-extended to 
64 bits. Highest 7 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.
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6.3.63 subi.h (subtract immediate half-word)

Sets R<r1> = R<r2> - op3. Lower half-word of the R<r2> operand is treated 
as signed 16-bit integer quantity that is sign-extended to 64 bits before the operation, 
op3 is treated as signed 6-bit integer quantity that is sign-extended to 64 bits before 
the operation, the result is truncated to 16 lower bits and then sign-extended to 64 bits. 
Highest 6 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.64 subi.uh (subtract immediate unsigned half-word)

Sets R<r1> = R<r2> - op3. Lower half-word of the R<r2> operand is treated 
as unsigned 16-bit integer quantity that is zero-extended to 64 bits before the 
operation, op3 is treated as unsigned 6-bit integer quantity that is zero-extended to 64 
bits before the operation, the result is truncated to 16 lower bits and then zero-
extended to 64 bits. Highest 6 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.65 subi.w (subtract immediate word)

Sets R<r1> = R<r2> - op3. Lower word of the R<r2> operand is treated as 
signed 32-bit integer quantity that is sign-extended to 64 bits before the operation, 
op3 is treated as signed 6-bit integer quantity that is sign-extended to 64 bits before 
the operation, the result is truncated to 32 lower bits and then sign-extended to 64 bits. 
Highest 4 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.
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6.3.66 subi.uw (subtract immediate unsigned word)

Sets R<r1> = R<r2> - op3. Lower word of the R<r2> operand is treated as 
unsigned 32-bit integer quantity that is zero-extended to 64 bits before the operation, 
op3 is treated as unsigned 6-bit integer quantity that is zero-extended to 64 bits 
before the operation, the result is truncated to 32 lower bits and then zero-extended to 
64 bits. Highest 4 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.67 subi.l (subtract immediate long word)

Sets R<r1> = R<r2> - immediate. Operands are treated as signed 64-bit
integer quantities. The immediate operand is sign-extended to 64 bits before 
addition.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.68 subi.ul (subtract immediate unsigned long word)

Sets R<r1> = R<r2> - immediate. Operands are treated as unsigned 64-bit 
integer quantities. The immediate operand is zero-extended to 64 bits before 
subtraction.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.
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6.3.69 muli.b (multiply immediate byte)

Sets R<r1> = R<r2> * op3. Lower byte of the R<r2> operand is treated as 
signed 8-bit integer quantity that is sign-extended to 64 bits before the operation, op3
is treated as signed 6-bit integer quantity that is sign-extended to 64 bits before the 
operation, the result is truncated to 8 lower bits and then sign-extended to 64 bits. 
Highest 7 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.70 muli.ub (multiply immediate unsigned byte)

Sets R<r1> = R<r2> * op3. Lower byte of the R<r2> operand is treated as 
unsigned 8-bit integer quantity that is zero-extended to 64 bits before the operation, 
op3 is treated as unsigned 6-bit integer quantity that is zero-extended to 64 bits 
before the operation, the result is truncated to 8 lower bits and then zero-extended to 
64 bits. Highest 7 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.71 muli.h (multiply immediate half-word)

Sets R<r1> = R<r2> * op3. Lower half-word of the R<r2> operand is treated 
as signed 16-bit integer quantity that is sign-extended to 64 bits before the operation, 
op3 is treated as signed 6-bit integer quantity that is sign-extended to 64 bits before 
the operation, the result is truncated to 16 lower bits and then sign-extended to 64 bits. 
Highest 6 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.
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6.3.72 muli.uh (multiply immediate unsigned half-word)

Sets R<r1> = R<r2> * op3. Lower half-word of the R<r2> operand is treated
as unsigned 16-bit integer quantity that is zero-extended to 64 bits before the 
operation, op3 is treated as unsigned 6-bit integer quantity that is zero-extended to 64 
bits before the operation, the result is truncated to 16 lower bits and then zero-
extended to 64 bits. Highest 6 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.73 muli.w (multiply immediate word)

Sets R<r1> = R<r2> * op3. Lower word of the R<r2> operand is treated as 
signed 32-bit integer quantity that is sign-extended to 64 bits before the operation, 
op3 is treated as signed 6-bit integer quantity that is sign-extended to 64 bits before 
the operation, the result is truncated to 32 lower bits and then sign-extended to 64 bits. 
Highest 4 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.74 muli.uw (multiply immediate unsigned word)

Sets R<r1> = R<r2> * op3. Lower word of the R<r2> operand is treated as 
unsigned 32-bit integer quantity that is zero-extended to 64 bits before the operation, 
op3 is treated as unsigned 6-bit integer quantity that is zero-extended to 64 bits 
before the operation, the result is truncated to 32 lower bits and then zero-extended to 
64 bits. Highest 4 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.
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6.3.75 muli.l (multiply immediate long word)

Sets R<r1> = R<r2> * immediate. Operands are treated as signed 64-bit 
integer quantities. The immediate operand is sign-extended to 64 bits before 
multiplication.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.76 muli.ul (multiply immediate unsigned long word)

Sets R<r1> = R<r2> * immediate. Operands are treated as unsigned 64-bit 
integer quantities. The immediate operand is zero-extended to 64 bits before 
multiplication.

Sets the O bit of $flags to 1 if an integer overflow occurs during the operation.

Causes an IOVERFLOW exception if an O bit if $state is 1 and an integer overflow 
occurs during the operation.

6.3.77 divi.b (divide immediate byte)

Sets R<r1> = R<r2> / op3. Lower byte of the R<r2> operand is treated as 
signed 8-bit integer quantity that is sign-extended to 64 bits before the operation, op3
is treated as signed 6-bit integer quantity that is sign-extended to 64 bits before the 
operation, the result is truncated to 8 lower bits and then sign-extended to 64 bits. 
Highest 7 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.
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6.3.78 divi.ub (divide immediate unsigned byte)

Sets R<r1> = R<r2> / op3. Lower byte of the R<r2> operand is treated as 
unsigned 8-bit integer quantity that is zero-extended to 64 bits before the operation, 
op3 is treated as unsigned 6-bit integer quantity that is zero-extended to 64 bits 
before the operation, the result is truncated to 8 lower bits and then zero-extended to 
64 bits. Highest 7 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.

6.3.79 divi.h (divide immediate half-word)

Sets R<r1> = R<r2> + op3. Lower half-word of the R<r2> operand is treated 
as signed 16-bit integer quantity that is sign-extended to 64 bits before the operation, 
op3 is treated as signed 6-bit integer quantity that is sign-extended to 64 bits before 
the operation, the result is truncated to 16 lower bits and then sign-extended to 64 bits. 
Highest 6 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.

6.3.80 divi.uh (divide immediate unsigned half-word)

Sets R<r1> = R<r2> / op3. Lower half-word of the R<r2> operand is treated 
as unsigned 16-bit integer quantity that is zero-extended to 64 bits before the 
operation, op3 is treated as unsigned 6-bit integer quantity that is zero-extended to 64 
bits before the operation, the result is truncated to 16 lower bits and then zero-
extended to 64 bits. Highest 6 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.
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6.3.81 divi.w (divide immediate word)

Sets R<r1> = R<r2> / op3. Lower word of the R<r2> operand is treated as 
signed 32-bit integer quantity that is sign-extended to 64 bits before the operation, 
op3 is treated as signed 6-bit integer quantity that is sign-extended to 64 bits before 
the operation, the result is truncated to 32 lower bits and then sign-extended to 64 bits. 
Highest 4 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.

6.3.82 divi.uw (divide immediate unsigned word)

Sets R<r1> = R<r2> / op3. Lower word of the R<r2> operand is treated as 
unsigned 32-bit integer quantity that is zero-extended to 64 bits before the operation, 
op3 is treated as unsigned 6-bit integer quantity that is zero-extended to 64 bits 
before the operation, the result is truncated to 32 lower bits and then zero-extended to 
64 bits. Highest 4 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.

6.3.83 divi.l (divide immediate long word)

Sets R<r1> = R<r2> / immediate. Operands are treated as signed 64-bit 
integer quantities. The immediate operand is sign-extended to 64 bits before 
division.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.
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6.3.84 divi.ul (divide immediate unsigned long word)

Sets R<r1> = R<r2> / immediate. Operands are treated as unsigned 64-bit 
integer quantities. The immediate operand is zero-extended to 64 bits before 
division.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.

6.3.85 modi.b (modulo immediate byte)

Sets R<r1> = R<r2> - (R<r2> / op3) * op3. Lower byte of the R<r2>
operand is treated as signed 8-bit integer quantity that is sign-extended to 64 bits 
before the operation, op3 is treated as signed 6-bit integer quantity that is sign-
extended to 64 bits before the operation, the result is truncated to 8 lower bits and 
then sign-extended to 64 bits. Highest 7 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.

6.3.86 modi.ub (modulo immediate unsigned byte)

Sets R<r1> = R<r2> - (R<r2> / op3) * op3Lower byte of the R<r2>
operand is treated as unsigned 8-bit integer quantity that is zero-extended to 64 bits 
before the operation, op3 is treated as unsigned 6-bit integer quantity that is zero-
extended to 64 bits before the operation, the result is truncated to 8 lower bits and 
then zero-extended to 64 bits. Highest 7 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.
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6.3.87 modi.h (modulo immediate half-word)

Sets R<r1> = R<r2> - (R<r2> / op3) * op3. Lower half-word of the 
R<r2> operand is treated as signed 16-bit integer quantity that is sign-extended to 64 
bits before the operation, op3 is treated as signed 6-bit integer quantity that is sign-
extended to 64 bits before the operation, the result is truncated to 16 lower bits and 
then sign-extended to 64 bits. Highest 6 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.

6.3.88 modi.uh (modulo immediate unsigned half-word)

Sets R<r1> = R<r2> - (R<r2> / op3) * op3. Lower half-word of the 
R<r2> operand is treated as unsigned 16-bit integer quantity that is zero-extended to 
64 bits before the operation, op3 is treated as unsigned 6-bit integer quantity that is 
zero-extended to 64 bits before the operation, the result is truncated to 16 lower bits 
and then zero-extended to 64 bits. Highest 6 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.

6.3.89 modi.w (modulo immediate word)

Sets R<r1> = R<r2> - (R<r2> / op3) * op3. Lower word of the R<r2>
operand is treated as signed 32-bit integer quantity that is sign-extended to 64 bits 
before the operation, op3 is treated as signed 6-bit integer quantity that is sign-
extended to 64 bits before the operation, the result is truncated to 32 lower bits and 
then sign-extended to 64 bits. Highest 4 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.
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6.3.90 modi.uw (modulo immediate unsigned word)

Sets R<r1> = R<r2> - (R<r2> / op3) * op3. Lower word of the R<r2>
operand is treated as unsigned 32-bit integer quantity that is zero-extended to 64 bits 
before the operation, op3 is treated as unsigned 6-bit integer quantity that is zero-
extended to 64 bits before the operation, the result is truncated to 32 lower bits and 
then zero-extended to 64 bits. Highest 4 bytes of the R<r2> operand is ignored.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.

6.3.91 modi.l (modulo immediate long word)

Sets R<r1> = R<r2> - (R<r2> / immediate) * immediate. Operands 
are treated as signed 64-bit integer quantities. The immediate operand is sign-
extended to 64 bits before calculating the remainder.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.

6.3.92 modi.ul (modulo immediate unsigned long word)

Sets R<r1> = R<r2> - (R<r2> / immediate) * immediate. Operands 
are treated as unsigned 64-bit integer quantities. The immediate operand is zero-
extended to 64 bits before calculating the remainder.

Sets the O bit of $flags to 1 if immediate=0.

Causes a ZDIV exception if an N bit if $state is 1 and immediate=0.
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6.4 Boolean instructions

6.4.1 and.b (bitwise and byte)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 8 bits of both operands and yields a 8-bit result, which is then sign-extended to 
64 bits.

6.4.2 and.ub (bitwise and unsigned byte)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 8 bits of both operands and yields a 8-bit result, which is then zero-extended to 
64 bits.

6.4.3 and.h (bitwise and half-word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 16 bits of both operands and yields a 16-bit result, which is then sign-extended 
to 64 bits.

6.4.4 and.uh (bitwise and unsigned half-word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 16 bits of both operands and yields a 16-bit result, which is then zero-extended 
to 64 bits.

6.4.5 and.w (bitwise and word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 32 bits of both operands and yields a 32-bit result, which is then sign-extended 
to 64 bits.
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6.4.6 and.uw (bitwise and unsigned word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 32 bits of both operands and yields a 32-bit result, which is then zero-extended 
to 64 bits.

6.4.7 and.l (bitwise and long word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over all 
64 bits of both operands.

6.4.8 or.b (bitwise or byte)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 8 bits of both operands and yields a 8-bit result, which is then sign-extended to 
64 bits.

6.4.9 or.ub (bitwise or unsigned byte)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 8 bits of both operands and yields a 8-bit result, which is then zero-extended to 
64 bits.

6.4.10 or.h (bitwise or half-word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 16 bits of both operands and yields a 16-bit result, which is then sign-extended 
to 64 bits.
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6.4.11 or.uh (bitwise or unsigned half-word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 16 bits of both operands and yields a 16-bit result, which is then zero-extended 
to 64 bits.

6.4.12 or.w (bitwise or word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 32 bits of both operands and yields a 32-bit result, which is then sign-extended 
to 64 bits.

6.4.13 or.uw (bitwise or unsigned word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 32 bits of both operands and yields a 32-bit result, which is then zero-extended 
to 64 bits.

6.4.14 or.l (bitwise or long word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over all 
64 bits of both operands.

6.4.15 xor.b (bitwise exclusive or byte)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 8 bits of both operands and yields a 8-bit result, which is then sign-extended to 
64 bits.



78

6.4.16 xor.ub (bitwise exclusive or unsigned byte)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 8 bits of both operands and yields a 8-bit result, which is then zero-extended to 
64 bits.

6.4.17 xor.h (bitwise exclusive or half-word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 16 bits of both operands and yields a 16-bit result, which is then sign-extended 
to 64 bits.

6.4.18 xor.uh (bitwise exclusive or unsigned half-word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 16 bits of both operands and yields a 16-bit result, which is then zero-extended 
to 64 bits.

6.4.19 xor.w (bitwise exclusive or word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 32 bits of both operands and yields a 32-bit result, which is then sign-extended 
to 64 bits.

6.4.20 xor.uw (bitwise exclusive or unsigned word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 32 bits of both operands and yields a 32-bit result, which is then zero-extended 
to 64 bits.
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6.4.21 xor.l (bitwise exclusive or long word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over all 
64 bits of both operands.

6.4.22 impl.b (bitwise implication byte)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 8 bits of both operands and yields a 8-bit result, which is then sign-extended to 
64 bits.

6.4.23 impl.ub (bitwise implication unsigned byte)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 8 bits of both operands and yields a 8-bit result, which is then zero-extended to 
64 bits.

6.4.24 impl.h (bitwise implication half-word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 16 bits of both operands and yields a 16-bit result, which is then sign-extended 
to 64 bits.

6.4.25 impl.uh (bitwise implication unsigned half-word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 16 bits of both operands and yields a 16-bit result, which is then zero-extended 
to 64 bits.
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6.4.26 impl.w (bitwise implication word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 32 bits of both operands and yields a 32-bit result, which is then sign-extended 
to 64 bits.

6.4.27 impl.uw (bitwise implication unsigned word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over the
lower 32 bits of both operands and yields a 32-bit result, which is then zero-extended 
to 64 bits.

6.4.28 impl.l (bitwise implication long word)

Sets R<r1> = R<r2>  R<r3>. Operation is performed simultaneously over all 
64 bits of both operands.

6.4.29 andi.l (bitwise and immediate long word)

Sets R<r1> = R<r2>  immediate. Operation is performed simultaneously 
over all 64 bits of both operands. The immediate operand is zero-extended to 64 
bits before conjunction.

6.4.30 ori.l (bitwise or immediate long word)

Sets R<r1> = R<r2>  immediate. Operation is performed simultaneously 
over all 64 bits of both operands. The immediate operand is zero-extended to 64 
bits before disjunction.
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6.4.31 xori.l (bitwise exclusive or immediate long word)

Sets R<r1> = R<r2>  immediate. Operation is performed simultaneously 
over all 64 bits of both operands. The immediate operand is zero-extended to 64 
bits before disjunction.

6.4.32 impli.l (bitwise implication immediate long word)

Sets R<r1> = R<r2>  immediate. Operation is performed simultaneously 
over all 64 bits of both operands. The immediate operand is zero-extended to 64 
bits before disjunction.

6.4.33 not.b (bitwise not byte)

Set R<r1> = R<r2>. Operation is performed simultaneously over the lower 8 bits 
of the operand, giving the lower 8 bits of the result, which is then sign-extended to 64 
bits.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.4.34 not.ub (bitwise not unsigned byte)

Set R<r1> = R<r2>. Operation is performed simultaneously over the lower 8 bits 
of the operand, giving the lower 8 bits of the result, which is then zero-extended to 64 
bits.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.4.35 not.h (bitwise not half-word)
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Set R<r1> = R<r2>. Operation is performed simultaneously over the lower 16
bits of the operand, giving the lower 16 bits of the result, which is then sign-extended 
to 64 bits.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.4.36 not.uh (bitwise not unsigned half-word)

Set R<r1> = R<r2>. Operation is performed simultaneously over the lower 16
bits of the operand, giving the lower 16 bits of the result, which is then zero-extended 
to 64 bits.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.4.37 not.w (bitwise not word)

Set R<r1> = R<r2>. Operation is performed simultaneously over the lower 32
bits of the operand, giving the lower 32 bits of the result, which is then sign-extended 
to 64 bits.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.4.38 not.uw (bitwise not unsigned word)

Set R<r1> = R<r2>. Operation is performed simultaneously over the lower 32
bits of the operand, giving the lower 32 bits of the result, which is then zero-extended 
to 64 bits.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.4.39 not.l (bitwise not long word)

Set R<r1> = R<r2>. Operation is performed simultaneously over all 64 bits of the 
operand.
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Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.5 Shift instructions

6.5.1 shl.b (shift left byte)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0. The 
lower byte of the shifted value is treated as an 8-bit unsigned integer value, which is 
zero-extended to 64 bits before the shift. The shift result is truncated to the lower 8 
bits and then sign-extended to 64 bits,

6.5.2 shl.ub (shift left unsigned byte)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0. The 
lower byte of the shifted value is treated as an 8-bit unsigned integer value, which is 
zero-extended to 64 bits before the shift. The shift result is truncated to the lower 8 
bits and then zero-extended to 64 bits,

6.5.3 shl.h (shift left half-word)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0. The 
lower half-word of the shifted value is treated as a 16-bit unsigned integer value, 
which is zero-extended to 64 bits before the shift. The shift result is truncated to the 
lower 16 bits and then sign-extended to 64 bits,

6.5.4 shl.uh (shift left unsigned half-word)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0. The 
lower half-word of the shifted value is treated as a 16-bit unsigned integer value, 
which is zero-extended to 64 bits before the shift. The shift result is truncated to the 
lower 16 bits and then zero-extended to 64 bits,
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6.5.5 shl.w (shift left word)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0. The 
lower word of the shifted value is treated as a 32-bit unsigned integer value, which is 
zero-extended to 64 bits before the shift. The shift result is truncated to the lower 32 
bits and then sign-extended to 64 bits,

6.5.6 shl.uw (shift left unsigned word)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0. The 
lower word of the shifted value is treated as a 32-bit unsigned integer value, which is 
zero-extended to 64 bits before the shift. The shift result is truncated to the lower 32
bits and then zero-extended to 64 bits,

6.5.7 shl.l (shift left long word)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0.

6.5.8 shr.b (shift right byte)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0. The 
lower byte of the shifted value is treated as an 8-bit unsigned integer value, which is 
zero-extended to 64 bits before the shift. The shift result is truncated to the lower 8 
bits and then sign-extended to 64 bits,

6.5.9 shr.ub (shift right unsigned byte)
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Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0. The 
lower byte of the shifted value is treated as an 8-bit unsigned integer value, which is 
zero-extended to 64 bits before the shift. The shift result is truncated to the lower 8 
bits and then zero-extended to 64 bits,

6.5.10 shr.h (shift right half-word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0. The 
lower half-word of the shifted value is treated as a 16-bit unsigned integer value, 
which is sign-extended to 64 bits before the shift. The shift result is truncated to the 
lower 16 bits and then zero-extended to 64 bits,

6.5.11 shr.uh (shift right unsigned half-word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0. The 
lower half-word of the shifted value is treated as a 16-bit unsigned integer value, 
which is zero-extended to 64 bits before the shift. The shift result is truncated to the 
lower 16 bits and then zero-extended to 64 bits,

6.5.12 shr.w (shift right word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0. The 
lower word of the shifted value is treated as a 32-bit unsigned integer value, which is
sign-extended to 64 bits before the shift. The shift result is truncated to the lower 32 
bits and then sign-extended to 64 bits,

6.5.13 shr.uw (shift right unsigned word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0. The 
lower word of the shifted value is treated as a 32-bit unsigned integer value, which is 
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zero-extended to 64 bits before the shift. The shift result is truncated to the lower 32
bits and then zero-extended to 64 bits,

6.5.14 shr.l (shift right long word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to 0.

6.5.15 asl.b (arithmetic shift left byte)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. The lower 7 bits of the R<r2> are shifted by 
the required number of bits, with new bits introduced by shift set to 0. The shift result 
is then sign-extended to 64 bits.

6.5.16 asl.ub (arithmetic shift left unsigned byte)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. The lower 7 bits of the R<r2> are shifted by 
the required number of bits, with new bits introduced by shift set to 0. The shift result 
is then zero-extended to 64 bits.

6.5.17 asl.h (arithmetic shift left half-word)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. The lower 15 bits of the R<r2> are shifted 
by the required number of bits, with new bits introduced by shift set to 0. The shift 
result is then sign-extended to 64 bits.

6.5.18 asl.uh (arithmetic shift left unsigned half-word)
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Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. The lower 15 bits of the R<r2> are shifted 
by the required number of bits, with new bits introduced by shift set to 0. The shift 
result is then zero-extended to 64 bits.

6.5.19 asl.w (arithmetic shift left word)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. The lower 31 bits of the R<r2> are shifted 
by the required number of bits, with new bits introduced by shift set to 0. The shift 
result is then sign-extended to 64 bits.

6.5.20 asl.uw (arithmetic shift left unsigned word)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. The lower 31 bits of the R<r2> are shifted 
by the required number of bits, with new bits introduced by shift set to 0. The shift 
result is then zero-extended to 64 bits.

6.5.21 asl.l (arithmetic shift left long word)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. The lower 63 bits of the R<r2> are shifted 
by the required number of bits, with new bits introduced by shift set to 0.

6.5.22 asr.b (arithmetic shift right byte)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to the 
copy of the original sign bit of R<r2>. The lower byte of the shifted value is treated 
as an 8-bit signed integer value, which is sign-extended to 64 bits before the shift. The 
shift result is truncated to the lower 8 bits and then sign-extended to 64 bits,
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6.5.23 asr.ub (arithmetic shift right unsigned byte)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to the 
copy of the original sign bit of R<r2>. The lower byte of the shifted value is treated 
as an 8-bit signed integer value, which is sign-extended to 64 bits before the shift. The 
shift result is truncated to the lower 8 bits and then zero-extended to 64 bits,

6.5.24 asr.h (arithmetic shift right half-word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to the 
copy of the original sign bit of R<r2>. The lower half-word of the shifted value is 
treated as a 16-bit signed integer value, which is sign-extended to 64 bits before the 
shift. The shift result is truncated to the lower 16 bits and then sign-extended to 64 
bits,

6.5.25 asr.uh (arithmetic shift right unsigned half-word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to the 
copy of the original sign bit of R<r2>. The lower half-word of the shifted value is 
treated as a 16-bit signed integer value, which is sign-extended to 64 bits before the 
shift. The shift result is truncated to the lower 16 bits and then zero-extended to 64 
bits,

6.5.26 asr.w (arithmetic shift right word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to the 
copy of the original sign bit of R<r2>. The lower word of the shifted value is treated 
as a 32-bit signed integer value, which is sign-extended to 64 bits before the shift. The 
shift result is truncated to the lower 32 bits and then sign-extended to 64 bits,
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6.5.27 asr.uw (arithmetic shift right unsigned word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to the 
copy of the original sign bit of R<r2>. The lower word of the shifted value is treated 
as a 32-bit signed integer value, which is sign-extended to 64 bits before the shift. The 
shift result is truncated to the lower 32 bits and then zero-extended to 64 bits,

6.5.28 asr.l (arithmetic shift right long word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. New bits introduced by shift are set to the 
copy of the original sign bit of R<r2>.

6.5.29 rol.b (rotate left byte)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift. The lower byte of the shifted value is treated as an 8-bit unsigned integer value 
that is rotated and then sign-extended to 64 bits.

6.5.30 rol.ub (rotate left unsigned byte)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift. The lower byte of the shifted value is treated as an 8-bit unsigned integer value 
that is rotated and then zero-extended to 64 bits.

6.5.31 rol.h (rotate left half-word)
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Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift. The lower half-word of the shifted value is treated as a 16-bit unsigned integer 
value that is rotated and then sign-extended to 64 bits.

6.5.32 rol.uh (rotate left unsigned half-word)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift. The lower half-word of the shifted value is treated as a 16-bit unsigned integer 
value that is rotated and then zero-extended to 64 bits.

6.5.33 rol.w (rotate left word)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift. The lower word of the shifted value is treated as a 32-bit unsigned integer value 
that is rotated and then sign-extended to 64 bits.

6.5.34 rol.uw (rotate left unsigned word)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift. The lower word of the shifted value is treated as a 32-bit unsigned integer value 
that is rotated and then zero-extended to 64 bits.

6.5.35 rol.l (rotate left)

Sets R<r1> = R<r2> << R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
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at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift.

6.5.36 ror.b (rotate right byte)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift. The lower byte of the shifted value is treated as an 8-bit unsigned integer value 
that is rotated and then sign-extended to 64 bits.

6.5.37 ror.ub (rotate right unsigned byte)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift. The lower byte of the shifted value is treated as an 8-bit unsigned integer value 
that is rotated and then zero-extended to 64 bits.

6.5.38 ror.h (rotate right half-word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift. The lower half-word  of the shifted value is treated as a 16-bit unsigned integer 
value that is rotated and then sign-extended to 64 bits.

6.5.39 ror.uh (rotate right unsigned half-word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift. The lower half-word of the shifted value is treated as a 16-bit unsigned integer 
value that is rotated and then zero-extended to 64 bits.
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6.5.40 ror.w (rotate right word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift. The lower word of the shifted value is treated as a 32-bit unsigned integer value 
that is rotated and then sign-extended to 64 bits.

6.5.41 ror.uw (rotate right unsigned word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift. The lower word of the shifted value is treated as a 32-bit unsigned integer value 
that is rotated and then zero-extended to 64 bits.

6.5.42 ror.l (rotate right long word)

Sets R<r1> = R<r2> >> R<r3>. The shift counter is treated as an unsigned 
integer quantity with all bits significant. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift.

6.5.43 shli.b (shift left immediate byte)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
byte of the shifted value is treated as an 8-bit unsigned integer value, which is zero-
extended to 64 bits before the shift. The shift result is truncated to the lower 8 bits and 
then sign-extended to 64 bits,
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6.5.44 shli.ub (shift left immediate unsigned byte)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
byte of the shifted value is treated as an 8-bit unsigned integer value, which is zero-
extended to 64 bits before the shift. The shift result is truncated to the lower 8 bits and 
then zero-extended to 64 bits,

6.5.45 shli.h (shift left immediate half-word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
half-word of the shifted value is treated as a 16-bit unsigned integer value, which is 
zero-extended to 64 bits before the shift. The shift result is truncated to the lower 16
bits and then sign-extended to 64 bits,

6.5.46 shli.uh (shift left immediate unsigned half-word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
half-word of the shifted value is treated as a 16-bit unsigned integer value, which is 
zero-extended to 64 bits before the shift. The shift result is truncated to the lower 16
bits and then zero-extended to 64 bits,

6.5.47 shli.w (shift left immediate word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
word of the shifted value is treated as a 32-bit unsigned integer value, which is zero-
extended to 64 bits before the shift. The shift result is truncated to the lower 32 bits 
and then sign-extended to 64 bits,
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6.5.48 shli.uw (shift left immediate unsigned word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
word of the shifted value is treated as a 32-bit unsigned integer value, which is zero-
extended to 64 bits before the shift. The shift result is truncated to the lower 32 bits 
and then zero-extended to 64 bits,

6.5.49 shli.l (shift left immediate long word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity. New bits introduced by shift are set to 0.

6.5.50 shri.b (shift right immediate byte)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
byte of the shifted value is treated as an 8-bit unsigned integer value, which is zero-
extended to 64 bits before the shift. The shift result is truncated to the lower 8 bits and 
then sign-extended to 64 bits,

6.5.51 shri.ub (shift right immediate unsigned byte)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
byte of the shifted value is treated as an 8-bit unsigned integer value, which is zero-
extended to 64 bits before the shift. The shift result is truncated to the lower 8 bits and 
then zero-extended to 64 bits,

6.5.52 shri.h (shift right immediate half-word)
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Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
half-word of the shifted value is treated as a 16-bit unsigned integer value, which is 
zero-extended to 64 bits before the shift. The shift result is truncated to the lower 16
bits and then sign-extended to 64 bits,

6.5.53 shri.uh (shift right immediate unsigned half-word)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
half-word of the shifted value is treated as a 16-bit unsigned integer value, which is 
zero-extended to 64 bits before the shift. The shift result is truncated to the lower 16
bits and then zero-extended to 64 bits,

6.5.54 shri.w (shift right immediate word)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
word of the shifted value is treated as a 32-bit unsigned integer value, which is zero-
extended to 64 bits before the shift. The shift result is truncated to the lower 32 bits 
and then sign-extended to 64 bits,

6.5.55 shri.uw (shift right immediate unsigned word)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
word of the shifted value is treated as a 32-bit unsigned integer value, which is zero-
extended to 64 bits before the shift. The shift result is truncated to the lower 32 bits 
and then zero-extended to 64 bits,

6.5.56 shri.l (shift right immediate long word)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity. New bits introduced by shift are set to 0.
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6.5.57 asli.b (arithmetic shift left immediate byte)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. The lower 7 bits of the R<r2> are shifted by the 
required number of bits, with new bits introduced by shift set to 0. The shift result is 
then sign-extended to 64 bits.

6.5.58 asli.ub (arithmetic shift left immediate unsigned 
byte)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. The lower 7 bits of the R<r2> are shifted by the 
required number of bits, with new bits introduced by shift set to 0. The shift result is 
then zero-extended to 64 bits.

6.5.59 asli.h (arithmetic shift left immediate half-word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. The lower 15 bits of the R<r2> are shifted by the 
required number of bits, with new bits introduced by shift set to 0. The shift result is 
then sign-extended to 64 bits.

6.5.60 asli.uh (arithmetic shift left immediate unsigned 
half-word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. The lower 15 bits of the R<r2> are shifted by the 
required number of bits, with new bits introduced by shift set to 0. The shift result is 
then zero-extended to 64 bits.
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6.5.61 asli.w (arithmetic shift left immediate word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. The lower 31 bits of the R<r2> are shifted by the 
required number of bits, with new bits introduced by shift set to 0. The shift result is 
then sign-extended to 64 bits.

6.5.62 asli.uw (arithmetic shift left immediate unsigned 
word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. The lower 31 bits of the R<r2> are shifted by the 
required number of bits, with new bits introduced by shift set to 0. The shift result is 
then zero-extended to 64 bits.

6.5.63 asli.l (arithmetic shift left immediate long word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. The lower 63 bits of the R<r2> are shifted by the 
required number of bits, with new bits introduced by shift set to 0.

6.5.64 asri.b (arithmetic shift right immediate byte)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to the copy of 
the extended operand’s sign bit. The lower byte of the shifted value is treated as an 8-
bit signed integer value, which is sign-extended to 64 bits before the shift. The shift 
result is truncated to the lower 8 bits and then sign-extended to 64 bits,
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6.5.65 asri.ub (arithmetic shift right immediate unsigned 
byte)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to the copy of 
the extended operand’s sign bit. The lower byte of the shifted value is treated as an 8-
bit signed integer value, which is sign-extended to 64 bits before the shift. The shift 
result is truncated to the lower 8 bits and then zero-extended to 64 bits,

6.5.66 asri.h (arithmetic shift right immediate half-word)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to the copy of 
the extended operand’s sign bit. The lower half-word of the shifted value is treated as 
a 16-bit signed integer value, which is sign-extended to 64 bits before the shift. The 
shift result is truncated to the lower 16 bits and then sign-extended to 64 bits,

6.5.67 asri.uh (arithmetic shift right immediate unsigned 
half-word)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to the copy of 
the extended operand’s sign bit. The lower half-word of the shifted value is treated as 
a 16-bit signed integer value, which is sign-extended to 64 bits before the shift. The 
shift result is truncated to the lower 16 bits and then zero-extended to 64 bits,

6.5.68 asri.w (arithmetic shift right immediate word)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to the copy of 
the extended operand’s sign bit. The lower word of the shifted value is treated as a 32-
bit signed integer value, which is sign-extended to 64 bits before the shift. The shift 
result is truncated to the lower 32 bits and then sign-extended to 64 bits,
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6.5.69 asri.uw (arithmetic shift right immediate unsigned 
word)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to the copy of 
the extended operand’s sign bit. The lower word of the shifted value is treated as a 32-
bit signed integer value, which is sign-extended to 64 bits before the shift. The shift 
result is truncated to the lower 32 bits and then zero-extended to 64 bits,

6.5.70 asri.l (arithmetic shift right immediate long word)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity. New bits introduced by shift are set to the copy of the original sign bit of 
R<r2>.

6.5.71 roli.b (rotate left immediate byte)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. The lower 8 bits of an operand are rotated, i.e. each 
new bit introduced at either end of the shifted value is a copy of the bit pushed out by 
the shift. After rotation, these lower 8 bits are sign-extended to 64 bits and placed into 
R<r1>.

6.5.72 roli.ub (rotate left immediate unsigned byte)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. The lower 8 bits of an operand are rotated, i.e. each 
new bit introduced at either end of the shifted value is a copy of the bit pushed out by 
the shift. After rotation, these lower 8 bits are zero-extended to 64 bits and placed into 
R<r1>.
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6.5.73 roli.h (rotate left immediate half-word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
16 bits of an operand are rotated, i.e. each new bit introduced at either end of the 
shifted value is a copy of the bit pushed out by the shift. After rotation, these lower 16 
bits are sign-extended to 64 bits and placed into R<r1>.

6.5.74 roli.uh (rotate left immediate unsigned half-word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
16 bits of an operand are rotated, i.e. each new bit introduced at either end of the 
shifted value is a copy of the bit pushed out by the shift. After rotation, these lower 16 
bits are sign-extended to 64 bits and placed into R<r1>.

6.5.75 roli.w (rotate left immediate word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
32 bits of an operand are rotated, i.e. each new bit introduced at either end of the 
shifted value is a copy of the bit pushed out by the shift. After rotation, these lower 8 
bits are sign-extended to 64 bits and placed into R<r1>.

6.5.76 roli.uw (rotate left immediate unsigned word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
32 bits of an operand are rotated, i.e. each new bit introduced at either end of the 
shifted value is a copy of the bit pushed out by the shift. After rotation, these lower 8 
bits are sign-extended to 64 bits and placed into R<r1>.
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6.5.77 roli.l (rotate left immediate long word)

Sets R<r1> = R<r2> << sa. The shift counter is treated as an unsigned integer 
quantity. Bits are rotated, i.e. each new bit introduced at one end of the shifted value 
is a copy of the bit pushed out of the other end by the shift.

6.5.78 rori.b (rotate right immediate byte)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. The lower 8 bits of an operand are rotated, i.e. each 
new bit introduced at either end of the shifted value is a copy of the bit pushed out by 
the shift. After rotation, these lower 8 bits are sign-extended to 64 bits and placed into 
R<r1>.

6.5.79 rori.ub (rotate right immediate unsigned byte)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. The lower 8 bits of an operand are rotated, i.e. each
new bit introduced at either end of the shifted value is a copy of the bit pushed out by 
the shift. After rotation, these lower 8 bits are zero-extended to 64 bits and placed into 
R<r1>.

6.5.80 rori.h (rotate right immediate half-word)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
16 bits of an operand are rotated, i.e. each new bit introduced at either end of the 
shifted value is a copy of the bit pushed out by the shift. After rotation, these lower 16 
bits are sign-extended to 64 bits and placed into R<r1>.

6.5.81 rori.uh (rotate right immediate unsigned half-word)
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Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
16 bits of an operand are rotated, i.e. each new bit introduced at either end of the 
shifted value is a copy of the bit pushed out by the shift. After rotation, these lower 16 
bits are sign-extended to 64 bits and placed into R<r1>.

6.5.82 rori.w (rotate right immediate word)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
32 bits of an operand are rotated, i.e. each new bit introduced at either end of the 
shifted value is a copy of the bit pushed out by the shift. After rotation, these lower 8 
bits are sign-extended to 64 bits and placed into R<r1>.

6.5.83 rori.uw (rotate right immediate unsigned word)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity with all bits significant. New bits introduced by shift are set to 0. The lower 
32 bits of an operand are rotated, i.e. each new bit introduced at either end of the 
shifted value is a copy of the bit pushed out by the shift. After rotation, these lower 8 
bits are sign-extended to 64 bits and placed into R<r1>.

6.5.84 rori.l (rotate right immediate long word)

Sets R<r1> = R<r2> >> sa. The shift counter is treated as an unsigned integer 
quantity. Bits are rotated, i.e. each new bit introduced at one end of the shifted value 
is a copy of the bit pushed out of the other end by the shift.

6.6 Bit manipulation instructions

6.6.1 clz (Count Leading Zeroes)

Stores the number of leading ‘0’ bits in R<r2> and stores the result in R<r1>.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
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6.6.2 ctz (Count Tailing Zeroes)

Stores the number of tailing ‘0’ bits in R<r2> and stores the result in R<r1>.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.6.3 clo (Count Leading Ones)

Stores the number of leading ‘1’ bits in R<r2> and stores the result in R<r1>.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.6.4 cto (Count Tailing Ones)

Stores the number of tailing ‘1’ bits in R<r2> and stores the result in R<r1>.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.6.5 bfe.l (bit field extract from long word)

Extracts a bit field from R<r2> into R<r1>. The number N of bits to extract (i.e. the 
size of the bit field) is cnt (for the 1st bfe form) or cnt+32 (for the 2nd bfe form). 
The bits [sa..sa+N) of R<r2> are treated as an N-bit signed integer value, which 
is sign-extended to 64 bits and the result placed into R<r1>.

Causes an OPERAND exception if N = 0 or N + sa > 64.
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6.6.6 bfe.ul (bit field extract from unsigned long word)

Extracts a bit field from R<r2> into R<r1>. The number N of bits to extract (i.e. the 
size of the bit field) is cnt (for the 1st bfeu form) or cnt+32 (for the 2nd bfeu
form). The bits [sa..sa+N) of R<r2> are treated as an N-bit unsigned integer 
value, which is zero-extended to 64 bits and the result placed into R<r1>.

Causes an OPERAND exception if N = 0 or N + sa > 64.

6.6.7 bfi.l (bit field inject into long word)

Injects a bit field from R<r2> into R<r1>. The number N of bits to inject (i.e. the 
size of the bit field) is cnt (for the 1st bfi form) or cnt+32 (for the 2nd bfi form). 
The lower N bits of R<r2> replace the bits [sa..sa+N) of R<r1>, with other bits 
of R<r1> remaining unaffected

Causes an OPERAND exception if N = 0 or N + sa > 64.

6.6.8 brev.b (bit reversal in byte)

Reverses positions of 8 lower bits of R<r2> (i.e. bit 0 is swapped with bit 7, bit 1 
with bit 6, etc.), sign-extends the reversed bits to 64 bits and placed the result into 
R<r1>. 

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
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6.6.9 brev.ub (bit reversal in unsigned byte)

Reverses positions of 8 lower bits of R<r2> (i.e. bit 0 is swapped with bit 7, bit 1 
with bit 6, etc.), zero-extends the reversed bits to 64 bits and placed the result into 
R<r1>. 

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.6.10 brev.h (bit reversal in half-word)

Reverses positions of 16 lower bits of R<r2> (i.e. bit 0 is swapped with bit 15, bit 1 
with bit 14, etc.), sign-extends the reversed bits to 64 bits and placed the result into 
R<r1>. 

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.6.11 brev.uh (bit reversal in unsigned half-word)

Reverses positions of 16 lower bits of R<r2> (i.e. bit 0 is swapped with bit 15, bit 1 
with bit 14, etc.), zero-extends the reversed bits to 64 bits and placed the result into 
R<r1>. 

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.6.12 brev.w (bit reversal in word)

Reverses positions of 32 lower bits of R<r2> (i.e. bit 0 is swapped with bit 31, bit 1 
with bit 30, etc.), sign-extends the reversed bits to 64 bits and placed the result into 
R<r1>. 

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
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6.6.13 brev.uw (bit reversal in unsigned word)

Reverses positions of 32 lower bits of R<r2> (i.e. bit 0 is swapped with bit 31, bit 1 
with bit 30, etc.), zero-extends the reversed bits to 64 bits and placed the result into 
R<r1>. 

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.6.14 brev.l (bit reversal in long word)

Reverses positions of all bits of R<r2> (i.e. bit 0 is swapped with bit 63, bit 1 with bit 
62, etc.) and placed the result into R<r1>. 

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.7 Data type conversion instructions

6.7.1 cvt.bl (convert byte to long word)

Set R<r1> = lower 8 bits of R<r2>. The operand is sign-extended to 64 bits before 
assignment.

Sets the O bit of $flags to 1 if one of the bits 8..63 of an operand is not equal to bit 
7.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an IOVERFLOW exception if an O bit if $state is 1 and one of the bits 8..63 
of an operand is not equal to bit 7.

6.7.2 cvt.ubl (convert unsigned byte to long word)

Set R<r1> = lower 8 bits of R<r2>. The operand is zero-extended to 64 bits before 
assignment.

Sets the O bit of $flags to 1 if one of the bits 8..63 of an operand is not 0.
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Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an IOVERFLOW exception if an O bit if $state is 1 and one of the bits 8..63 
of an operand is not 0.

6.7.3 cvt.hl (convert half-word to long word)

Set R<r1> = lower 16 bits of R<r2>. The operand is sign-extended to 64 bits before 
assignment.

Sets the O bit of $flags to 1 if one of the bits 16..63 of an operand is not equal to bit 
15.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an IOVERFLOW exception if an O bit if $state is 1 and one of the bits 
16..63 of an operand is not equal to bit 15.

6.7.4 cvt.uhl (convert unsigned half-word to long word)

Set R<r1> = lower 16 bits of R<r2>. The operand is zero-extended to 64 bits 
before assignment.

Sets the O bit of $flags to 1 if one of the bits 16..63 of an operand is not 0.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an IOVERFLOW exception if an O bit if $state is 1 and one of the bits 
16..63 of an operand is not 0.

6.7.5 cvt.wl (convert word to long word)

Set R<r1> = lower 32 bits of R<r2>. The operand is sign-extended to 64 bits before 
assignment.

Sets the O bit of $flags to 1 if one of the bits 32..63 of an operand is not equal to bit 
31.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
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Causes an IOVERFLOW exception if an O bit if $state is 1 and one of the bits 
32..63 of an operand is not equal to bit 31.

6.7.6 cvt.uwl (convert unsigned word to long word)

Set R<r1> = lower 32 bits of R<r2>. The operand is zero-extended to 64 bits 
before assignment.

Sets the O bit of $flags to 1 if one of the bits 32..63 of an operand is not 0.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an IOVERFLOW exception if an O bit if $state is 1 and one of the bits 
32..63 of an operand is not 0.

6.8 Comparison instructions

6.8.1 seq.l (set equal long word)

If R<r2> = R<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as signed integer quantities.

6.8.2 sne.l (set not equal long word)

If R<r2>  R<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as signed integer quantities.

6.8.3 slt.l (set less than long word)

If R<r2> < R<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as signed integer quantities.
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6.8.4 sle.l (set less than or equal long word)

If R<r2>  R<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as signed integer quantities.

6.8.5 sgt.l (set greater than long word)

If R<r2> > R<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as signed integer quantities.

6.8.6 sge.l (set greater than or equal)

If R<r2>  R<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as signed integer quantities.

6.8.7 slt.ul (set less than unsigned long word)

If R<r2> < R<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as unsigned integer quantities.

6.8.8 sle.ul (set less than or equal unsigned long word)

If R<r2>  R<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as unsigned integer quantities.

6.8.9 sgt.ul (set greater than unsigned long word)
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If R<r2> > R<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as unsigned integer quantities.

6.8.10 sge.ul (set greater than or equal unsigned long 
word)

If R<r2>  R<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as unsigned integer quantities.

6.8.11 seqi.l (set equal immediate long word)

If R<r2> = immediate, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as signed integer quantities. The immediate operand is 
sign-extended to 64 bits before being compared.

6.8.12 snei.l (set not equal immediate long word)

If R<r2>  immediate, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as signed integer quantities. The immediate operand is 
sign-extended to 64 bits before being compared.

6.8.13 slti.l (set less than immediate long word)

If R<r2> < immediate, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as signed integer quantities. The immediate operand is 
sign-extended to 64 bits before being compared.

6.8.14 slei.l (set less than or equal immediate long word)
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If R<r2>  immediate, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as signed integer quantities. The immediate operand is 
sign-extended to 64 bits before being compared.

6.8.15 sgti.l (set greater than immediate long word)

If R<r2> > immediate, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as signed integer quantities. The immediate operand is 
sign-extended to 64 bits before being compared.

6.8.16 sgei.l (set greater than or equal immediate long 
word)

If R<r2>  immediate, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as signed integer quantities. The immediate operand is 
sign-extended to 64 bits before being compared.

6.8.17 slti.ul (set less than immediate unsigned long 
word)

If R<r2> < immediate, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as unsigned integer quantities. The immediate operand is 
zero-extended to 64 bits before being compared.

6.8.18 slei.ul (set less than or equal immediate unsigned
long word)

If R<r2>  immediate, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as unsigned integer quantities. The immediate operand is 
zero-extended to 64 bits before being compared.
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6.8.19 sgti.ul (set greater than immediate unsigned long 
word)

If R<r2> > immediate, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as unsigned integer quantities. The immediate operand is 
zero-extended to 64 bits before being compared.

6.8.20 sgei.ul (set greater than or equal immediate 
unsigned long word)

If R<r2>  immediate, then set R<r1> = 1, otherwise then set R<r1> = 0. 
Operands are compared as unsigned integer quantities. The immediate operand is 
zero-extended to 64 bits before being compared.

6.9 Load/store instructions

6.9.1 l.b (load byte)

Loads the byte from the memory address addr into R<r1>. The byte is sign-
extended to 64 bits in the process of loading.

6.9.2 l.ub (load unsigned byte)

Loads the byte from the memory address addr into R<r1>. The byte is zero-
extended to 64 bits in the process of loading.

6.9.3 l.h (load half-word)

Loads the 2-byte integer value from the memory address addr into R<r1>. The 
value is sign-extended to 64 bits in the process of loading.
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Depending on the contents of the bit B of $state, the value can be loaded in either 
big-endian or little-endian format.

6.9.4 l.uh (load unsigned half-word)

Loads the 2-byte integer value from the memory address addr into R<r1>. The 
value is zero-extended to 64 bits in the process of loading.

Depending on the contents of the bit B of $state, the value can be loaded in either 
big-endian or little-endian format.

6.9.5 l.w (load word)

Loads the 4-byte integer value from the memory address addr into R<r1>. The 
value is sign-extended to 64 bits in the process of loading.

Depending on the contents of the bit B of $state, the value can be loaded in either 
big-endian or little-endian format.

6.9.6 l.uw (load unsigned word)

Loads the 4-byte integer value from the memory address addr into R<r1>. The 
value is zero-extended to 64 bits in the process of loading.

Depending on the contents of the bit B of $state, the value can be loaded in either 
big-endian or little-endian format.

6.9.7 l.l (load long word)

Loads the 8-byte integer value from the memory address addr into R<r1>.

Depending on the contents of the bit B of $state, the value can be loaded in either 
big-endian or little-endian format.
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6.9.8 xchg.l (exchange long word)

Exchanges the 8-byte integer value from the memory address addr with R<r1>.

Depending on the contents of the bit B of $state, the value can be moved in either 
big-endian or little-endian format.

The memory bus is locked for the duration of operation; so the exchange is executed 
as an atomic action.

6.9.9 s.b (store byte)

Stores the lower byte of R<r1> into the memory at address addr.

6.9.10 s.h (store half-word)

Stores the lower 2 bytes of R<r1> into the memory at address addr.

Depending on the contents of the bit B of $state, the value can be stored in either 
big-endian or little-endian format.

6.9.11 s.w (store word)

Stores the lower 4 bytes of R<r1> into the memory at address addr.

Depending on the contents of the bit B of $state, the value can be stored in either 
big-endian or little-endian format.

6.9.12 s.l (store long word)

Stores the R<r1> into the memory at address addr.
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Depending on the contents of the bit B of $state, the value can be stored in either 
big-endian or little-endian format.

6.9.13 lir (Load IP-relative)

Calculates the address $ip + (immediate << 2) (immediate is sign-
extended before the shift) and loads the 8-byte value at this address into <r1>. The 
address must be a multiple of 8.

In Virtual mode, this instruction requires EXECUTE rather than READ permission for 
the memory area where the value is loaded from. This reflects upon the main purpose 
of this instruction – loading 64-bit constants; specifically addresses of static symbols.

6.9.14 ldm (Load Multiple)

Loads up to 21 registers from memory at consecutive addresses starting from the 
address R<r1> and incrementing by 8 for each loaded register. Depending on the 
contents of the bit B of $state, register values can be loaded in either big-endian or 
little-endian format.

The 21 bits of the immediate operand each correspond to one general purpose
register in the following order (from lower to higher bits):

 $a0..$a3 (bits 0..3)
 $s0..$s12 (bits 4..16)
 $gp (bit 17)
 $fp (bit 18)
 $dp (bit 19)
 $ra (bit 20)

Registers are loaded from memory starting from those corresponding to lower bits of 
the register mask. If all registers are loaded successfully, R<r1> is incremented by 
off.

The main purpose of this instruction is to save registers into an activation stack upon 
procedure entry. However, it can also be used to temporarily save multiple registers 
within a procedure body if the base register other than $sp is used.

Causes an OPERAND exception if r1 designates one of the loaded registers or $ip.
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6.9.15 stm (Store Multiple)

Stores up to 21 registers into memory at consecutive addresses starting from the 
address R<r1> - off (where off = 8 * <number of registers 
stored>) and incrementing by 8 for each stored register. Depending on the contents 
of the bit B of $state, register values can be stored in either big-endian or little-
endian format.

The 21 bits of the immediate operand each correspond to one general purpose
register in the following order (from lower to higher bits):

 $a0..$a3 (bits 0..3)
 $s0..$s12 (bits 4..16)
 $gp (bit 17)
 $fp (bit 18)
 $dp (bit 19)
 $ra (bit 20)

Registers are stored to memory starting from those corresponding to lower bits of the 
register mask. If all registers are stored successfully, R<r1> is decremented by off.

The main purpose of this instruction is to save registers into an activation stack upon 
procedure entry. However, it can also be used to temporarily save multiple registers 
within a procedure body if the base register other than $sp is used.

Causes an OPERAND exception if r1 designates one of the stored registers or $ip.

6.10 Flow control instructions

6.10.1 j (Jump)

Sets $ip = jaddr.

6.10.2 jal (Jump And Link)

Sets $ra = $ip; then sets $ip = jaddr.
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6.10.3 jr (Jump Register)

Set  $ip = R<r1>.

Causes an OPCODE exception if bits 11..20 of the instructions are not 0.

6.10.4 jalr (Jump And Link Register)

Sets $ra = $ip; Set  $ip = R<r1>.

Causes an OPCODE exception if bits 11..20 of the instructions are not 0.

6.10.5 beq.l (branch on equal long word)

If R<r1> = R<r2>, then sets $ip = baddr; otherwise has no effect.

6.10.6 bne.l (branch on not equal long word)

If R<r1>  R<r2>, then sets $ip = baddr; otherwise has no effect.

6.10.7 blt.l (branch on less than long word)

If R<r1> < R<r2>, then sets $ip = baddr; otherwise has no effect. Operands 
are compared as signed integer quantities.

6.10.8 ble.l (branch on less than or equal long word)
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If R<r1>  R<r2>, then sets $ip = baddr; otherwise has no effect. Operands 
are compared as signed integer quantities.

6.10.9 bgt.l (branch on greater than long word)

If R<r1> > R<r2>, then sets $ip = baddr; otherwise has no effect. Operands 
are compared as signed integer quantities.

6.10.10 bge.l (branch on greater than or equal long word)

If R<r1>  R<r2>, then sets $ip = baddr; otherwise has no effect. Operands 
are compared as signed integer quantities.

6.10.11 blt.ul (branch on less than unsigned long word)

If R<r1> < R<r2>, then sets $ip = baddr; otherwise has no effect. Operands 
are compared as unsigned integer quantities.

6.10.12 ble.ul (branch on less than or equal unsigned long 
word)

If R<r1>  R<r2>, then sets $ip = baddr; otherwise has no effect. Operands 
are compared as unsigned integer quantities.

6.10.13 bgt.ul (branch on greater than unsigned long word)

If R<r1> > R<r2>, then sets $ip = baddr; otherwise has no effect. Operands 
are compared as unsigned integer quantities.
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6.10.14 bge.ul (branch on greater than or equal unsigned
long word)

If R<r1>  R<r2>, then sets $ip = baddr; otherwise has no effect. Operands 
are compared as unsigned integer quantities.

6.10.15 beqi.l (branch on equal immediate long word)

If R<r1> = imm5, then sets $ip = baddr; otherwise has no effect. The imm5
immediate operand is treated as a signed integer, which is sign-extended to 64 bits 
before comparison. The imm6 field specifies a signed 6-bit branch displacement; the 
branch target is calculated as $ip + (imm6 << 2).

6.10.16 bnei.l (branch on not equal immediate long word)

If R<r1>  imm5, then sets $ip = baddr; otherwise has no effect. The imm5
immediate operand is treated as a signed integer, which is sign-extended to 64 bits 
before comparison. The imm6 field specifies a signed 6-bit branch displacement; the 
branch target is calculated as $ip + (imm6 << 2).

6.10.17 blti.l (branch on less than immediate long word)

If R<r1> < imm5, then sets $ip = baddr; otherwise has no effect. The imm5
immediate operand is treated as a signed integer, which is sign-extended to 64 bits 
before comparison. The imm6 field specifies a signed 6-bit branch displacement; the 
branch target is calculated as $ip + (imm6 << 2).

6.10.18 blei.l (branch on less than or equal immediate long 
word)
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If R<r1> ≤ imm5, then sets $ip = baddr; otherwise has no effect. The imm5
immediate operand is treated as a signed integer, which is sign-extended to 64 bits 
before comparison. The imm6 field specifies a signed 6-bit branch displacement; the 
branch target is calculated as $ip + (imm6 << 2).

6.10.19 bgti.l (branch on greater than immediate long word)

If R<r1> > imm5, then sets $ip = baddr; otherwise has no effect. The imm5
immediate operand is treated as a signed integer, which is sign-extended to 64 bits 
before comparison. The imm6 field specifies a signed 6-bit branch displacement; the 
branch target is calculated as $ip + (imm6 << 2).

6.10.20 bgei.l (branch on greater than or equal immediate 
long word)

If R<r1> ≥ imm5, then sets $ip = baddr; otherwise has no effect. The imm5
immediate operand is treated as a signed integer, which is sign-extended to 64 bits 
before comparison. The imm6 field specifies a signed 6-bit branch displacement; the 
branch target is calculated as $ip + (imm6 << 2).

6.10.21 blti.ul (branch on less than immediate unsigned 
long word)

If R<r1> < imm5, then sets $ip = baddr; otherwise has no effect. The imm5
immediate operand is treated as an unsigned integer, which is zero-extended to 64 bits 
before comparison, operands are then compared as unsigned values. The imm6 field 
specifies a signed 6-bit branch displacement; the branch target is calculated as $ip + 
(imm6 << 2).

6.10.22 blei.ul (branch on less than or equal immediate 
unsigned long word)

If R<r1> ≤ imm5, then sets $ip = baddr; otherwise has no effect. The imm5
immediate operand is treated as an unsigned integer, which is zero-extended to 64 bits 
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before comparison, operands are then compared as unsigned values. The imm6 field 
specifies a signed 6-bit branch displacement; the branch target is calculated as $ip + 
(imm6 << 2).

6.10.23 bgti.ul (branch on greater than immediate unsigned 
long word)

If R<r1> > imm5, then sets $ip = baddr; otherwise has no effect. The imm5
immediate operand is treated as an unsigned integer, which is zero-extended 64 bits 
before comparison, operands are then compared as unsigned values. The imm6 field 
specifies a signed 6-bit branch displacement; the branch target is calculated as $ip + 
(imm6 << 2).

6.10.24 bgei.ul (branch on greater than or equal immediate 
unsigned long word)

If R<r1> ≥ imm5, then sets $ip = baddr; otherwise has no effect. The imm5
immediate operand is treated as an unsigned integer, which is zero-extended to 64 bits 
before comparison, operands are then compared as unsigned values. The imm6 field 
specifies a signed 6-bit branch displacement; the branch target is calculated as $ip + 
(imm6 << 2).

6.11 TLB control instructions

6.11.1 iitlb (invalidate Instruction TLB) [privileged]

Invalidates all instruction TLB entries. If the processor has a single TLB for both 
instruction and data, invalidating instruction TLB implicitly invalidates data TLB.

Causes an OPCODE exception if bits 11..25 of the instructions are not 0.

6.11.2 idtlb (invalidate Data TLB) [privileged]
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Invalidates all data TLB entries. If the processor has a single TLB for both instruction 
and data, invalidating data TLB implicitly invalidates instruction TLB.

Causes an OPCODE exception if bits 11..25 of the instructions are not 0.

6.11.3 iitlbe (invalidate Instruction TLB entry) [privileged]

If an instruction TLB has an entry such that the address R<r1> belongs to the virtual 
page described by the entry, that entry is invalidated; otherwise the instruction has no 
effect.

If the processor has a single TLB for both instruction and data, invalidating 
instruction TLB entry implicitly invalidates data TLB entry.

Causes an OPCODE exception if bits 11..20 of the instructions are not 0.

6.11.4 idtlbe (invalidate data TLB entry) [privileged]

If a data TLB has an entry such that the address R<r1> belongs to the virtual page 
described by the entry, that entry is invalidated; otherwise the instruction has no 
effect.

If the processor has a single TLB for both instruction and data, invalidating data TLB 
entry implicitly invalidates instruction TLB entry.

Causes an OPCODE exception if bits 11..20 of the instructions are not 0.

6.11.5 iitlbc (invalidate Instruction TLB for current 
process) [privileged]

Invalidates all instruction TLB entries which are active (bit A set to 1) and whose CID
matches the CID of the $state register. If the processor has a single TLB for both 
instruction and data, invalidating instruction TLB implicitly invalidates data TLB.

Causes an OPCODE exception if bits 11..25 of the instructions are not 0.
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6.11.6 idtlbc (invalidate Data TLB for current process) 
[privileged]

Invalidates all data TLB entries which are active (bit A set to 1) and whose CID
matches the CID of the $state register. If the processor has a single TLB for both 
instruction and data, invalidating data TLB implicitly invalidates instruction TLB.

Causes an OPCODE exception if bits 11..25 of the instructions are not 0.

6.11.7 iitlbec (invalidate Instruction TLB entry for current 
process) [privileged]

If an instruction TLB has an entry such that the address R<r1> belongs to the virtual 
page described by the entry and whose CID matches the CID of the $state register, 
that entry is invalidated; otherwise the instruction has no effect.

If the processor has a single TLB for both instruction and data, invalidating 
instruction TLB entry implicitly invalidates data TLB entry.

Causes an OPCODE exception if bits 11..20 of the instructions are not 0.

6.11.8 idtlbec (invalidate data TLB entry for current 
process) [privileged]

If a data TLB has an entry such that the address R<r1> belongs to the virtual page 
described by the entry and whose CID matches the CID of the $state register, that 
entry is invalidated; otherwise the instruction has no effect.

If the processor has a single TLB for both instruction and data, invalidating data TLB 
entry implicitly invalidates instruction TLB entry.

Causes an OPCODE exception if bits 11..20 of the instructions are not 0.
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6.12 Cache control instructions

6.12.1 imb (Instruction Memory Barrier) [privileged]

This instruction ensures that subsequent instructions are fetched from memory. 
Specifically:

 The instruction cache is invalidated. If a single cache is used for both 
instruction and data, flushing the instruction cache implicitly causes data 
cache to be flushed as well, which, in turn, may cause some deferred data to be 
written to memory.

 The instruction prefetch buffer is cleared.
 The instruction TLB is invalidated. If the processor has a single TLB for both 

instruction and data, invalidating instruction TLB implicitly invalidates data 
TLB.

Causes an OPCODE exception if bits 11..25 of the instructions are not 0.

6.12.2 dmb (Data Memory Barrier) [privileged]

This instruction ensures that all memory accesses performed up to this point have had 
their effects. Specifically:

 The data cache is flushed and invalidated. This may cause some deferred data 
to be written to memory. If a single cache is used for both instruction and data, 
flushing the data cache implicitly causes instruction cache to be flushed as 
well.

 The data TLB is invalidated. If the processor has a single TLB for both 
instruction and data, invalidating data TLB implicitly invalidates instruction 
TLB.

Causes an OPCODE exception if bits 11..25 of the instructions are not 0.

6.12.3 imbc (Instruction Memory Barrier for current 
process) [privileged]

This instruction ensures that subsequent instructions for the current process are 
fetched from memory. Specifically:
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 All cache lines of the instruction cache that can be used by the current process 
are invalidated. If a single cache is used for both instruction and data, flushing 
instruction cache entries implicitly causes data cache entries to be flushed as 
well, which, in turn, may cause some deferred data to be written to memory.

 The instruction prefetch buffer is cleared.
 All instruction TLB entries that can be used by the current process are 

invalidated. If the processor has a single TLB for both instructions and data, 
invalidating instruction TLB entries implicitly invalidates data TLB entries.

Causes an OPCODE exception if bits 11..25 of the instructions are not 0.

6.12.4 dmbc (Data Memory Barrier for current process) 
[privileged]

This instruction ensures that all memory accesses performed up to this point by the 
current process have had their effects. Specifically:

 All cache lines of the data cache that can be used by the current process are 
flushed. This may cause some deferred data to be written to memory. If a 
single cache is used for both instructions and data, flushing data cache lines 
implicitly causes instruction cache to be flushed as well.

 All data TLB entries that can be used by the current process are invalidated. If 
the processor has a single TLB for both instructions and data, invalidating data 
TLB entries implicitly invalidates instruction TLB entries.

Causes an OPCODE exception if bits 11..25 of the instructions are not 0.

6.13 I/O instructions

6.13.1 in.b (input byte) [privileged]

Using the lower 16 bits of R<r1> as an I/O address, reads a byte from the specified 
I/O port, sign-extends it to 64 bits and places the result in R<r2>. If there is no I/O 
port at the specified I/O address, the value 0016 is always read immediately; 
otherwise the instruction stalls until a byte is received from the I/O port.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
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6.13.2 in.ub (input unsigned byte) [privileged]

Using the lower 16 bits of R<r1> as an I/O address, reads a byte from the specified 
I/O port, zero-extends it to 64 bits and places the result in R<r2>. If there is no I/O 
port at the specified I/O address, the value 0016 is always read immediately; 
otherwise the instruction stalls until a byte is received from the I/O port.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.13.3 in.h (input half-word) [privileged]

Using the lower 16 bits of R<r1> as an I/O address, reads a half-word from the 
specified I/O port, sign-extends it to 64 bits and places the result in R<r2>. If there is 
no I/O port at the specified I/O address, the value 000016 is always read immediately; 
otherwise the instruction stalls until a half-word is received from the I/O port.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.13.4 in.uh (input unsigned half-word) [privileged]

Using the lower 16 bits of R<r1> as an I/O address, reads a half-word from the 
specified I/O port, zero-extends it to 64 bits and places the result in R<r2>. If there is 
no I/O port at the specified I/O address, the value 000016 is always read immediately; 
otherwise the instruction stalls until a half-word is received from the I/O port.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.13.5 in.w (input word) [privileged]

Using the lower 16 bits of R<r1> as an I/O address, reads a word from the specified 
I/O port, sign-extends it to 64 bits and places the result in R<r2>. If there is no I/O 
port at the specified I/O address, the value 0000000016 is always read immediately; 
otherwise the instruction stalls until a word is received from the I/O port.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
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6.13.6 in.uw (input unsigned word) [privileged]

Using the lower 16 bits of R<r1> as an I/O address, reads a word from the specified 
I/O port, zero-extends it to 64 bits and places the result in R<r2>. If there is no I/O 
port at the specified I/O address, the value 0000000016 is always read immediately; 
otherwise the instruction stalls until a word is received from the I/O port.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.13.7 in.l (input long word) [privileged]

Using the lower 16 bits of R<r1> as an I/O address, reads a long word from the 
specified I/O port and places the result in R<r2>. If there is no I/O port at the 
specified I/O address, the value 000000000000000016 is always read 
immediately; otherwise the instruction stalls until a long word is received from the 
I/O port.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.13.8 out.b (output byte) [privileged]

Using the lower 16 bits of R<r1> as an I/O address, writes the lower byte of R<r2>
to the specified I/O port. If there is no I/O port at the specified I/O address, the half-
word written is lost; otherwise the processor stalls until the port acknowledges the 
receipt of the byte.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.13.9 out.h (output half-word) [privileged]

Using the lower 16 bits of R<r1> as an I/O address, writes the lower 16 bits of 
R<r2> to the specified I/O port. If there is no I/O port at the specified I/O address, 
the value written there is lost; otherwise the processor stalls until the port 
acknowledges the receipt of the half-word.
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Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.13.10 out.w (output word) [privileged]

Using the lower 16 bits of R<r1> as an I/O address, writes the lower 32 bits of 
R<r2> to the specified I/O port. If there is no I/O port at the specified I/O address, 
the word written there is lost; otherwise the processor stalls until the port 
acknowledges the receipt of the word.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.13.11 out.l (output long word) [privileged]

Using the lower 16 bits of R<r1> as an I/O address, writes the value of R<r2> to the 
specified I/O port. If there is no I/O port at the specified I/O address, the long word 
written there is lost; otherwise the processor stalls until the port acknowledges the 
receipt of the long word.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.13.12 tstp (Test Port status) [privileged]

Using the lower 16 bits of R<r1> as an I/O address, tests the current state of the I/O 
port at that address. The contents of R<r2> is then modified as follows:

 Bit 0 (lowest) is set to 1 is there is an I/O port at the specified I/O address, or 
to 0 if there is no I/O port at the specified I/O address.

 Bit 1 is set to 1 if there is a pending interrupt in the I/O port at the specified 
I/O address, or to 0 if there is no pending interrupt there.

 Bit 2 is set to a if I/O interrupts are currently enabled in the I/O port at the 
specified address, or to 0 if they are disabled.

 Bits 3..15 and 32..63 are set to 0.
 If there is a pending interrupt in the port, bits 16..31 are set to the interrupt 

status code pending on the port and the interrupt is released (i.e. no longer 
pending on the I/O port). If there is no pending interrupt there, bits 16..31 are 
set to 0.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
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6.13.13 setp (Set Port status) [privileged]

Using the lower 16 bits of R<r1> as an I/O address, sets the current state of the I/O 
port at that address. The contents of R<r2> is used to determine how the port state 
shall be set:

 If bit 1 is 1, the interrupt is made pending on the I/O port. Bits 16..31 of the 
R<r2> are used as an interrupt status code. If this bit is 0, the instruction has 
no effect on whether or not an interrupt is pending on the I/O port.

 If bit 2 is 1, I/O interrupts are enabled in the I/O port at the specified address. 
If this bit is 0, I/O interrupts are disabled.

 Bits 0, 3..15 and 32..63 are ignored.

Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

6.14 Miscellaneous instructions

6.14.1 halt (Halt processor) [privileged]

This instruction causes the processor to halt immediately by setting the W bit of its 
$state register to 0. The halted processor executes no instructions, but can process 
enabled interrupts.

Causes an OPCODE exception if bits 11..25 of the instructions are not 0.

6.14.2 iret (Return from Interrupt Handler) [privileged]

The instruction transfers control from the interrupt handler back to the interrupted 
code. The following steps are performed:

1. $ip = $isaveip.<inum> (restore instruction pointer)
2. $state = $isavestate.<inum> (restore processor state)

Causes an OPCODE exception if bits 11..20 of the instructions are not 0.
Causes OPERAND exception if inum is out of range [0..5].
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6.14.3 getfl (Get Flags)

Sets R<r1> = $flags.

Causes an OPCODE exception if bits 11..20 of the instructions are not 0.

6.14.4 setfl (Set Flags)

Sets $flags = R<r1>.

Causes an OPCODE exception if bits 11..20 of the instructions are not 0.

6.14.5 rstfl (Reset Flags)

Sets $flags = 0x0000000000000000.

Causes an OPCODE exception if bits 11..25 of the instructions are not 0.

6.14.6 svc (Supervisor Call)

Causes the SVC interrupt.

Causes an OPCODE exception if bits 11..25 of the instructions are not 0.

6.14.7 brk (break)

Causes the PROGRAM interrupt. The exception code stored in the $isc.prg is 
0x0000000000000017 + ((lower 4 bits of R<r1>) << 8). The higher 60 bits if 
R<r1> are ignored.

Causes an OPCODE exception if bits 11..20 of the instructions are not 0.
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6.14.8 cpuid (CPU Identification)

Stores the information about identification and features of the executing processor 
core into R<r1>. This information has the following format:

Individual fields have the following meanings:

 Processor – the 8-bit identifier of the processor to which the executing 
processor core belongs.

 Core – the 8-bit identifier of the calling core within its processor.
 AV (Architecture Version) – this 6-bit field contains a numeric identifier of 

the Cereon ISA version implemented by the processor. Currently this value 
can only be 1, which means Cereon ISA version 1 (as described in this 
document).

 P (primary Processor) – this bit is 1 if the processor to which the executing 
core belongs to a processor that is hardwired as a primary processor; 0
otherwise.

 C (primary Core) – this bit is 1 if the executing core is hardwired as a primary 
core within its processor; 0 otherwise.

 M (performance Monitoring) – when this bit is 1, the processor has a 
performance monitoring feature; otherwise the processor does not have it.

 V (Virtual memory) – when this bit is 1, the processor has a virtual memory 
feature; otherwise the processor does not have it. Note that virtual memory 
feature and protected memory feature are mutually exclusive – a processor can 
have none or either, but not both.

 R (pRotected memory) – when this bit is 1, the processor has a protected 
memory feature; otherwise the processor does not have it. Note that virtual 
memory feature and protected memory feature are mutually exclusive – a 
processor can have none or either, but not both.

 U (Unaligned operands) – when this bit is 1, the processor has the unaligned 
operands feature; otherwise the processor does not have it. Unaligned 
operands feature, when available, allows loading and storing multi-byte values 
from/to memory at an address that is not a multiple of the value’s size. Note 
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that this feature, if present, does not apply to instructions, region tables or 
virtual page tables, which must always be naturally aligned.

 D (Debug) – when this bit is 1, the processor has the debug feature; otherwise 
the processor does not have it. Debug feature, when available, provides debug 
registers, instructions that examine and modify contents of debug registers, 
and exceptions caused by debug registers.

 F (Floating point) – when this bit is 1, the processor has the floating point
feature; otherwise the processor does not have it. Floating point feature, when 
available, allows floating point loads, stores, compares and arithmetic.

 B (Base) – when this bit is 1, the processor implements the Base instruction 
set. In the current version (1) of the Cereon architecture, this bit is always 1.

Causes an OPCODE exception if bits 11..20 of the instructions are not 0.

6.14.9 sigp (Signal Processor) [privileged]

Using the lower 16 bits of R<r1> as a core ID, sends the external signal to a 
processor core with the specified ID. The type of the external interrupt is SIGNAL; 
the lower 32 bits of the R<r2> are used as an external interrupt subcode. The register 
R<r3> is set to one of the following values:

 0 – if the external signal has been accepted by the destination core. The 
accepted signal may not necessarily cause an immediate EXTERNAL interrupt 
in the destination core; however, one is guaranteed to occur eventually.

 1 – if the destination core does not exist.
 2 – if the destination core exists but cannot accept the external signal because 

another external signal, accepted previously, is already pending there.

Causes a MASKED exception if signalling to itself and the EXTERNAL interrupt is 
disabled.

6.14.10 nop (No Operation)

This instruction has no effect other than to occupy processor for one cycle.

Causes an OPCODE exception if bits 11..25 of the instructions are not 0.
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7 The floating point feature
This section describes instructions provided as a part of the Cereon Floating point
feature. This feature provides an ability to perform basic floating point operations in 
hardware, thus significantly increasing the speed of programs which require a large 
number of floating point calculations to be made.

7.1 Data movement instructions

7.1.1 mov.d (move double precision floating point)

Sets F<r1> = F<r2>.

Causes an OPCODE exception if the floating point feature is not available.
Causes an OPCODE exception if bits 11..15 of the instructions are not 0.

7.1.2 li.d (load immediate double precision floating point)

Loads the reduced-precision floating point immediate value, extended to double 
precision format, into F<r1>.

Causes an OPCODE exception if the floating point feature is not installed.

7.2 Arithmetic instructions

7.2.1 add.f (add single precision floating point)

Sets F<r1> = F<r2> + F<r3>. Both operands are converted to single precision
before operation, which is also carried out with single precision, yielding a single 
precision result that is then expanded to double precision before being stored.

Sets the R bit of $flags to 1 if either operand is a signalling NaN.
Sets the E bit of $flags to 1 if a floating point overflow occurs during the operation.
Sets the U bit of $flags to 1 if a floating point underflow occurs during the 
operation.
Sets the I bit of $flags to 1 if an inexact result is produced.
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Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
signalling NaN.
Causes an FOVERFLOW exception if an E bit if $state is 1 and a floating point
overflow occurs during the operation.
Causes an FUNDERFLOW exception if an U bit if $state is 1 and a floating point
underflow occurs during the operation.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.2.2 add.d (add double precision floating point)

Sets F<r1> = F<r2> + F<r3>.

Sets the R bit of $flags to 1 if either operand is a signalling NaN.
Sets the E bit of $flags to 1 if a floating point overflow occurs during the operation.
Sets the U bit of $flags to 1 if a floating point underflow occurs during the 
operation.
Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
signalling NaN.
Causes an FOVERFLOW exception if an E bit if $state is 1 and a floating point
overflow occurs during the operation.
Causes an FUNDERFLOW exception if an U bit if $state is 1 and a floating point
underflow occurs during the operation.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.2.3 sub.f (subtract single precision floating point)

Sets F<r1> = F<r2> - F<r3>. Both operands are converted to single precision
before operation, which is also carried out with single precision, yielding a single 
precision result that is then expanded to double precision before being stored.

Sets the R bit of $flags to 1 if either operand is a signalling NaN.
Sets the E bit of $flags to 1 if a floating point overflow occurs during the operation.
Sets the U bit of $flags to 1 if a floating point underflow occurs during the 
operation.
Sets the I bit of $flags to 1 if an inexact result is produced.
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Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
signalling NaN.
Causes an FOVERFLOW exception if an E bit if $state is 1 and a floating point
overflow occurs during the operation.
Causes an FUNDERFLOW exception if an U bit if $state is 1 and a floating point
underflow occurs during the operation.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.2.4 sub.d (subtract double precision floating point)

Sets F<r1> = F<r2> - F<r3>.

Sets the R bit of $flags to 1 if either operand is a signalling NaN.
Sets the E bit of $flags to 1 if a floating point overflow occurs during the operation.
Sets the U bit of $flags to 1 if a floating point underflow occurs during the 
operation.
Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
signalling NaN.
Causes an FOVERFLOW exception if an E bit if $state is 1 and a floating point
overflow occurs during the operation.
Causes an FUNDERFLOW exception if an U bit if $state is 1 and a floating point
underflow occurs during the operation.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.2.5 mul.f (multiply single precision floating point)

Sets F<r1> = F<r2> * F<r3>. Both operands are converted to single precision
before operation, which is also carried out with single precision, yielding a single 
precision result that is then expanded to double precision before being stored.

Sets the R bit of $flags to 1 if either operand is a signalling NaN.
Sets the E bit of $flags to 1 if a floating point overflow occurs during the operation.
Sets the U bit of $flags to 1 if a floating point underflow occurs during the 
operation.
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Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
signalling NaN.
Causes an FOVERFLOW exception if an E bit if $state is 1 and a floating point
overflow occurs during the operation.
Causes an FUNDERFLOW exception if an U bit if $state is 1 and a floating point
underflow occurs during the operation.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.2.6 mul.d (multiply double precision floating point)

Sets F<r1> = F<r2> * F<r3>.

Sets the R bit of $flags to 1 if either operand is a signalling NaN.
Sets the E bit of $flags to 1 if a floating point overflow occurs during the operation.
Sets the U bit of $flags to 1 if a floating point underflow occurs during the 
operation.
Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
signalling NaN.
Causes an FOVERFLOW exception if an E bit if $state is 1 and a floating point
overflow occurs during the operation.
Causes an FUNDERFLOW exception if an U bit if $state is 1 and a floating point
underflow occurs during the operation.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.2.7 div.f (divide single precision floating point)

Sets F<r1> = F<r2> / F<r3>. Both operands are converted to single precision
before operation, which is also carried out with single precision, yielding a single 
precision result that is then expanded to double precision before being stored.

Sets the Z bit of $flags to 1 if F<r3> is 0.
Sets the R bit of $flags to 1 if either operand is a signalling NaN.
Sets the E bit of $flags to 1 if a floating point overflow occurs during the operation.
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Sets the U bit of $flags to 1 if a floating point underflow occurs during the 
operation.
Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes a FZDIV exception if a Z bit if $state is 1 and F<r3> is 0.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
signalling NaN.
Causes an FOVERFLOW exception if an E bit if $state is 1 and a floating point
overflow occurs during the operation.
Causes an FUNDERFLOW exception if an U bit if $state is 1 and a floating point
underflow occurs during the operation.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.2.8 div.d (divide double precision floating point)

Sets F<r1> = F<r2> / F<r3>.

Sets the Z bit of $flags to 1 if F<r3> is 0.
Sets the R bit of $flags to 1 if either operand is a signalling NaN.
Sets the E bit of $flags to 1 if a floating point overflow occurs during the operation.
Sets the U bit of $flags to 1 if a floating point underflow occurs during the 
operation.
Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes a FZDIV exception if a Z bit if $state is 1 and F<r3> is 0.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
signalling NaN.
Causes an FOVERFLOW exception if an E bit if $state is 1 and a floating point
overflow occurs during the operation.
Causes an FUNDERFLOW exception if an U bit if $state is 1 and a floating point
underflow occurs during the operation.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.2.9 abs.f (absolute value single precision floating point)
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Set F<r1> = |F<r2>|. Operand is converted to single precision before operation, 
which is also carried out with single precision, yielding a single precision result that is 
then expanded to double precision before being stored.

Sets the R bit of $flags to 1 if either operand is a signalling NaN.

Causes an OPCODE exception if the floating point feature is not available.
Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a 
signalling NaN.

7.2.10 abs.d (absolute value double precision floating 
point)

Set F<r1> = |F<r2>|.

Causes an OPCODE exception if the floating point feature is not available.
Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a 
signalling NaN.

7.2.11 neg.f (negate single precision floating point)

Set F<r1> = -F<r2>. Operand is converted to single precision before operation, 
which is also carried out with single precision, yielding a single precision result that is 
then expanded to double precision before being stored.

Sets the R bit of $flags to 1 if either operand is a signalling NaN.

Causes an OPCODE exception if the floating point feature is not available.
Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a 
signalling NaN.

7.2.12 neg.d (negate double precision floating point)

Set F<r1> = -F<r2>.
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Sets the R bit of $flags to 1 if either operand is a signalling NaN.

Causes an OPCODE exception if the floating point feature is not available.
Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a 
signalling NaN.

7.2.13 sqrt.f (square root single precision floating point)

Set F<r1> = sqrt(F<r2>). Operand is converted to single precision before 
operation, which is also carried out with single precision, yielding a single precision 
result that is then expanded to double precision before being stored.

Sets the R bit of $flags to 1 if an operand is a signalling NaN or negative.
Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an FOPERAND exception if an operand is negative.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a 
signalling NaN.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.2.14 sqrt.d (square root double precision floating point)

Set F<r1> = sqrt(F<r2>).

Sets the R bit of $flags to 1 if an operand is a signalling NaN or negative.
Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes an FOPERAND exception if an operand is negative.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a 
signalling NaN.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.
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7.3 Data type conversion instructions

7.3.1 cvt.fb (Convert single precision floating point to byte)

Set R<r1> = F<r2>. The operand is converted to single precision before being 
further converted to an integer. The result is a 8-bit signed integer, which is then sign-
extended to 64 bits. If the operand cannot be represented as an 8-bit signed integer 
value exactly, the closest representable 8-bit signed integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.

7.3.2 cvt.fub (Convert single precision floating point to 
unsigned byte)

Set R<r1> = F<r2>. The operand is converted to single precision before being 
further converted to an integer. The result is a 8-bit unsigned integer, which is then 
zero-extended to 64 bits. If the operand cannot be represented as an 8-bit unsigned 
integer value exactly, the closest representable 8-bit unsigned integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.
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7.3.3 cvt.fh (Convert single precision floating point to half-
word)

Set R<r1> = F<r2>. The operand is converted to single precision before being 
further converted to an integer. The result is a 16-bit signed integer, which is then 
sign-extended to 64 bits. If the operand cannot be represented as a 16-bit signed 
integer value exactly, the closest representable 16-bit signed integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.

7.3.4 cvt.fuh (Convert single precision floating point to 
unsigned half-word)

Set R<r1> = F<r2>. The operand is converted to single precision before being 
further converted to an integer. The result is a 16-bit unsigned integer, which is then 
zero-extended to 64 bits. If the operand cannot be represented as a 16-bit unsigned 
integer value exactly, the closest representable 16-bit unsigned integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.

7.3.5 cvt.fw (Convert single precision floating point to word)
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Set R<r1> = F<r2>. The operand is converted to single precision before being 
further converted to an integer. The result is a 32-bit signed integer, which is then 
sign-extended to 64 bits. If the operand cannot be represented as a 32-bit signed 
integer value exactly, the closest representable 32-bit signed integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.

7.3.6 cvt.fuw (Convert single precision floating point to 
unsigned word)

Set R<r1> = F<r2>. The operand is converted to single precision before being 
further converted to an integer. The result is a 32-bit unsigned integer, which is then 
zero-extended to 64 bits. If the operand cannot be represented as a 32-bit unsigned 
integer value exactly, the closest representable 32-bit unsigned integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.

7.3.7 cvt.fl (Convert single precision floating point to long 
word)

Set R<r1> = F<r2>. The operand is converted to single precision before being 
further converted to an integer. The result is a signed integer. If the operand cannot be 
represented as a 64-bit signed integer value exactly, the closest representable 64-bit 
signed integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
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Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.

7.3.8 cvt.ful (convert single precision floating point to 
unsigned long word)

Set R<r1> = F<r2>. The operand is converted to single precision before being 
further converted to an integer. The result is an unsigned integer. If the operand 
cannot be represented as a 64-bit unsigned integer value exactly, the closest 
representable 64-bit unsigned integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.

7.3.9 cvt.db (Convert single precision floating point to byte)

Set R<r1> = F<r2>. The result is a 8-bit signed integer, which is then sign-extended 
to 64 bits. If the operand cannot be represented as an 8-bit signed integer value 
exactly, the closest representable 8-bit signed integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.
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7.3.10 cvt.dub (Convert double precision floating point to 
unsigned byte)

Set R<r1> = F<r2>. The result is a 8-bit unsigned integer, which is then zero-
extended to 64 bits. If the operand cannot be represented as an 8-bit unsigned integer 
value exactly, the closest representable 8-bit unsigned integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.

7.3.11 cvt.dh (Convert double precision floating point to 
half-word)

Set R<r1> = F<r2>. The result is a 16-bit signed integer, which is then sign-
extended to 64 bits. If the operand cannot be represented as a 16-bit signed integer 
value exactly, the closest representable 16-bit signed integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.

7.3.12 cvt.duh (Convert double precision floating point to 
unsigned half-word)
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Set R<r1> = F<r2>. The result is a 16-bit unsigned integer, which is then zero-
extended to 64 bits. If the operand cannot be represented as a 16-bit unsigned integer 
value exactly, the closest representable 16-bit unsigned integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.

7.3.13 cvt.dw (Convert double precision floating point to 
word)

Set R<r1> = F<r2>. The result is a 32-bit signed integer, which is then sign-
extended to 64 bits. If the operand cannot be represented as a 32-bit signed integer 
value exactly, the closest representable 32-bit signed integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.

7.3.14 cvt.duw (Convert double precision floating point to 
unsigned word)

Set R<r1> = F<r2>. The result is a 32-bit unsigned integer, which is then zero-
extended to 64 bits. If the operand cannot be represented as a 32-bit unsigned integer 
value exactly, the closest representable 32-bit unsigned integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large
to be represented as an integer exactly.



146

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.

7.3.15 cvt.dl (Convert double precision floating point to 
long word)

Set R<r1> = F<r2>. The result is a signed integer. If the operand cannot be 
represented as a 64-bit signed integer value exactly, the closest representable 64-bit 
signed integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.

7.3.16 cvt.dul (convert double precision floating point to 
unsigned long word)

Set R<r1> = F<r2>. The result is an unsigned integer. If the operand cannot be 
represented as a 64-bit unsigned integer value exactly, the closest representable 64-bit 
unsigned integer value results.

Sets the R bit of $flags to 1 if an operand is a NaN, whether signalling or quiet.
Sets the E bit of $flags to 1 if the integer part of the floating point value is too large 
to be represented as an integer exactly.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and an operand is a NaN, 
whether signalling or quiet.
Causes an FOVERFLOW exception if an E bit if $state is 1 and the integer part of 
the floating point value is too large to be represented as an integer exactly.
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7.3.17 cvt.bf (convert byte to single precision floating 
point)

Set F<r1> = R<r2>. The lower 8 bits of an operand are treated as a signed integer, 
that is then converted to a single precision floating point value, which is then 
expanded to double precision. The higher 56 bits of an operand are ignored for 
conversion purposes.

Causes an OPCODE exception if the floating point feature is not available.

7.3.18 cvt.ubf (convert unsigned byte to single precision
floating point)

Set F<r1> = R<r2>. The lower 8 bits of an operand are treated as an unsigned 
integer, that is then converted to a single precision floating point value, which is then 
expanded to double precision. The higher 56 bits of an operand are ignored for 
conversion purposes.

Causes an OPCODE exception if the floating point feature is not available.

7.3.19 cvt.hf (convert half-word to single precision
floating point)

Set F<r1> = R<r2>. The lower 16 bits of an operand are treated as a signed integer, 
that is then converted to a single precision floating point value, which is then 
expanded to double precision. The higher 48 bits of an operand are ignored for 
conversion purposes.

Causes an OPCODE exception if the floating point feature is not available.

7.3.20 cvt.uhf (convert unsigned half-word to single 
precision floating point)
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Set F<r1> = R<r2>. The lower 16 bits of an operand are treated as an unsigned 
integer, that is then converted to a single precision floating point value, which is then 
expanded to double precision. The higher 48 bits of an operand are ignored for 
conversion purposes.

Causes an OPCODE exception if the floating point feature is not available.

7.3.21 cvt.wf (convert word to single precision floating 
point)

Set F<r1> = R<r2>. The lower 32 bits of an operand are treated as a signed integer, 
that is then converted to a single precision floating point value, which is then
expanded to double precision. The higher 32 bits of an operand are ignored for 
conversion purposes. If an operand cannot be represented exactly as a single precision 
floating point value, the closest representable value results.

Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.3.22 cvt.uwf (convert unsigned word to single precision
floating point)

Set F<r1> = R<r2>. The lower 32 bits of an operand are treated as an unsigned 
integer, that is then converted to a single precision floating point value, which is then 
expanded to double precision. The higher 32 bits of an operand are ignored for 
conversion purposes. If an operand cannot be represented exactly as a single precision 
floating point value, the closest representable value results.

Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.
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7.3.23 cvt.lf (convert long word to single precision 
floating point)

Set F<r1> = R<r2>. The operand is a signed integer. It is converted to a single 
precision floating point value, which is then expanded to double precision. If an 
operand cannot be represented exactly as a single precision floating point value, the 
closest representable value results.

Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.3.24 cvt.ulf (convert unsigned long word to single 
precision floating point)

Set F<r1> = R<r2>. The operand is an unsigned integer. It is converted to a single 
precision floating point value, which is then expanded to double precision. If an 
operand cannot be represented exactly as a single precision floating point value, the 
closest representable value results.

Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.3.25 cvt.bd (convert byte to double precision floating 
point)

Set F<r1> = R<r2>. The lower 8 bits of an operand are treated as a signed integer, 
that is then converted. The higher 56 bits of an operand are ignored for conversion 
purposes.

Causes an OPCODE exception if the floating point feature is not available.
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7.3.26 cvt.ubd (convert unsigned byte to double precision
floating point)

Set F<r1> = R<r2>. The lower 8 bits of an operand are treated as an unsigned 
integer, that is then converted. The higher 56 bits of an operand are ignored for 
conversion purposes.

Causes an OPCODE exception if the floating point feature is not available.

7.3.27 cvt.hd (convert half-word to double precision
floating point)

Set F<r1> = R<r2>. The lower 16 bits of an operand are treated as a signed integer, 
that is then converted. The higher 48 bits of an operand are ignored for conversion 
purposes.

Causes an OPCODE exception if the floating point feature is not available.

7.3.28 cvt.uhd (convert unsigned half-word to double 
precision floating point)

Set F<r1> = R<r2>. The lower 16 bits of an operand are treated as an unsigned 
integer, that is then converted. The higher 48 bits of an operand are ignored for 
conversion purposes.

Causes an OPCODE exception if the floating point feature is not available.

7.3.29 cvt.wd (convert word to double precision floating 
point)

Set F<r1> = R<r2>. The lower 32 bits of an operand are treated as a signed integer, 
that is then converted. The higher 32 bits of an operand are ignored for conversion 
purposes.
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Causes an OPCODE exception if the floating point feature is not available.

7.3.30 cvt.uwd (convert unsigned word to double 
precision floating point)

Set F<r1> = R<r2>. The lower 32 bits of an operand are treated as an unsigned 
integer, that is then converted. The higher 32 bits of an operand are ignored for 
conversion purposes.

Causes an OPCODE exception if the floating point feature is not available.

7.3.31 cvt.ld (convert long word to double precision
floating point)

Set F<r1> = R<r2>. The operand is a signed integer. If an operand cannot be 
represented exactly as a floating point value, the closest representable value results.

Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.3.32 cvt.uld (convert unsigned long word to double 
precision floating point)

Set F<r1> = R<r2>. The operand is an unsigned integer. If an operand cannot be 
represented exactly as a floating point value, the closest representable value results.

Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.
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7.3.33 cvt.df (Convert double precision floating point to 
single precision floating point)

Set F<r1> = F<r2> rounded to nearest 32-bit floating point value. The result value 
is the 64-bit floating point value closest to the operand that can be represented in 32-
bit floating point format without any loss of magnitude or precision.

Sets the R bit of $flags to 1 if either operand is a signalling NaN.
Sets the E bit of $flags to 1 if a floating point overflow occurs during the operation.
Sets the U bit of $flags to 1 if a floating point underflow occurs during the 
operation.
Sets the I bit of $flags to 1 if an inexact result is produced.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
signalling NaN.
Causes an FOVERFLOW exception if an E bit if $state is 1 and a floating point
overflow occurs during the operation.
Causes an FUNDERFLOW exception if an U bit if $state is 1 and a floating point
underflow occurs during the operation.
Causes an FINEXACT exception if an I bit if $state is 1 and an inexact result is 
produced.

7.4 Comparison instructions

7.4.1 seq.d (set equal double precision floating point)

If F<r2> = F<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. If either 
operand is a NaN (whether signalling or quiet) and an R bit if $state is 0, R<r1> is 
set to 0.

Sets the R bit of $flags to 1 if either operand is a NaN, whether signalling or quiet.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
NaN, whether signalling or quiet.
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7.4.2 sne.d (set not equal double precision floating point)

If F<r2>  F<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. If either 
operand is a NaN (whether signalling or quiet) and an R bit if $state is 0, R<r1> is 
set to 0.

Sets the R bit of $flags to 1 if either operand is a NaN, whether signalling or quiet.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
NaN, whether signalling or quiet.

7.4.3 slt.d (set less than double precision floating point)

If F<r2> < F<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. If either 
operand is a NaN (whether signalling or quiet) and an R bit if $state is 0, R<r1> is 
set to 0.

Sets the R bit of $flags to 1 if either operand is a NaN, whether signalling or quiet.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
NaN, whether signalling or quiet.

7.4.4 sle.d (set less than or equal double precision floating 
point)

If F<r2>  F<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. If either 
operand is a NaN (whether signalling or quiet) and an R bit if $state is 0, R<r1> is 
set to 0.

Sets the R bit of $flags to 1 if either operand is a NaN, whether signalling or quiet.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
NaN, whether signalling or quiet.
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7.4.5 sgt.d (set greater than double precision floating point)

If F<r2> > F<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. If either 
operand is a NaN (whether signalling or quiet) and an R bit if $state is 0, R<r1> is 
set to 0.

Sets the R bit of $flags to 1 if either operand is a NaN, whether signalling or quiet.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
NaN, whether signalling or quiet.

7.4.6 sge.d (set greater than or equal double precision floating 
point)

If F<r2>  F<r3>, then set R<r1> = 1, otherwise then set R<r1> = 0. If either 
operand is a NaN (whether signalling or quiet) and an R bit if $state is 0, R<r1> is 
set to 0.

Sets the R bit of $flags to 1 if either operand is a NaN, whether signalling or quiet.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
NaN, whether signalling or quiet.

7.5 Load/store instructions

7.5.1 l.f (load single precision floating point)

Loads the 4-byte floating point value from the memory address addr, converts it into 
the 64-bit floating point value and stores the result in F<r1>. Depending on the 
contents of the bit B of $state, the value can be loaded in either big-endian or little-
endian format.

Causes an OPCODE exception if the floating point feature is not available.
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7.5.2 l.d (load double precision floating point)

Loads the 8-byte floating point value from the memory address addr into F<r1>. 
Depending on the contents of the bit B of $state, the value can be loaded in either 
big-endian or little-endian format.

Causes an OPCODE exception if the floating point feature is not available.

7.5.3 s.f (store single precision floating point)

Converts the F<r1> into a 4-byte floating point value and stores this value into the 
memory at address addr. Depending on the contents of the bit B of $state, the 
value can be stored in either big-endian or little-endian format.

Causes an OPCODE exception if the floating point feature is not available.

7.5.4 s.d (store double precision floating point)

Stores F<r1> into the memory at address addr. Depending on the contents of the bit 
B of $state, the value can be stored in either big-endian or little-endian format.

Causes an OPCODE exception if the floating point feature is not available.

7.6 Flow control instructions

7.6.1 beq.d (branch on equal double precision floating point)

If F<r1> = F<r2>, then sets $ip = baddr; otherwise has no effect. If either 
operand is a NaN (whether signalling or quiet) and an R bit if $state is 0, the 
instruction has no effect.

Sets the R bit of $flags to 1 if either operand is a NaN, whether signalling or quiet.

Causes an OPCODE exception if the floating point feature is not available.
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Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
NaN, whether signalling or quiet.

7.6.2 bne.d (branch on not equal double precision floating 
point)

If F<r1>  F<r2>, then sets $ip = baddr; otherwise has no effect. If either 
operand is a NaN (whether signalling or quiet) and an R bit if $state is 0, the 
instruction has no effect.

Sets the R bit of $flags to 1 if either operand is a NaN, whether signalling or quiet.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
NaN, whether signalling or quiet.

7.6.3 blt.d (branch on less than double precision floating 
point)

If F<r1> < F<r2>, then sets $ip = baddr; otherwise has no effect. If either 
operand is a NaN (whether signalling or quiet) and an R bit if $state is 0, the 
instruction has no effect.

Sets the R bit of $flags to 1 if either operand is a NaN, whether signalling or quiet.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
NaN, whether signalling or quiet.

7.6.4 ble.d (branch on less than or equal double precision
floating point)

If F<r1>  F<r2>, then sets $ip = baddr; otherwise has no effect. If either 
operand is a NaN (whether signalling or quiet) and an R bit if $state is 0, the 
instruction has no effect.

Sets the R bit of $flags to 1 if either operand is a NaN, whether signalling or quiet.
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Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
NaN, whether signalling or quiet.

7.6.5 bgt.d (branch on greater than double precision floating 
point)

If F<r1> > F<r2>, then sets $ip = baddr; otherwise has no effect. If either 
operand is a NaN (whether signalling or quiet) and an R bit if $state is 0, the 
instruction has no effect.

Sets the R bit of $flags to 1 if either operand is a NaN, whether signalling or quiet.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
NaN, whether signalling or quiet.

7.6.6 bge.d (branch on greater than or equal double precision
floating point)

If F<r1>  F<r2>, then sets $ip = baddr; otherwise has no effect. If either 
operand is a NaN (whether signalling or quiet) and an R bit if $state is 0, the 
instruction has no effect.

Sets the R bit of $flags to 1 if either operand is a NaN, whether signalling or quiet.

Causes an OPCODE exception if the floating point feature is not available.
Causes an FOPERAND exception if an R bit if $state is 1 and either operand is a 
NaN, whether signalling or quiet.
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8 The debug feature
This section describes instructions and facilities provided as a part of the Cereon 
Debug feature. It provides support for hardware-level debugging of both user and 
system code.

8.1 Debug events
A debug event is a condition that can occur during an execution of an instruction. The 
Cereon Debug feature allows tracking up to 16 different conditions at the same time.

When the corresponding condition occurs during an execution of an instruction, the 
fact is remembered until the instruction execution finishes successfully. Three 
possibilities can arise:

 An execution of an instruction can trigger an exception after one or more 
debug events have been recorded, they are all discarded immediately and an 
exception occurs normally.

 An instruction execution finishes successfully and PROGRAM interrupts are 
enabled. The debug event causes a PROGRAM interrupt with an interrupt status 
code referring to the debug event that caused it. If there were several debug 
events recorded for the instruction, the one with a highest priority is processed 
and the other ones are discarded.

 An instruction execution finishes successfully and PROGRAM interrupts are 
disabled. All debug events recorded for the instruction are discarded.

8.2 Debug registers
The 32 64-bit debug registers d0..d31 are logically divided into 16 consecutive 
groups of 2 (i.e. d0/d1, d2/d3, etc.) Each of these groups can either be unused, or it 
can contain a definition of a single debug event, thus making it possible to track up to 
16 different debug events at the same time.

The priority of a debug event depends on which pair of debug registers it is specified 
in. Debug events specified in debug registers with smaller numbers have higher 
priorities.

8.2.1 Debug event specification
The exact form in which a debug event is specified in a debug register pair is 
dependent on the type of the debug event. However, the highest 6 bits of the debug 
register with an even number always have the same contents:

The meaning of individual fields within the upper 6 bits of an even-numbered debug 
register is explained below.
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8.2.1.1 K (Kernel mode)
When this bit is 1, the debug event can occur in Kernel mode; otherwise, the debug 
event will not occur in Kernel mode even if the condition it describes occurs during 
instruction execution.

8.2.1.2 U (User mode)
When this bit is 1, the debug event can occur in User mode; otherwise, the debug 
event will not occur in User mode even if the condition it describes occurs during 
instruction execution.

8.2.1.3 Type
These 4 bits represent a type of the debug event. Altogether there can be 16 different 
debug event types, although only one is defined in this version of the Cereon 
architecture.

8.2.2 Memory Access debug event
The Memory Access debug event occurs when a specific area of memory is accessed 
in a specific mode. It can be used to set up both variable watchpoints and code 
breakpoints.

The specification of a Memory Access debug event uses the debug register pair in the 
following way:

The meaning of individual fields within the debug register pair is explained below.

8.2.2.1 Address
Specifies the start address of the memory area being monitored.

8.2.2.2 Scale and Size

The value size << scale (same as size*2scale) specifies the size, in bytes, of 
the memory area being watched. If the value address+size*2scale wraps around, 
the debug event specification is invalid and a debug event never occurs.

8.2.2.3 X (eXecute)
If this bit is 1, an attempt to execute an instruction from the memory area under watch 
causes a debug event to occur; otherwise executing instructions from the memory area 
under watch does not cause the debug event.

8.2.2.4 W (Write)
If this bit is 1, an attempt to write to the memory area under watch causes a debug 
event to occur; otherwise writing to the memory area under watch does not cause the 
debug event.
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8.2.2.5 R (Read)
If this bit is 1, an attempt to read from the memory area under watch causes a debug 
event to occur; otherwise reading from the memory area under watch does not cause 
the debug event.

8.2.3 Disabling debug events
Any pair of debug registers which has zeroes in the two highest bits of an even-
numbered debug register specifies a debug event that cannot occur in either Kernel or 
User mode. Such pair of debug registers describes a disabled debug event.

8.3 Data movement instructions

8.3.1 mov.gr (move debug register to general purpose 
register) [privileged]

Sets R<r1> = D<r2>.

Causes an OPCODE exception if the debug feature is not available.
Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes a PRIVILEGED exception if the K bit of $state is 0.

8.3.2 mov.rg (move general purpose register to debug 
register) [privileged]

Sets D<r1> = R<r2>.

Causes an OPCODE exception if the debug feature is not available.
Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes a PRIVILEGED exception if the K bit of $state is 0.
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9 The performance monitoring feature
The performance monitoring feature, if present, provides hardware support for the 
high-precision profiling of the running code. This is achieved by counting various 
events that occur during program execution (such as instruction completions, cache 
hits and misses, etc.)

Note that the rudimentary support for the program profiling is always present in the 
form of the $cc (Cycle Counter) control register; the performance monitoring feature 
extends this support by being able to answer questions other than “how many cycles 
did the program take?”

9.1 Program events
A program event is a condition that may occur while a program is being executed. 
The performance monitoring feature keeps counts of how many times each program 
event has occurred; these counts are incremented as the program runs.

Currently the following program events are counted:

Event name Event description

INSTRUCTION An instruction has finished execution.

MOV A data movement instruction has finished execution.

ALU An integer computational instruction has finished execution.

FPU A floating-point computational instruction has finished 
execution.

LOAD A load instruction has finished execution.

STORE A store instruction has finished execution.

JUMP An unconditional jump instruction has finished execution.

BRANCH A conditional branch instruction has finished execution.

IO An I/O instruction has finished execution.

CONTROL A control instruction has finished execution.

ICACHEHIT An I-Cache hit occurred while fetching an instruction.

ICACHEMISS An I-Cache miss occurred while fetching an instruction.

DCACHERHIT A D-Cache hit occurred while loading a data item from memory.

DCACHERMISS A D-Cache miss occurred while loading a data item from 
memory.

DCACHEWHIT A D-Cache hit occurred while storing a data item to memory.

DCACHEWMISS A D-Cache miss occurred while storing a data item to memory.

ITLBHIT An I-TLB hit occurred while translating an instructuion virtual 
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address.

ITLBMISS An I-TLB miss occurred while translating an instructuion virtual 
address.

DTLBHIT A D-TLB hit occurred while translating a data virtual address.

DTLBMISS A D-TLB miss occurred while translating a data virtual address.

JPREDICT An unconditional jump was predicted correctly.

JMISPREDICT An unconditional jump was predicted incorrectly.

BPREDICT A conditional branch was predicted correctly.

BMISPREDICT A conditional branch was predicted incorrectly.

TMINTERRUPT A TIMER interrupt occurred.

IOINTERRUPT An IO interrupt occurred.

SVCINTERRUPT An SVC interrupt occurred.

PRGINTERRUPT A PROGRAM interrupt occurred.

EXTINTERRUPT An EXTERNAL interrupt occurred.

HWINTERRUPT A HARDWARE interrupt occurred.

9.2 Performance monitoring registers
Altogeher there are 32 performance monitoring registers m0..m31. Their usage is 
summarized in the following table:

Register Symbolic name Usage convention

m0 $mflags Performance monitoring flags.
m1 $cnt.instruction INSTRUCTION event counter.
m2 $cnt.mov MOV event counter.
m3 $cnt.alu ALU event counter.
m4 $cnt.fpu FPU event counter.
m5 $cnt.load LOAD event counter.
m6 $cnt.store STORE event counter.
m7 $cnt.jump JUMP event counter.
m8 $cnt.branch BRANCH event counter.
m9 $cnt.io IO event counter.
m10 $cnt.control CONTROL event counter.
m11 $cnt.icachehit ICACHEHIT event counter.
m12 $cnt.icachemiss ICACHEMISS event counter.
m13 $cnt.dcacherhit DCACHERHIT event counter.
m14 $cnt.dcachermiss DCACHERMISS event counter.
m15 $cnt.dcachewhit DCACHEWHIT event counter.
m16 $cnt.dcachewmiss DCACHEWMISS event counter.
m17 $cnt.itlbhit ITLBHIT event counter.
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m18 $cnt.itlbmiss ITLBMISS event counter.
m19 $cnt.dtlbhit DTLBHIT event counter.
m20 $cnt.dtlbmiss DTLBMISS event counter.
m21 $cnt.jpredict JPREDICT event counter.
m22 $cnt.jmispredict JMISPREDICT event counter.
m23 $cnt.bpredict BPREDICT event counter.
m24 $cnt.bmispredict BMISPREDICT event counter.
m25 $cnt.tminterrupt TMINTERRUPT event counter.
m26 $cnt.iointerrupt IOINTERRUPT event counter.
m27 $cnt.svcinterrupt SVCINTERRUPT event counter.
m28 $cnt.prginterrupt PRGINTERRUPT event counter.
m29 $cnt.extinterrupt EXTINTERRUPT event counter.
m30 $cnt.hwinterrupt HWINTERRUPT event counter.
m31 - Reserved for future use

9.2.1 The $mflags register
While other registers act as counters, the $mflags register is a bit mask that 
specifies which of the counters are active. Individual bits within the $mflags register 
have the following meaning:

 Bits 0 and 32 are ignored.
 Bits 1..31 specify which counters are active in User mode. If bit N (1 ≤ N ≤ 

31) is set to 1, then the register m<N> is incremented if the corresponding 
program event occurs in User mode; otherwise corresponding program events 
occurring in User mode are ignored.

 Bits 33..63 specify which counters are active in Kernel mode. If bit N (33 ≤ N 
≤ 63) is set to 1, then the register m<N-32> is incremented if the 
corresponding program event occurs in Kernel mode; otherwise corresponding 
program events occurring in Kernel mode are ignored.

This scheme allows independent counting of events in User and Kernel modes, as 
well as starting and freezing any number of counters with a single instruction.

9.3 Data movement instructions

9.3.1 mov.mr (move performance monitoring register to 
general purpose register) [privileged]

Sets R<r1> = M<r2>.

Causes an OPCODE exception if the performance monitoring feature is not available.
Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes a PRIVILEGED exception if the K bit of $state is 0.
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9.3.2 mov.rm (move general purpose register to performance 
monitoring register) [privileged]

Sets M<r1> = R<r2>.

Causes an OPCODE exception if the performance monitoring feature is not available.
Causes an OPCODE exception if bits 11..15 of the instructions are not 0.
Causes a PRIVILEGED exception if the K bit of $state is 0.
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10 The protected memory feature
Cereon protected memory feature, when present, provides segmented virtual memory 
with 64-bit address space.

When a processor equipped with the protected memory feature runs in virtual mode, 
64-bit memory addresses used by instructions do not refer to physical memory 
addresses. Instead, they are translated into physical memory addresses using 
combination of hardware and software.

10.1 Protected memory concepts
The following hardware elements participate in virtual address translation:

 Region table.
 Region table pointer.

10.1.1 Region table
A region table is a hidden table used by the protected memory manager to perform 
virtual address translation. This table contains 8 entries, each describing a single 
continuous region of memory. A program can access memory in any of these regions 
but not any other memory; in addition regions can be restricted to perform only a 
specific type of access (e.g. “execute only”, or “read/write, but not execute”) or to 
rescrict access to a specific mode (e.g. “this region can be accessed in kernel mode 
only).

10.1.2 Region table pointer
When a value is assigned to a control regisrter $pth, it is assumed that this value is a 
real address of the region table residing in memory. Upon such assignment, the region 
table is loaded from memory into the hidden registers of the memory protection unit 
and, as soon as processor switches to a virtual mode, starts governing all memory 
accesses.

In order to reduce the cost of a context switch, the memory protection unit is 
permitted to cache the region tables loaded from memory internally. In this case, 
assigning a new value to the $pth register may result in the region table being loaded 
from the memory protection unit’s cache instead of from memory. This internal 
region table cache acts as a sort of TLB; so a memory barrier instruction is necessary 
in order to ensure that a region table is actually loaded from memory and not from the 
cache.

10.1.3 Preparing region table for use
In order to set up a region table, it must first be prepared in memory, and then its real 
address loaded into $pth.

A region table appears in memory as a sequence of 8 consecutive entries, each entry 
consisting of 3 consecutive long words in the current processor’s byte order and 
describing a single region of memory. The total size of a region table in memory is 
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always 8 * 3 * 8 = 192 bytes; the region table must be aligned at a 8-byte boundary 
regardless of whether a processor has unaligned operands feature or not.

A single 24-byte entry of a region table has the following format:

Individual fields within a region table entry have the following meaning:

 Virtual base – this is the higher 61 bits of a virtual address where the region 
described by this entry starts in a process’ virtual address space. The implied 
lower 3 bits of this address are always 0; therefore all regions are always 8-
byte aligned.

 Size – this value is one less than the size of the region. Therefore, the region 
covers the [<virtual base> .. <virtual base> + <size>] 
range of virtual addresses.

 Real base – this is the higer 61 bits of a real address where the region starts in 
real memory. As for the virtual address, the lower 3 bits of a real region base 
address are assumed to be 0.

 Rk, Wk and Xk – these bits are set to 1 iff a processor can, correspondingly, 
read from, write to or execute code from the corresponding region when in 
Kernel mode.

 Ru, Wu and Xu – these bits are set to 1 iff a processor can, correspondingly, 
read from, write to or execute code from the corresponding region when in 
User mode.

10.2 Virtual address translation
When a virtual address va is translated into a physical address, the following steps are 
performed:

1. All 8 of the region table entries held in the hidden registers of a memory 
protection unit are checked in parallel to determine if va is in range 
[<virtual base> .. <virtual base> + <size>) for each of 
them.

2. If none of the entries match, an IADDRESS or DADDRESS exception occurs, 
depending on whether instruction or data address was being translated.

3. Otherwise, the 3 access control bits of all matching entries are ORed together, 
forming an access control mask ACM. Depending on whether processor is in 
kernel or user mode, either kernel-mode (Rk, Wk and Xk) or user-mode (Ru, 
Wu and Xu) access control bits are used.
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4. ACM is checked to see if the required memory access is permitted. If not, an 
IACCESS or DACCESS exception occurs, depending on whether instruction 
or data address was being translated.

5. Otherwise, the real memory address is calculated as va - <virtual 
base> + <real base>. If more than one region table entry matches the 
virtual address va, and calculating real address for these matching entries 
yields different values, the result of address translation is undefined and an 
IADDRESS or DADDRESS exception occurs, depending on whether 
instruction or data address was being translated.

10.3 Aliasing
The memory protection unit specifically permits several disjoint virtual memory 
regions to refer to the same physical memory area. When this is the case, the same 
memory will appear to have the corresponding number of identical “copies” within a 
process address space.
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11 The virtual memory feature
Cereon virtual memory feature, when present, provides paged virtual memory with 
64-bit address space.

When a processor equipped with the virtual memory feature runs in virtual mode, 64-
bit memory addresses used by instructions do not refer to physical memory addresses. 
Instead, they are translated into physical memory addresses using combination of 
hardware and software.

11.1 Virtual memory concepts
The following hardware elements participate in virtual address translation:

 Page table format descriptor.
 Page table pointer.
 Translation-lookaside buffer (TLB).
 Current context ID (CID) in $state register.

11.1.1 Page table format descriptor
A special 64-bit value called a Page Table Format Descriptor specifies the format of 
the page table used by the processor. This Page Table Format Descriptor has the 
following layout:

Its fields have the following meanings:
 cnt – The number of fields in the virtual address. This value must be in range 

2..7.
 w(1)..w(7) – Address field width specifications. The field w(k) specifies 

how many address bits correspond to the kth field in the virtual address. Only 
elements w(1)..w(cnt) are used, since the virtual address only has cnt
fields. It is always the case that w(1)+w(2)+…+w(cnt-1)+w(cnt)<=64. 
Also, it is always the case that w(cnt)>=8.

When a virtual address is translated, it is first broken into a number of fields, as 
shown below:
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There are cnt fields altogether in the virtual address, their length in bits specified by 
corresponding width values in the page table format descriptor. If 
w(1)+w(2)+…+w(cnt-1)+w(cnt)<64, then virtual address contains less than 
64 significant bits (as is indeed the case in the example above). In this case the higher 
(unused) bits of a virtual address must all be zero, or an address translation exception 
occurs.

11.1.2 Page table header pointer
A 64-bit control register $pth specifies the physical address of the 16-byte data 
structure known as Page Table Header in a physical memory; the Page Table Header, 
in turn, specifies the page table format and the address of level 1 page table used by 
the processor.  In multi-level page tables each level k of the page table contains 2w(k)

entries.

A Page Table Header must be placed at a physical memory address that is a multiple 
of 8, regardless of whether an Unaligned feature is available or not. When this address 
is loaded into a $pth control register:

 The 64-bit value at address $pth is assumed to point to the level 1 page table.
 The 64-bit value at address $pth+8 is assumed to be a page table format 

descriptor.

When the $pth register is assigned a value, the Page Table Header is read from 
memory and stored in hidden processor registers, which are then used by virtual 
address translation mechanism.

11.1.3 Page table structure
For each level 1<=k<=cnt-2, every entry in level k page table specifies the 
physical address of level k+1 page table or 0 if the next level page table does not 
exist.

At the level before last, entries in the level cnt-2 page table are physical memory 
addresses of page descriptor tables. Each page descriptor table is a table containing 
2w(cnt-1) page descriptors, 8 bytes each. A page descriptor has the following format:

Individual fields within the lower byte of a page descriptor have the following 
meaning:

11.1.3.1 base
The upper 56 bits of the physical address of the corresponding page in the physical 
memory. The lower 8 bits of the page address are always assumed to be 0; therefore, a 
page always starts at a 256-byte boundary.
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11.1.3.2 A (accessed)
This bit is set to 1 whenever a virtual page is accessed. Paging software will usually 
set this bit to 0 when page is loaded into the physical memory and can later determine 
if the page has been used by examining this bit – if there were any accesses to the 
page the bit A will be 1.

11.1.3.3 D (dirty)
This bit is set to 1 whenever a virtual page is modified. Paging software will usually 
set this bit to 0 when page is loaded into the physical memory and can later determine 
if the page has been modified by examining this bit – if there were any write accesses 
to the page the bit A will be 1.

11.1.3.4 U (used)
This bit is 1 if the corresponding page exists, 0 if it does not.

11.1.3.5 L (loaded)
This bit is 1 if the corresponding page is currently in physical memory, 0 otherwise.

11.1.3.6 K (kernel)
This bit is 1 if this page can only be used in Kernel mode, 0 if it is available in User 
mode.

11.1.3.7 R (read)
This bit is 1 if data can be read from this page, 0 otherwise.

11.1.3.8 W (write)
This bit is 1 if data can be written to this page, 0 otherwise.

11.1.3.9 X (execute)
This bit is 1 if instructions can be executed from this page, 0 otherwise.

11.2 Virtual address translation
When a virtual address va is translated into a physical address, the following steps are 
performed:

1. The virtual address va is broken into individual fields a(1)..a(cnt)
according to the current page table format descriptor.

2. The 64-bit value pa is set to the page table pointer.
3. For each k from 1 to cnt-2 steps 4..6 are performed
4. The 64-bit value pp is loaded from the physical memory address 

pa+8*a(k). If the loading fails, the virtual address translation fails as well 
and a PAGETABLE exception occurs.

5. If pp=0, then virtual address translation fails and an address exception (either 
IADDRESS or DADDRESS depending on whether instruction or data virtual 
address is being translated) occurs.

6. Otherwise (i.e. pp<>0) assign pp to pa and continue the loop from step 4 if 
k<cnt-2.
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7. Load the 64-bit page descriptor pd from the physical memory address 
pa+8*a(cnt-1). If the loading fails, the virtual address translation fails as 
well and a PAGETABLE exception occurs.

8. If bit U of pd is 0, the page does not exist; the virtual address translation fails 
and an address exception (either IADDRESS or DADDRESS depending on 
whether instruction or data virtual address is being translated) occurs.

9. If bit L of pd is 0, the page is not currently in memory. This causes either
IPAGEFAULT or DPAGEFAULT exception, depending on whether 
instruction or data virtual address is being translated.

10. If bit L of pd is 1, the page is currently in memory. Bits K, R, W and X of pd
are used to check if a memory access should be allowed. If not, the virtual 
address translation fails and an access exception (either IACCESS or 
DACCESS depending on whether instruction or data virtual address is being 
translated) occurs.

11. The lowest w(cnt) bits of pd are replaced with a(cnt) and the result is 
then used as a physical memory address.

Although the virtual address translation rules may seem unwieldy, in reality virtual 
address translation are invariably assisted by Translation Lookaside Buffers (TLBs) 
with hit rates close to 100%, so the whole virtual address translation process has to be 
performed very infrequently. The main goal of the added flexibility was to allow fine-
tuning virtual memory mechanisms to suit a concrete process (for example, different 
processes can have different page table structures as well as different page sizes, all in 
order to further reduce TLB miss rates. A process that uses a 64K code segment, a 
64K data segment and a 64K stack segment may be set up with 3 64K virtual pages in 
its page table, in which case there will be no TLB misses at all).

11.3 Accessing virtual memory across page 
boundaries

Unless an Unaligned Operand feature is available, all instructions which load/store 
data from/to memory require the memory address (i.e. physical memory address in 
Real mode or virtual memory address in Virtual mode) to be a multiple of a data 
element size (i.e. a 16-bit integer value can be loaded from/stored to an even address, 
a full 64-bit integer value or a 64-bit IEEE floating point value require memory 
address to be a multiple of 8, etc.). A violation of this requirement causes a DALIGN
exception.

Similarly, an attempt to execute an instruction that does not start at a 4-byte boundary 
causes an IALIGN exception. Note that, unlike data alignment, instruction alignment 
is not subject to relaxation if an Unaligned Operand feature is available.

This, together with the virtual address translation algorithm, ensures that a program 
running in a Virtual mode never accesses memory across virtual page boundaries. 
Also, it is always the case that a virtual address which is a multiple of 2, 4 or 8 is 
always translated into a physical address which is a multiple of the same value.
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In the presence of an Unaligned Operand feature, the processor is responsible for 
breaking an unaligned memory access into a series of smaller aligned memory 
accesses.
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12 Interrupts and exceptions
Cereon supports 6 interrupt types, summarized in the table below.

Interrupt no. Name Type Source

0 TIMER Asynchronous Interrupt timer

1 IO Asynchronous I/O controllers

2 SVC Synchronous User program

3 PROGRAM Synchronous Program

4 EXTERNAL Asynchronous External source

5 HARDWARE Asynchronous Hardware fault

These interrupts are described in detail below.

12.1 TIMER
This interrupt is generated when $itc reaches zero.

12.2 IO
The IO interrupt occurs when an I/O controller sends an interrupt signal to one of I/O 
ports is uses.

The associated Interrupt Status Code saved in the $isc.io register has the 
following format:

The meaning of individual fields within the $isc.io register is explained below.

12.2.1 Port
This field stores the 16-bit address of an I/O port where the IO interrupt has 
originated.

12.2.2 I/O status code
This field stores the 16-bit status code associated with the IO interrupt. This status 
code is set by whatever component has triggered the IO interrupt and can be used to 
determine its cause.
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12.3 SVC
This interrupt is generated when a SVC instruction is executed.

The instruction pointer saved in $isaveip.svc when the SVC interrupt occurs 
refers to the instruction just after the svc instruction that has caused the SVC 
interrupt.

12.4 PROGRAM
This interrupt is generated when an instruction cannot be executed for some reason. 
Since this interrupt is always generated during an execution of an erroneous 
instruction (i.e. when the $ip has already been advanced to the next instruction), the 
$isaveip.prg register in an interrupt handler actually refers to the instruction 
which follows the one that has caused the PROGRAM interrupt.

The associated Interrupt Status Code saved in the $isc.prg register is a 64-bit 
value describing the cause of the PROGRAM interrupt (also known as an exception 
code). The list of exception codes and situations that lead to these exceptions is given 
in Appendix B to this document.

12.5 EXTERNAL
This interrupt is generated when an external signal arrives. Specifically, this occurs 
when a processor sends a signal to itself or another processor.

The associated Interrupt Status Code saved in the $isc.prg register is a 64-bit 
value describing the cause of the EXTERNAL interrupt. The higher 16 bits of this 
value always represent the external interrupt type, while the lower 48 bits may contain 
additional information about the cause of an external interrupt. The format and 
interpretation of this additional information is specific to a given external interrupt 
type. The list of external interrupt types and the rules for interpreting the additional 
interrupt information for each of these types is given in Appendix C to this document.

12.6 HARDWARE
This interrupt is generated when a hardware fault occurs.

The associated Interrupt Status Code saved in the $isc.hw register is a 64-bit value 
describing the cause of the HARDWARE interrupt. The list of hardware error codes and 
situations that lead to these errors being detected is given in Appendix D to this 
document.

12.7 Interrupt handlers
For each of the 6 supported interrupt types <t>, 4 control registers are used for 
handling interrupts of that type.

When an interrupt <t> occurs, the following steps are performed:

1. $isaveip.<t> = $ip (save instruction pointer).
2. $isavestate.<t> = $state (save processor state).
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3. $isc.<t> = interrupt status code if one is available (this step is skipped 
for TIMER and SVC interrupts, as these have no associated status codes).

4. $state = $eihstate.<t> (change processor state to handle an 
interrupt).

5. $ip = $iha.<t> (jump to interrupt handler).

When returning from an interrupt <t> handler, the following steps are performed:

1. $ip = $isaveip.<t> (restore instruction pointer).
2. $state = $isavestate.<t> (restore processor state).

12.8 Interrupt masking
Bits 26..31 of the processor state $state contain interrupt mask for 6 supported 
interrupts (bit 26<=N<=31 corresponds to interrupt N-26). If the bit is 1, the 
corresponding interrupt is enabled; otherwise it is masked.

The following table summarizes the interrupt processing rules with regard to interrupt 
masking:

Interrupt Reaction if masked

TIMER The interrupt is postponed until such time as it becomes 
enabled.

IO

The interrupt is left pending until some processor core within 
the same processor is ready to handle it (i.e. it enables IO
interrupt), some processor core within the same processor 
handles it by polling or some DMA channel within the same 
processor has started to handle it. Note, that the I/O port that 
has originated the interrupt will not be able to perform any 
further I/O until the IO interrupt is handled or the I/O port is 
reset.

SVC The MASKED exception occurs.

PROGRAM The processor is halted.

EXTERNAL

The behaviour depends on the type of an external interrupt. 
Generally, processors just ignore external interrupts when 
these are disabled. However, a sender of the external signal 
may choose to stall until the external signal has been accepted 
by the destination processor core.

HARDWARE The processor is halted.

12.9 Synchronous and asynchronous interrupts
Synchronous interrupts are always the result of execution of some instruction. 
Asynchronous interrupts can occur at any time, as they originate from sources 
external to the processor.
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Cereon delays processing of asynchronous interrupts until the beginning of the next 
instruction cycle.
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13 I/O Subsystem
The connection between Cereon and the outside world consists of several layers:

 I/O ports, which provide the processor with means of communicating to the 
outside world.

 I/O controllers, which connect to I/O ports and manage I/O devices.
 I/O devices, which perform actual I/O operations.

13.1 Overview
This section provides a general overview of the Cereon I/O subsystem.

13.1.1 I/O ports
Each processor has a 16-bit I/O address space, which is independent of the main 
memory address space. The I/O address space provides 65536 independently 
addressable locations, any of which can be either unused or can have an I/O port 
attached there.

In a multiprocessor machine each processor has an independent set of I/O ports. It is, 
however, possible to connect I/O ports of different processors (or, indeed, different 
I/O ports of the same processor) to each other via a dedicated adapter (also known as 
port-to-port adapter), thus providing an additional datapath between these ports that 
bypasses the memory bus.

In a multi-core processors, there is a single I/O address space per processor, shared by 
all cores. All I/O instructions issued by any of these cores for a specific I/O port lock 
that I/O port for the duration of the I/O instruction execution, so two or more cores 
belonging to the same processor cannot perform I/O at the same I/O port at the same 
time.

When an I/O port is read from or written to, the size of the value being read or written 
(i.e. byte, half-word, word or long word) is made available to the I/O port in question. 
Some I/O ports may allow only values of a specific size to be read or written (e.g. 
byte ports of older I/O controllers will typically ignore all attempt to read or write 
multi-byte values), while other I/O ports may be able to handle values of different 
sizes.

13.1.2 I/O controllers
An I/O controller is a component that talks to a processor through one or more ports 
and, in doing so, manages some number of I/O devices. Each specific type of I/O 
device (or a closely related family of I/O device types) usually needs its own 
controller.

Depending on the model, an I/O controller can provide one or more ports, each port 
occupying one slot in the processor’s I/O address space.
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13.1.3 DMA channels
A DMA channel is a hardware component that allows data to be transferred between 
memory and I/O devices without the participation of the main processor core. This 
allows I/O to be performed in parallel with other work.

The exact number of available DMA channels is dependent on the model of 
processor; some smaller versions of Cereon processors may come entirely without 
any DMA channels. When DMA channels are present, each DMA channel presents an 
alternative datapath between the I/O ports of a specific processor and main memory 
bus. In a multiprocessor machine each processor has an independent set of DMA 
channels.

Like processor cores, DMA channels lock I/O ports they are currently accessing. 
Unlike processor cores, DMA channels can be instructed to perform a burst transfer of 
a sequence of bytes from or to a specific I/O port; in which case the I/O port remains 
locked for the duration of the burst.

From a technical point of view, a DMA channel is a simple peripheral processor that 
can execute DMA programs written in its own DMA instruction set. This instruction 
set is not related to the general Cereon instruction set understood by main processor
cores, but is instead geared towards data transfer between memory and I/O ports.

A typical sequence of actions during DMA-assisted I/O is following:

 At some point during program execution, the processor decides to perform an 
I/O.

 The processor initiates the I/O by talking to an appropriate I/O controller 
through the I/O port where that controller is attached.

 The actual data transfer must occur some time after the I/O has been initiated. 
Depending on the I/O controller involved in the I/O, the point when the data 
transfer must commence can be immediately after I/O has been initiated, some 
known time after the I/O has been initiated, or a controller may generate an 
I/O interrupt to signal the processor that it is ready to transfer data. In all 
cases, processor can perform other tasks until it’s time to transfer data.

 The processor then selects an unused DMA channel and programs it to oversee 
the data transfer. DMA channels are programmed by means of dedicated 
DMA controller which to all purposes looks much like any other I/O controller 
– the only difference being that devices managed by the DMA controller are 
DMA channels.

 Once the DMA controller has been programmed and started, processor can go 
and do some other work. The DMA controller will transfer data between 
memory and I/O ports as specified by a dedicated DMA program. DMA 
programs can vary from a simple transfer of several bytes to complicated 
transfer of data from/to different memory areas with full error handling along 
the way.

 Once the DMA channel has finished (either because all the required data has 
been transferred and the DMA program has ended, or because an I/O error has 
been detected), the DMA channel raises an I/O interrupt of its own. This 
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signals the end of data transfer to the processor and allows it to take whatever 
actions are necessary to finalize the I/O (for example, to handle an I/O error).

All data transfer performed by DMA channels uses I/O ports of the processor to 
which these DMA channels belong. Therefore, from the point of view of an I/O 
controller attached to these I/O ports, it is impossible to tell whether data read from or 
written to a specific I/O port were read/written by a main processor or by a DMA 
channel impersonating that processor for I/O purposes. This significantly simplifies 
I/O port and controller logic.

13.2 I/O ports
Each Cereon processor has a 16-bit I/O address space, shared by all processor cores. 
Any of these addresses can have an actual I/O port behind it (attached I/O address), 
but in a typical processor most of I/O addresses will not have a corresponding I/O port 
(detached I/O addresses).

13.2.1 I/O port state
Unlike ports found in mainstream workstations, Cereon I/O ports keep information 
about their internal state. This information is:

 A 1-bit flag indicating whether the I/O port is allowed to interrupt processor 
cores (1) or not (0). When this flag is 0, I/O interrupts from the I/O port in 
question are not dispatched to running processor cores even if the latter are 
prepared to handle an IO interrupt. In this mode, the only way to detect and
handle an I/O interrupt from the I/O port is for processor core or DMA 
channel to poll the I/O port for interrupt.

 A 1-bit flag indicating whether an I/O interrupt is currently pending in the I/O 
port (1) or not (0). If an I/O interrupt is pending in the I/O port, no data 
transmission through that I/O port is possible, any write to the I/O port is 
ignored and any read from the I/O port returns 0.

 A 16-bit interrupt status code, which identifies the cause of an I/O interrupt. 
When an I/O interrupt is handled (as a result of either IO interrupt occurring
in a processor core, or I/O port being polled for interrupts), the handler can 
examine the I/O port’s interrupt status code to determine what caused an I/O 
interrupt.

Only one interrupt can be pending in any single I/O port at any given time. An 
attempt to raise another IO interrupt at the same I/O port causes the new I/O interrupt 
to become pending and the old one to be lost.

An attempt to obtain state information for an I/O address which does not have an I/O 
port behind it always returns the all-zero state (I/O interrupts disabled, no I/O 
interrupt pending, interrupt status code 0). An attempt to modify status information 
for such an I/O address is ignored.

13.2.2 I/O port assignment
The assignment of addresses to I/O ports is arbitrary and depends on the machine 
where Cereon processor is being used. The only exception to this rule is in that I/O 
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addresses 000016..00FF16 (i.e. the lowest 256 I/O addresses) are reserved for the 
devices internal to the processor rather than external to it (such as DMA controller).

13.3 DMA channels
As already mentioned, a DMA channel is a small special-purpose processor core 
housed within the processor alongside main processor cores. Unlike these main 
processor cores, a DMA channel cannot perform the full set of operations on data; 
however, the facilities a DMA channel provides are sufficient to start and maintain 
data transfer between main memory and I/O ports, perform simple error checking and 
effect simple I/O control logic if necessary.

13.3.1 Programmer’s model

13.3.1.1 Registers
The DMA channel has 6 64-bit registers:

 The $ip (instruction pointer) register holds the address of a channel 
instruction to be executed next.

 The $state register holds the current state of a DMA channel.
 The 4 general purpose registers r0..r3 can be used to hold memory addresses, 

I/O port addresses, data transferred between memory and I/O devices, or any 
other information. DMA channels always use physical memory addresses, 
whether or not some, or all, of the main processor cores are in Real or Virtual 
mode.

Note that, although names of DMA registers are the same as names of some general 
purpose or control registers, no confusion arises; each register name is interpreted 
depending whether it occurs in a “normal” instruction or in a DMA channel 
instruction.

13.3.1.2 Accessing registers
Registers of any single DMA channel are mapped onto a 8-byte area within 
processor’s I/O address space. This mapping is performed as follows (offsets are 
given in bytes, starting from the lowest I/O address):

A single processor can host up to 4 independent DMA channels, whose I/O areas are, 
respectively 0..7, 8..15, 16..23 and 24..31. So, for example, to access the register r0
of DMA channel 1, the long word shall be read from or written to I/O port 12.

Other that being assigned to DMA channel registers, the I/O ports in range 0..31 are 
no different from other I/O ports. In particular, I/O interrupts can be raised on any of 
these I/O ports, which is a standard method of signalling to processor core(s) that a 
DMA channel has finished its work or has detected an I/O error.
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If one of the DMA channels 0..3 is not installed, its $state register always reads 
000000000000000016.

13.3.1.3 DMA channel state

The $state register of a DMA channel has the following format:

The meaning of individual fields within the $state register is explained below.

13.3.1.3.1 P (Present)
This bit is hardwired to 1 for each existing DMA channel. Its presence allows the 
processor core(s) to determine whether a specific DMA channel 0..3 exists by reading 
from the corresponding $state register and checking whether its value is zero 
(DMA channel does not exist) or nonzero (DMA channel exists).

13.3.1.3.2 B (Big-endian)
When this bit is 1, the DMA channel uses the big-endian byte ordering when 
transferring data to and from memory; otherwise the little-endian byte ordering is 
used. These bits can be hardwired if a byte order of a DMA channel cannot be 
changed; in this case the byte order of the main processor core(s) is usually hardwired 
to the same value.

13.3.1.3.3 W (Working)
When this bit is 1, the DMA is in Working mode; otherwise it is in Idle mode. When 
in Working mode, DMA channel fetches and executes channel instructions. When in 
Idle mode, DMA channel does nothing.

This bit can be not only read (to determine whether a DMA channel is currently busy) 
but written to as well. Changing this bit from 0 to 1 causes the DMA channel to start 
executing a channel program from the current $ip address, which is a standard way 
of starting a DMA-assisted I/O. Changing this bit from 1 to 0 causes the DMA 
channel to stop immediately, which is a standard way of terminating a DMA-assisted 
I/O before its completion.

13.3.2 Channel programs
A channel program is a sequence of channel instructions that can be executed by a 
DMA channel. Each channel instruction is always 4 bytes long and must be aligned at 
a 4-byte boundary. When fetched by a DMA channel, the instruction is read as a 
single 32-bit value in either big-endian or little-endian mode, depending on the 
current byte order used by the DMA channel.

13.3.2.1 dma.stop (DMA stop)
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Sets the W bit of the DMA $state register to 0, effectively stopping the DMA 
channel. Then raises a DMA interrupt to signal the fact to the processor core(s). See 
the “DMA interrupts” section for more information about DMA interrupts.

13.3.2.2 dma.t.b (DMA transfer bytes)

This instruction performs a burst transfer of count bytes from the source src to 
destination dst.

Both src and dst are 4-bit fields that specify operand type 0..3 in the upper 2 bits 
and a register number 0..3 in the lower 2 bits. The register number always refers to 
one of the DMA channel’s registers r0..r3.

13.3.2.2.1 002 – I/O port

If an operand type is 002, the lower 16 bits of the specified register refer to a byte I/O 
port. When such operand is used as a source, a byte is read from the corresponding 
I/O port. When such operand is used as a destination, a byte is written to the 
corresponding I/O port.

13.3.2.2.2 012 – Memory

If an operand type is 012, the specified register refers to a physical memory address. 
When such operand is used as a source, a byte is read from that physical memory 
address. When such operand is used as a destination, a byte is written to that physical 
memory address.

13.3.2.2.3 102 – Memory post-increment

If an operand type is 102, the specified register refers to a physical memory address 
and is incremented by 1 after each memory access. When such operand is used as a 
source, a byte is read from that physical memory address and the DMA register is 
incremented by 1. When such operand is used as a destination, a byte is written to that 
physical memory address and the DMA register is incremented by 1.

13.3.2.2.4 112 – Memory pre-decrement

If an operand type is 112, the specified register refers to a physical memory address 
and is decremented by 1 before each memory access. When such operand is used as a 
source, the DMA register is decremented by 1 and a byte is read from that physical 
memory address. When such operand is used as a destination, the DMA register is 
decremented by 1 and a byte is written to that physical memory address. 

13.3.2.2.5 Operand type combinations
The most common combination of operand types is when one of them is an I/O port 
and another is a post-incremented memory address. In this configuration, data is 
transferred from a continuous memory area to an I/O port or from an I/O port to a 
continuous memory area.
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Nevertheless, any combination of operand types is permitted. For example, having 
both operands to refer to I/O ports allows transferring data from one I/O device to 
another without having to store the data in memory. Similarly, having both operands 
to refer to a post-incremented (or pre-decremented) memory addresses will cause the 
DMA channel to copy one memory area into another (in either forward or reverse 
order) without any drain on main processor core resources.

A special case of operand type combination is when both operands are post-
incremented and/or pre-decremented and they both refer to the same DMA register. In 
this case the side effects caused by the source operand are guaranteed to occur before 
side effects caused by the destination operand. For example, if destination is a post-
incremented register r0 and source is a pre-decremented register r0, then r0 will be 
decremented before reading a byte, then post-decremented after writing a byte, which 
has the effect of copying a byte from memory into itself.

13.3.2.3 dma.t.h (DMA transfer half-words)

This instruction performs a burst transfer of count half-words from the source src
to destination dst.

Both src and dst are 4-bit fields that specify operand type 0..3 in the upper 2 bits 
and a register number 0..3 in the lower 2 bits. The rules for the interpretation of 
operand types are the same as those used by dma.t.b instruction, except post-
increment and pre-decrement operand types cause the address register to be 
incremented or decremented by 2 (a size of a half-word) instead of 1.

13.3.2.4 dma.t.w (DMA transfer words)

This instruction performs a burst transfer of count words from the source src to 
destination dst.

Both src and dst are 4-bit fields that specify operand type 0..3 in the upper 2 bits 
and a register number 0..3 in the lower 2 bits. The rules for the interpretation of 
operand types are the same as those used by dma.t.b instruction, except post-
increment and pre-decrement operand types cause the address register to be 
incremented or decremented by 4 (a size of a word) instead of 1.

13.3.2.5 dma.t.l (DMA transfer long words)
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This instruction performs a burst transfer of count long words from the source src
to destination dst.

Both src and dst are 4-bit fields that specify operand type 0..3 in the upper 2 bits 
and a register number 0..3 in the lower 2 bits. The rules for the interpretation of 
operand types are the same as those used by dma.t.b instruction, except post-
increment and pre-decrement operand types cause the address register to be 
incremented or decremented by 8 (a size of a word) instead of 1.

13.3.2.6 dma.vt.b (DMA variable-length transfer bytes)

This instruction is similar to dma.t.b except the number of bytes to transfer is 
specified as a contents of a DMA register len (0..3) instead of a constant. Unlike 
dma.t.b, the dma.vt.b instruction allows to specify a transfer of more than 232

bytes in one instruction.

13.3.2.7 dma.vt.h (DMA variable-length transfer half-words)

This instruction is similar to dma.th except the number of half-words to transfer is 
specified as a contents of a DMA register len (0..3) instead of a constant. Unlike 
dma.t.h, the dma.vt.h instruction allows to specify a transfer of more than 232

half-words in one instruction.

13.3.2.8 dma.vt.w (DMA variable-length transfer words)

This instruction is similar to dma.tw except the number of words to transfer is 
specified as a contents of a DMA register len (0..3) instead of a constant. Unlike 
dma.t.w, the dma.vt.w instruction allows to specify a transfer of more than 232

words in one instruction.

13.3.2.9 dma.vt.l (DMA variable-length transfer long words)

This instruction is similar to dma.t.l except the number of long words to transfer is 
specified as a contents of a DMA register len (0..3) instead of a constant. Unlike 
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dma.t.l, the dma.vt.l instruction allows to specify a transfer of more than 232

long words in one instruction.

13.3.2.10 dma.l.b (DMA load byte)

This instruction reads a single byte from the source src, sign-extends it to 64 bits and 
places the result into the DMA register dst.

The 4-bit field src specifies the operand type and DMA register using the same rules 
as dma.t.b.

13.3.2.11 dma.l.ub (DMA load unsigned byte)

This instruction reads a single byte from the source src, zero-extends it to 64 bits 
and places the result into the DMA register dst.

The 4-bit field src specifies the operand type and DMA register using the same rules 
as dma.t.b.

13.3.2.12 dma.l.h (DMA load half-word)

This instruction reads a half-word from the source src, sign-extends it to 64 bits and 
places the result into the DMA register dst.

The 4-bit field src specifies the operand type and DMA register using the same rules 
as dma.t.h.

13.3.2.13 dma.l.uh (DMA load unsigned half-word)

This instruction reads a half-word from the source src, zero-extends it to 64 bits and 
places the result into the DMA register dst.

The 4-bit field src specifies the operand type and DMA register using the same rules 
as dma.t.h.
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13.3.2.14 dma.l.w (DMA load word)

This instruction reads a word from the source src, sign-extends it to 64 bits and 
places the result into the DMA register dst.

The 4-bit field src specifies the operand type and DMA register using the same rules 
as dma.t.w.

13.3.2.15 dma.l.uw (DMA load unsigned word)

This instruction reads a word from the source src, zero-extends it to 64 bits and 
places the result into the DMA register dst.

The 4-bit field src specifies the operand type and DMA register using the same rules 
as dma.t.w.

13.3.2.16 dma.l.l (DMA load long word)

This instruction reads a long word from the source src into the DMA register dst.

The 4-bit field src specifies the operand type and DMA register using the same rules 
as dma.t.l.

13.3.2.17 dma.s.b (DMA store byte)

This instruction stores the lower byte of a DMA register src to the destination dst.

The 4-bit field dst specifies the operand type and DMA register using the same rules 
as dma.t.b.

13.3.2.18 dma.s.h (DMA store half-word)
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This instruction stores the lower half-word of a DMA register src to the destination 
dst.

The 4-bit field dst specifies the operand type and DMA register using the same rules 
as dma.t.h.

13.3.2.19 dma.s.w (DMA store word)

This instruction stores the lower word of a DMA register src to the destination dst.

The 4-bit field dst specifies the operand type and DMA register using the same rules 
as dma.t.w.

13.3.2.20 dma.s.l (DMA store long word)

This instruction stores the DMA register src to the destination dst.

The 4-bit field dst specifies the operand type and DMA register using the same rules 
as dma.t.l.

13.3.2.21 dma.li.l (DMA load immediate long word)

This instruction sign-extends the immediate value to 64 bits and places the result 
into the DMA register dst.

13.3.2.22 dma.add.l (DMA add long word)

This instruction adds the contents of DMA registers op1 and op2 and places the 
result into DMA register dst. An overflow, if one occurs, is ignored with a wrap-
around.
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13.3.2.23 dma.sub.l (DMA subtract long word)

This instruction subtracts the contents of DMA register op2 from DMA register op1
and places the result into DMA register dst. An overflow, if one occurs, is ignored 
with a wrap-around.

13.3.2.24 dma.and.l (DMA bitwise and long word)

This instruction performs a bitwise logical AND over the contents of DMA registers 
op1 and op2 and places the result into DMA register dst.

13.3.2.25 dma.or.l (DMA bitwise or long word)

This instruction performs a bitwise logical OR  over the contents of DMA registers 
op1 and op2 and places the result into DMA register dst.

13.3.2.26 dma.xor.l (DMA bitwise exclusive or long word)

This instruction performs a bitwise logical Exclusive Or over the contents of DMA 
registers op1 and op2 and places the result into DMA register dst.

13.3.2.27 dma.addi.l (DMA add immediate long word)

This instruction adds the contents of DMA register op1 and an immediate value 
and places the result into DMA register dst. An overflow, if one occurs, is ignored 
with a wrap-around. The immediate value is sign-extended to 64 bits before 
addition.
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13.3.2.28 dma.subi.l (DMA subtract immediate long word)

This instruction subtracts the immediate value from DMA register op1 and places 
the result into DMA register dst. An overflow, if one occurs, is ignored with a wrap-
around. The immediate value is sign-extended to 64 bits before subtraction.

13.3.2.29 dma.andi.l (DMA and immediate long word)

This instruction performs a bitwise logical AND over the contents of DMA register 
op1 and immediate value and places the result into DMA register dst. The 
immediate value is zero-extended to 64 bits before conjunction.

13.3.2.30 dma.ori.l (DMA or immediate long word)

This instruction performs a bitwise logical OR over the contents of DMA register 
op1 and immediate value and places the result into DMA register dst. The 
immediate value is zero-extended to 64 bits before disjunction.

13.3.2.31 dma.xori.l (DMA exclusive or immediate long word)

This instruction performs a bitwise logical Exclusive OR over the contents of DMA 
register op1 and immediate value and places the result into DMA register dst. 
The immediate value is zero-extended to 64 bits before exclusive disjunction.

13.3.2.32 dma.neg.l (DMA negate long word)

This instruction stores the 2’s complement of the contents of DMA register op1 and 
into DMA register dst.
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13.3.2.33 dma.not.l (DMA not long word)

This instruction stores the 1’s complement of the contents of DMA register op1 and 
into DMA register dst.

13.3.2.34 dma.tstp (DMA Test Port status)

Using the lower 16 bits of DMA register port as an I/O address, tests the current 
state of the I/O port at that address. The contents of DMA register dst is then 
modified as follows:

 Bit 0 (lowest) is set to 1 is there is an I/O port at the specified I/O address, or 
to 0 if there is no I/O port at the specified I/O address.

 Bit 1 is set to 1 if there is a pending interrupt in the I/O port at the specified 
I/O address, or to 0 if there is no pending interrupt there.

 Bit 2 is set to a if I/O interrupts are currently enabled in the I/O port at the 
specified address, or to 0 if they are disabled.

 Bits 3..15 and 32..63 are set to 0.
 If there is a pending interrupt in the port, bits 16..31 are set to the interrupt 

status code pending on the port and the interrupt is released (i.e. no longer 
pending on the I/O port). If there is no pending interrupt there, bits 16..31 are 
set to 0.

13.3.2.35 dma.setp (DMA Set Port status)

Using the lower 16 bits of DMA register port as an I/O address, sets the current 
state of the I/O port at that address. The contents of DMA register src is used to 
determine how the port state shall be set:

 If bit 1 is 1, the interrupt is made pending on the I/O port. Bits 16..31 of the 
DMA register src are used as an interrupt status code. If this bit is 0, the 
instruction has no effect on whether or not an interrupt is pending on the I/O 
port.

 If bit 2 is 1, I/O interrupts are enabled in the I/O port at the specified address. 
If this bit is 0, I/O interrupts are disabled.

 Bits 0, 3..15 and 32..63 are ignored.
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13.3.2.36 dma.j (DMA Jump)

This instruction adds the value (offset << 2) to the DMA register $ip, 
effectively causing an unconditional jump. The offset is sign-extended to 64 bits 
before addition.

13.3.2.37 dma.beq.l (DMA branch on equal long word)

This instruction compares the values of DMA registers op1 and op2 and, if they are 
found to be equal, adds the value (offset << 2) to the DMA register $ip. The 
offset is sign-extended to 64 bits before addition.

13.3.2.38 dma.bne.l (DMA branch on not equal long word)

This instruction compares the values of DMA registers op1 and op2 and, if they are 
found to be not equal, adds the value (offset << 32 to the DMA register $ip. 
The offset is sign-extended to 64 bits before addition.

13.3.2.39 dma.blt.l (DMA branch on less than)

This instruction compares the values of DMA registers op1 and op2 and, if the first 
is less than the second, adds the value (offset << 2) to the DMA register $ip. 
The offset is sign-extended to 64 bits before addition. Operands are compared as 
signed integer values.

13.3.2.40 dma.ble.l (DMA branch on less than or equal long word)

This instruction compares the values of DMA registers op1 and op2 and, if the first 
is less than or equal to the second, adds the value (offset << 2) to the DMA 
register $ip. The offset is sign-extended to 64 bits before addition. Operands are 
compared as signed integer values.
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13.3.2.41 dma.bgt.l (DMA branch on greater than long word)

This instruction compares the values of DMA registers op1 and op2 and, if the first 
is greater than the second, adds the value (offset << 2) to the DMA register $ip. 
The offset is sign-extended to 64 bits before addition. Operands are compared as 
signed integer values.

13.3.2.42 dma.bge.l (DMA branch on greater than or equal long word)

This instruction compares the values of DMA registers op1 and op2 and, if the first 
is greater than or equal to the second, adds the value (offset << 2) to the DMA 
register $ip. The offset is sign-extended to 64 bits before addition. Operands are 
compared as signed integer values.

13.3.2.43 dma.blt.ul (DMA branch on less than unsigned long word)

This instruction compares the values of DMA registers op1 and op2 and, if the first 
is less than the second, adds the value (offset << 2) to the DMA register $ip. 
The offset is sign-extended to 64 bits before addition. Operands are compared as 
unsigned integer values.

13.3.2.44 dma.ble.ul (DMA branch on less than or equal unsigned
long word)

This instruction compares the values of DMA registers op1 and op2 and, if the first 
is less than or equal to the second, adds the value (offset << 2) to the DMA 
register $ip. The offset is sign-extended to 64 bits before addition. Operands are 
compared as unsigned integer values.

13.3.2.45 dma.bgt.ul (DMA branch on greater than unsigned long 
word)
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This instruction compares the values of DMA registers op1 and op2 and, if the first 
is greater than the second, adds the value (offset << 2) to the DMA register $ip. 
The offset is sign-extended to 64 bits before addition. Operands are compared as 
unsigned integer values.

13.3.2.46 dma.bge.ul (DMA branch on greater than or equal unsigned
long word)

This instruction compares the values of DMA registers op1 and op2 and, if the first 
is greater than or equal to the second, adds the value (offset << 2) to the DMA 
register $ip. The offset is sign-extended to 64 bits before addition. Operands are 
compared as unsigned integer values.

13.3.2.47 dma.shl.l (DMA shift left long word)

This instruction shifts the contents of DMA register op1 left by the number of bits 
specified by the DMA register op2 and places the result into DMA register dst. The 
shift counter is treated as an unsigned integer quantity with all bits significant. New 
bits introduced by shift are set to 0.

13.3.2.48 dma.shr.l (DMA shift right long word)

This instruction shifts the contents of DMA register op1 right by the number of bits 
specified by the DMA register op2 and places the result into DMA register dst. The 
shift counter is treated as an unsigned integer quantity with all bits significant. New 
bits introduced by shift are set to 0.

13.3.2.49 dma.asl.l (DMA arithmetic shift left long word)

This instruction shifts the contents of the lower 63 bits of the DMA register op1 left 
by the number of bits specified by the DMA register op2 and places the result into 
DMA register dst. The shift counter is treated as an unsigned integer quantity with 
all bits significant. New bits introduced by shift left are set to 0.
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13.3.2.50 dma.asr.l (DMA arithmetic shift right long word)

This instruction shifts the contents of DMA register op1 right by the number of bits 
specified by the DMA register op2 and places the result into DMA register dst. The 
shift counter is treated as an unsigned integer quantity with all bits significant. New 
bits introduced by shift right are set to the copy of the original sign bit of DMA 
register op1.

13.3.2.51 dma.rol.l (DMA rotate left long word)

This instruction rotates  the contents of DMA register op1 left by the number of bits 
specified by the DMA register op2 and places the result into DMA register dst. The 
shift counter is treated as an unsigned integer quantity with all bits significant; 
negative shift counter causes rotation in the opposite direction. Bits are rotated, i.e. 
each new bit introduced at one end of the shifted value is a copy of the bit pushed out 
of the other end by the shift.

13.3.2.52 dma.ror.l (DMA rotate right long word)

This instruction rotates  the contents of DMA register op1 right by the number of bits 
specified by the DMA register op2 and places the result into DMA register dst. The 
shift counter is treated as an unsigned integer quantity with all bits significant; 
negative shift counter causes rotation in the opposite direction. Bits are rotated, i.e. 
each new bit introduced at one end of the shifted value is a copy of the bit pushed out 
of the other end by the shift.

13.3.2.53 dma.shli.l (DMA shift left long word immediate)

This instruction shifts the contents of DMA register op1 left by the number of bits 
specified by the imm and places the result into DMA register dst. The shift counter 
is treated as an unsigned integer quantity with all bits significant. New bits introduced 
by shift are set to 0.
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13.3.2.54 dma.shri.l (DMA shift right long word immediate)

This instruction shifts the contents of DMA register op1 right by the number of bits 
specified by the imm and places the result into DMA register dst. The shift counter 
is treated as an unsigned integer quantity with all bits significant. New bits introduced 
by shift are set to 0.

13.3.2.55 dma.asli.l (DMA arithmetic shift left long word immediate)

This instruction shifts the contents of the lower 63 bits of the DMA register op1 left 
by the number of bits specified by the imm and places the result into DMA register 
dst. The shift counter is treated as an unsigned integer quantity with all bits 
significant. New bits introduced by shift left are set to 0.

13.3.2.56 dma.asri.l (DMA arithmetic shift right long word immediate)

This instruction shifts the contents of DMA register op1 right by the number of bits 
specified by the imm and places the result into DMA register dst. The shift counter 
is treated as an unsigned integer quantity with all bits significant. New bits introduced 
by shift right are set to the copy of the original sign bit of DMA register op1.

13.3.2.57 dma.roli.l (DMA rotate left long word immediate)

This instruction rotates  the contents of DMA register op1 left by the number of bits 
specified by the imm and places the result into DMA register dst. The shift counter 
is treated as an unsigned integer quantity with all bits significant; negative shift 
counter causes rotation in the opposite direction. Bits are rotated, i.e. each new bit 
introduced at one end of the shifted value is a copy of the bit pushed out of the other 
end by the shift.

13.3.2.58 dma.rori.l (DMA rotate right long word immediate)
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This instruction rotates  the contents of DMA register op1 right by the number of bits 
specified by the imm places the result into DMA register dst. The shift counter is 
treated as an unsigned integer quantity with all bits significant; negative shift counter 
causes rotation in the opposite direction. Bits are rotated, i.e. each new bit introduced 
at one end of the shifted value is a copy of the bit pushed out of the other end by the 
shift.

13.3.3 DMA interrupts
A DMA interrupt is an I/O interrupt on an I/O port assigned to a DMA channel that 
signals an unusual or erroneous condition detected during execution of a channel 
program. DMA interrupts for a DMA channel are always raised on the lowest-address 
I/O port assigned to that DMA channel (i.e. I/O port 0 for DMA channel 0, I/O port 8
for DMA channel 1, etc.)

The interrupt status code of a DMA interrupt reflects upon the cause of the DMA 
interrupt. By convention, the interrupt status code 0 means “channel program 
completed successfully”, while other interrupt status codes signify a premature 
termination of a channel program due to some error.

The full list of errors that can occur during channel program execution, along with 
associated interrupt status codes, can be found in an Appendix E to this document.
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14 The on-chip memory
The On-Chip Memory (henceforth abbreviated as OCM) provides an ability to assign 
one or more regions within a physical 64-bit memory address space to a high-
performance integrated memory. From the program’s point of view, these regions can 
be accessed just like any “normal” memory; however, OCM offers a much smaller 
worst-case latency (such as 1 or 2 CPU cycles against the 6+ bus cycles of the “main” 
memory), as it operates at CPU core speed and not at a memory bus speed (typically, 
OCM memory will be embedded into the processor chip; hence the name “On-Chip 
Memory”). In a typical real-time system, OCM will contain interrupt handlers as well 
as time-critical code and data, thus reducing the memory latency in using these 
artefacts.

In effect, assigning an OCM memory block to a specific region within a processor’s 
address space means that all accesses (including instruction fetches, as well as data 
loads and stores) made to this region will access OCM instead of the “real” memory. 
The price to pay for this illusion is in that an OCM block cannot, whether wholly or 
partially, overlap physical memory addresses where “real” memory is available. As a 
consequence, each byte of memory that exists is either in cache or OCM, but never 
both.

Note that, by definition, OCM lives “in parallel” with the caches (if ones are provided 
by the particular Cereon model), so OCM is never cached, in order to make memory 
access times more predictable.

In a multi-core configuration, there is one OCM per processor, shared by all cores. In 
a multi-processor configuration, each processor has its own OCM. The latter means 
that shared data (in particular, lock variables used by the xchg instruction) shall 
never be placed into OCM.

14.1 OCM and virtual mode
The OCM memory, if used, is always mapped into continuous regions of a physical 
address space. Among other things, this means that a Cereon core equipped with 
either protected memory or virtual memory feature will always perform a virtual 
address translation and will then access the OCM only if the translated real address 
falls within an OCM range.

This strategy allows the same OCM block (containing, for example, critical data or 
interrupt handlers) to be shared between virtual address spaces of multiple processes, 
serving all of them.

14.2 OCM controller
An OCM controller is an on-chip component that allows both examining the available 
OCM configuration and mapping OCM blocks into the physical address space. To the 
processor, it looks just like any other I/O controller (specifically, it must be accessed 
through I/O ports provided by the processor’s I/O space). However, being an internal 
device to a chip, the OCM controller occupies the predefined internal range within the 
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processor’s I/O space (namely, I/O ports 32..56); individual I/O ports within this 
range are assigned to the following registers of the OCM controller:

Port Register Size Direction Usage

32 $banksize Long word Read only Available OCM size

33 $start0 Long word Read/write Region 0 start

34 $offset0 Long word Read/write Region 0 offset

35 $size0 Long word Read/write Region 0 offset

36 $start1 Long word Read/write Region 1 start

37 $offset1 Long word Read/write Region 1 offset

38 $size1 Long word Read/write Region 1 size

39 $start2 Long word Read/write Region 2 start

40 $offset2 Long word Read/write Region 2 offset

41 $size2 Long word Read/write Region 2 size

42 $start3 Long word Read/write Region 3 start

43 $offset3 Long word Read/write Region 3 offset

44 $size3 Long word Read/write Region 3 size

45 $start4 Long word Read/write Region 4 start

46 $offset4 Long word Read/write Region 4 offset

47 $size4 Long word Read/write Region 4 size

48 $start5 Long word Read/write Region 5 start

49 $offset5 Long word Read/write Region 5 offset

50 $size5 Long word Read/write Region 5 size

51 $start6 Long word Read/write Region 6 start

52 $offset6 Long word Read/write Region 6 offset

53 $size6 Long word Read/write Region 6 size

54 $start7 Long word Read/write Region 7 start

55 $offset7 Long word Read/write Region 7 offset

56 $size7 Long word Read/write Region 7 size

Since I/O operations are not permitted in User mode, only trusted system code 
(running in Kernel mode) can examine or modify the current OCM configuration 
(including its presense). However, once mapped into a physical address space, OCM 
can be used to contain both system and user code and/or data.
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14.3 OCM concepts
This section outlines the main concepts used by the OCM.

14.3.1 OCM bank
An OCM bank is a total OCM memory available to the processor.

To determine the size of the OCM bank, a core must read the value of the 
$banksize register (by reading a long word from I/O port 32). The value of 0 
means the processor containing the core in question is not equipped with OCM; any 
other value gives the size, in bytes, of the available OCM.

14.3.2 OCM regions
An OCM region is a continuous range of physical address space where OCM memory 
has been mapped. Any attempts to read or write from the OCM region will cause 
reading or writing of the OCM bank. It is possible to define and use up to 8 OCM 
regions (provided, that is, that the processor is equipped with OCM).

A single OCM region acts as a “window” into the OCM memory:

As illustrated, each OCM region, if defined, is mapped into a continuous area within 
the OCM bank. The size of that area, naturally, is the same as the size of the region. 
Note also that it is possible for different regions to be mapped into OCM bank ranges 
that partially or fully overlap.

The net effect achieved by OCM regions is very similar to that provided by the 
Protected Memory feature, except the latter provides a region-based mapping from 
virtual address space to physical address space of an equal size, whereas the former
provides a region-based mapping from physical address space to OCM address space 
of much smaller size.

14.3.3 OCM and memory protection
Unlike Protected Memory feature, which it closely resembles, OCM itself does not 
provide any memory protection features. This is only natural, given that OCM is a fast 
stand-in for physical memory, which has no built-in protection.
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Therefore, protection of OCM memory is achieved by the same higher-level 
mechanisms that are used for protecting the “real” memory – when a processor core 
operating in Virtual mode performs virtual address translation that would have 
resulted in a physical address within an OCM region, access rights are checked as 
usual, resulting in either IACCESS or DACCESS exception if necessary.

14.3.4 OCM and data alignment
All OCM regions must obey the following restrictions:

 The start address of an OCM region must be a multiple of 8.
 The start offset of an OCM range within an OCM bank must be a multiple of 

8.
 The size of an OCM region must be a multiple of 8.

The above restrictions effectively mean that all naturally aligned accesses to an OCM 
region become naturally aligned accesses to an OCM bank.

14.4 OCM operation
For each OCM region N (0 ≤ N ≤ 7), there are three OCM controller registers 
describing that region:

 $startN provides the physical address where the region starts.
 $offsetN specifies the offset within the OCM bank where the actual OCM 

memory starts.
 $sizeN provides the region size.

The net effect is in that when a processor tries to access memory address A in range 
[$startN .. $startN + $sizeN) (for some N, 0 ≤ N ≤ 7), the OCM 
memory at offset $offsetN + (A - $startN) is accessed instead.

All of these registers can be read and written. Reading from these registers allows 
determining the current OCM configuration; writing to them remaps the 
corresponding OCM region.

14.4.1 Region control registers
The following diagram illustrates the format of the region control registers for a single 
region N:
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Note that the start address, OCM offset and size of a region are all multiples of 8. Any 
attempt to assign to one of these registers a value whose three lower bits are not all 
zero results in ignoring these three nonzero lower bits and assigning the rest of the 
value.

14.4.2 Address overflows and wraparounds
When translating a physical memory address A that falls within some OCM region N 
into an OCM bank offset B (using the formula B = $offsetN + (A -
$startN)), the following situations are possible:

 An integer overflow occurs. The translation formula above assumes that all 
operands are 64-bit unsigned integers and detects overflow accordingly.

 The resulting OCM bank offset B is beyond OCM bank boundaries.

If either (or both) of these situations occur during translation, an IADDRESS or 
DADDRESS exception is raised, depending on whether the translation was performed 
for an instruction fetch or data load/store.



202

15 Bootstrapping
When a Cereon machine is turned on, the following steps are performed:

1. The W flag of each DMA channel’s $state register is set to 0.
2. All registers of all processors are set to 0, with the exception of registers 

explicitly specified below as being set to something else.
3. In every Cereon system, there is exactly one processor set up as a primary 

processor. If the system has more than one processor, all remaining processors 
are set up as secondary processors. This processor type setup is hardwired and 
cannot be changed. If the primary processor has more than one core, one of 
these cores is hardwired as a primary core.

4. For each processor, whether primary or secondary, the special bootstrap IP 
value is hardwired. This value is copied to $ip register.

5. For each processor, the K flag of $state if set to 1.
6. For each processor, the B flag of $state is set to reflect the default byte 

ordering. Whether this flag can be changed later or not depends on the 
processor model.

7. For the primary core of the primary processor, bit 31 of $state is set to 1, 
thus allowing HARDWARE interrupts.

8. For all secondary processor cores, bits 30 and 31 of $state is set to 1, thus 
allowing EXTERNAL and HARDWARE interrupts.

9. For all secondary processor cores, $ip is copied to $iha.ext and $state
is copied to $ihstate.ext. After the copy, the W flag of $ihstate.ext
is set to 1.

10. For the primary processor, the W flag of $state is set to 1. This effectively 
starts the primary processor.

In less technical terms, the actions above ensure that:

 All DMA channels of all processors are made idle.
 The primary processor is set up to run in Real Kernel mode, starting execution 

at its bootstrap address with all interrupts disabled (except HARDWARE
interrupts).

 All secondary processors are set up to be initially not working (i.e. halted). 
However, they all have EXTERNAL and HARDWARE interrupts enabled, and 
the EXTERNAL interrupt handler is set to bootstrap address executed in Real 
Kernel mode.

 The last action of the bootstrap sequence starts the primary processor. 
Normally, this will cause it to execute bootstrap code from ROM or EPROM. 
If the operating system supports multiprocessing, the primary processor will 
eventually send a signal to all secondary processors, causing them to enter 
their EXTERNAL interrupt handlers in Real Kernel mode with all interrupts 
(except the HARDWARE interrupt) disabled.
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16 Appendix A: GNU Free Documentation 
License

Version 1.2, November 2002 

Copyright (C) 2000,2001,2002  Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and 
useful document "free" in the sense of freedom: to assure everyone the effective 
freedom to copy and redistribute it, with or without modifying it, either commercially 
or noncommercially. Secondarily, this License preserves for the author and publisher 
a way to get credit for their work, while not being considered responsible for 
modifications made by others. 

This License is a kind of "copyleft", which means that derivative works of the 
document must themselves be free in the same sense. It complements the GNU 
General Public License, which is a copyleft license designed for free software. 

We have designed this License in order to use it for manuals for free software, 
because free software needs free documentation: a free program should come with 
manuals providing the same freedoms that the software does. But this License is not 
limited to software manuals; it can be used for any textual work, regardless of subject 
matter or whether it is published as a printed book. We recommend this License 
principally for works whose purpose is instruction or reference. 

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a 
notice placed by the copyright holder saying it can be distributed under the terms of 
this License. Such a notice grants a world-wide, royalty-free license, unlimited in 
duration, to use that work under the conditions stated herein. The "Document", below, 
refers to any such manual or work. Any member of the public is a licensee, and is 
addressed as "you". You accept the license if you copy, modify or distribute the work 
in a way requiring permission under copyright law. 

A "Modified Version" of the Document means any work containing the Document or 
a portion of it, either copied verbatim, or with modifications and/or translated into 
another language. 

A "Secondary Section" is a named appendix or a front-matter section of the Document 
that deals exclusively with the relationship of the publishers or authors of the 
Document to the Document's overall subject (or to related matters) and contains 
nothing that could fall directly within that overall subject. (Thus, if the Document is in 
part a textbook of mathematics, a Secondary Section may not explain any 
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mathematics.) The relationship could be a matter of historical connection with the 
subject or with related matters, or of legal, commercial, philosophical, ethical or 
political position regarding them. 

The "Invariant Sections" are certain Secondary Sections whose titles are designated, 
as being those of Invariant Sections, in the notice that says that the Document is 
released under this License. If a section does not fit the above definition of Secondary 
then it is not allowed to be designated as Invariant. The Document may contain zero 
Invariant Sections. If the Document does not identify any Invariant Sections then 
there are none. 

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover 
Texts or Back-Cover Texts, in the notice that says that the Document is released 
under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover 
Text may be at most 25 words. 

A "Transparent" copy of the Document means a machine-readable copy, represented 
in a format whose specification is available to the general public, that is suitable for 
revising the document straightforwardly with generic text editors or (for images 
composed of pixels) generic paint programs or (for drawings) some widely available 
drawing editor, and that is suitable for input to text formatters or for automatic 
translation to a variety of formats suitable for input to text formatters. A copy made in 
an otherwise Transparent file format whose markup, or absence of markup, has been 
arranged to thwart or discourage subsequent modification by readers is not 
Transparent. An image format is not Transparent if used for any substantial amount of 
text. A copy that is not "Transparent" is called "Opaque". 

Examples of suitable formats for Transparent copies include plain ASCII without 
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly 
available DTD, and standard-conforming simple HTML, PostScript or PDF designed 
for human modification. Examples of transparent image formats include PNG, XCF 
and JPG. Opaque formats include proprietary formats that can be read and edited only 
by proprietary word processors, SGML or XML for which the DTD and/or processing 
tools are not generally available, and the machine-generated HTML, PostScript or 
PDF produced by some word processors for output purposes only. 

The "Title Page" means, for a printed book, the title page itself, plus such following 
pages as are needed to hold, legibly, the material this License requires to appear in the 
title page. For works in formats which do not have any title page as such, "Title Page" 
means the text near the most prominent appearance of the work's title, preceding the 
beginning of the body of the text. 

A section "Entitled XYZ" means a named subunit of the Document whose title either 
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ 
in another language. (Here XYZ stands for a specific section name mentioned below, 
such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To 
"Preserve the Title" of such a section when you modify the Document means that it 
remains a section "Entitled XYZ" according to this definition. 
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The Document may include Warranty Disclaimers next to the notice which states that 
this License applies to the Document. These Warranty Disclaimers are considered to 
be included by reference in this License, but only as regards disclaiming warranties: 
any other implication that these Warranty Disclaimers may have is void and has no 
effect on the meaning of this License. 

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or 
noncommercially, provided that this License, the copyright notices, and the license 
notice saying this License applies to the Document are reproduced in all copies, and 
that you add no other conditions whatsoever to those of this License. You may not use 
technical measures to obstruct or control the reading or further copying of the copies 
you make or distribute. However, you may accept compensation in exchange for 
copies. If you distribute a large enough number of copies you must also follow the 
conditions in section 3. 

You may also lend copies, under the same conditions stated above, and you may 
publicly display copies. 

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) 
of the Document, numbering more than 100, and the Document's license notice 
requires Cover Texts, you must enclose the copies in covers that carry, clearly and 
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover 
Texts on the back cover. Both covers must also clearly and legibly identify you as the 
publisher of these copies. The front cover must present the full title with all words of 
the title equally prominent and visible. You may add other material on the covers in 
addition. Copying with changes limited to the covers, as long as they preserve the title 
of the Document and satisfy these conditions, can be treated as verbatim copying in 
other respects. 

If the required texts for either cover are too voluminous to fit legibly, you should put 
the first ones listed (as many as fit reasonably) on the actual cover, and continue the 
rest onto adjacent pages. 

If you publish or distribute Opaque copies of the Document numbering more than 
100, you must either include a machine-readable Transparent copy along with each 
Opaque copy, or state in or with each Opaque copy a computer-network location from 
which the general network-using public has access to download using public-standard 
network protocols a complete Transparent copy of the Document, free of added 
material. If you use the latter option, you must take reasonably prudent steps, when 
you begin distribution of Opaque copies in quantity, to ensure that this Transparent 
copy will remain thus accessible at the stated location until at least one year after the 
last time you distribute an Opaque copy (directly or through your agents or retailers) 
of that edition to the public. 
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It is requested, but not required, that you contact the authors of the Document well 
before redistributing any large number of copies, to give them a chance to provide 
you with an updated version of the Document. 

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the 
conditions of sections 2 and 3 above, provided that you release the Modified Version 
under precisely this License, with the Modified Version filling the role of the 
Document, thus licensing distribution and modification of the Modified Version to 
whoever possesses a copy of it. In addition, you must do these things in the Modified 
Version: 

 A. Use in the Title Page (and on the covers, if any) a title distinct from that of 
the Document, and from those of previous versions (which should, if there 
were any, be listed in the History section of the Document). You may use the 
same title as a previous version if the original publisher of that version gives 
permission. 

 B. List on the Title Page, as authors, one or more persons or entities 
responsible for authorship of the modifications in the Modified Version, 
together with at least five of the principal authors of the Document (all of its 
principal authors, if it has fewer than five), unless they release you from this 
requirement. 

 C. State on the Title page the name of the publisher of the Modified Version, 
as the publisher. 

 D. Preserve all the copyright notices of the Document. 
 E. Add an appropriate copyright notice for your modifications adjacent to the 

other copyright notices. 
 F. Include, immediately after the copyright notices, a license notice giving the 

public permission to use the Modified Version under the terms of this License, 
in the form shown in the Addendum below. 

 G. Preserve in that license notice the full lists of Invariant Sections and 
required Cover Texts given in the Document's license notice. 

 H. Include an unaltered copy of this License. 
 I. Preserve the section Entitled "History", Preserve its Title, and add to it an 

item stating at least the title, year, new authors, and publisher of the Modified 
Version as given on the Title Page. If there is no section Entitled "History" in 
the Document, create one stating the title, year, authors, and publisher of the 
Document as given on its Title Page, then add an item describing the Modified 
Version as stated in the previous sentence. 

 J. Preserve the network location, if any, given in the Document for public 
access to a Transparent copy of the Document, and likewise the network 
locations given in the Document for previous versions it was based on. These 
may be placed in the "History" section. You may omit a network location for a 
work that was published at least four years before the Document itself, or if 
the original publisher of the version it refers to gives permission. 

 K. For any section Entitled "Acknowledgements" or "Dedications", Preserve 
the Title of the section, and preserve in the section all the substance and tone 
of each of the contributor acknowledgements and/or dedications given therein. 
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 L. Preserve all the Invariant Sections of the Document, unaltered in their text 
and in their titles. Section numbers or the equivalent are not considered part of 
the section titles. 

 M. Delete any section Entitled "Endorsements". Such a section may not be 
included in the Modified Version. 

 N. Do not retitle any existing section to be Entitled "Endorsements" or to 
conflict in title with any Invariant Section. 

 O. Preserve any Warranty Disclaimers. 

If the Modified Version includes new front-matter sections or appendices that qualify 
as Secondary Sections and contain no material copied from the Document, you may at 
your option designate some or all of these sections as invariant. To do this, add their 
titles to the list of Invariant Sections in the Modified Version's license notice. These 
titles must be distinct from any other section titles. 

You may add a section Entitled "Endorsements", provided it contains nothing but 
endorsements of your Modified Version by various parties--for example, statements 
of peer review or that the text has been approved by an organization as the 
authoritative definition of a standard. 

You may add a passage of up to five words as a Front-Cover Text, and a passage of 
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the 
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover 
Text may be added by (or through arrangements made by) any one entity. If the 
Document already includes a cover text for the same cover, previously added by you 
or by arrangement made by the same entity you are acting on behalf of, you may not 
add another; but you may replace the old one, on explicit permission from the 
previous publisher that added the old one. 

The author(s) and publisher(s) of the Document do not by this License give 
permission to use their names for publicity for or to assert or imply endorsement of 
any Modified Version. 

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, 
under the terms defined in section 4 above for modified versions, provided that you 
include in the combination all of the Invariant Sections of all of the original 
documents, unmodified, and list them all as Invariant Sections of your combined work 
in its license notice, and that you preserve all their Warranty Disclaimers. 

The combined work need only contain one copy of this License, and multiple 
identical Invariant Sections may be replaced with a single copy. If there are multiple 
Invariant Sections with the same name but different contents, make the title of each 
such section unique by adding at the end of it, in parentheses, the name of the original 
author or publisher of that section if known, or else a unique number. Make the same 
adjustment to the section titles in the list of Invariant Sections in the license notice of 
the combined work. 



208

In the combination, you must combine any sections Entitled "History" in the various 
original documents, forming one section Entitled "History"; likewise combine any 
sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You 
must delete all sections Entitled "Endorsements." 

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released 
under this License, and replace the individual copies of this License in the various 
documents with a single copy that is included in the collection, provided that you 
follow the rules of this License for verbatim copying of each of the documents in all 
other respects. 

You may extract a single document from such a collection, and distribute it 
individually under this License, provided you insert a copy of this License into the 
extracted document, and follow this License in all other respects regarding verbatim 
copying of that document. 

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent 
documents or works, in or on a volume of a storage or distribution medium, is called 
an "aggregate" if the copyright resulting from the compilation is not used to limit the 
legal rights of the compilation's users beyond what the individual works permit. When 
the Document is included in an aggregate, this License does not apply to the other 
works in the aggregate which are not themselves derivative works of the Document. 

If the Cover Text requirement of section 3 is applicable to these copies of the 
Document, then if the Document is less than one half of the entire aggregate, the 
Document's Cover Texts may be placed on covers that bracket the Document within 
the aggregate, or the electronic equivalent of covers if the Document is in electronic 
form. Otherwise they must appear on printed covers that bracket the whole aggregate. 

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of 
the Document under the terms of section 4. Replacing Invariant Sections with 
translations requires special permission from their copyright holders, but you may 
include translations of some or all Invariant Sections in addition to the original 
versions of these Invariant Sections. You may include a translation of this License, 
and all the license notices in the Document, and any Warranty Disclaimers, provided 
that you also include the original English version of this License and the original 
versions of those notices and disclaimers. In case of a disagreement between the 
translation and the original version of this License or a notice or disclaimer, the 
original version will prevail. 

If a section in the Document is Entitled "Acknowledgements", "Dedications", or 
"History", the requirement (section 4) to Preserve its Title (section 1) will typically 
require changing the actual title. 
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9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as 
expressly provided for under this License. Any other attempt to copy, modify, 
sublicense or distribute the Document is void, and will automatically terminate your 
rights under this License. However, parties who have received copies, or rights, from 
you under this License will not have their licenses terminated so long as such parties 
remain in full compliance. 

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free 
Documentation License from time to time. Such new versions will be similar in spirit 
to the present version, but may differ in detail to address new problems or concerns. 
See http://www.gnu.org/copyleft/. 

Each version of the License is given a distinguishing version number. If the 
Document specifies that a particular numbered version of this License "or any later 
version" applies to it, you have the option of following the terms and conditions either 
of that specified version or of any later version that has been published (not as a draft) 
by the Free Software Foundation. If the Document does not specify a version number 
of this License, you may choose any version ever published (not as a draft) by the 
Free Software Foundation. 
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17 Appendix B: Exception codes
The table below summarizes supported exception codes and describes situations when 
these exceptions occur.

Exception code (hex) Exception name Occurs when

0000000000000001 ZDIV
An attempt is made to perform an 
integer division by zero and an N flag 
of $state is set.

0000000000000002 IADDRESS

The exception is caused by an attempt 
to fetch an instruction from an invalid 
address. In real mode, this is any 
address where memory does not exist. 
In virtual mode, this is any virtual 
address for which there is no 
corresponding virtual page.

0000000000000003 DADDRESS

The exception is caused by an attempt 
to load/store data from/to an invalid 
address. In real mode, this is any 
address where memory does not exist. 
In virtual mode, this is any virtual 
address for which there is no 
corresponding virtual page.

0000000000000004 IACCESS

The exception is caused by an attempt 
to fetch an instruction from the virtual 
address that is valid in itself (mapped), 
but does not have the EXECUTE access 
right. The exception never occurs in 
real mode, since real mode offers no 
memory protection.

0000000000000005 DACCESS

The exception is caused by an attempt 
to load/store data from/to the virtual 
address that is valid in itself (mapped), 
but does not have the corresponding 
READ or WRITE access right. The 
exception also occurs in real mode, if 
an attempt is made to write to a ROM..

0000000000000006 IALIGN
The exception is caused by an attempt 
to fetch an instruction which is not 
naturally aligned.

0000000000000007 DALIGN
The exception is caused by an attempt 
to load/store data which is not naturally 
aligned.

0000000000000008 OPCODE The exception is generated as a result 
of an attempt to execute an instruction 
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with an invalid operation and/or 
function code.

0000000000000009 OPERAND
The exception is generated when an 
instruction otherwise valid uses invalid 
operands.

000000000000000A PRIVILEGED

The exception is generated by an 
attempt to execute a privileged 
instruction when the processor is in 
User mode.

000000000000000B PAGETABLE

The exception is generated when a 
page table access fails during virtual 
address translation. The exception 
never occurs in real mode.

000000000000000C
...

FFFFFFFFFFFFFF0C
IPAGEFAULT

The exception is generated when an 
instruction virtual address is translated 
for which the virtual page is not 
currently in memory. The upper 56 bits 
of the exception code contain the upper 
56 bits of an instruction address that 
could not be translated due to a page 
fault. The exception never occurs in 
real mode.

000000000000000D
...

FFFFFFFFFFFFFF0D
DPAGEFAULT

The exception is generated when a data 
virtual address is translated for which 
the virtual page is not currently in 
memory. The upper 56 bits of the 
exception code contain the upper 56 
bits of a data address that could not be 
translated due to a page fault. The 
exception never occurs in real mode.

000000000000000E TRAP
This exception occurs at the beginning 
of an instruction cycle if a T (trap) flag 
is set.

000000000000000F MASKED
This exception occurs if a processor 
attempts to execute the SVC instruction 
when the SVC interrupt is masked.

0000000000000010 IOVERFLOW
This exception occurs if an integer 
arithmetic overflow was detected and 
an O flag of $state is set.

0000000000000011 FOPERAND

This exception occurs if a floating 
point operation was offered an invalid 
operand and an R flag of $state is 
set.

0000000000000012 FZDIV This exception occurs if a floating 
point division by zero has occurred and 
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an Z flag of $state is set.

0000000000000013 FOVERFLOW
This exception occurs if an floating 
point arithmetic overflow was detected 
and an E flag of $state is set.

0000000000000014 FUNDERFLOW

This exception occurs if an floating 
point arithmetic underflow was 
detected and an U flag of $state is 
set.

0000000000000015 FINEXACT

This exception occurs if an floating 
point operation has produced an 
inexact result and an I flag of $state
is set.

0000000000000016
...

0000000000000F16

DEBUG0
..

DEBUG15

One of the debug events (0..15) has 
occurred. The interrupt handler can 
analyze the exception code to 
determine which one it was. The bits 
8..11 of the exception code contain the 
number of the debug breakpoint 0..15 
that caused this exception.

0000000000000017
...

0000000000000F17

BREAK0
..

BREAK15

Caused by execution of a brk
instruction. The interrupt handler can 
analyze the exception code to 
determine the cause of the break. The 
bits 8..11 of the exception code contain 
the break code 0..15 that caused this 
exception.

FFFFFFFFFFFFFFFF UNKNOWN A program error could not be 
categorized.

All exception codes not explicitly mentioned in the above table are reserved for future 
use.
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18 Appendix C: External interrupt types
The table below summarizes supported EXTERNAL interrupt types codes and 
describes situations when these interrupts occur.

Code 
(hex)

Interrupt 
type name

Occurs when $isc.hw

0001 SIGNAL

A processor 
sends a signal to 
either itself or 
another 
processor.

0000000000000001

Bits

Bits

Bits

63 48

subcode

31 0

sender

47 32

 Sender – the 16-bit ID of the 
processor core that has sent the 
signal.

 Subcode – the 32 lower bits of a 
register specified in a sigp
instruction.

0002 RESET A processor is 
reset.

All external interrupt types not explicitly mentioned in the above table are reserved 
for future use.
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19 Appendix D: Hardware error codes
The table below summarizes supported hardware codes and describes situations when 
these errors occur.

Error code (hex) Error name Occurs when

0000000000000001 PROCESSOR A fault has been detected in processor 
logic.

0000000000000002 MEMORY A fault has been detected while 
accessing the memory.

0000000000000003 BUS A main bus fault has been detected.

0000000000000004 IO

A fault has been detected in the I/O 
port (hardware faults in I/O controllers 
and/or I/O devices are reported via IO
interrupts).

0000000000000005 TIMER An interrupt timer fault has been 
detected.

FFFFFFFFFFFFFFFF UNKNOWN A hardware fault has occurred which 
could not be categorized exactly.

All hardware error codes not explicitly mentioned in the above table are reserved for 
future use.
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20 Appendix E: DMA interrupt status 
codes

The table below summarizes supported DMA interrupt status codes and describes 
situations when these DMA interrupts occur.

Interrupt 
status code 

(hex)
Occurs when

0000 The channel program executes the dma.stop instruction.

0001 DMA channel attempts to fetch a channel instruction from an 
invalid address, where memory does not exist.

0002 DMA channel attempts to load/store data from/to an invalid 
address where memory does not exist.

0003 DMA channel attempts to fetch an instruction which is not 
naturally aligned.

0004 DMA channel attempts to load/store data which is not naturally 
aligned.

0005 DMA channel attempts to execute a channel instruction with an 
invalid operation code.

FFFF A DMA channel error could not be categorized.

All DMA interrupt status codes not explicitly mentioned in the above table are 
reserved for future use.


