
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cereon 
 
 

CDS 1.0 
Linker reference 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2008, Cybernetic Intelligence GmbH 
All Rights Reserved 

 



 

Permission is granted to copy, distribute and/or modify this document under the terms 
of the GNU Free Documentation License, Version 1.2 or any later version published 
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, 
and no Back-Cover Texts.  A copy of the license is included in the section entitled 
"GNU Free Documentation License". 

 
Authors: 

Andrei Kapustin 
 
Revision history 
 

Date Comment 

30 Sep 2008 Initial draft. 
 
 

 2



1 Contents 
1 CONTENTS..........................................................................................................3 

2 INTRODUCTION................................................................................................5 

3 THE LINKING PROCESS.................................................................................6 
3.1 LONG BRANCH VENEERS .................................................................................6 
3.2 ROAMING SECTION HANDLING ......................................................................10 
3.3 LINKING WITH DLLS ....................................................................................10 

4 INVOKING THE LINKER ..............................................................................12 
4.1 ENVIRONMENT VARIABLES ...........................................................................12 

4.1.1 CDS_1_0_LINKER_OPTIONS.......................................................................................12 
4.1.2 CDS_1_0_LIB.................................................................................................................13 

4.2 OPTIONS........................................................................................................13 
4.3 OPTION FILES ................................................................................................13 
4.4 OPTION CONFLICTS .......................................................................................14 
4.5 CHARACTER ENCODING ................................................................................14 
4.6 MESSAGE FILES.............................................................................................14 

5 LINKER OPTIONS...........................................................................................16 
5.1 -BANNER.......................................................................................................16 
5.2 -DEBUG.........................................................................................................16 
5.3 -DISABLEWARNING ......................................................................................16 
5.4 -DLL .............................................................................................................16 
5.5 -ENABLEWARNING .......................................................................................17 
5.6 -ENDIAN........................................................................................................17 
5.7 -ENTRY .........................................................................................................17 
5.8 -FORMAT.......................................................................................................18 
5.9 -FULLMESSAGEPATHS..................................................................................18 
5.10 -HEAP ...........................................................................................................18 
5.11 -HELP............................................................................................................19 
5.12 -IMPLIB.........................................................................................................19 
5.13 -LIBPATH......................................................................................................20 
5.14 -LOCALE .......................................................................................................20 
5.15 -LOCALS .......................................................................................................21 
5.16 -MAP.............................................................................................................21 
5.17 -MAPENCODING............................................................................................22 
5.18 -MODEL ........................................................................................................22 
5.19 -OUTPUT .......................................................................................................22 
5.20 -PROGRESS....................................................................................................23 
5.21 -QUIET ..........................................................................................................23 
5.22 -STACK .........................................................................................................23 
5.23 -STATISTICS ..................................................................................................24 
5.24 -STDERRENCODING.......................................................................................24 
5.25 -STDOUTENCODING ......................................................................................24 
5.26 -TARGET .......................................................................................................25 
5.27 -VENEERS .....................................................................................................25 
5.28 -VIA..............................................................................................................25 

 3



5.29 -VIAENCODING.............................................................................................25 
5.30 -WARNINGASERROR ....................................................................................26 
5.31 -WARNINGASWARNING ...............................................................................26 
5.32 -WARNINGLEVEL..........................................................................................26 
5.33 -WARNINGSASERRORS.................................................................................27 

6 APPENDIX A: GNU FREE DOCUMENTATION LICENSE......................28 

 4



2 Introduction 
This document is a definitive guide into the Cereon Linker (henceforth referred to 
simply as an “linker”). 
 
The Cereon Linker is a tool that creates executable files, which can then be executed 
on a Cereon platform, and dynamic-link libraries, which can then be used by dynamic 
linker to resolve external references at load-time and/or run-time. 
 
Cereon Linker uses NGOFF (Next Generation Object File Format) as its primary 
object, executable and dynamic-link library format and NGOLF (Next Generation 
Object Library Format) as its primary object library and import library format. 
 

 5



3 The linking process 
The Cereon Linker takes as an input a set of object files and / or object libraries, 
producing the executable file (which can be either application or dynamic-link library, 
depending on linker’s command-line options). 

3.1 Long branch veneers 
This section describes the technique used by linker known as “long branch veneers”. 
It is used to allow jump and branch instructions to transfer control to any location 
within the 64-bit address space, even though the actual Cereon instructions that 
implement jumps and branches have limited range (specifically, a branch instruction 
can directly transfer control to any other instruction within the [-215..215-1] 
instructions range, while jumps are limited to a somewhat larger range of [-223..223-1] 
instructions). 
 
Note that long branch veneers are not specific to the assembler language. Compilers 
from high-level languages that target Cereon platforms will routinely assume the 
linker’s ability to generate long branch veneers when generating code (specifically 
procedure call/return instruction sequences). 
 
In essence, when a jump or branch instruction with an implicit base (such as “j x” or 
“beq.l $t0, $t1, x”) is translated and the jump target x is not within a range 
that can be guaranteed to be reachable for the jump or branch in question (for 
example, when x is an external symbol, or resides in a different section), the jump or 
branch instruction is generated without a pre-calculated jump offset, but with an 
appropriate relocation; it is also marked as being a jump or branch. 
 
When linker later creates an image, it has two choices: 
 

• If, in the generated image, the jump target x is reachable directly, the jump or 
branch instruction is relocated as necessary to do so (for example, the external 
jump target x may have ended up in the same section as the jump or branch 
instruction that uses it due to section joining). In this case, there is no overhead 
involved; the jump or branch instruction will transfer control directly to the 
jump target. 

• If, in the generated image, the jump target x cannot be safely reached by the 
jump or branch instruction, a long branch veneer is generated as described 
below. 

 
A long branch veneer is a snippet of code that is: 
 

• Automatically generated by the linker if necessary, 
• Is guaranteed to be placed within a reachable range of the jump or branch 

instruction that uses it, and 
• Can transfer control anywhere within the 64-bit address space. 

 

 6



For example, consider an assembler language program that consists of one code 
section and has, within that code section, a jump instruction that transfers control to 
an external symbol: 
 
        import  proc 
.text:  section code 
        jal     proc 
        halt 
.text:  end section 
 
The actual implementation of the proc routine is, in this case, imported from a 
dynamic-link library, which means that its address at runtime is more or less arbitrary. 
After linking, the image will contain the following code: 
 
        import  proc 
.text:  section code 
        jal     proc::veneer 
        halt 
        align   8 
proc::address: 
        long    proc 
proc::veneer: 
        lir     $ip, proc::address 
.text:  end section 
 
What happened here is the jump-and-link instruction being re-targeted to the veneer, 
which loads a full 64-bit address of the jump target directly into $ip. When the proc 
procedure performs return (by executing the “jr $ra” instruction), the control is 
transferred back to the instruction following the jal, just as if jal was able to jump 
to the proc entry point directly. 
 
Depending on the code alignment, each long branch veneer is either 12 or 16 bytes 
long. Naturally, the linker will try to minimize the total number of veneers it generates 
so as to keep the code size to a minimum. Note, however, that veneers can only be 
inserted at section boundaries; therefore if you have a 512KB section with a 
conditional branch to an external label right in the middle, there will be no way for 
linker to generate a veneer, as both section boundaries are far beyond the reach of a 
conditional branch instruction. 
 
Note also that the apparent loading of a jump target address from a code (i.e. 
executable but not readable as data) section is no threat, as the Cereon lir instruction 
has been specifically designed for this purpose – among other things, it required 
“execute”, not “read”, memory access permission for the loading to succeed. If the 
instruction “li.l $ip, -12[$ip]” was used instead, the example above would 
not work, as loading the data from an execute-only section by “li.l” would have 
caused a DACCESS (data access denied) exception instead. 
 
The linker will also perform two more optimizations to further reduce the veneer size 
– veneer pairing and veneer chaining. 
 

 7



Veneer pairing comes in handy when several consecutive veneers must be generated, 
as in: 
 
        import  proc1 
        import  proc2 
.text:  section code 
        jal     proc1 
        jal     proc2 
        halt 
.text:  end section 
 
Normally, the linked image would contain the following code: 
 
        import  proc1 
        import  proc2 
.text:  section code 
        jal     proc1::veneer 
        jal     proc2::veneer 
        halt 
        align   8 
proc1::address: 
        long    proc 
proc1::veneer: 
        lir     $ip, proc1::address 
        align   8 
proc2::address: 
        long    proc 
proc2::veneer: 
        lir     $ip, proc2::address 
.text:  end section 
 
Note that the second alignment directive “align 8” would introduce 4 bytes of 
padding between veneers, as each veneer is 12 bytes long yet must be aligned on a 8-
byte boundary. With veneer pairing, the 2nd veneer of each pair is reversed in order, 
giving: 
 
        import  proc1 
        import  proc2 
.text:  section code 
        jal     proc1::veneer 
        jal     proc2::veneer 
        halt 
        align   8 
proc1::address: 
        long    proc 
proc1::veneer: 
        lir     $ip, proc1::address 
proc2::veneer: 
        lir     $ip, proc2::address 
proc2::address: 
        long    proc 

 8



.text:  end section 
 
Now the 4 padding bytes between veneers are gone, as proc2::address is 
guaranteed to be 8-byte-aligned. 
 
The veneer chaining comes in handy when several veneers must be generated for 
jump targets that are at a fixed offset of each other. Consider: 
 
        extern  proc1 
        extern  proc2 
.text:  section code 
        jal     proc1 
        jal     proc2 
        halt 
.text:  end section 
 
Now, suppose that the linker determines that both proc1 and proc2 are out of jump 
range, but also that proc2’s address is exactly 200 bytes larger that proc1’s 
address. While the direct approach is possible, as in: 
 
        import  proc1 
        import  proc2 
.text:  section code 
        jal     proc1::veneer 
        jal     proc2::veneer 
        halt 
        align   8 
proc1::address: 
        long    proc 
proc1::veneer: 
        lir     $ip, proc1::address 
proc2::veneer: 
        lir     $ip, proc2::address 
proc2::address: 
        long    proc 
.text:  end section 
 
the shorter alternative would also work: 
 
        extern  proc1 
        extern  proc2 
.text:  section code 
        jal     proc1::veneer 
        jal     proc2::veneer 
        halt 
        align   8 
proc1::address: 
        long    proc 
proc1::veneer: 
        lir     $ip, proc1::address 

 9



proc2::veneer: 
        lir     $ra, proc1::address 
        addi.l  $ip, $ra, 200 
.text:  end section 
 
The veneer code is now 20 bytes long instead of 24. The use of $ra as a temporary 
register is safe, because $ra is not expected to keep its value across procedure calls 
or be initialized when proc2 is called. Naturally, for this kind of optimization to be 
applicable, the linker must be informed that one of the standard Cereon procedure 
calling standards is in use. 

3.2 Roaming section handling 
A “roaming” section is a section defined by an object module given to a linker as 
input that is not assigned to a particular segment (as opposed to “bound” sections, 
which are pre-assigned to segments). The linker will automatically generate segments 
to assign roaming sections to according to the following rules: 
 

• A roaming section that is assigned an address will be placed into its own auto-
generated segment with the same address and the same access rights as the 
section itself. 

• All roaming sections not assigned an address will be collected into auto-
generated segments according to their access rights (e.g. all “read-only” 
roaming sections will be collected into a read-only data segment, all “read-
write” roaming sections will be collected into a read-write data segment, etc.) 
As there are three access permissions a section can have (“read”, “write” and 
“execute”), at most 8 segments can be auto-generated for these sections. 

• Any two adjoining auto-generated segments with the same access permissions 
will be merged. For example, if the input object modules specify two read-
only roaming sections at addresses 0x0000000000000000 and 
0x0000000000000010, each 16 bytes long, these sections will be assigned 
to two auto-generated read-only segments at the same addresses, which would 
then be joined into a single read-only segment 32 bytes long at address 
0x0000000000000000. 

• Any two auto-generated segments not assigned an address but having 
compatible access rights will be merged. Note that the notion of “compatible 
access rights” depends on the selected target platform. For example, when 
linking for Cereon-1P1B target, the linker “knows” that the entire address 
range has the “read” permission, so if two segments are auto-generated to host 
roaming sections – one with “read/write” access permissions and one with 
“write” access permissions, these two will be joined. 

 
All in all, the linker tries to reduce the number of auto-generated segments hosting 
roaming sections to a minimum while preserving section properties. 

3.3 Linking with DLLs 
In addition to basic linking functionality, the linker supports dynamic loading by 
allowing the following inputs to the linking process: 
 

 10



• Import libraries – when a dynamic-link library is created, the corresponding 
“import library” is usually created as well. The “import library” is a static 
library that the linker to resolve references to global symbols defined by the 
dynamic-link library at load-time. 

• For some input formats (e.g. NGOFF), the dynamic-link library itself can be 
specified as a linker input file. In this case the corresponding import library is 
generated behind-the-scenes and used as if it was explicitly given to the linker. 
To the programmer, things look like the linker resolves external references 
directly against the dynamic-link library. 

 
Note that in both cases the dynamic-link library in question will be linked against at 
application load time. Depending on the target OS, dynamic linking at run time may 
or may not be supported as well; the linker is not responsible for that functionality. 
 
You can use dynamic loading when linking both applications and dynamic-link 
libraries. 

 11



4 Invoking the linker 
The general form of linker invocation is: 
 
cerlink [ -<option> ...] [--] <filename>... 
 
where: 
 

• cerlink is the name of the linker executable. Depending on the host OS the 
actual name of the linker executable file may be different (for example, on 
Windows it is cerlink.exe). 

• Each -<option> specifies a command line option that adjusts some facet of 
the linker behaviour. 

• Each <filename> must be a name of an object file or an object library (the 
recommended filename extension for object files is .rel, for “RELocatable”; 
the recommended filename extension for object library files is .stl, an 
abbreviation from “STatic Library”). 

• An option terminator (two consecutive dashes --), if present in the command 
line as an independent option, marks the end of the options list; all subsequent 
parameters are treated as object file and/or object library names even if they 
start with a dash. 

 
Note that, although object files and object library files are supposed to have different 
filename extensions, the linker’s decision on whether an input file is an object file or 
an object library is made based on the actual contents of the file, not its extension. 

4.1 Environment variables 
During operation, linker uses a number of OS environment variables, all of which are 
described below. 

4.1.1 CDS_1_0_LINKER_OPTIONS 
If this environment variable is defined, its value must be a list of linker options in the 
same format as used in the linker command line during linker invocation. 
 
When a linker processes the command line, all options specified by the 
CDS_1_0_LINKER_OPTIONS environment variable are processed as if they were 
explicitly specified in the linker’s command line; the only exception to that rule is in 
that if some option defined by the CDS_1_0_LINKER_OPTIONS environment 
variable conflicts with another option explicitly specified in the linker command line, 
the former is ignored. This behaviour allows using the 
CDS_1_0_LINKER_OPTIONS environment variable to set the most commonly 
needed linker options, which can be overridden in each particular case if necessary. 
 
For example, if the value of the CDS_1_0_LINKER_OPTIONS environment 
variable is “-Endian:Big”, linker will always produce executables for a big-endian 
target unless invoked with an option “-Endian:Little”. 

 12



4.1.2 CDS_1_0_LIB 
This environment variable, if defined, must have as its value a list of directories where 
object files and libraries are looked for. Note that these directories have lower priority 
than those designated for lookup with corresponding command line options. 

4.2 Options 
A linker option has one of the following forms: 
 
-<option keyword> 
-<option keyword>:<option parameters> 
 
Where <option keyword> is a keyword identifying the option and <option 
parameters>, if present, specifies additional information for the option. 
 
Both option keywords and option parameters are generally case-insensitive except 
where character case matters (for example, when specifying file or directory names as 
option parameters on a Unix host, where file system is case-sensitive). 
 
For some options both forms (i.e. with and without option parameters) are permitted; 
for example the “-Map:<map file name>” option, which tells the linker to 
produce a link map into the specified file, can also be written as simply “-Map”, in 
which case the map file name is derived from the output file name by replacing its 
filename extension with .map. 

4.3 Option files 
Quite frequently a need arises to specify the same set of options for a large number of 
linker invocations. If these options are specific to a given linker project, the facilities 
provided by the CDS_1_0_LINKER_OPTIONS environment variable and related 
variables are insufficient (as they affect all linker invocations); instead, option files 
can be set up and used. 
 
An option file is a text file that contains one or more linker options. To improve 
readability, line breaks and extra spaces are allowed between options in an arbitrary 
manner. 
 
When invoking the linker, a dedicated –Via:<option file name> option is 
used to tell the linker to read an option file, treating all linker options specified therein 
as if they occurred in the linker command line. For example, if an option file is named 
options and contains the following lines: 
 
-Endian:Big 
-WarningsAsErrors 
 
then invoking the linker with the following command line: 
 
cerlink –Map –Via:options test.rel 
 
has the same effect as: 

 13



 
cerlink –Map -Endian:Big -WarningsAsErrors test.rel 
 
Any number of option files can be specified; the maximum length of an option file is 
not limited except by available memory. 
 
A special case is an option file including other option files (the -Via:<option 
file name> command line option can, like any other option, occur within an 
option file). Such inclusion is permitted as long as option file dependencies do not 
cause an inclusion cycle. 

4.4 Option conflicts 
Unlike most existing linkers, the Cereon Linker is very strict about its command line. 
In particular, it is not permitted to specify two conflicting options in the same linker 
invocation, so the following will cause a command-line error: 
 
cerlink –Map –Endian:Big –Endian:Little test.rel 
 
Most existing linkers will allow similar invocations (i.e. with conflicting options), 
automatically resolving these conflicts in an arbitrary manner (e.g. some linkers may 
choose the 1st definition of a conflicting option, while other linkers will use the last 
definition), sometimes with a warning. It is, however, a firm belief of the Cereon 
Linker authors that conflicting command line options shall not be permitted at all, as 
any strategy used for automatic conflict resolution makes the invocation result 
dependent upon the order in which linker options are specified. 
 
The only situation where option conflicts are resolved automatically is when options 
explicitly specified in the linker command line (or in option files included by a –via 
option that occurs in the linker command line) are in conflict with options specified 
by the CDS_1_0_LINKER_OPTIONS environment variable (or in option files 
included by a –Via option that occurs in one of these environment variables). In this 
case, options specified in the linker command line are always chosen; this behaviour 
permits explicit overriding of any implicit linker options. 

4.5 Character encoding 
Normally, linker produces all textual output (i.e. map files) using the “native” 
character encoding of the host OS. The definition of a “native” encoding is specific to 
a given OS (for example, on Linux hosts the “native” encoding is selected when a 
host is configured). 
 
It is, however, possible to specify that a different encoding shall be used on a per-text-
type basis (i.e. “an encoding for map files”, “an encoding for error and warning 
messages”, etc.) 

4.6 Message files 
All messages issued by the linker (i.e. banners, statistics, warnings, errors, etc.) are 
stored in a textual message file. In the minimum configuration the linker can operate 
entirely without message files, in which case built-in English Neutral messages are 

 14



issued. Additional message files can also be provided in a particular linker 
installation, containing the linker messages localized for a specific culture. 
 
When invoking a linker, a dedicated command line option –Locale:<locale 
ID> can be used to specify the culture for which linker messages shall be tailored. 
For example, invoking linker with an option –Locale:de will cause all linker 
messages, including diagnostics, to be issued in German (provided, of course, that the 
corresponding message file is available). 
 
Message files always use UTF-8 encoding. 

 15



5 Linker options 
This section contains a complete description of each linker option. 
 
The following notation is used when describing linker options: 
 
[ x ] – The element x is optional. 
[ x …] – The element x can be repeated 0 or more times. 
{ x | y } – Either x or y can be chosen. 

5.1 -Banner 
This option has the following format: 
 

-Banner[:{On|Off}] 
 
When used, this option turns on (-Banner:On) or off (-Banner:Off) the printing 
of the version and copyright banner when the linker is invoked; a default form -
Banner is equivalent to -Banner:On, which is also the default linker behaviour. 

5.2 -Debug 
This option has the following format: 
 

-Debug[:{On|Off}] 
 
When used, this option specifies whether the generated executable or dynamic-link 
library contain debug information (-Debug:On) or not (-Debug:Off); a default 
form -Debug is equivalent to -Debug:On. The default linker behaviour (when this 
option is not specified) is not to include debug information into the output. 

5.3 -DisableWarning 
This option has the following format: 
 

-DisableWarning:<warning ID>[,<warning ID> …] 
 
When used, this option causes warnings with the specified ID not to be issued. Any 
number of comma-separated warning IDs can be specified in the same –
DisableWarning option; similarly, it is permitted to have more than one –
DisableWarning option in the same command line. 

5.4 -Dll 
This option has the following format: 
 

-Dll 
 
When used, this option causes the linker to produce a dynamic-link library instead of 
an executable. The option can be specified at most once. 

 16



5.5 -EnableWarning 
This option has the following format: 
 

-EnableWarning:<warning ID>[,<warning ID> …] 
 
When used, this option causes warnings with the specified ID to be issued. Any 
number of comma-separated warning IDs can be specified in the same –
EnableWarning option; similarly, it is permitted to have more than one –
EnableWarning option in the same command line. 

5.6 -Endian 
This option has the following format: 
 

-Endian:{Big|Little} 
 
When used, this option causes the linker to create a big-endian (-Endian:Big) or 
little-endian (-Endian:Little) executable (or dynamic-link library), 
correspondingly. If the endianness for an output file is not specified, that of the first 
input object module is used. 

5.7 -Entry 
This option has the following format: 
 

-Entry:<symbol name> 
 
When used, this option causes the linker to select the global symbol <symbol 
name> as an entry point. The following rules are used: 
 

• If the generated output file has no entry point, the specified symbol becomes 
its entry point. 

• If the generated output file has a single entry point and the name of that entry 
point matches the <symbol name>, no further action is taken. 

• If the generated output file has a single entry point and the name of that entry 
point does not match the <symbol name>, the specified symbol becomes a 
new entry point and a warning is issued. 

• If the generated output file has multiple entry points and the name of one of 
these entry points matches the <symbol name>, that entry point is selected 
and all others are ignored. 

• If the generated output file has multiple entry points and none of these entry 
points match the <symbol name>, the specified symbol becomes a new 
entry point and all existing entry points are ignored with a warning. 

 
The above rules allow: 
 

• Specifying an entry point for an executable or dynamic-link library that would 
otherwise have none. 

• Overriding a default entry point for an executable or dynamic-link library. 

 17



• Explicitly selecting one of alternative entry points for an executable or 
dynamic-link library at link time. 

5.8 -Format 
This option has the following format: 
 

-Format:<output format> 
 
When used, this option instructs the linker to emit the output (i.e. executable or 
dynamic-link library) in the specified format. Use the “cerlink –
Help:Formats” command to list supported formats. 

5.9 -FullMessagePaths 
This option has the following format: 
 

-FullMessagePaths[:{On|Off}] 
 
When used, this option specifies whether source file names where error and warning 
messages are anchored shall be printed in fully qualified (-
FullMessagePaths:On) or relative (-FullMessagePaths:Off) form; a 
default form -FullMessagePaths is equivalent to -FullMessagePaths:On. 
The default linker behaviour (when this option is not specified) is to print anchor file 
names in a short (relative) form. 

5.10 -Heap 
This option has the following format: 
 

-Heap:<reserve>[,<commit>] 
 
When used, this option causes the generated executable or dynamic-link library to be 
marked as requiring the <reserve> bytes of heap, of which the <commit> bytes 
will be initially committed. If <commit> is not specified, no heap is initially 
committed. 
 
Both <reserve> and <commit> have the following form: 
 

<amount>[<unit>] 
 
where: 
 

• <amount> is the number of units to reserve (or commit). It can be specified 
as decimal, binary, octal or hexadecimal integer value using the same format 
as is used by the Cereon Assembler for integer constants. 

• <unit> is an optional suffix specifying the size of an allocation unit as B 
(byte), K( 1K = 1024B), M (1M = 1024K), G (1G = 1024M) or T (1T = 
1024G). If the unit is not specified, B is assumed. 

 

 18



If both <reserve> and <commit> are specified, <commit> cannot be larger than 
<reserve>. 
 
This option can appear at most once in the linker command line. If it is absent, the 
linker behaves as if “-Heap:1G,64K” was in effect. 

5.11 -Help 
This option has the following format: 
 

-Help[:<subject>] 
 
When used, it causes the help on the specific subject to be printed. Possible 
<subject> choices are: 
 

• -Help (no subject) – prints the linker command line & options reference. 
• -Help:Targets – prints the list of supported target platforms. 
• -Help:Formats – prints the list of supported output formats. 
• -Help:Encodings – prints the list of supported character sets. 
• -Help:Locales – prints the list of supported message locales. 

5.12 -ImpLib 
This option has the following format: 
 

-ImpLib[:<destination>] 
 
When used, this option causes an import library for the generated executable or 
dynamic-link library to be written (typically, this option will be used when linking 
dynamic-link libraries). An import library is s static library which, when used for 
linking another executable, causes that executable to link to an appropriate dynamic-
link library at load time. 
 
Depending on the exact form of the option’s parameter, the link map file may be 
written to several different locations: 
 

• If the <destination> parameter is not specified, the name of the import 
library file is derived from the name of the executable or dynamic-link library 
file by replacing the filename extension with .iml. The import library is 
written into the same directory where the generated executable or dynamic-
link library. 

• If the <destination> parameter is specified and ends with a path 
component separator, it is assumed to refer to a directory where the import 
library file shall be written; the name of the import library file is derived from 
the name of the executable or dynamic-link library file by replacing the 
filename extension with .iml. The destination directory is created 
automatically if it does not already exist. Non-absolute directory names are 
considered to be relative to the current working directory, not to the generated 
executable or dynamic-link library file’s location. 

 19



• If the <destination> parameter is specified and does not end with a path 
component separator, it is assumed to refer to a file where the import library 
shall be written. Non-absolute file names are considered to be relative to the 
current working directory, not to the generated executable or dynamic-link 
library’s location. 

5.13 -LibPath 
This option has the following format: 
 

-LibPath:<directory list> 
 
When used, this option specifies the list of directories where linker looks up for object 
and library files. The <directory list> is a list of full paths of one or more 
directories separated by a host OS – specific path list separator (: on Unix, ; on 
Windows, etc.) 
 
Any number of -LibPath options can be specified on the linker’s command line.  
 
Library directories specified with this option have higher priority than those specified 
with the CDS_1_0_LIB environment variable (if one is defined). 

5.14 -Locale 
This option has the following format: 
 

-Locale:<locale ID> 
 
When used, this option causes all linker messages and diagnostics to be written using 
the specified locale instead of the default locale. The <locale ID> can have one of 
the following forms: 
 

• -Locale:<language>, where <language> is a 2-letter ISO-639 
language code – causes linker messages to be written using the neutral locale 
for the specified language. 

• -Locale:<language>_<country>, where <language> is a 2-letter 
ISO-639 language code and <country> is a 2-letter ISO-3166 country code 
– causes linker messages to be written using the culture locale for the specified 
language and country. 

• -Locale:<language>_<country>_<variant>, where 
<language> is a 2-letter ISO-639 language code, <country> is a 2-letter 
ISO-3166 country code and <variant> is an arbitrary locale variant string – 
causes linker messages to be written using the full locale for the specified 
language, country and variant. 

• -Locale:Native – causes linker messages to be written using the “native” 
locale of the host OS. 

• -Locale:Invariant – causes linker messages to be written using an 
invariant (culture-independent) locale. 

 

 20



If this option is not specified, the –Locale:Invariant is assumed. An attempt to 
instruct the linker to produce output and messages using a locale for which the 
librarian message file is not available causes the locale’s parent to be used; if there is 
no message file for that parent locale, then its parent is used in turn, etc; if all else 
fails, an invariant locale is used for linker output and messages. 

5.15 -Locals 
This option has the following format: 
 

-Locals[:{On|Off}] 
 
When used, this option specifies whether the generated executable or dynamic-link 
library will contain local (i.e. non-global) symbols (-Locals:On) or not (-
Locals:Off); a default form -Locals is equivalent to -Locals:On. The 
default linker behaviour (when this option is not specified) is not to include local 
symbols into the output. 

5.16 -Map 
This option has the following format: 
 

-Map[:<destination>] 
 
When used, this option causes a textual file containing the link map of a generated 
executable or dynamic-link library to be written. 
 
Link map files are emitted in the “native” character set for the host OS unless another 
character set is selected with –MapEncoding option. 
 
Depending on the exact form of the option’s parameter, the link map file may be 
written to several different locations: 
 

• If the <destination> parameter is not specified, the name of the link map 
file is derived from the name of the executable or dynamic-link library file by 
replacing the filename extension with .map. The link map file is written into 
the same directory where the generated executable or dynamic-link library. 

• If the <destination> parameter is specified and ends with a path 
component separator, it is assumed to refer to a directory where the link map 
file shall be written; the name of the link map file is derived from the name of 
the executable or dynamic-link library file by replacing the filename extension 
with .map. The destination directory is created automatically if it does not 
already exist. Non-absolute directory names are considered to be relative to 
the current working directory, not to the generated executable or dynamic-link 
library file’s location. 

• If the <destination> parameter is specified and does not end with a path 
component separator, it is assumed to refer to a file where the link map shall 
be written. Non-absolute file names are considered to be relative to the current 
working directory, not to the generated executable or dynamic-link library’s 
location. 

 21



• If the <destination> parameter is a single dash ‘-‘, the link map is 
written to the standard output; in this case the character set used for the 
dependencies output is that selected for the standard output with the –
StdoutEncoding option. 

5.17 -MapEncoding 
This option has the following format: 
 

-MapEncoding:<encoding> 
 
When used, this option causes link map files to be written using the specified 
encoding (character set). The <encoding> parameter must be one of the encoding 
names supported by the linker, use the “cerlink –Help:Encodings” command 
to list supported encodings. 
 
If this option is not specified, link map files are written using the “native” character 
set of the host OS. The same effect can be achieved by using this option with a special 
native parameter, as in 
 

-MapEncoding:Native 

5.18 -Model 
This option has the following format: 
 

-Model:{ilp64|lp64|ip32} 
 
When used, this option sets the memory model to be used for the generated 
executable or dynamic-link library file. If the option is not specified, the memory 
model of the first input object module is used. 

5.19 -Output 
This option has the following format: 
 

-Output:<destination> 
 
When used, this option causes the resulting executable or dynamic-link library file to 
be written to the specified destination. 
 
Depending on the exact form of the option’s parameter, the output file may be written 
to several different locations: 
 

• If the <destination> parameter is not specified, the name of the output 
file is the same as the name of the first input file, with the filename extension 
(typically .rel) replaced by whatever extension is used by selected output 
type and format (e.g. .run for NGOFF executables, .dyl for NGOFF 
dynamic-link libraries, etc.) 

• If the <destination> parameter is specified and ends with a path 
component separator, it is assumed to refer to a directory where the output file 

 22



shall be written; the name of the output file is the same as the name of the first 
input file, with the filename extension (typically .rel) replaced by whatever 
extension is used by selected output type and format (e.g. .run for NGOFF 
executables, .dyl for NGOFF dynamic-link libraries, etc.) Non-absolute 
directory names are considered to be relative to the current working directory, 
not to the first input file’s location. 

• If the <destination> parameter is specified and does not end with a path 
component separator, it is assumed to refer to an output file itself. Non-
absolute file names are considered to be relative to the current working 
directory. 

5.20 -Progress 
This option has the following format: 
 

-Progress[:{On|Off}] 
 
When used, this option turns on (-Progress:On) or off (-Progress:Off) the 
printing of linker actions as they are performed; a default form -Progress is 
equivalent to -Progress:On, while the default linker behaviour is not to emit 
progress messages. 

5.21 -Quiet 
This option has the following format: 
 

-Quiet[:{On|Off}] 
 
The –Quiet:On option is a shortcut for the –Banner:Off –Progress:Off and 
–Statistics:Off option combination. Similarly, the –Quiet:Off option is a 
shortcut for the –Banner:On –Progress:On and –Statistics:On option 
combination. 

5.22 -Stack 
This option has the following format: 
 

-Stack:<reserve>[,<commit>] 
 
When used, this option causes the generated executable or dynamic-link library to be 
marked as requiring the <reserve> bytes of stack, of which the <commit> bytes 
will be initially committed. If <commit> is not specified, no stack is initially 
committed. 
 
Both <reserve> and <commit> have the following form: 
 

<amount>[<unit>] 
 
where: 
 

 23



• <amount> is the number of units to reserve (or commit). It can be specified 
as decimal, binary, octal or hexadecimal integer value using the same format 
as is used by the Cereon Assembler for integer constants. 

• <unit> is an optional suffix specifying the size of an allocation unit as B 
(byte), K( 1K = 1024B), M (1M = 1024K), G (1G = 1024M) or T (1T = 
1024G). If the unit is not specified, B is assumed. 

 
If both <reserve> and <commit> are specified, <commit> cannot be larger than 
<reserve>. 
 
This option can appear at most once in the linker command line. If it is absent, the 
linker behaves as if “-Stack:1M,64K” was in effect. 

5.23 -Statistics 
This option has the following format: 
 

-Statistics[:{On|Off}] 
 
When used, this option turns on (-Statistics:On) or off (-Statistics:Off) 
the printing of processing statistics at the end of linker invocation; a default form -
Statistics is equivalent to -Statistics:On, which is also the default linker 
behaviour. 

5.24 -StderrEncoding 
This option has the following format: 
 

-StderrEncoding:<encoding> 
 
When used, this option causes linker to issue all error and warning messages using the 
specified encoding (character set). The <encoding> parameter must be one of the 
encoding names supported by the librarian, use the “cerlink –
Help:Encodings” command to list supported encodings. 
 
If this option is not specified, all error and warning messages are written using the 
“native” character set of the host OS. The same effect can be achieved by using this 
option with a special native parameter, as in 
 

-StderrEncoding:Native 

5.25 -StdoutEncoding 
This option has the following format: 
 

-StdoutEncoding:<encoding> 
 
When used, this option causes linker to issue all standard output using the specified 
encoding (character set). The <encoding> parameter must be one of the encoding 
names supported by the librarian, use the “cerlink –Help:Encodings” 
command to list supported encodings. 

 24



 
If this option is not specified, all standard output written by the librarian uses the 
“native” character set of the host OS. The same effect can be achieved by using this 
option with a special native parameter, as in 
 

-StdoutEncoding:Native 

5.26 -Target 
This option has the following format: 
 

-Target:<target platform> 
 
When used, this option instructs the linker to produce an executable or dynamic-link 
library for the specified target. Use the “cerlink –Help:Targets” command to 
list supported targets. 
 
If the target is not explicitly specified from the command line, the linker assumes the 
most permissive target (i.e. all features enabled). 

5.27 -Veneers 
This option has the following format: 
 

-Veneers[:{On|Off}] 
 
When used, this option allows (-Veneers:On) or disallows (-Veneers:Off) the 
generation of long jump veneers; a default form -Veneers is equivalent to -
Veneers:On, which is also the default linker behaviour. 

5.28 -Via 
This option has the following format: 
 

-Via:<option file name> 
 
When used, this option instructs the linker to read the specified option file and process 
all command line options contained therein as if they were specified directly in the 
linker’s command line in place of a –Via option. 
 
Option files are assumed to be text files that use a “native” character set of the host 
OS; however, it is possible to instruct the linker to use a different encoding for option 
files with the –ViaEncoding option. 
 
Option files can contain within them references to other option files (i.e. –Via 
options are permitted within option files) as long as option file references do not form 
a cycle. 

5.29 -ViaEncoding 
This option has the following format: 
 

 25



-ViaEncoding:<encoding> 
 
When used, this option causes linker to assume that all option files use the specified 
encoding (character set). The <encoding> parameter must be one of the encoding 
names supported by the linker, use the “cerlink –Help:Encodings” command 
to list supported encodings. 
 
If this option is not specified, all option files are assumed to be using the “native” 
character set of the host OS. The same effect can be achieved by using this option 
with a special native parameter, as in 
 

-ViaEncoding:Native 

5.30 -WarningAsError 
This option has the following format: 
 

-WarningAsError:<warning ID>[,<warning ID> …] 
 
When used, this option causes warnings with the specified ID to be treated as errors. 
Any number of comma-separated warning IDs can be specified in the same –
WarningAsError option; similarly, it is permitted to have more than one –
WarningAsError option in the same command line. In particular, a warning issued 
as an error causes the linker to exit with a nonzero exit code, signalling a linker error. 
 
Note that treatment of certain (or all) warnings as errors does not affect warning 
filtering – a warning message simply becomes an error message if it is decided that a 
warning message must be issued. 

5.31 -WarningAsWarning 
This option has the following format: 
 

-WarningAsWarning:<warning ID>[,<warning ID> …] 
 
When used, this option causes warnings with the specified ID to not be treated as 
errors. Any number of comma-separated warning IDs can be specified in the same –
WarningAsWarning option; similarly, it is permitted to have more than one –
WarningAsWarning option in the same command line. 
 
Note that treatment of certain (or all) warnings as errors does not affect warning 
filtering – a warning message simply becomes an error message if it is decided that a 
warning message must be issued. 

5.32 -WarningLevel 
This option has the following format: 
 

-WarningLevel:{0|1|2|3|4} 
 

 26



When used, this option selects the specified warning level. Generally, the higher the 
warning level the more warnings are issued; warning level 0 causes all warnings to be 
suppressed, while warning level 4 causes all warnings to be reported. 
 
If the option is not specified, the default warning level is 2. 

5.33 -WarningsAsErrors 
This option has the following format: 
 

-WarningsAsErrors[:{On|Off}] 
 
When used, this option turns on (-WarningsAsErrors:On) or off (-
WarningsAsErrors:Off) the treatment of all warnings as errors; a default form 
-WarningsAsErrors is equivalent to -WarningsAsErrors:On, while -
WarningsAsErrors:Off is the linker default. In particular, a warning issued as 
an error causes the librarian to exit with a nonzero exit code, signalling a linking 
error. 
 
Note that treatment of certain (or all) warnings as errors does not affect warning 
filtering – a warning message simply becomes an error message if it is decided that a 
warning message must be issued. 
 

 27



6 Appendix A: GNU Free Documentation 
License 

Version 1.2, November 2002  

Copyright (C) 2000,2001,2002  Free Software Foundation, Inc. 
51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA 
Everyone is permitted to copy and distribute verbatim copies 
of this license document, but changing it is not allowed. 

0. PREAMBLE  

The purpose of this License is to make a manual, textbook, or other functional and 
useful document "free" in the sense of freedom: to assure everyone the effective 
freedom to copy and redistribute it, with or without modifying it, either commercially 
or noncommercially. Secondarily, this License preserves for the author and publisher 
a way to get credit for their work, while not being considered responsible for 
modifications made by others.  

This License is a kind of "copyleft", which means that derivative works of the 
document must themselves be free in the same sense. It complements the GNU 
General Public License, which is a copyleft license designed for free software.  

We have designed this License in order to use it for manuals for free software, 
because free software needs free documentation: a free program should come with 
manuals providing the same freedoms that the software does. But this License is not 
limited to software manuals; it can be used for any textual work, regardless of subject 
matter or whether it is published as a printed book. We recommend this License 
principally for works whose purpose is instruction or reference.  

1. APPLICABILITY AND DEFINITIONS  

This License applies to any manual or other work, in any medium, that contains a 
notice placed by the copyright holder saying it can be distributed under the terms of 
this License. Such a notice grants a world-wide, royalty-free license, unlimited in 
duration, to use that work under the conditions stated herein. The "Document", below, 
refers to any such manual or work. Any member of the public is a licensee, and is 
addressed as "you". You accept the license if you copy, modify or distribute the work 
in a way requiring permission under copyright law.  

A "Modified Version" of the Document means any work containing the Document or 
a portion of it, either copied verbatim, or with modifications and/or translated into 
another language.  

A "Secondary Section" is a named appendix or a front-matter section of the Document 
that deals exclusively with the relationship of the publishers or authors of the 
Document to the Document's overall subject (or to related matters) and contains 
nothing that could fall directly within that overall subject. (Thus, if the Document is in 

 28



part a textbook of mathematics, a Secondary Section may not explain any 
mathematics.) The relationship could be a matter of historical connection with the 
subject or with related matters, or of legal, commercial, philosophical, ethical or 
political position regarding them.  

The "Invariant Sections" are certain Secondary Sections whose titles are designated, 
as being those of Invariant Sections, in the notice that says that the Document is 
released under this License. If a section does not fit the above definition of Secondary 
then it is not allowed to be designated as Invariant. The Document may contain zero 
Invariant Sections. If the Document does not identify any Invariant Sections then 
there are none.  

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover 
Texts or Back-Cover Texts, in the notice that says that the Document is released 
under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover 
Text may be at most 25 words.  

A "Transparent" copy of the Document means a machine-readable copy, represented 
in a format whose specification is available to the general public, that is suitable for 
revising the document straightforwardly with generic text editors or (for images 
composed of pixels) generic paint programs or (for drawings) some widely available 
drawing editor, and that is suitable for input to text formatters or for automatic 
translation to a variety of formats suitable for input to text formatters. A copy made in 
an otherwise Transparent file format whose markup, or absence of markup, has been 
arranged to thwart or discourage subsequent modification by readers is not 
Transparent. An image format is not Transparent if used for any substantial amount of 
text. A copy that is not "Transparent" is called "Opaque".  

Examples of suitable formats for Transparent copies include plain ASCII without 
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly 
available DTD, and standard-conforming simple HTML, PostScript or PDF designed 
for human modification. Examples of transparent image formats include PNG, XCF 
and JPG. Opaque formats include proprietary formats that can be read and edited only 
by proprietary word processors, SGML or XML for which the DTD and/or processing 
tools are not generally available, and the machine-generated HTML, PostScript or 
PDF produced by some word processors for output purposes only.  

The "Title Page" means, for a printed book, the title page itself, plus such following 
pages as are needed to hold, legibly, the material this License requires to appear in the 
title page. For works in formats which do not have any title page as such, "Title Page" 
means the text near the most prominent appearance of the work's title, preceding the 
beginning of the body of the text.  

A section "Entitled XYZ" means a named subunit of the Document whose title either 
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ 
in another language. (Here XYZ stands for a specific section name mentioned below, 
such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To 
"Preserve the Title" of such a section when you modify the Document means that it 
remains a section "Entitled XYZ" according to this definition.  

 29



The Document may include Warranty Disclaimers next to the notice which states that 
this License applies to the Document. These Warranty Disclaimers are considered to 
be included by reference in this License, but only as regards disclaiming warranties: 
any other implication that these Warranty Disclaimers may have is void and has no 
effect on the meaning of this License.  

2. VERBATIM COPYING  

You may copy and distribute the Document in any medium, either commercially or 
noncommercially, provided that this License, the copyright notices, and the license 
notice saying this License applies to the Document are reproduced in all copies, and 
that you add no other conditions whatsoever to those of this License. You may not use 
technical measures to obstruct or control the reading or further copying of the copies 
you make or distribute. However, you may accept compensation in exchange for 
copies. If you distribute a large enough number of copies you must also follow the 
conditions in section 3.  

You may also lend copies, under the same conditions stated above, and you may 
publicly display copies.  

3. COPYING IN QUANTITY  

If you publish printed copies (or copies in media that commonly have printed covers) 
of the Document, numbering more than 100, and the Document's license notice 
requires Cover Texts, you must enclose the copies in covers that carry, clearly and 
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover 
Texts on the back cover. Both covers must also clearly and legibly identify you as the 
publisher of these copies. The front cover must present the full title with all words of 
the title equally prominent and visible. You may add other material on the covers in 
addition. Copying with changes limited to the covers, as long as they preserve the title 
of the Document and satisfy these conditions, can be treated as verbatim copying in 
other respects.  

If the required texts for either cover are too voluminous to fit legibly, you should put 
the first ones listed (as many as fit reasonably) on the actual cover, and continue the 
rest onto adjacent pages.  

If you publish or distribute Opaque copies of the Document numbering more than 
100, you must either include a machine-readable Transparent copy along with each 
Opaque copy, or state in or with each Opaque copy a computer-network location from 
which the general network-using public has access to download using public-standard 
network protocols a complete Transparent copy of the Document, free of added 
material. If you use the latter option, you must take reasonably prudent steps, when 
you begin distribution of Opaque copies in quantity, to ensure that this Transparent 
copy will remain thus accessible at the stated location until at least one year after the 
last time you distribute an Opaque copy (directly or through your agents or retailers) 
of that edition to the public.  

 30



It is requested, but not required, that you contact the authors of the Document well 
before redistributing any large number of copies, to give them a chance to provide 
you with an updated version of the Document.  

4. MODIFICATIONS  

You may copy and distribute a Modified Version of the Document under the 
conditions of sections 2 and 3 above, provided that you release the Modified Version 
under precisely this License, with the Modified Version filling the role of the 
Document, thus licensing distribution and modification of the Modified Version to 
whoever possesses a copy of it. In addition, you must do these things in the Modified 
Version:  

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of 
the Document, and from those of previous versions (which should, if there 
were any, be listed in the History section of the Document). You may use the 
same title as a previous version if the original publisher of that version gives 
permission.  

• B. List on the Title Page, as authors, one or more persons or entities 
responsible for authorship of the modifications in the Modified Version, 
together with at least five of the principal authors of the Document (all of its 
principal authors, if it has fewer than five), unless they release you from this 
requirement.  

• C. State on the Title page the name of the publisher of the Modified Version, 
as the publisher.  

• D. Preserve all the copyright notices of the Document.  
• E. Add an appropriate copyright notice for your modifications adjacent to the 

other copyright notices.  
• F. Include, immediately after the copyright notices, a license notice giving the 

public permission to use the Modified Version under the terms of this License, 
in the form shown in the Addendum below.  

• G. Preserve in that license notice the full lists of Invariant Sections and 
required Cover Texts given in the Document's license notice.  

• H. Include an unaltered copy of this License.  
• I. Preserve the section Entitled "History", Preserve its Title, and add to it an 

item stating at least the title, year, new authors, and publisher of the Modified 
Version as given on the Title Page. If there is no section Entitled "History" in 
the Document, create one stating the title, year, authors, and publisher of the 
Document as given on its Title Page, then add an item describing the Modified 
Version as stated in the previous sentence.  

• J. Preserve the network location, if any, given in the Document for public 
access to a Transparent copy of the Document, and likewise the network 
locations given in the Document for previous versions it was based on. These 
may be placed in the "History" section. You may omit a network location for a 
work that was published at least four years before the Document itself, or if 
the original publisher of the version it refers to gives permission.  

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve 
the Title of the section, and preserve in the section all the substance and tone 
of each of the contributor acknowledgements and/or dedications given therein.  

 31



• L. Preserve all the Invariant Sections of the Document, unaltered in their text 
and in their titles. Section numbers or the equivalent are not considered part of 
the section titles.  

• M. Delete any section Entitled "Endorsements". Such a section may not be 
included in the Modified Version.  

• N. Do not retitle any existing section to be Entitled "Endorsements" or to 
conflict in title with any Invariant Section.  

• O. Preserve any Warranty Disclaimers.  

If the Modified Version includes new front-matter sections or appendices that qualify 
as Secondary Sections and contain no material copied from the Document, you may at 
your option designate some or all of these sections as invariant. To do this, add their 
titles to the list of Invariant Sections in the Modified Version's license notice. These 
titles must be distinct from any other section titles.  

You may add a section Entitled "Endorsements", provided it contains nothing but 
endorsements of your Modified Version by various parties--for example, statements 
of peer review or that the text has been approved by an organization as the 
authoritative definition of a standard.  

You may add a passage of up to five words as a Front-Cover Text, and a passage of 
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the 
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover 
Text may be added by (or through arrangements made by) any one entity. If the 
Document already includes a cover text for the same cover, previously added by you 
or by arrangement made by the same entity you are acting on behalf of, you may not 
add another; but you may replace the old one, on explicit permission from the 
previous publisher that added the old one.  

The author(s) and publisher(s) of the Document do not by this License give 
permission to use their names for publicity for or to assert or imply endorsement of 
any Modified Version.  

5. COMBINING DOCUMENTS  

You may combine the Document with other documents released under this License, 
under the terms defined in section 4 above for modified versions, provided that you 
include in the combination all of the Invariant Sections of all of the original 
documents, unmodified, and list them all as Invariant Sections of your combined work 
in its license notice, and that you preserve all their Warranty Disclaimers.  

The combined work need only contain one copy of this License, and multiple 
identical Invariant Sections may be replaced with a single copy. If there are multiple 
Invariant Sections with the same name but different contents, make the title of each 
such section unique by adding at the end of it, in parentheses, the name of the original 
author or publisher of that section if known, or else a unique number. Make the same 
adjustment to the section titles in the list of Invariant Sections in the license notice of 
the combined work.  

 32



In the combination, you must combine any sections Entitled "History" in the various 
original documents, forming one section Entitled "History"; likewise combine any 
sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You 
must delete all sections Entitled "Endorsements."  

6. COLLECTIONS OF DOCUMENTS  

You may make a collection consisting of the Document and other documents released 
under this License, and replace the individual copies of this License in the various 
documents with a single copy that is included in the collection, provided that you 
follow the rules of this License for verbatim copying of each of the documents in all 
other respects.  

You may extract a single document from such a collection, and distribute it 
individually under this License, provided you insert a copy of this License into the 
extracted document, and follow this License in all other respects regarding verbatim 
copying of that document.  

7. AGGREGATION WITH INDEPENDENT WORKS  

A compilation of the Document or its derivatives with other separate and independent 
documents or works, in or on a volume of a storage or distribution medium, is called 
an "aggregate" if the copyright resulting from the compilation is not used to limit the 
legal rights of the compilation's users beyond what the individual works permit. When 
the Document is included in an aggregate, this License does not apply to the other 
works in the aggregate which are not themselves derivative works of the Document.  

If the Cover Text requirement of section 3 is applicable to these copies of the 
Document, then if the Document is less than one half of the entire aggregate, the 
Document's Cover Texts may be placed on covers that bracket the Document within 
the aggregate, or the electronic equivalent of covers if the Document is in electronic 
form. Otherwise they must appear on printed covers that bracket the whole aggregate.  

8. TRANSLATION  

Translation is considered a kind of modification, so you may distribute translations of 
the Document under the terms of section 4. Replacing Invariant Sections with 
translations requires special permission from their copyright holders, but you may 
include translations of some or all Invariant Sections in addition to the original 
versions of these Invariant Sections. You may include a translation of this License, 
and all the license notices in the Document, and any Warranty Disclaimers, provided 
that you also include the original English version of this License and the original 
versions of those notices and disclaimers. In case of a disagreement between the 
translation and the original version of this License or a notice or disclaimer, the 
original version will prevail.  

If a section in the Document is Entitled "Acknowledgements", "Dedications", or 
"History", the requirement (section 4) to Preserve its Title (section 1) will typically 
require changing the actual title.  

 33



9. TERMINATION  

You may not copy, modify, sublicense, or distribute the Document except as 
expressly provided for under this License. Any other attempt to copy, modify, 
sublicense or distribute the Document is void, and will automatically terminate your 
rights under this License. However, parties who have received copies, or rights, from 
you under this License will not have their licenses terminated so long as such parties 
remain in full compliance.  

10. FUTURE REVISIONS OF THIS LICENSE  

The Free Software Foundation may publish new, revised versions of the GNU Free 
Documentation License from time to time. Such new versions will be similar in spirit 
to the present version, but may differ in detail to address new problems or concerns. 
See http://www.gnu.org/copyleft/.  

Each version of the License is given a distinguishing version number. If the 
Document specifies that a particular numbered version of this License "or any later 
version" applies to it, you have the option of following the terms and conditions either 
of that specified version or of any later version that has been published (not as a draft) 
by the Free Software Foundation. If the Document does not specify a version number 
of this License, you may choose any version ever published (not as a draft) by the 
Free Software Foundation. 

 

 34


	1 Contents
	Introduction
	3 The linking process
	3.1 Long branch veneers
	3.2 Roaming section handling
	3.3 Linking with DLLs

	4 Invoking the linker
	4.1 Environment variables
	4.1.1 CDS_1_0_LINKER_OPTIONS
	4.1.2 CDS_1_0_LIB

	4.2 Options
	4.3 Option files
	4.4 Option conflicts
	4.5 Character encoding
	4.6 Message files

	5 Linker options
	5.1 -Banner
	5.2 -Debug
	5.3 -DisableWarning
	5.4 -Dll
	5.5 -EnableWarning
	5.6 -Endian
	5.7 -Entry
	5.8 -Format
	5.9 -FullMessagePaths
	5.10 -Heap
	5.11 -Help
	5.12 -ImpLib
	5.13 -LibPath
	5.14 -Locale
	5.15 -Locals
	5.16 -Map
	5.17 -MapEncoding
	5.18 -Model
	5.19 -Output
	5.20 -Progress
	5.21 -Quiet
	5.22 -Stack
	5.23 -Statistics
	5.24 -StderrEncoding
	5.25 -StdoutEncoding
	5.26 -Target
	5.27 -Veneers
	5.28 -Via
	5.29 -ViaEncoding
	5.30 -WarningAsError
	5.31 -WarningAsWarning
	5.32 -WarningLevel
	5.33 -WarningsAsErrors

	6 Appendix A: GNU Free Documentation License

