

DDEESSIIGGNN AANNDD VVEERRIIFFIICCAATTIIOONN OOFF WWIISSHHBBOONNEE BBUUSS
IINNTTEERRFFAACCEE FFOORR SSOOCC IINNTTEEGGRRAATTIIOONN

A thesis submitted in partial fulfilment of the requirements for the
degree of

Master of Technology (Research)
in

Electronics & Communication Engineering

By

Ayas Kanta Swain

Roll No: 60609001

Under the supervision of

Dr. KamalaKanta Mahapatra
Professor

Department of Electronics & Communication Engineering
National Institute of Technology, Rourkela, Orissa

January 2010

Dedicated to
my family

T

W

N

6

E

w

T

T

el

In

T

T

b

This is to

WISHBON

National Ins

0609001 for

Electronics &

work carried

The candida

The thesis, w

lsewhere fo

n my opini

Technology

To the best

ehaviour.

D
NAT

certify tha

NE Bus In

stitute of T

r the award

& Commun

d out by him

ate has fulfi

which is ba

or a degree/

on, the thes

(Research)

of my kno

Department
TIONAL IN

at the thes

nterface f

Technology

d of the deg

nication En

m under m

illed all the

ased on can

/diploma.

sis is of sta

 degree in E

owledge, h

Departme
NAT

t of Electron
NSTITUTE

sis titled “

for SOC

y, Rourkela

gree of Ma

ngineering,

y supervisi

prescribed

ndidate’s ow

andard requ

Electronics

he bears a g

ent of Electro
TIONAL IN

CERTIFIC

nics & Com
 OF TECHN

ORIS

“Design a

Integratio

by Ayas K

aster of Tec

, is a bonaf

ion and gui

d requireme

wn work, h

uired for th

& Commu

good mora

Pro

onics & Com
NSTITUTE

Rou
E

CATE

mmunication
NOLOGY,
SSA, INDIA

and Verif

on” subm

Kanta Swa

chnology (R

fide record

idance.

ents.

has not bee

he award of

unication En

al character

of. K. K. M

mmunication
E OF TEC
urkela‐769
Email: kkm

n Engineerin
ROURKELA

A – 769 00

fication o

itted to th

ain, Roll No

Research) i

d of researc

en submitte

f a Master o

ngineering.

r and decen

Mahapatr
Professo

n Engineerin
HNOLOG
008 (INDIA

m@nitrkl.ac.i

ng
A

08

of

he

o.

in

ch

ed

of

nt

ra
or
ng
Y
A)
in

ACKNOWLEDGEMENT

I would like to take this opportunity to extend my deepest gratitude to my

teacher and supervisor, Prof. K. K. Mahapatra, for his continuous encouragement and

active guidance. I am indebted to him for the valuable time he has spared for me

during this work. He is always there to meet and talk about my ideas and he is great

moral support behind me in carrying out my research work.

I am very much thankful to Prof. S. K. Patra, HOD, ECE Department for his

continuous encouragement. I am grateful to Prof. G.S.Rath, Prof.S.Meher,

Prof.T.K.Dan and Dr.D.P.Acharya, Prof. S.K.Behera, Prof. Ajit Sahoo and

Prof.B.D.Sahoo for valuable suggestions and comments during this research period.

In addition, I am grateful to Prof. A. Routray and Prof. B.S. Das, IIT

Kharagpur for giving me an opportunity to work with them; this introduced me to the

area of research and development.

I am grateful to www.opencores.org for their technical support during the

complete project period.

I need to thank my friends especially Saroj, who stands with me in all my

endeavours. And also I am thankful to him for making my thesis more representable.

In addition, let me thank all my friends Jitendra sir, Sushant, Sudeendra,

Trillochan, Sanatan, Devi, Prasanta, Karuppanan, Deepak,Arun, Tom, Soumya,

Jagannath and Peter for their great support and encouragement during the research

period. Also, I am thankful to all the non-teaching staffs of ECE Department for their

kind cooperation.

I would like to thank Department of Information Technology, Govt. of India,

for supporting me under SMDP-VLSI project.

Last but not the least; I would like to thank my parents, brother and sister for their

unconditional support and encouragement to carry out research. I am also thankful to

my sister for helping me in typing the part of my thesis.
 Ayas Kanta Swain

BIO-DATA

Name of the Candidate : Ayas Kanta Swain

Father’s Name : Kulamani Swain

Permanent Address :

S/o. Kulamani Swain
 F-17, Sector-7
Rourkela-3

Date of Birth

: 26th August 1979

Email ID : swain.ayas@gmail.com

ACADEMIC QUALIFICATION

• Continuing M. Tech (Research) in Dept. of Electronics and

Communication Engineering, National Institute of Technology
Rourkela, Orissa (INDIA).

• B. E. (Hons.) (Electrical Engineering), IGIT, Sarang, Utkal

University, Orissa

EXPERIENCE

• Working as a Contractual Faculty, in Project “Special Man Power
Development Project for VLSI Design and its Related Software”
funded by DIT under MCIT, Delhi.

• Worked as a Research Engineer in DST Sponsored Project in
Dept. of AG&FE. & Dept. of Electrical Engg., IIT Kharagpur

• Worked as a Guest Faculty at Dept. Elect. Engg.,IGIT Sarang,
Dhenkanal, Orissa.

PUBLICATIONS:

 Published 01 paper in International Conferences;

ABSTRACT

The rapid development in the field of mobile communication, digital signal

processing (DSP) motivated the design engineer to integrate complex systems of

multimillion transistors in a single chip. The integration of the transistor in a single

chip greatly increases the performance of the system while reduction in system size.

Recently, there is a considerable increase in the application front in several areas of

engineering and technology. Moore’s law states that integration density gets doubled

every two years, so the complexity of the integrated circuits also increases by keeping

the used chip area constant. In order to keep pace with the levels of integration

available, design engineers have developed new methodologies and techniques to

manage the increased complexity in these large chips.

System-on-Chip (SOC) design is proposed as an extended methodology to this

problem where pre-designed and pre-verified IP cores of embedded processors,

memory blocks, interface blocks, and analog blocks are combined on a single chip

targeting a specific application. These chips may have one or more processors on

chip, a large amount of memory, bus-base architectures, peripherals, co processors,

and I/O channels. These chips integrates systems far more similar to the boards

designed ten years ago that to the chips of even a few years ago. The primary drivers

for this are the reduction of power, smaller form factor, and lower overall cost. SOC

offers many benefits such as smaller space requirements with higher performance.

Design reuse- the use of predesigned and pre-verified cores – is now the cornerstone

of SOC design. It uses reusable IP blocks that supports plug and play integration and

in turn allows huge chips to be designed at an acceptable cost, and quality.

The benefits SOC design methodology also come with challenges such as:

larger design space, higher design and prototype costs. Apart from these challenges,

the design again needs an expertise in both hardware and software levels for proper

hardware and software co-design. Another important aspect of SOC integration is the

development of a proper test methodology for post manufacturing test. All these

integration issues makes the design time consuming and also expensive.

To deal with this inherent integration problems and reduction in design cycle

time, platform based SoC design was proposed where new designs could be quickly

created from the original platform over many design derivatives. More specifically a

platform is an abstraction level that covers a number of refinements to a lower level

resulting in improvement of the design productivity. In other side, a new concept that

is gaining interest is the Open Core SoC design methodology which is based on

publishing all necessary information about the hardware. Open Core group has

provided many pre-synthesized and pre-verified hardware core for the designer under

GPL/LGPL license.

 This thesis investigates the Open core based SOC design platform. Open Core

uses a standard bus WISHBONE to alleviate System-on-Chip problem. The various

issues related to Open Core WISHBONE bus interfaces are presented in this thesis.

These include WISHBONE specification, types of interconnections, WISHBONE Bus

cycles.etc. A comparison of three bus protocol has been discussed. The issues related

to design of a WISHBONE compatible IP core, Point-to-Point interconnection, shared

bus interconnection is also presented in this investigation. All the designs are

validated by XILINX ISE simulation results and real time debugging signals though

ChipScope Pro. A SOC design methodology has been presented for a proposed SOC

architecture. Afterwards a SOC architecture of 32-bit RISC CPU, memory, System

Controller, UART and PIO has been proposed and the design methodology used to

implement the SOC in FPGA has been discussed. The functionality of CPU operation

in SOC architecture is verified by simulation results and corresponding steps for

FPGA implementation of the SOC architecture with synthesis results have been

presented. Finally, application software ha been developed in C and the object file is

ported to FPGA system for validation of the SOC functionality of the SOC

architecture.

Table of Contents:

 List of Figures i

 List of Tables v

 List of Abbreviations vi

1. System on Chip: An Overview 1

1.1 Concept of System-on-Chip 2

1.2 History of SOC 4

1.3 Design Reuse Concept 4

 1.3.1 Design for reuse 5

1.4 The system on chip design flow and process 6

 1.4.1 A canonical SOC design 6

 1.4.2 System Design Flow 7

 I. Waterfall vs. Spiral 7

 II. Top-down Vs. Bottom up 9

 1.4.3 The System Design Process 11

1.5 System level Design Issues 14

 1.5.1 Different Types of IP Cores 14

 I. Digital IP 14

 II. AMS IP 15

 1.5.2 System Interconnect and On Chip-Buses 15

 1.5.3 SOC Test Methodologies 15

 I. IP core level test 16

 II. SOC level test 19

 1.5.4 SOC Verification 19

1.6 Motivation 20

1.7 Work Presented in the Thesis 21

1.8 Thesis Outline 21

1.8 Conclusions 22

2. Open Core Based SOC Design Methodology 23

2.1 Platform Based SOC Design 24

2.2 Open Core Based SOC Design Platform 26

2.3 The Objective behind WISHBONE 26

2.4 WISHBONE Basics 27

2.5 WISHBONE Interface Specification 28

 2.5.1 Documentation for IP Cores 28

 2.5.1 WISHBONE Interface Signal 29

2.6. Wishbone Interconnections 32

 2.6.1 Point-to-Point Interconnection 32

 2.6.2 Data Flow Interconnection 33

 2.6.3 Share Bus Interconnection 33

 2.6.4 Cross Bar Switch Interconnection 34

2.7 WISHBONE Bus Cycle 34

 2.7.1 Handshaking Protocol 34

 2.7.2 Single Read/ Write Cycle 35

 2.7.3 Block Read/ Write Cycle 36

 2.7.4 Read-Modify-Write (RMW) Cycle 37

2.8 Data Organization and Customized Tag 39

2.9 WISHBONE SOC Bus Comparison with AMBA and CoreConnect 39

2.10 Conclusions 41

3. Design and verification of WISHBONE Interconnections 43

3.1 Design of WISHBONE Compatible Slave IP Core 44

 3.1.1 16-Bit Slave Output Port Design with 8-Bit Granularity 44

 3.1.2 Simulation Results 46

3.2 Point-to-Point Interconnection 46

 3.2.1 Core specification and internal architecture 47

 I. DMA 47

 I. MEMORY 50

 III. SYSCON 51

 3.2.2 Interconnection Architecture 52

 3.2.3 Verification Results 52

 3.2.4 Synthesis Results 54

 3.2.5 ChipScope Pro Result: 55

 3.2.6 Benchmarking Results 56

3.3. Shared Bus Interconnection 56

 3.3.1. Bus topology 57

 3.3.2. Interconnection logic 58

 3.3.3. Arbiter Topology 60

 3.3.4. Partial address decoding and address map 63

 3.3.5. Interconnection topology 64

 3.3.6. Verification Results 67

 3.3.7. Synthesis Results 67

 3.3.8. ChipScope Pro Result 69

 3.3.9. Benchmarking Results 70

3.4. Conclusions 71

4. SOC Architecture and Design Methodology 72

4.1 Proposed SoC Design Methodology 73

 4.1.1 Hardware Design Flow 73

 4.1.2 Software Design Flow 75

4.2 Hardware Gateway of SoC Architecture 75

4.3 Descriptions of IP Cores 76

 4.3.1 CPU 76

 I. Specification 76

 II. Structure of CPU 76

 Decoder Unit 81

 Memory Access Controller Unit 86

 Data Path Unit 92

 Multiplier Unit 92

 4.3.2 PIO: Parallel Input and Output 94

 I. Specification 94

 II. Structure of PIO 94

 4.3.3 Serial Input Output (UART) 96

 I. Specification 96

 II. Structure of PIO 96

 4.3.4 System Controller (SYS) 97

 I. Specification 97

 II. Structure of SYS 98

 4.3.5 On chip memory 100

 I. Specification 100

 II. Structure of SYS 100

4.4 Conclusions 101

5. SOC Integration, Verification and FPGA Implementation 102

5.1 Integration of IP Cores 103

5.2 Verification of SOC 106

 5.2.1 Verification Environment 106

 5.2.2 Test Bench Development 106

 5.2.3 Simulation Results 108

5.3 Synthesis results 110

5.4 FPGA Implementation 112

 5.4.1 FPGA development tool and board 112
 5.4.2 Interface Board Circuit Diagram 112

 5.4.3 FPGA Configuration 115

5.5 ChipScope Pro Result 116

5.6 Conclusion 116

6 Application Development for SOC 117

6.1 Application Programs 118

6.2 Monitor Program Application 118

 6.2.1 Algorithm for monitor program 118

 6.2.2 How Monitor Program Works 122

6.3 Digital Clock Application 125

6.4 Audio Processing Application 126

 6.4.1 AC97 Codec 127

 6.4.2 Wishbone compatible AC97 Controller core design and
Verification 129

6.5 Conclusions 132

7. Conclusions 133

7.1 Conclusions 133

7.2 Scope for Future Work 135

 References 136

i

List of Figures:

Figure 1. 1 Idea of SOC design………………………………... 3
Figure 1. 2 A canonical SOC design………………………………….. 6

Figure 1. 3 Water fall design process…………………………………. 8

Figure 1. 4 Spiral Design Flow ………………………………………. 10

Figure 1. 5 Core based SOC Test Architecture………………………. 17

Figure 1. 6 Block Diagram of P1500 Wrapper for BIST DFT Core…... 18

Figure 1. 7 Integration of Cores using P1500 wrapper……………….. 19

Figure 2.1
WISHBONE Intercon

system…………………………….

27

Figure 2.2
Point to point interconnection with WISHBONE interface

signals…………………………………………………… 32

Figure 2.3(a)
Point-to-Point

Interconnection…………………………….. 32

Figure 2.3(b)
Data flow

Interconnection………………………………… 33

Figure: 2. 4 (a) Shared bus interconnection ………………………………. 33

Figure 2.4 (b) Crossbar switch interconnection…………………………... 33

Figure: 2. 5
Handshaking

protocol…………………………………….

35

Figure: 2. 6 (a) Single Read Cycle ………………………………………… 35

Figure: 2.6 (b)
Single write

cycle…………………………………………..

35

Figure: 2. 7 (a) Block Read
cycle…………………………………………. 36

Figure: 2. 7 (b)

Block Write cycle………………………………………….. 37

Figure: 2. 8 Read-Modified-Write Cycle………………………………. 38

Figure: 3. 1

Block diagram of UART………………………………….. 45

ii

Figure: 3. 2
Simulation result of 16-bit output port with 8-bit

granularity…………………………………………………

46

Figure: 3. 3
 Point-to-point interconnection……………………………... 47

Figure: 3. 4
Block diagram of DMA………………………………….

 48

Figure: 3. 5
Block write cycle.

…………………………………………
.

49

Figure: 3. 6
Block read

cycle……………………………………………

50

Figure: 3. 7 Block diagram of memory module………………………..

51

Figure: 3. 8

Block diagram and timing diagram of SYSCON…………. 52

Figure: 3. 9

Simulation result for a clock period of 2500
ns…………..

53

Figure: 3. 10
Simulation results for a clock period of 5000

ns…………...

53

Figure: 3. 11
 RTL schematic of interconnection……………………….. 54

Figure: 3. 12

ChipScope Pro results of real time signals of
interconnection…………………………………….. 55

Figure: 3. 13

Multiplexed address/ data bus……………………………. 58

Figure: 3. 14

(a)

Three-state Interconnection……………………………….. 59

Figure: 3. 15
(b)

Multiplexor logic Interconnection……………………….. 59

Figure: 3. 16

Round-robin arbiter working as a rotary switch…………. 60

Figure: 3. 17

Round-robin arbiter working as a rotary switch………….. 61

Figure: 3. 18

Timing diagram of arbiter…………………………………. 62

iii

Figure: 3. 19

Block Diagram of a Generalized Shared bus
Interconnection……………………………………………... 65

Figure: 3. 20

Simulation result for a clock period of 4000 ns……………. 67

Figure: 3. 21

RTL Schematics of shared bus interconnection……………. 68

Figure: 3. 22

ChipScope Pro results of real time signals of
interconnection……………………………………………… 69

Figure: 4. 1 Design Methodology………………………………………. 74

Figure: 4. 2 Hardware gateway of SOC architecture……………………. 75

Figure: 4. 3 Block diagram of CPU…………………………………….. 77

Figure: 4. 4 Pipeline stages of CPU……………………………………. 78

Figure: 4. 5 pipeline stages of instructions……………………………. 80

Figure: 4. 6 IF Issue………………………………………………….. 80

Figure: 4. 7 Block Diagram of Decoder Unit………………………… 81

Figure: 4. 8 Basic Operation of ID Stage……………………………… 82

Figure: 4. 9 Shifting of Control Signal………………………………….. 83

Figure: 4. 10 Circuit diagram for Shifting Operation……………………... 84

Figure: 4. 11 Circuit of Detecting Register Conflict…………………… 84

Figure: 4. 12 Pipeline Control during Memory Load Contention………. 85

Figure: 4. 13 Wishbone ACK and CPU’s SLOT………………………… 86

Figure: 4. 14 Instruction Fetch Cycle…………………………………….. 88

Figure: 4. 15 Memory Access Cycle……………………………………. 89

Figure: 4. 16 IF_MA Conflict…………………………………………. 90

Figure: 4. 16 IF_MA Conflict…………………………………………. 90

Figure: 4. 17 Read modify write cycle………………………………… 91

Figure: 4. 18 Block Diagram of Data Path Unit………………………. 93

Figure: 4. 19 Block Diagram of Multiplier Unit…………………… 94

iv

Figure: 4. 20 Registers of PIO………………………………………. 95

Figure: 4. 21 UART Registers and its address……………………… 97

Figure: 4. 22 System Controller (SYS) Registers 99

Figure: 5. 1 Block Diagram of Experimental Set-Up for FPGA
Implementation……………………………………………….. 107

Figure: 5. 2 Circuit diagram of interfacing board………………………….. 108

Figure: 5. 3 Experimental Set-Up pf FPGA Implementation…………….. 190

Figure: 6. 1 Flow Chart of Monitor
Program………………………………… 121

Figure: 6. 2

Monitor output presented in a pictorial

form……………… 124

Figure: 6. 3

Output of Real Time Clock

Application………………….. 125

Figure: 6. 4
 Block diagram of LM4550 audio codec………………… 126

Figure: 6. 5

AC link serial interface
protocol…………………………. 127

Figure: 6. 6

Block Diagram of AC97 Controller

Core………………… 130

Figure: 6. 7

Real time signals of AC 97 Controller for the loop back
test
performed…………………………………………………

131

Figure: 6. 8

SOC Architecture for Audio Processing
Application………. 131

v

List of Tables

Table: 2. 1 Master Signals 30

Table: 2. 2 Slave Signal 31
Table: 2. 3 Signals Common to both Masters and Slaves 31
Table: 2. 4 Comparison of WISHBONE, AMBA and CoreConnect 40
Table: 3. 1 Device utilization summary for Spartan3e 54
Table: 3. 2 Device utilization summary for Virtex-II Pro 55

Table: 3. 3 32-bit Point-to-Point interconnection benchmark
results 56

Table: 3. 4 Address map used by Interconnection 64

Table: 3. 5 Device utilization summary of interconnection
Spartan3e 68

Table: 3. 6 Device utilization summary in Virtex-II Pro 69
Table: 3. 7 32-bit shared bus interconnection benchmark results 70
Table: 4. 1 Input Output Signals of CPU 78
Table: 4. 2 Input Output Signals of PIO 95
Table: 4. 3 UART Input Output Signals 96
Table: 4. 4 Baud Rate Settings Example 97
Table: 4. 5 System Controller Input Output Signals 98
Table: 4. 6 On-chip Memory Input Output Signals 100
Table: 5. 1 Address Map of the Peripherals 104
Table: 5. 2 Top module Input Output Signals 105

Table: 5. 3 Assembly Instruction with Hex Code, Bus transaction and
Output 108

Table: 5. 4 Synthesis Results with Area Optimization 111
Table: 5. 5 Synthesis Results with Speed Optimization 111
Table: 5. 6 Comparison of Synthesis Results 112
Table: 6. 1 List of Functions used in Monitor Program 119

Table: 6. 2 Device Utilization Summary for Audio Processing
application 132

vi

List of Abbreviations:

SOC System on Chip

IP Intellectual Property

PBD Platform Based Design

CAD Computer Aided Design

GPL General Public License

LGPL Lesser General Public License

RTL Register Transfer Logic

VGA Video Graphics Array

UART Universal Asynchronous Receiver/Transmitter

MAC Multiply and Accumulate

PCI Peripheral Interconnect Component

VME VERSAmodule Eurocard bus

ISA Instruction Set Architecture

RISC Reduction Instruction Set Architecture

DSP Digital Signal Processing

ASIC Application Specific Integrated Circuit

FPGA Field Programmable Gate Array

VHDL VHSIC Hardware Description Language

RMW Read Modify Write

ASB Advanced System Bus

AHB Advanced High performance Bus

APB Advanced Peripheral Bus

PLB Processor Local Bus

OPB On-Chip Peripheral Bus

System-on-Chip: An Overview

1

 Concept of System‐on‐Chip
 History of SOC
 Design Reuse Concept
 The system on chip design flow and
process

 System level Design Issues
 Motivation
 Work Presented in the Thesis
 Thesis Outline
 Conclusions

Chapter 1

System‐on‐Chip: An Overview

System-on-Chip: An Overview

2

This chapter describes the System-on-Chip (SOC) design concept. Various issues

related to SOC design such as “Design Reuse”, system design flow and system design

processes are discussed in this chapter. The system level issues such as on-chip buses,

SOC test methodologies and SOC verifications are also discussed. In the final section the

motivation behind the thesis, work presented in this thesis with thesis outline is

presented.

1.1 Concept of System­on­Chip

The rapid development in the field of mobile communication, digital signal

processing (DSP) motivated the design engineer to integrate complex systems of

multimillion transistors in a single chip. The integration of the transistor in a single chip

greatly increases the performance of the system while reduction in system size. There is a

considerable increase in the application front in recent time. Moore’s law states that

integration density gets doubled every two years so the complexity of the integrated

systems also increases by keeping the used chip area constant. In order to keep pace with

the levels of integration available, design engineers have developed new methodologies

and techniques to manage the increased complexity in these large chips [1].

System-on-Chip (SOC) design is proposed as an extended methodology to this

problem where IP cores of embedded processors, memory blocks, interface blocks, and

analog blocks are combined on a single chip targeting a specific application. These chips

may have one or more processors on chip, a large amount of memory, bus-based

architectures, peripherals, co- processors, and I/O channels [2].These chips integrates

systems far more similar to the boards designed ten years ago that to the chips of even a

few years ago [2]. The integration process involves connecting the IP blocks to the

communication network, implementing design-for-test (DFT) techniques and using

methodologies to verify and validate the overall system-level design [1].

Figure: 1.1 shows idea of SOC the a system of several ICs out of a printed circuit

board is being integrated into a single chip while maintaining the overall structure the

same.

System-on-Chip: An Overview

3

The benefits of SOC design include:

• Smaller space requirements.

• Reduction in chip count.

• Lower memory requirements.

• Greater design freedom.

• Lower consumer costs.

• Higher performance and more reliable as the system will be on a single chip.

These benefits also come with challenges including:

• Larger design space, higher design and prototype costs

• A high level of debugging methodology,

• Power management,

• Longer design and prototyping cycle time

Apart from these challenges, the design again needs an expertise in both hardware and

software levels for proper hardware and software co-design. Another important aspect of

SOC integration is the development of a proper test methodology for post manufacturing

test. All these integration issues makes the design time consuming and also expensive.

Figure: 1. 1 Idea of SOC design

System-on-Chip: An Overview

4

1.2 History of SOC

In 1974 digital Watch is the first developed System-On-Chip Integrated Circuit.

The Microma liquid crystal display (LCD) digital watch is the first product to integrate a

complete electronic system onto a single silicon chip, called a System-on-Chip. The first

true SOC appeared in a Microma watch in 1974 when Peter Stoll integrated the LCD

driver transistors as well as the timing functions onto a single Intel 5810 CMOS chip

[14]. Many ASIC vendors addressed SOC opportunities in the 1990s by embedding

microcontrollers and DSPs into system-level chips that enabled hand-held games and

instruments, as well as speech processing, data communications, and PC peripheral

products.

1.3 Design Reuse Concept

With the evolution of technology, the ways of designing the chips have been

changed. It differs from the traditional design procedure such as writing the RTL from

scratch, integrating RTL blocks into a top-level designing and doing synthesis followed

by placement & routing.

Design reuse – the use of pre-designed and pre-verified cores – is now the cornerstone of

SOC design [2]. It uses reusable IP blocks that supports plug and play integration and in

turn allows huge chips to be designed at an acceptable cost, and quality. This section

discusses various issues related to design of reusable Intellectual Property (IP) core,

integration of cores to form a System on Chip design.

As Submicron technology is being used to design, the SOC it presents a whole set

of design challenges including interconnect delays, clock and power distribution, and the

placement and routing of millions of gates. These may have impact on the functional

design of the SOCs and the design process itself. Hence Interconnect issues, floor

planning and timing design must be engaged early in the design processes.

SOC design is now a driver for many other improvements in the IC industry like buses,

bus interface, IP exchange formats, documentation, IP protection and tracking and test

wrapper [1]. It has also forced suppliers to improve the quality of reusable IP.

SOC design also involves development of software in addition to the hardware itself;

software plays an essential role in the design, integration, and test of SOC systems.

System-on-Chip: An Overview

5

Hence the designers and developers migrated to the system level to address

hardware/software co-design issues.

1.3.1 Design for reuse
Extensive libraries of reusable blocks or macros are used to design block-based design

methodology [2]. A set of design methodology has to be followed in order to produce

consistently reusable cores.

The methodologies are based on the following rules:

1. The macros must be extremely easy to integrate into the overall chip design.

2. The macros must be so robust that the integrator has to perform no functional

verification of internals of the macros.

Some of the techniques for design reuse are good documentation, good code, thorough

commenting, well designed verification environments, and robust scripts. In addition to

the requirements mentioned above for a robust design, there are some additional

requirements for a design to be fully re useable [2].

The macros may be:

• Design must be configurable and use in multiple technologies

The macros must be easily configurable to fit different applications. The soft macros

should be supplied with a synthesis script which would produce quality of results

with a variety of libraries. In the case of hard macros, this means having an effective

porting strategy for mapping the macro onto new technologies.

• Design for simulation with a variety of simulators

Both Verilog and VHDL version of model and test bench should be available, and

they should work with all the major commercial simulators.

• Designed with Standards- based interfaces

Unique or custom interfaces should be used only if no standards- based interface

exists.

• Verified independently of the chip in which it will be used and to a high level of

confidence

Macros are designed and only partially tested before being integrated into a chip for

verification, thus saving the effort of developing a full test bench for the design.

System-on-Chip: An Overview

6

Reusable designs must have full, stand-alone test benches and verification suites that

afford very high levels of test coverage. A rigorous verification is done and a physical

prototype is being build that is tested in an actual system running real software.

• Fully documented in terms of appropriate restrictions and applications:-

Valid configuration and parameter values must be documented. How the macro can

be used and the restrictions on configurations or parameters must be stated.

1.4 The system on chip design flow and process

1.4.1 A canonical SOC design
Real SOC designs are much more complex than the generic form of SOC design

shown in Figure: 1.2, but this miniature version of SOC design allows us to discuss the

challenges of developing these chips utilizing reusable IP cores. The design process

comprises specifying such a system for developing and verifying the cores, and integrates

them into a single fabricated chip.

Figure: 1. 2 A canonical SOC design

MICROPROCESSOR MEMORY
I/O
CTRL

MEMORY VIDEO BUS

 TIMER GPIO
INTR
CTRL UART

DRAM

High‐speed bus

Low‐speed bus

System-on-Chip: An Overview

7

The above canonical SOC design contains the following blocks.

• A microprocessor may be 8 bit to 64 bit depending on the application.

• A memory module which may be single or multi-level and may include SRAM

and DRAM.

• An external memory controller for controlling flash or SRAM.

• A video decoder which may be MPEG or AVI.

• A I/O controller which may include PCI, Ethernet , USB, analog to digital, digital

to analog converter.

• A GPIO for general input output for interfacing external devices like LEDs or

LCDs or for sampling data.

1.4.2 System Design Flow
A two major way of design flows are being used by design engineers in order to meet the

challenges of SOC design.

• From a waterfall model to a spiral model

• From a top-down methodology to a combinational of top-down and bottom-up

I. Waterfall vs. Spiral

A traditional way of ASIC development, called waterfall model is shown in Figure:

1.3. In a waterfall model [2], the SOC design transits from phase to phase in a step, and

never returns to the activities of the previous phase. In this model, the design often tossed

“over the wall” from one team to the next with little interaction among them.

The phase of the design process starts with the development of a specification for

the ASIC. For complex ASIC the high algorithmic content is developed and given to the

design team to develop the RTL for the SOC. A set of verification is done in order to

ensure the proper functionality of the SOC design. After the complete verification, the

design is delivered to a team of synthesis experts to generate a gate level net list for the

hardware design of SOC. The proper functionality of the design is based on the timing

between the blocks of the design; a timing verification is performed to verify that the

ASIC meets timing.

System-on-Chip: An Overview

8

 Figure: 1. 3 Water fall design process

System-on-Chip: An Overview

9

After timing is performed the design is given to the physical design team, which

places and routes the design. Finally, a prototype is built and tested. The prototype is

delivered to the software team for software debug. Software development is started

shortly after the hardware design is started.

This flow has worked well in designs of up to 100 k gates and down to 0.5 um [2].

A major demerit of this flow is the improper handoffs from one team to another. For

example the RTL design team may have to go back to the system designer and tell him

that the algorithm is not implementable, or the synthesis team may have to go back to the

RTL team and inform them that the RTL must be modified to meet the timing. As

complexity of system increases, geometry shrinks, and time to market pressures continue

to escalate, chip designers are turning to a modified flow to produce today’s larger SOC

designs. Hence design teams are moving from the old waterfall model to the newer spiral

development model, where the team works on multiple aspects of the design

simultaneously, incrementally improving in each area up to the completion of the design.

Figure: 1.4 shows the spiral SOC design flow [2] where designer addresses all aspects of

hardware and software design concurrently: functionality, timing, physical design and

verification.

• Concurrent development of hardware and software.

• Parallel verification and synthesis of modules.

• Floor planning and place-and-route included in the synthesis process.

• Modules developed only if a pre-designed hard and soft macro is not available.

• Planned iteration throughout.

II. Top­down Vs. Bottom up

The top down process begins with specification and decomposition, and ends with

integration and verification. These processes steps are describes as follows:-

1. Prepare a complete specification for the system and its subsystem.

2. Refine its algorithm and architecture, including software design and

hardware/software co-simulation if necessary.

3. Decompose the architecture into well -defined macros.

4. Design or select macros.

5. Integrate macros into the top level; verify functionality and timing.

System-on-Chip: An Overview

10

6. Deliver the subsystem/system to the next higher level of integration; at the top

level, this is tape out.

7. Verify all aspects of the design (functionality, timing, etc.).

Figure: 1. 4 Spiral Design Flow

In order to accelerate the design process and to meet the time-to-market pressures,

increasingly powerful tools, such as synthesis and simulation tools have been developed.

But the top-down methodology is an idealization process, it assumes that the lowest level

blocks specified can, in fact, be designed and built. If a block is not feasible to design the

System-on-Chip: An Overview

11

whole specification process has to be repeated which increases the design time again. In

order to deal with this situation a mixture of top-down and bottom-up methodologies is

being used; where libraries of reusable hard and soft macros are used as a source of pre-

verified blocks; and it assures that at least some parts of the design can be designed and

fabricated in the target technology in order to meet the desired specification.

1.4.3 The System Design Process
1. Create the system specification

The design process begins with identifying the objectives of the design; such as system

requirements, the required functions, performance, and cost and development time for the

system. A set specification is recursively developed, verified and refined until they are

detailed enough to allow RTL coding to begin. Specification describes how to manipulate

the interfaces of a system to produce the desired behavior. Specifications are to be

provided for both hardware and software portions of the design. The following are the

specification requirements for the hardware and software portion of the design [2].

Hardware:

• functionality, external interfaces to other hardware (pins, buses and how to use

them)

• Interface to software (register definitions)

• Tiring and performance

• Area and power

Software:

• Functionality,

• Timing,

• Performance,

• Interface to hardware, software, structure and kernel.

These specifications are written jointly by engineering and marketing teams, in a natural

language, such as English. In order to avoid the ambiguities, incompleteness and errors,

companies have started using executable specifications for some or all of the system. An

executable specification is an abstract model for the hardware and software being used. It

System-on-Chip: An Overview

12

is written in C, C++ or SystemC or a Hardware verification language (HVL) for high

level specifications. At lower levels, hardware is usually described in Verilog or VHDL.

As executable specifications are only addressing the functional behavior of a system, so it

is necessary to describe critical physical specifications such as timing, clock frequency,

area and power requirements.

2. Develop a behavioral model

After specification is defined an initial high level of design is developed along with a

high-level behavioral model for the overall system. This model can be used to test the

basic algorithms of the system design and to show that meet the requirements outline in

the specification. For example, in an image and video processing design may need to

demonstrate that losses in compression/decompression are at or acceptable level. This

way of high-level model specification is termed as executable specification. These

specifications can be used as the reference for the future versions of the design.

3. Refine and test the behavioral models

After the behavioral model is defined in order to refine test algorithm a verification

environment for the high-level model is developed. This environment provides a

mechanism for refining the high-level design, verifying the functionality and

performance of the algorithm. This can be used later to verify models for the hardware

and software, such as RTL model verified using hardware/software simulation.

For example: - A multimedia or a graphics system may be initially coded in C/C++ with

all floating point operations. This allows the system architect to code and debug the basic

algorithm quickly. Once the algorithm is determined, a fixed-point version of the model

is developed that allows the architect to determine the accuracy level required in each

operation to achieve performance goals while minimizing die area.

Finally, a cycle-accurate and bit accurate model is developed, providing a very realistic

model for implementation. These multiple models are very useful for hardware/software

co-simulation to debug their software.

4. Determine the hardware/software partition

The hardware/software partition is the division of system functionality between hardware

and software. This is a manual process requiring judgment and experience on the part of

System-on-Chip: An Overview

13

the system architects and a good understanding of the cost/performance trade offs for

various architectures. A rich library of pre-verified, characterized macros and a rich

library of reusable software modules are the key things for identifying the size and

performance of various hardware and software functions. Finally, the interface between

the hardware and software is defined and the communication protocols between them are

also defined.

5. Specify and develop a hardware architectural model

Once the hardware requirements are defined, detail hardware architecture is specified.

The issues related to this are determining which hardware blocks will be used, and how

they will communicate, memory architecture, and bus structure and its bandwidth. Most

of the SOC communicates with different blocks over one or more bus, thus the required

bandwidth can be applicant dependent. A substantially amounts of application code is run

on the architecture to evaluate the bandwidth of the system. Running significant amounts

of application code on an RTL design is time consuming. In order to overcome this

problem, transaction-level models are developed to model interfaces and bus behavior.

This model can run considerably faster than RTL models and gives accurate estimates of

performance. SystemC is used to facilitate the design of transaction level modeling.

Finally, the hardware architecture is developed, tested and modified until a final

architecture meets the system requirements.

6. Refine and test the architectural model (co-simulation)

The software development often starts only once the hardware has been built. This

serialization may lead to delayed product. The architectural model for the system can be

used for hardware/software co-simulation. It provides sufficient accuracy that software

can be developed and debugged on it, long in advance of getting actual hardware. Hence

having accurate models of the hardware is the key issue in SOC design.

7. Specify implementation blocks

After the model is co-simulated hardware specification is provided which is a detailed

specification of the performance, functionality, and interfaces for the hardware system

and its component blocks. It also specify a description of the basic functions, the timing,

System-on-Chip: An Overview

14

area and the power requirements, and the physical and software interfaces and the

descriptions of the I/O pins and the register map.

1.5 System level Design Issues

This section discusses system level design issues such as different types of IP cores,

on chip buses, SOC test methodologies and SOC verification.

1.5.1 Different Types of IP Cores

I. Digital IP

In the previous section Design reuse is elaborated and we observed that well-

designed IP is the key to successful SOC design. The block used for SOC design must be

designed well unless, the tape out of the system becomes very painful and time-

consuming. Hence, well-designed IP core can be integrated with any SOC flow, and

produce good results quickly [2]. This section presents an issue related to produce well-

designed IP cores. The IP cores are classified into three categories [1]: Soft, firm and

hard.

Soft IP:

Soft IP blocks are specified in hardware description languages using RTL or

higher level descriptions. These are generally provided by the vendor in form of software

code which are process independent and can be synthesized to the gate level. Hence these

are more suitable for digital IP core design. These types of cores are sometimes not

guaranteed power or timing characteristics, as the implementation and application in

different process may produce variation in performance. But these types of IP cores are

very much flexible, portable and reusable and prevents the user frame introducing any

design errors into block.
Hard IP:

Hard IP blocks have fixed layout and already go through physical design process.

This IPs is optimized for a given applicator in a specific process. As the timing

characteristics are optimized the performance of the IPs are predictable. The only

drawback is that, it requires additional effort and cost to produce this IPs. These are also

System-on-Chip: An Overview

15

limited to specific application but as this IPs are tested on Silicon the vendors gives more

assurance about its accuracy and correctness.
Firm IP:

Firm IP are provided as parameterized circuit description so that designers can

optimize core for their specific design needs. Hence firm IPs are more predictable. These

are more flexible and portable than soft and hard IP.

Most of the digital processor blocks are being designed with hard IP in order to achieve

the performance goals. Memory cells are designed by transistor level and memory arrays

are tiled from these cells using a compiler [RMM]. Recently soft IP blocks preferred as

hand off level [1]. The typical soft IPs available is interface blocks (USB, UART, and

PCI), encryption blocks (DES, AES), multimedia blocks (JPEG, MPEG 2/4), and

networking blocks (ATM, Ethernet and Micro Controllers [1].

II. AMS IP

Another important IP which is gaining interest is Analog mixed signal IP. The

typical AMS components include operational amplifiers, analog to digital converters

(ADCs), digital to analog converters (DACs), phase locked loops (PLL), and radio

frequency (RF) modules etc. This IPs is designed using Hard IP and target to one

application in a specific fabrication technology.

1.5.2 System Interconnect and On Chip­Buses
In earlier days every chip designer had unique bus designed for optimum

performance for their own design project. This made difficult to reuse blocks from other

projects to their own designs. Hence, there was need of standard bus, which allows

reusable blocks developed with a single interface to be used for a variety of applications.

ARM [11] uses AMBA as system interconnects solution for their system design.

CoreConnect is being by IBM. The comparisons of three types of bus architecture are

presented in the Chapter-2 of the thesis.

1.5.3 SOC Test Methodologies
Another important aspect of SOC integration is the development of a test

methodology for post manufacturing tests. Testing of SOC designs has many similarities

System-on-Chip: An Overview

16

with the traditional system on Board (SOB) designs. Cores in SOC are the components of

an SOC where as in printed circuit boards ICs are the components of SOB. In SOB, IC

design manufacturing and testing are performed by the IC provider and the system

integrator has to only design the board level designing using these ICs. In SOC, the core

providers supplies only the description of cores and the system integrator is responsible

to design any blocks called User Defined Logic (UDL), and integrates these predesigned

cores.

As the system is in logic level the system integrator cannot perform post

manufacturing test. Hence the integrator can only test the core logic wires between cores

and expects a set of test patterns with high fault coverage from the core provider. Another

key difference between the SOB and SOC is that unlike SOB the physical input output of

the cores are not accessible by the user in SOC. The test access to the embedded cores is

the responsibility of the system integrator. Hence additional logic and wiring,

mechanisms are required which leads to the development of core test access architecture

[1].

I. IP core level test

The testing of an IP core consists of an internal DFT Structures Design for Test

(DFT) structure and a required set of test patterns to be applied and captured on the core

periphery. The test pattern includes the data and protocol patterns. The data pattern

contains actual stimulus and response values. The protocol pattern specifies how to apply

and capture the test data. As the system integrator has very limited knowledge about the

structural content of the core, the core internal test should be carried at by the core

provider. Hence the core provider should provide the internal DFT hardware structure of

the core, the stimulus patterns of the core and the validation of these stimulus patterns.

The core provider must determine the internal core requirement of the core without

knowing the target process, application and the desired test coverage level. BIST is

another solution that can be used by core provider for core level testing.

System-on-Chip: An Overview

17

II. SOC level test

Figure: 1.5 shows a conceptual architecture for testing-embedded core based SOC. This

architecture consists of

1. Test pattern source and sink: the test pattern source is responsible for generating

the core stimuli. Test sink is used to receive the test responses.

2. Test access mechanism (TAM): the on-chip test pattern transportation is

performed by test access mechanism. It is useful in transferring the test pattern

source from the source to the core under test or for transferring the test responses

from core under test to a test pattern sink.

3. Core test wrapper: it forms the interface between the embedded core and its

environment, by connecting the embedded core to the rest of the IC and to the

TAM.

A new standard IEEE-1500 was developed to facilitate SOC testing for both the

core provider and the system integrator. The purpose of this is to provide a uniform

interface between the core and the chip-level test access mechanism; it uses parallel test

port instead of the test access port (TAP) controller. Figure: 1.6 shows the block diagram

Figure: 1. 5 Core based SOC Test Architecture

System-on-Chip: An Overview

18

of a P1500 wrapper which consists of four control inputs and one pair of serial data input

and output. Serial wrapper scan input (WSI) is used to transport wrapper instruction and

test data. Instructions are shifted serially into the wrapper instruction register (WIR) and

various enable signals are generated from the control logic based on the context of the

WIR and the four control inputs. CDRs are used to captures the test results. The ring of

flip flops around the core form the boundary data register (BDR) that isolates the core’s

functional interface from the other blocks during testing. While performing full-scan test

the test vector is serially shifted in through WSI and scan output serially shifted out

through to the wrapper scan output (WSO) [1].

Figure: 1.7 shows the integration of the cores with P1500 Standard. Each core is

encapsulated with P1500 wrapper and user defined test controller signals enabled by

external sources is used to provide control signals to the wrapper. A user-defined parallel

TAM is used to transport test data to/from individual IP cores.

Figure: 1. 6 Block Diagram of P1500 Wrapper for BIST DFT Core

System-on-Chip: An Overview

19

1.5.4 SOC Verification
As the design complexity is increasing the verification the complete SOC is

becoming bottleneck of system designers. As the ITRS [13] has noted while design sizes

have grown exponentially over time in accordance with Moore’s law, verification

complexity has been growing double exponentially. This is due to the fact that the

number of states that must, be verified is exponential in the size of design. In industrial

practice, two methods are used to solve the verification bottleneck: verification

information are encapsulated within IP cores to make the verification effort reusable,

and use of standard IP cores to reduce the bugs during integration. The main stream

verification utilizes the dynamic methods such as simulation and emulation. Hence the

encapsulation consists of supplying of simulation test benches along with the IP cores.

Assertion based verification strategy helps in reducing the verification problem. In this

methodology, the design core and interfaces specified with the correct behavior. This

gives rise to standardizing languages for more complex assertions such, PSL or SVA [1]

later.

On the other hand several companies are developed standardized bus protocols for

on chip communication such as AMBA [11], CoreConnect [12] and WISHBONE [4].

Figure: 1. 7 Integration of Cores using P1500 wrapper

System-on-Chip: An Overview

20

Adopting a standard interconnect not only eliminates the common errors occurring during

the design of an interconnection protocol, but also reduces the incorrect interfacing of

cores and interconnect. The above described methods help in reducing the verification

problems. But as the designed complexity increases the dynamic verification methods

suffers from poor verification coverage. Poor coverage increases the undetected bugs in

IP cores are undermine the goal of reusing IP cores without needing to completely re-

verify them.

Hence the formal verification methodology is used which minimizes the

probability of bugs in a design. More research activities focusing this area of verification.

The key research areas are compositional model checking. The specifications that are

verified and the assumption under which they are verified are documented and can be

exploited during integration verification. Again the methodology advancement in

dynamic verification helps in growing formal verification approach. Formal verification

is being used in many industry applications such as RTL gate-level equivalence checking

and microprocessor verification. Finally despite all the research advances now and in

future, it is impossible that the verification challenge can be solved without help from

designs. Leading companies involve verification experts early in the design process to

steer the design toward better verifiability [1].

1.6 Motivation

SOC design requires a standard bus interface for IP cores to communicate with each

other. There exist many other bus interfaces, but AMBA [11], CoreConnect [12] and

WISHBONE [4] are well known and well used SOC bus architectures. All three bus

architectures are open bus architectures, which require no fees or royalties to use them.

WISHBONE offers advantage compared to AMBA and CoreConnect. All designer using

WISHBONE bus interface are allowed to upload their design in Open Core site where there

exists many IP cores that support WISHBONE bus interface and they are all free to use. So

depending upon the design specification the designer can select the IP cores from the site

and glue them to the WISHBONE bus architecture to design the final SOC. Comparing the

architecture of these three buses, it is observed that all are supported by multiplexer

interconnections. WISHBONE supports variable interconnection and variable time

System-on-Chip: An Overview

21

specification. It can be coded using any hardware description language like VHDL and

Verilog®, and it takes the shapes of simple logic gates supported by most of the FPGA

and ASIC devices. WISHBONE also supports Single and Block Read/Write cycles, Read-

Modify-Write (RMW) transfer. In respect to all of the above issues WISHBONE

supports almost all features also supported by AMBA and CoreConnect. It also offers

advantage of using predesigned IP cores available freely Open Core site for the portable

and reliable SOC design. Keeping in view of the above, in this dissertation we adopt

WISHBONE for SOC design and explore the Open Core based SOC design platform.

1.7 Work Presented in the Thesis
The major contributions of this thesis are:

• The possibility of using an existing bus interface for faster and low cost SoC

design is evaluated. The design, verification, FPGA implementation of

WISHBONE interconnection architectures in terms of size and speed for SoC

design is evaluated.

• A set of wishbone compatible cores such as 32-bit RISC CPU, on chip memory,

universal asynchronous receiver and transmitter (UART), Parallel Input Output

(PIO) and System controller (SYS) are collected from Open Core and integrated

to develop a portable low cost SoC design.

• The integration issues are discussed and the synthesis results in terms of size and

speed are presented. A test bench is developed in order to verify the CPU

instruction with the final integrated architecture.

• Finally, FPGA implementation of SoC architecture has been done using

VIRTEX-II Pro FPGA and the functionality of the system is verified through

porting the application software on the SoC architecture.

1.8 Thesis Outline

The layout of this thesis compiled is as follows:

Chapter 1: The first chapter presents introduction to SOC design. This chapter also

discusses SOC design process and system level issues such as design of reusable IP core,

System-on-Chip: An Overview

22

on chip bus interface and strategies for synthesis, verification and testing. A brief

overview of the thesis outline is presented here.

Chapter 2: The second chapter describes the concept of Open Hardware. The Open Core

based SOC design platform is illustrated. The design reuse using Wishbone bus

specification is also presented in this chapter.

Chapter 3: In this chapter Design and verification of a point-to-point interconnection and

shared bus interconnection using DMA MASTER and memory SLAVE core is presented.

The bench marking of the interconnections in terms of size and speed is evaluated by

using two FPGA technologies.

Chapter 4: This chapter presents a description of design methodology to implement

proposed SOC Architecture in FPGA using Wishbone bus interface. The design

specifications of the IP cores are described here.

Chapter 5: SOC integration issues and verification results, synthesis and FPGA

implementation of the SOC architecture is presented in this chapter.

Chapter 6: This chapter demonstrates the validation of SOC architecture with porting

application software developed in GNU C compiler and debugger.

Chapter 7: Finally, a conclusion is drawn in this last chapter. This chapter also lists the

future research scopes from the studies undertaken.

1.9 Conclusions

The concept of SOC design through design reuse is discussed, and the design flow

and design process steps are described. The various issues related to system level design

are addressed and observed that

• Design Reuse through well design IP cores is the key factor behind reliable time

to market SOC design.

• A standard interface bus must be adopted to get reduced integration efforts.

• The design of test circuits must be done properly in during the SOC integration to

avoid post manufacturing physical error.

• A proper verification methodology must be adopted to validate the final

functionality of the SOC.

 23

 Platform Based SOC Design
 Open Core Based SOC Design Platform
 The Objective behind WISHBONE
 WISHBONE Basics
 WISHBONE Interface Specification
 Wishbone Interconnections
 WISHBONE Bus Cycle
 Data Organization and Customized Tag
 WISHBONE SOC Bus Comparison with
AMBA and CoreConnect

 Conclusions

Chapter 2

Open Core Based SOC Design
Platform

Open Core Based SOC Design Platform

 24

SOC design increases the density of transistor in a chip. The increased density of

transistor in turn increases the complexity of the system. The SOC design methodology

offers definite benefits; however there are certain challenges like larger design space,

higher design and prototype costs, high level of debugging methodology, power

management, and longer design and prototyping cycle time. Apart from these challenges,

the design again needs an expertise in both hardware and software levels for proper

hardware and software co-design. Another important aspect of SOC integration is the

development of a proper test methodology for post manufacturing test. All these

integration issues makes the design time consuming and also expensive.

To deal with this inherent integration problems and reduction in design cycle

time, many methods for SOC design are proposed by research and industry community.

There are several methods for SOC design, however in this thesis we limit our discussion

for two methods of SOC design. These are Platform based SOC design and Open Core

SOC design methodology. This chapter also explains about the features of Open Core on

chip bus interface WISHBONE which is the key factor in Open core SOC design

methodology. Finally, different bus interfaces available for SOC design have been

compared.

2.1 Platform Based SOC Design
In Platform based design (PBD), new designs could be quickly created from the

original platform over many design derivatives. More specifically a platform is an

abstraction level that covers a number of refinements to a lower level resulting in

improvement of the design productivity. An SOC platform consists of hardware IP,

software IP, programmable IP, standardized bus structures and communication networks,

computer-aided design (CAD) flows for hardware/software design, verification and

implementation, system validation tools, design derivative creation tools and dedicated

hardware for system prototyping [1]. PBD is a design methodology which starts at system

level and high productivity is achieved by using predictable, pre-verified blocks that uses

standard interfaces.

The two major areas in PBD methodology are (a) block authoring and (b) system-

chip integration [15]. Block authoring uses a methodology which creates block that

Open Core Based SOC Design Platform

 25

interfaces easily with multiple target designs. Two design concepts used in block

authoring are interfacing standardization and virtual system design.

In interfacing standardization, both internal and external design teams can do

block authoring, as long as they are using the same design methodology and the same

interface specifications. The interface standard used can be product or application

specific.

In virtual system design, the designer has to focus about the power profile,

clocking schemes, internal clock distribution, and testing schemes of the design. Also

block interfaces (with a single bus or multiple bus) types, and the type of block such as

soft, hard or firm are also decided during virtual system design.

System chip integration focuses on designing and verifying the system

architecture and the interfaces between the blocks. Integration process starts with

partitioning the system around the pre-existing block level functions and identifying the

new or differentiating function needed. These partitioning are done at the system level,

along with performance analysis, hardware /software design trade-offs, and functional

verification.

The benefits of PBD are as follows:

• Design uses diverse and specialized functions from multiple sources. Hence

planned design reuse yields very high productivity.

• Hierarchical routing and timing reduce design focus.

• Interface based design promotes and multiple reuse for blocks allows amortization

of development cost and more optimal block design.

The challenges of PBD include:

• Planned reuse requires proper design planning and accurate future product plans.

• Significant software portions require extensive hardware/software co-verification.

• Platform migration to new process technology requires re-characterization of

hard, soft IPs and platform architecture.

• Requires organizational change to support separate block authoring and system

chip integration.

Hence, PBD can be treated as a convergence design where previously separated

functions are integrated. The pre-existing blocks can be accurately estimated and the

Open Core Based SOC Design Platform

 26

design variability limited to the new blocks and the interface architecture. It requires

organizational support to create a PBD.

2.2 Open Core Based SOC Design Platform
On the other hand, a new concept that is gaining interest is the Open Core SOC

design methodology which publishes all necessary information about the hardware [3].

This is termed as open hardware. All the information regarding the hardware is disclosed

for free, according to the term of GPL/LGPL license. Open Core [4] group has provided

many pre-synthesized and pre-verified hardware core for the designer. These cores are

well documented with design specifications, RTL codes, and simulation test benches and

therefore can be re-used for different applications. Making a design compatible with an

on-chip bus interface is one way to produce re-usable design. Different IP cores

developed independently can be tied together and tested by standardizing the IP core

interfaces. Many re-usable digital designs available in the Open Core site are compatible

with a standard on-chip interface called WISHBONE [5] bus interface. More than 800

projects are available in open core site. Some of them are Open RISC1200 processor,

VGA controller, USB 2.0, memory controller, UART, MAC, PCI and many DSP

functionality cores. The designer has to collect the IP cores from the site and integrate it

into the design to complete the SOC design. All these cores are available at no cost and

are reusable. Hence it helps in producing low cost, portable, reliable, time-to-market SOC

design. The EDA tools used to develop open hardware are also open. Hence in Open

Core SOC design methodology openness of resources is a key factor to develop design

reuse and improve the productivity of SOC designs.

2.3 The Objective behind WISHBONE
The WISHBONE System-on-Chip (SOC) Interconnection is a method for

connecting IP cores together to form integrated circuits. Open core SOC design

methodology utilizes WISHBONE bus interface to foster design reuse by alleviating

system-on-chip integration problems. With use of this standardize bus interface it is much

easier to connect the cores, and therefore much easier to create a custom System-on-Chip.

This way of SOC design improves the portability and reliability of the system, and results

in faster time-to-market for the end user. The objective behind WISHBONE is to create a

Open Core Based SOC Design Platform

 27

portable interface that supports both FPGA and ASIC that is independent of the

semiconductor technology and WISHBONE interfaces should be independent of logic

signaling levels. Another important reason is to create a flexible interconnection scheme

that is independent of the type of IP core delivery (Hard, Soft IP) method. The next

reasons are to have a standard interface that can be written using any hardware

description language such as VHDL and VERILOG®. It supports a variety of bus

transfer cycle in which the data transaction is independent of the application specific

functions of the IP cores. It also supports different types of interconnection architectures

with theoretically infinite range of operating frequency [5]. The final objective of

WISHBONE bus is that it is absolutely free to use by developers without paying any fee

for the cores available.

2.4 WISHBONE Basics
WISHBONE utilizes “Master” and “Slave” architectures which are connected to

each other through an interface called “Intercon”. Master is an IP core that initiates the

data transaction to the SLAVE IP core.

Master starts transaction providing an address and control signal to Slave. Slave

in turn responds to the data transaction with the Master with the specified address range.

Figure: 2. 1 WISHBONE Intercon system

Open Core Based SOC Design Platform

 28

The Intercon is the medium consists of wires and logics which help in data transfer

between Master and Slave. The Intercon also requires a “SYSCON” module which

generates WISHBONE reset and clock signal for the proper functioning of the system.

Figure: 2.1 show the WISHBONE Intercon system which consists of Masters and Slaves

and SYSCON modules. WISHBONE Intercon can be designed to operate over an infinite

frequency range. This is called as variable time specification. The speed of the operation

is only limited by the technology of the integrated circuits. The interconnection can be

described using hardware description languages like VHDL and Verilog®, and the

system integrator can modify the interconnection according to the requirement of the

design. Hence WISHBONE interface is different from traditional microcomputer buses

such as PCI, VME bus and ISA bus.

2.5 WISHBONE Interface Specification
WISHBONE Interface specification specifies the signaling method used by

Master and Slave interface and the SYSCON module. It also specifies the way to create a

proper documentation for the WISHBONE Compatible IP cores which is the main

driving factor for design reuse.

2.5.1 Documentation for IP Cores
As specified above each WISHBONE Compatible IP cores must be supplied with

a WISHBONE datasheet, which describes the interface of the cores. This datasheet helps

in understanding the operation of the cores, and the user can reuse these cores to integrate

with other cores to produce System on a Chip. The WISHBONE datasheet must include

the following information:

• The revision level of the WISHBONE specification after which it is designed.

• If the IP designed is a Master or Slave IP core.

• The signal names used in the design must be defined. If any signal name different

than that defined in the specification, must have a cross reference to the original

signal of the specification.

• If a Master supports a retry and error signal, then it must specify how they react in

response to the signals. If a Slave supports retry and error signal, then it must

specify under which conditions the signal must be generated.

Open Core Based SOC Design Platform

 29

• The design supporting tag signals must specify the name, TAG TYPE and

operation of the tag.

• The port size must be 8-bit, 16-bit, 32-bit or 64-bit.

• The maximum operand size used must be 8-bit, 16-bit, 32-bit or 64-bit.

• The data transfer ordering such as LITTLE ENDIAN or BIG ENDIAN must be

specified.

• Any constraints on the clock signal [CLK_I] must be specified in terms of clock

frequency, application specific timing constraints, use of gated clocks or use of

variable clock generators.

2.5.2 WISHBONE Interface Signal

WISHBONE interface signals and bus cycles are design in a reusable manner, so

that the WISHBONE Master and Slave interfaces can be connected together using several

interconnection methods. These signals are classified into three categories, Master

signals, Slave signals, and signals common to both Masters and Slaves. These entire

interface signals must be active high logic.

The signal definitions must follow these requirements:

• The signal must allow Master and Slave to use variable interconnections.

• The signals must support all the basic types of bus cycle.

• A handshaking mechanism must be used for either the Master or the participating

Slave interface to adjust the data transfer rate.

• Every interface must support acknowledgement signal but the retry and error

acknowledgement signals are optional.

• Address and data bus widths can be altered to fit different applications like 8-bit,

16-bit, 32-bit and 64-bit data buses.

• All the signals should be either output or input. The signals may be bidirectional,

if the target device supports it.

The Tables: 2.1, 2.2 and 2.3 below show the descriptions of these three types of signals.

The optional requirement of the signal is also specified in the table.

Open Core Based SOC Design Platform

 30

Signal Name Description Optional
ACK_I Acknowledge

input
When asserted, indicates the
normal termination of a bus cycle.

No

ADR_O() Address output Used to pass binary address No

CYC_O Cycle output When asserted shows a valid bus
cycle is in progress

No

Signal Name Description Optional

SEL_O() Select output Indicates where valid data is
expected

Yes

STB_O Strobe output Indicates a valid data transfer No
WE_O Write enable

output
If asserted transfer cycle is write
else read cycle

No

ERR_I Error input Indicates an abnormal cycle
termination

Yes

LOCK_O Lock output When asserted ,
indicates current bus cycle is
uninterruptible

Yes

RTY_I Retry input Interface is not ready to accept or
send data, cycle should be retried

Yes

TGA_O Address Tag
Type output

Contains information regarding
address line

Yes

TGC_O() Cycle Tag Type Contains information about the bus
cycle , and discriminates single,
Block or RMW cycle

Yes

Table: 2. 1 Master Signals

Signal Name Description Optional
ACK_O Acknowledge

output
When asserted, indicates the
normal termination of a bus cycle.

No

ADR_I() Address input Used to pass binary address No
CYC_I Cycle input When asserted shows a valid bus

cycle is in progress
No

SEL_I() Select input Indicates where valid data is
expected

Yes

STB_I Strobe input Indicates that Slave is selected,
when asserted Slave responds to

No

Open Core Based SOC Design Platform

 31

other WISHBONE signals
WE_I Write enable

input
If asserted transfer cycle is write
else read cycle

Yes

ERR_O Error output Indicates abnormal cycle
termination

Yes

LOCK_I Lock input When asserted , indicates current
bus cycle is uninterruptible

Yes

Signal Name Description Optional
RTY_O Retry output Interface is not ready to accept or

send data, cycle should be retried
Yes

TGA_I Address Tag
Type input

Contains information regarding
address line

Yes

TGC_I() Cycle Tag Type
input

Contains information about the
bus cycle , and discriminates
single, Block or RMW cycle

Yes

Table: 2. 2 Slave Signal

Figure: 2.2 show the point-to-point interconnection of Master and Slave interfaces with

respective signals.

Signal

Name Description Optional

CLK_I Clock input System clock input No
RST_I Reset input System reset input No
DAT_O()

Data output To pass binary data for sending No

DAT_I() Data input To pass binary data for receiving No
TGD_I()

Data Tag
Type input

Contains information about data
input array

TGD_O()

Data Tag
Type
output

Contains information about data
output array

Table: 2. 3 Signals Common to both Masters and Slaves

Open Core Based SOC Design Platform

 32

2.6. Wishbone Interconnections
WISHBONE interface supports variable interconnection. It does not put any

constraint on the type of interconnection the Master/Slave interface should use for

communicating with each other as long as the WISHBONE specification signals and

cycles are followed. Master and Slave interface may use four types of interconnections

such as, Point to point, Dataflow, Shared bus and crossbar Switch interconnection [5].

2.6.1 Point-to-Point Interconnection

Point to point is the simplest way of connecting two IP Cores to each other where

a single Master interface is connected to a single Slave interface. For example, a

microprocessor as Master interface can be connected to a serial input output port Slave

interface. The data transaction is controlled by handshaking signals.

Figure: 2. 3 (a) Point-to-Point Interconnection

Figure: 2. 2 Point to point interconnection with WISHBONE interface signals

Open Core Based SOC Design Platform

 33

2.6.2 Data Flow Interconnection

The dataflow interconnection processes the data in a sequential manner. Each IP

core contains both a Master and a Slave interface. An IP core appears as a Master to the

next IP core and also appear as a Slave to the core prior to it. This type of interconnection

speed is faster as it uses the concept of parallelism. The data transaction is also controlled

by handshaking signals. Figure 2.3 (a) and (b) shows point-to-point and data flow

interconnection diagrams.

Figure: 2. 3 (b) Data flow Interconnection

2.6.3 Share Bus Interconnection

Shared bus interconnection allows multiple Masters to connect with multiple

Slaves over a single shared bus. Only one Master can access the bus at a time. Master

starts the bus cycle to Slave, in turn Slave participates in bus transactions with the

Master. The traffic is controlled by an arbiter who determines the access of Master to the

shared bus. Other Masters have to wait until one Master completes its operations. This

interconnection requires fewer gates and routing resources than Crossbar Switch

interconnection.

Figure: 2. 4 (a) Shared bus interconnection (b) Crossbar switch interconnection

Open Core Based SOC Design Platform

 34

Figure: 2.4(a) shows a shared bus interconnection scheme using multiple Masters and

Slaves.

2.6.4 Cross Bar Switch Interconnection

Unlike shared bus interconnection where a Master has to wait for the access of

bus depending on the availability of bus, a crossbar switch interconnection allows

multiple Masters to use the same interconnection as long as two Masters are not

accessing the same Slave at a time. Hence the overall speed of this is higher than the

shared bus interconnection. An arbiter determines when each Master(s) may gain access

to the indicated Slave(s). Figure 2.4(b) shows how Masters MA and MB can get access to

Slaves SB and SA at the same time. This suffers from using more logic and

interconnection resources for forming the interconnection.

2.7 WISHBONE Bus Cycle

Three types of bus cycle are supported by WISHBONE interface. These include:

Single Read/Write Cycle, Block Read/Write Cycle, and Read modify write (RMW) [5]. All

the bus cycles in Wishbone interface follows a handshaking protocol between the master

and slave interfaces to complete a successful data transfer.

2.7.1 Handshaking Protocol

Figure 2.5 shows the timing diagram of handshaking protocol used during data

transfer in a cycle. The whole transfer is classified in four parts. These are 1: Operation is

requested, 2: Slave is ready, 3: Operation is over and 4: Ready for a new operation.

MASTER asserts strobe output indicating that the data is ready to be transferred. Strobe

output remains asserted until the Slave asserts terminating signal acknowledge output

which indicates the Slave is ready to participate in data transfer with Master. At every

rising edge of clock signal the terminating signal is sampled and if it is asserted, then

strobe signal is negated showing the completion of the operation. In response slave

negates it’s acknowledge signal which indicates it is ready for a new operation with

master. This handshaking protocol is responsible for controlling the rate at which data is

transferred between both Master and Slave interfaces.

Open Core Based SOC Design Platform

 35

2.7.2 Single Read/ Write Cycle

Single Read/ Write cycle is used to transfer a single data operand between Master

and Slave interface. For a Master to start a single read operation, Master presents a valid

address in its address output port and negates the write enable signal to indicate read

operation to be started.

Figure: 2. 5 Handshaking protocol

Figure: 2. 6 (a) Single Read Cycle Figure: 2.6 (b) Single write cycle

Open Core Based SOC Design Platform

 36

Master also presents a valid bank select to indicate where it expects the data. Then

Master asserts the cycle output showing the starting of the cycle and asserts the strobe

output indicating that the transfer is ready to start. In response Slave presents valid data

on the data output and asserts the acknowledgement signals to indicate the presence of

valid data. Master monitors and latches the data in next clock pulse at its data input and

negates the strobe and cycle output to indicate the end of the cycle. In response Slave

negates acknowledgement showing ready for a new operation. Slave may insert wait

states before asserting acknowledgement allowing it to throttle the cycle speed. Figure:

2.6 (a) and (b) shows the timing diagrams of a single read and write cycle respectively.

The operation in the single write cycle is almost similar except that the Master asserts the

write enable signal and places the data on its output and the Slave asserts the

acknowledgement output when it latches the data.

2.7.3 Block Read/ Write Cycle

The block transfer cycle is used to perform multiple data transfer between

MASTER and SLAVE.

Figure: 2. 7 (a) Block Read cycle

Open Core Based SOC Design Platform

 37

In block data transfers the operation is similar to the single read and write cycle

with cycle output high for the entire period of data transfer. The cycle output negates

after the completion of data transfer. This type of data transfer is useful when multiple

Masters are used in an interconnection. The local bus handshaking protocol is maintained

during each data transfer in a complete cycle. Wait state can be put by Master interface

by pulling down the strobe and Slave interface by pulling down the acknowledgement

signals to low. Figure: 2.7 (a) and (b) illustrates the timing diagram of block read and

write cycles respectively.

Figure: 2. 7 (b) Block Write cycle

2.7.4 Read­Modify­Write (RMW) Cycle

The read-modify-write cycle is used for multiprocessor and multitasking system is

also known as indivisible cycle. It uses a semaphore to share common resources between

multiple software processes. This type of bus cycle finds application in disk controllers,

serial ports and memory. The read and write data to memory location is accomplished in

a single bus cycle.

Open Core Based SOC Design Platform

 38

The read portion of the cycle is termed as the read phase, and the write portion is

termed as the write phase. In case of multiprocessor system to prevent sharing of the

same memory at a time a semaphore bit is used, which acts as a traffic cop between

processors. If the bit is set then that particular Slave interface is busy, if it is cleared, then

it is available for use. When a processor initiates a bus cycle with a memory it first

checks and stores the state of the semaphore bit, and then sets the bit by writing back to

memory in a single RMW cycle. Once this operation is completed and the state of the bit

read during the first phase of RMW cycle, is clear the processor goes ahead using the

Slave memory. Other processors attempting to use the memory read a high semaphore

and prevent the access of memory. If this operation would have done with single

read/write cycle, multiple Masters may access the same memory at the same time which

Figure: 2. 8 Read-Modified-Write Cycle

Open Core Based SOC Design Platform

 39

may lead to system crash. A special instruction such as test-and-set (TAS) and compare-

and-set (CAS) are used by processors to impose RMW bus cycle operation. Figure: 2.8

show the timing diagram of RMW cycle.

2.8 Data Organization and Customized Tag
 WISHBONE interface supports two ways of ordering of data during data transfer.

These are BIG ENDIAN and LITTLE ENDIAN. In the first type the most significant

byte of the operand placed at the higher address and in the second type, the most

significant byte of an operand placed at the lower address.

The advantage of WISHBONE interface over traditional computer buses is that

WISHBONE can be customized easily. WISHBONE interconnections are programmable

in FPGA and ASIC by using VHDL and Verilog® languages and wide variety of routing

tools. Although it allows changes in interconnection; still there may be a chance of

interface incompatibility. This problem can be avoided by using tagged architecture.

There are three categories of TAG TYPE available. They are address tag, cycle tag and a

set of data tag [5]. Custom tags can be added to WISHBONE interface signals with the

TAG TYPE available. The tag indicates the exact time of the signal response.

2.9 WISHBONE SOC Bus Comparison with AMBA and CoreConnect
SOC design requires a standard bus interface for IP cores to communicate with each

other. There exist many other bus interfaces, but AMBA, CoreConnect and WISHBONE are

well known and well used SOC bus architectures, therefore here the comparison is restricted

to these buses. All three bus architectures are open bus architectures, which require no fees or

royalties to use them. AMBA and CoreConnect require registration to get a free license to use.

WISHBONE on the other hand doesn't require any kind of registration. The WISHBONE

specification is almost free to copy and distribute. SOC design using AMBA and

CoreConnect requires the designer to design their own library of IP cores or to buy IP cores

from other companies. WISHBONE offers advantage compared to AMBA and CoreConnect.

All designer using WISHBONE bus interface are allowed to upload their design in Open Core

site where there exists many IP cores that support WISHBONE bus interface and they are all

free to use. So depending upon the design specification the designer can select the IP cores

from the site and glue them to the WISHBONE bus architecture to design the final SOC.

Open Core Based SOC Design Platform

 40

Comparing the architecture of these three buses, both AMBA and CoreConnect

support two types of bus interface structure, one for high speed cores, such as processor,

DMA and memory and other for low speed peripheral cores like UART, keypad etc.

AMBA uses ASB/AHB and CoreConnect use PLB for high speed cores. For low speed

cores AMBA uses APB and CoreConnect uses PLB. These bus structures have to be

connected to each other through bridges. On other hand in WISHBONE only two

ordinary bus interfaces connected through a bridge for different speed applications.

AMBA and CoreConnect support hierarchical bus system. However, WISHBONE does

not supports hierarchical bus interconnection, but allows various other possible

interconnections, such as point-to-point, shared bus, crossbar switch interconnection, etc

[5].

 All the three support multiplexer based interconnection [16]. AMBA and

CoreConnect are hierarchical buses. WISHBONE does not support hierarchical bus

interconnection, but allows various other possible interconnections, such as point-to-

point, data flow, shared bus and crossbar switch interconnection.

 Open Source

Features WISHBONE AMBA CoreConnect
Open Architecture Yes Yes Yes

Registration No Yes Yes
Bus Width [bit]

Features WISHBONE AMBA CoreConnect
Maximum data bus width 64-bit 1024-bit 128-bit

Maximum address bus width 64-bit 32-bit 32-bit
Architecture

Features WISHBONE AMBA CoreConnect
Multiplexed Yes Yes Yes
Hierarchical No Yes Yes

Pipelined No Yes Yes
Data Transfer and Operating Frequency

Split Transaction No Yes Yes
RMW transfer Yes No No

Handshaking and Burst Yes Yes Yes
Operating frequency User

defined
User

defined
Depends

on PLB width
Table: 2. 4 Comparison of WISHBONE, AMBA and CoreConnect

Open Core Based SOC Design Platform

 41

AMBA and CoreConnect both support split transfer in which a Slave has the

possibility to release the bus to other Masters requesting it and having a higher priority

than the Master using it. However WISHBONE supports Read-Modify-Write (RMW)

transfer. In a multiprocessor system in order to avoid two or more Masters gaining access

to the same Slave the Master has to use a RMW cycle.

RMW cycle gives a Master the opportunity to do both a read and a write

operation before any other Master may use the bus and thereby avoiding a system crash.

The operating frequency of AMBA and WISHBONE are user defined but the

CoreConnect operating frequency is decided by the data width of PLB [17].

In respect to all of the above issues WISHBONE supports almost all features also

supported by AMBA and CoreConnect. It also offers advantage of using predesigned IP

cores available freely in Open Core site for the portable and reliable SOC design.

Keeping view this features we adopt the WISHBONE interface for our SOC design. A

summary of all the features of these three buses are given in Table 2.4.

2.10 Conclusions
As design complexity increases, many SOC design methodologies have been

proposed by research and industry community [3]. Some of them are still in development

phase. Platform based SOC design is an emerging technology that utilizes previously

design platform of abstraction level to form SOC design. But it requires a library of

platform which can only possible in industry environment. On the other hand Open Core

design offers SOC design using design reuse with a standard bus interface. WISHBONE

bus interface made By Silicore [18] Corporation is a solution to the necessity of a

standard bus interface. Open core utilizes WISHBONE interface for design reuse and

help in plug and play integration of freely available IP cores that leads to low cost,

reliable, time-to-market SOC design. The features of WISHBONE specification such as

documentation, signal naming, types of interconnections and bus cycles has been

discussed. Finally a comparison of WISHBONE bus with other two industry standard bus

interface AMBA and CoreConnect has been done.

Open Core Based SOC Design Platform

 42

The brief summary of Wishbone bus interface with compared to other standards in

industry are given below:

• Standard interfaces are available freely and can be used for SOC integration in

industry as well as laboratory environment without any additional cost.

• It supports single Read/Write; block Read/Write bus cycles. It also supports

RMW cycle as compared to split transaction of AMBA and CoreConnect to share

same memory being used in multiprocessor SOC environment.

• The interconnection scheme supports variable interconnection and variable time

specification. That means it can be changed by the system integrator and can be

operated at any frequency which is limited to the technology of the target device.

• The edge of Wishbone interconnection over other microcomputer buses like PCI,

VME bus is that it can be coded using any hardware description language like

VHDL and Verilog®, and it takes the shapes of simple logic gates supported by

most of the FPGA and ASIC devices.

Design and Verifications of WISHBONE Interconnections

 43

DESIGN AND VERIFICATION OF WISHBONE
INTERCONNECTIONS

 Design of WISHBONE Compatible Slave

IP Core

 Point‐to‐Point Interconnection

 Shared Bus Interconnection

 Conclusions

Chapter 3

Design and Verifications of WISHBONE Interconnections

 44

After the WISHBONE interface features have been discussed, the next step is to

create a WISHBONE compatible Slave core. For this purpose a 16-bit Slave output port

core has been taken and the issues related to make it WISHBONE compatible are

specified. The corresponding simulation results of the core using Xilinx ISE simulator is

provided. This chapter also demonstrates the design and verification of two types of bus

interconnections such as point to point and shared bus interconnections. The various

related issues to create the interconnection are also presented here. A bench marking of

these two portable systems has been done to determine the maximum speed and

minimum size in two types of FPGAs. The system consists of 32-bit DMA with Master

interface which transfers data to and from 32-bit MEMORY with Slave interface. The

verification results using Xilinx [20] ISE simulator and ChipScope Pro results are

provided to validate the functionality of the system.

3.1 Design of WISHBONE Compatible Slave IP Core

This section describes how to make a WISHBONE Compatible Slave IP core, so

that user designed IP cores can be used in integration process for designing SOC. The

idea behind this section is to demonstrate how WISHBONE interfaces work in

conjunction with logic primitives available on FPGA and ASIC devices. It also

demonstrates that a very little logic is needed to implement WISHBONE interface.

3.1.1 16-Bit Slave Output Port Design with 8-Bit Granularity

Figure: 3.1 shows a simple 16-bit WISHBONE Slave output port with 8-bit granularity,

which means that data can be transferred 8 or 16-bits at a time. The issues related to

making this core WISHBONE compatible are listed below:

1. To perform the write operation on Slave the data presented in the data input of Slave

DATI (15:0) is latched in synchronous with the rising edge of clock signal CLK_I

when strobe, select signal and write enable are asserted. The data input port to Slave

consists of 16-bit data of 8-bit granularity. This means that the 16-bit register can be

accessed with either 8 or 16-bit bus cycles.

Design and Verifications of WISHBONE Interconnections

 45

2. Granularity is chosen by selecting the high or low byte of data with select lines SEL_I

(1:0). When SEL_I (0) is asserted the low byte is accessed, when SEL_I (1) is

asserted the high byte is accessed. When both the byte is asserted then 16-bit word is

accessed.

3. To monitor the output port by a Master, the output data lines are routed back to the

data output port DAT_O (7:0). The ‘AND’ prevents any erroneous data being latched

in to the register during read cycle.

4. STB_I operates like a chip select signal, indicates the Slave interface will be selected

if STB_I is asserted. The select signals SEL_I are used to determine which data is

placed by the Master or Slave during read/ write cycles. An address decoder is used to

generate the strobe signal, but select signal is provided to Slave devices.

As shown in figure: 3.1 the entire interface is implemented with standard 8-bit

Xilinx and ‘AND’ gate. It shows that a very little logic overhead is required to interface a

Figure: 3. 1 Block diagram of 16-Bit Slave Output Port

Design and Verifications of WISHBONE Interconnections

 46

core with WISHBONE bus. This gives rise to a highly portable system design that works

with standard, synchronous and combinatorial logic primitives available in most of the

FPGA and ASIC devices.

3.1.2 Simulation Results

The simulation result of the 16-bit output port done in Xilinx ISE simulator is given in

Figure: 3.2. Initially DAT_I is 16’h5F27. As strobe, WE_I, STB_I are high and SEL_I

(1) and SEL_I (0) are asserted the high byte of data is written to qh [7:0] and low byte of

data is written to ql [7:0]. The corresponding value is also routed to the data output i.e.,

16’h5F27. If any of the signal is negated the output latch the previous value.

3.2 Point-to-Point Interconnection

Figure: 3.3 show a point-to-point interconnection that includes SYSCON, DMA

and MEMORY Cores. These cores are available in the WISHBONE public domain

library for VHDL.

The descriptions of these cores including specifications and timing diagrams are given

below.

Figure: 3. 2 Simulation result of 16-bit output port with 8-bit granularity

Design and Verifications of WISHBONE Interconnections

 47

3.2.1 Core specification and internal architecture

I. DMA

 This is a simple 32-bit DMA unit with a WISHBONE Master interface. Two

methods of data transfers are supported such as, single read/write cycles and block

read/write cycles. The type of cycle is selected by a non-WISHBONE signal input

DMODE.

Figure 3.4 shows the block diagram of the DMA unit which consists of a mode control,

control state machine, input data register, output data register, address register and

address counter. When reset signal is high, the DMA resets its control state machine and

all related registers and counters and the initial address IA and initial data ID states are

latched. This allows system integrator to enter the destination address and initial write

data values to DMA. Mode control takes the input from DMODE signal and generates an

input to the control state machine which is responsible to generate the data transfer

cycles, strobe and cycle signal output. If DMODE input is negated, the DMA generates

single read/write cycles, if it is asserted the DMA generates block read/write cycles.

Figure: 3. 3 Point-to-point interconnection

Design and Verifications of WISHBONE Interconnections

 48

An Address register latches the initial value of address. Input and output data

registers are used to latch the input and output data. Address counter is used to generate

5-bit of binary address. The highest two address bits generated by the DMA are latched in

response to a reset. This allows each DMA to target a unique Slave. The lower three

address bits are generated by a counter that counts from 0x0 to 0x7, and rolls over from

0x7 to 0x0. The DMA increments its address after each bus cycle is completed.

Figure: 3. 4 Block diagram of DMA

Design and Verifications of WISHBONE Interconnections

 49

Figure: 3.5 and 3.6 show the timing diagrams for the block write and block read

respectively. In single read/write cycles the DMA initiates a single write cycle in the

rising edge of clock after reset is negated. After the write cycle is completed, the DMA

initiates a single read cycle. The operation of write / read cycles can be repeated

indefinitely.

In block read/write mode, the DMA initiates a block write cycle with eight phases,

and then DMA generates a similar kind of block read cycle.

Figure: 3. 5 Block write cycle.

Design and Verifications of WISHBONE Interconnections

 50

II. MEMORY

This is a simple, 8x32-bit size memory module with WISHBONE Slave interface

designed for Xilinx [20] FPGA. Figure 3.7 shows the block diagram of the memory

module which consists of a wrapper that interfaces the Xilinx ram to a WISHBONE

Slave interface. Xilinx Core Generator tool is used to create the ram element. Xilinx Core

Generator is a parametric core generator that generates optimized core for Xilinx FPGA.

Xilinx provides reconfigurable IP cores which can be parameterized to create high

performance design with reduction in design time. The figure also shows that, the

overhead glue logic needed by the wrapper to interface ram with Slave interface is very

Figure: 3. 6 Block read cycle

Design and Verifications of WISHBONE Interconnections

 51

small and limited to only a single ‘AND’ gate. The ram is generated from Xilinx

distributed ram.

The ram is generated from Xilinx distributed ram. Xilinx provides two ways of

generation of ram. These are distributed ram and block ram. Distributed ram utilizes the

FPGA look up tables (LUTs) to be configured as ram where as block ram uses dedicated

memory on FPGA. The ram module generated is FASM compatible synchronous RAM.

It supports single Read/Write, block Read/Write and RMW cycles.

III. SYSCON

SYSCON also called as system controller is used to generate WISHBONE

compatible clock and reset signals for the system. The block diagram and timing diagram

is shown in figure: 3.8. The clock output is fed directly from an external clock signal

called EXTCLK. The reset generator produces a single reset signal RST in accordance

with the WISHBONE reset timing. In order to operate properly, the flop-flops generated

from reset state machine must power-up to the ‘zero’ state. An external input signal

EXTTST is used to force the circuit into the power-up zero state. This helps in initializing

Figure: 3. 7 Block diagram of memory module

Design and Verifications of WISHBONE Interconnections

 52

the flip-flops output to zero states, which generally initialize itself to a state immediately

after FPGA configuration.

3.2.2 Interconnection Architecture
Figure: 3.3 show a point to point interconnection. The steps include to configure this

interconnection architecture are following.

• As the name indicates, it is a direct connection of the cores with each other; hence the

input, output ports of the modules require common signals for interconnection. A set

of common signals have been created for the input and outputs such as reset, clock,

address, data input; data output, write enable, strobe and acknowledge output.

• The corresponding signals are connected to the corresponding module’s inputs

outputs to form the interconnection. As an example acknowledge input of Master

and acknowledge of output are connected to the acknowledge signal. This

architecture has been written in structural modeling with DMA, MEMORY and

SYSCON as the component of the structural model.

3.2.3 Verification Results

A test bench is written and verification of the point-to-point interconnection has

done using Xilinx ISE simulator [20] to observe the functional behavior of the system. A

simulation result of 5000 ns was taken and the result has been produced in two parts as

shown in the Figure: 3.9 and 3.10. The value of ‘dmode = 1’, indicates the Master is

performing a block read/write cycle. The system is first performing an eight phase of

Figure: 3. 8 Block diagram and timing diagram of SYSCON

Design and Verifications of WISHBONE Interconnections

 53

block write cycle and then an eight phase of block read cycle. The data given in DMA for

writing into the memory is ‘id=32’h01234567’. Initially the write signal is high indicates

the data is being written to data output bus ‘edwr’.

During this time data read by the Master is unknown. After some clock pulse the

same data is read by DMA from the memory. So the final value of data DMA reads and

writes in data buses is 32’h01234567.

Figure: 3. 9 Simulation result for a clock period of 2500 ns

Figure: 3. 10 Simulation results for a clock period of 5000 ns

Design and Verifications of WISHBONE Interconnections

 54

3.2.4 Synthesis Results

 The synthesis of the system is done using Xilinx Synthesis Tools. The RTL

schematic is shown in figure: 3.11 and device utilization summary in Spartan3e and

Virtex-II Pro FPGA are given in Table 3.1 and 3.2.

Design Information
Target Device: xc3s500e-4fg320 (Spartam3e)

Device Utilization Summary

Logic Utilization used available utilization

Number of Slices 40 4656 0%
Number of Slice Flip

Flops 69 9312 0%

Number of 4 input LUTs 15 9312 0%

Number of bonded IOBs 73 232
31%

Number of GCLKs 3 24
4%

Table: 3. 1 Device utilization summary for Spartan3e.

Figure: 3. 11 RTL schematic of interconnection

Design and Verifications of WISHBONE Interconnections

 55

3.2.5 ChipScope Pro Result

All the pins of the FPGAs are generally surface mounted, so for real time

debugging of the design, the signals of the design has to be routed to input and output of

the design which increases the pin count of the design. ChipScope Pro [20] tool inserts

logic analyzer, bus analyzer, and virtual I/O low-profile software cores directly into the

design, allowing the designer to view any internal signal or node, including embedded

hard or soft processors. Signals are captured at or near operating system speed and

brought out through the programming interface, freeing up pins for the design. Captured

signals can then be analyzed through the included ChipScope Pro Logic Analyzer.

Design Information
Target Device: xc2vp30-7ff896(Virtex-II Pro)

Device Utilization Summary

Logic Utilization used available utilization
Number of Slices 40 13,696 0%

Number of Slice Flip Flops 69 27,392 0%
Number of 4 input LUTs 15 27392 0%

Number of bonded IOBs 73 556
13%

Number of GCLKs 3 16
6%

Table: 3. 2 Device utilization summary for Virtex-II Pro

Figure: 3. 12 ChipScope Pro results of real time signals of interconnection

Design and Verifications of WISHBONE Interconnections

 56

Figure: 3.12 shows the real time debugging of internal signals through Xilinx

ChipScope Pro tool. EDRD and LDAT_0 are the date read and data write bus signals

which shows that the DMA is reading and writing 32’h01234567 to and from the

memory module. SAS and WE are the strobe and write enable signals of the system. The

figure also demonstrates that the system is performing eight phases of write cycle and

then eight phases of read cycles successfully.

3.2.6 Benchmarking Results

For benchmarking purpose synthesis results from two types of Xilinx FPGAs

have been taken such as, Spartan-3e and Virtex-II Pro and compared. Here benchmarking

indicates determining the maximum speed with the minimum area occupied by the

interconnection in two types of FPGA technology. The tables shows 40 no.s of slices are

required to form the interconnection in both the two types of FPGAs. The maximum

speed of the interconnection in Spartan3e and Virtex-II Pro are 248.675 MHz and

450.113 MHz respectively.

Table 3.2

32 bit Point-to-Point interconnection benchmark results

MFG & Type Part Number Size Max Speed

Xilinx Spartan3e XC3S500e-4fg320 40 slices 248.675 MHz

Xilinx Virtex-II Pro Xc2vp30 -7ff896 40 slices 450.113 MHz

Table: 3. 3 32-bit Point-to-Point interconnection benchmark results

3.3. Shared Bus Interconnection

This section describes the SOC design using shared bus interconnection. A 32-bit

shared bus system is created which consists of four Masters and four Slaves. The

modules used in point-to-point interconnection such as DMA, MEMORY and SYSCON

has been used to form the interconnection and to explore the various integration issues

related to shared bus interconnection. SOC design using shared bus interconnection is

more complex than the point-to-point interconnection scheme. It imposes some of the

Design and Verifications of WISHBONE Interconnections

 57

design complexities to the system integrator during SOC integration. System integrator

has to perform some task before the final SOC integration.

These tasks include:

1. The type of bus topology i.e., multiplexed and non-multiplexed bus.

2. The type of interconnection logic i.e., three-state and multiplexor based

interconnection logic.

3. Arbiters are required to grant bus access to the Master. The integrator has to

decide which type of arbiter should be chosen depending on the application.

4. An address map should be created, so that Master can access the Slave through its

binary address value using variable address decoding.

5. Creating the topology for interconnection.

All these issues are discussed and final benchmarking of the system in terms of

minimum size and maximum speed has been presented in this section.

3.3.1. Bus topology

The important thing in designing a system is to how to move the data around the system.

The data may be a binary address value or a simple data value.

Hence buses are used to move the data around a system. There may be a chance

that two different buses are required for data and address transfer or in a single bus data

and address may be multiplexed to reduce the number of interconnections.

Two types of bus topology exists

I. Multiplexed, bus topology and

II. Non-multiplexed bus topology.

In multiplexed bus different types of data are routed over the same bus signals. Hence the

number of interconnections require in multiplexed bus topology are less. Figure: 3.13

show a multiplexed bus where 32 bit address and 32 bit data are being presented in the

same bus; this reduces the number of signals in interconnection from 64 to 32.

This bus topology is used in semiconductor industry to reduce the number of pins

on a chip. The major disadvantages of the multiplexed bus topology are that it requires

two clock pulses to move the data and address information in a system. Hence where

speed is concerned a non-multiplexed synchronous bus is used to move the data and

address information in a single clock cycle. It requires more interconnection logic as data

Design and Verifications of WISHBONE Interconnections

 58

and address has to move in different buses. To benchmark the shared bus interconnection,

a non-multiplexed synchronous bus system is employed for a high speed performance.

3.3.2. Interconnection logic

In shared bus interconnection multiple Masters connected with multiple Slaves.

Any Master can access any Slave depending upon the availability of bus. The next issue

in shared bus interconnection is to select a proper logic path to employ this large

connection between all the Masters and Slaves. Hence all these Masters and Slaves must

be routed properly to form the interconnection.

WISHBONE interconnection uses two types of logic to move data around a SOC

I. Three state or tri-state buffer logic, and

II. Multiplexor logic.

The use of Tri-state buffer as an interconnection logic reduces the number of pins in an

interface. In Master-Slave architecture when a Master is allowed to use a bus, the Master

turns its buffers ‘on’ to access the bus, while other Masters turns its buffer off. The Slave

also reacts similarly. The Slave participating with Master bus transaction turns its output

buffers ‘on’ to start the cycle.

Figure: 3. 13 Multiplexed address/ data bus

Design and Verifications of WISHBONE Interconnections

 59

Figure: 3.14 show three-state bus interconnection which uses three-state logic to

interconnect two Masters with two Slave modules. However, this suffers from two major

draw backs. First is buffer has inherent times delays for turning it on and off. Hence this

is slower than direct connection. Second, tri-state buffer are not available in many FPGAs

and ASIC devices.

A set of multiplexor logic interconnections shown in Figure: 3.10 are used to

interconnect two Masters with two Slave modules. The advantage is that unlike tri-state

buffer multiplexor logic are supported by all the FPGA and ASIC devices. The

disadvantage of this approach is that they require large number of logic gates and routed

interconnects than that of three-state logic. However, multiplexor logic interconnection is

easier to route in FPGA and ASIC devices than that of three-state logic interconnection.

The reason for this are

1. Tri-state logic locations are fixed in many FPGA devices. Hence the

interconnection using tri-state buffers force the router software to organize the

Figure: 3. 14 (a) Three-state Interconnection. (b) Multiplexor logic Interconnection

Design and Verifications of WISHBONE Interconnections

 60

SOC around these fixed locations, which creates a poorly optimized circuit with

slow speed.

2. Pre-defined, external input/output pin locations are easier to achieve with

multiplexor logic interconnection in FPGA devices.

For benchmarking purpose a multiplexor logic for interconnection has been used so that

the design can support many FPGA and ASIC devices.

3.3.3. Arbiter Topology

An arbiter is used in shared bus interconnection to grant the access of the bus to a

Master. Arbiter (ARB) is a four level, round- robin arbiter. Round-robin grants the

access to bus on a rotating basis like a rotary switch as shown in figure: 3.15. As shown

in the figure if Master0 is requesting for a bus access the arbiter grant access to it. After

Master0 request is over, the arbiter is turned to the next position and grants the access to

Master1. If Master1 is not making a bus request, the arbiter skips that level and continues

to the next one. Thus all the Masters in round-robin arbiter are granted the bus on an

equal basis. Round-robin arbiter finds application in data acquisition systems where

collected data are placed into shared memory.

 Figure: 3. 15 Round-robin arbiter working as a rotary switch

Master #1

Master# 0

Master #3

Master #2

Design and Verifications of WISHBONE Interconnections

 61

Figure: 3.16 shows the block diagram of an arbiter, consists of arbitration logic,

COMCYC logic, encoder logic, LASMAS logic and register blocks. CYC0-CYC3

represents the bus requests made by the four Masters. When the Master wants the access

of the shared bus it asserts the corresponding CYC signal and depending upon the

availability of the bus the arbiter asserts the corresponding GNT0-GNT3. This is the

operation of arbitration logic. COMCYC logic takes input from CYC0-CYC3 and

generates signals COMCYC which shows the status of the bus. COMCYC is high

indicates Master has requested the bus and has been granted the bus by the arbiter.

Encoder logic encoded the (GNT3-GNT0) to GNT (1..0). GNT (1..0) with COMCYC is

used in an interconnection to indicate which Master has been granted the bus.

The Master level to be granted is determined by the previous level Master; hence round-

robin arbiter keeps track of the previous level Master. It uses a register to catch the state

of the grant signal GNT (1..0). The output of LASMAS state machine decides when the

register will latch the grant level. The timing diagram of arbiter bus arbitration is shown

in Figure: 3.17.

Figure: 3. 16 Block diagram of round robin arbiter

Design and Verifications of WISHBONE Interconnections

 62

After the positive edge of clock pulse Master on level1 asserts its bus request on

CYC1. At the next edge of clock pulse i.e., edge1 the arbiter asserts the grant signals

GNT (1..0) and the COMCYC signal. This indicates that a valid arbitration is started and

the arbitration level is latched in next clock pulse i.e., edge2 in signal LASMAS. This

helps in arbiter to decide in the next level which Master will get the bus access.

When Master1 is done with its bus cycle, the level1 Master negates CYC1 after

edge2 of clock pulse. As a response COMCYC is negated to indicate the initiation of

arbitration. As shown in the figure at clock edge3 three Masters are requesting the bus at

a time. But round-robin arbiter grants the bus to the second level of Master1 i.e., Master2

because Master2 is next to the Master1 in the round-robin. For benchmarking purpose of

the shared bus interconnection a round-robin arbiter is chosen.

Figure: 3. 17 Timing diagram of arbiter

Design and Verifications of WISHBONE Interconnections

 63

3.3.4. Partial address decoding and address map

Every Slave in an interconnection is defined by a specific binary address. In order

to access the Slave the Master has to decode the corresponding address. Two types of

methods are used to decode the address in a system. These are,

I. Full address decoding, and

II. Partial address decoding.

Most of the standard microcomputer buses like PCI and VME bus use full address

decoding. In this type decoding of full address of the bus is utilized to access a Slave. i.e.,

if a 32it address is used, then each Slave will be assigned with all thirty two address bits.

In partial decoding a range of the address is assigned as a decoding address of the Slave

module. In other way, if the Slave has four registers, then WISHBONE interface utilizes

only to address bits for decoding the Slave. Standard microcomputer buses the

interconnection method cannot be changed, so it uses a full address for decoding,

whereas WISHBONE supports variable interconnection and allows partial decoding

method.

The partial decoding method has the following advantages:

• As part of an address is in use, the size of the decoder is minimized and it allows

high speed decoders and speeds up the interface.

• It requires less redundant decoding logic or gates.

• It supports variable sizing. i.e., in WISHBONE the address path can be of any

size between 0 and 64-bits.

• It supports variable interconnection scheme.

As WISHBONE is using partial decoding technique, the integrator has flexibility in

defining the address map of the system. However, partial decoding technique suffers

from a disadvantage that the SOC integrator has to define address decoder logic for each

IP core, which increases the effort of integrating cores into the SOC. Table: 3.4 shows the

address map used in designing the shared bus interconnection.

Design and Verifications of WISHBONE Interconnections

 64

 Table 3.3 Address map used by Interconnection

DMA Master Memory SLAVE Address Cycles

Master0 Slave0 0x00 – 0x07 Block Read/Write

Master1 Slave1 0x08 – 0x0F Block Read/write

Master2 Slave2 0x10 – 0x17 Block Read/Write

Master3 Slave3 0x18 – 0x1F Block Read/Write

Table: 3. 4 Address map used by Interconnection

3.3.5. Interconnection topology

A shared bus interconnection is created for benchmarking purpose with a

multiplexor interconnections and non-multiplexed address and data buses. Figure: 3.18

shows the block diagram of general share bus interconnection for n number of Master and

Slaves. For system design four DMA Master and four Memory Slave modules. A

SYSCON module is used to provide the system with clock and reset signal. An arbiter

module is taken to grant the access of the bus to Masters.

The steps for creating this interconnection architecture are as follows:

1) A top module file is created where four DMAs, four memory modules are

instantiated as components in a structural model. The output of the DMA such as

ADR_O, DAT_O, SEL_O, WE_O, STB_O, is routed to five multiplexors

respectively. The outputs of the multiplexors form the corresponding bus to carry

the data from the DMAs. This is how multiplexor logic interconnection has been

created. Similar bus interconnection is created for data input DAT_I.

2) An address comparator is used to decode the address values so that Master can

access the corresponding Slaves from the decoded address.

The operation of interconnection is described below:

1) After the initial system reset, one or more Masters request the interconnection or bus

by asserting their cycle output signal CYC_O. Arbiter grants the bus to one of the

Design and Verifications of WISHBONE Interconnections

 65

Figure: 3. 18 Block Diagram of a Generalised Shared bus Interconnection

Design and Verifications of WISHBONE Interconnections

 66

2) Masters requesting for bus, after one clock edge from the assertion of corresponding

cycle out signal. It does so by asserting grant lines GNT0-GNT3 and GNT (1..0) and

the corresponding Master owns the complete control of the bus.

3) Once the bus is granted, the Master routes the output signals such as address, data

output, write enable and strobe out on to the shared bus via multiplexor. The shared

bus output signals are routed to the inputs of the Slave interfaces. The grant lines are

also used to enable the terminating signals like acknowledge in of the Master that

acquire the bus. As an example if Master0 get the access of the bus, then the output

signal mentioned ADR, WE, and DATO are routed to the shared bus and shared bus

output to the Slave signals and the grant is also used to enable the acknowledge in of

Master0.

4) The common address bus takes the value from the Master address line and is decoded

by an address comparator. The address decoder splits the address into four parts and

the decoded output selects the Slave by its strobe input. The Slave responds to the bus

cycle of the Master when its strobe input is asserted.

5) Once the Slave is selected by its address map, it participates in the bus transactions

with the Master and as a response it asserts the terminating signals such as,

acknowledge out. These signals are routed to the corresponding Master. If a Master

initiates a single read cycle, then Slave places data on its data out bus. These data are

routed to the corresponding Master via multiplexor interconnection logic through

appropriate selection of address lines.

6) When the Master receives an assertion in terminating signals, it terminates its bus

cycle by negating strobe output. If the Master is in the middle of block cycle then it

will complete its whole phase of block transfer and after completion of block cycle or

single read/write cycle, it terminates the cycle by negating its cycle output signal and

informs arbiter to start re-arbitration.

Design and Verifications of WISHBONE Interconnections

 67

3.3.6. Verification Results

The simulation result shows that initially arbiter grants request to Master. As write signal

‘ewe’ is high, DMA starts writing data from the address 5’h08. It continues 8 phases of

write operation and write 32’hA5A5A5A1 in the data write output bus ‘edwr’. Then it

makes its cycle output ‘ecyc’ low indicating arbiter to re-arbitrate. The Master grants the

access to the next Master in the round-robin i.e., Master2. Master2 performs 8 phases of

write signal and write 32’hA5A5A5A2 to the ‘edwr’ bus. After Master2 leaves the bus

Master3 gains the access of bus and perform a block write operation as defined in the

design and writes 32’hA5A5A5A3 to output bus. Finally, Master0 is in the loop to get the

access of the bus and to write data value 32’hA5A5A50 to ‘edwr’ bus.

The simulation is taken in Xilinx ISE simulator for a period of 4000 ns where it is

observed that the interconnection functions accurately. It is also clearly visible that all the

Slaves are accessed by their corresponding address values defined in the address map.

3.3.7. Synthesis Results

Figure: 3.20 shows the RTL schematic generated after synthesis of the design using

Xilinx Synthesis Tools. The schematic comprises four DMAs, four memories, SYSCON

and an arbiter to form the interconnection. Table: 3.5 and 3.6 show the device utilization

of the interconnection design in Spartan-3e and Virtex-II Pro board.

Figure: 3. 19 Simulation result for a clock period of 4000 ns

Design and Verifications of WISHBONE Interconnections

 68

From the Table: 3.5 and 3.6 it is observed that the shared bus interconnection is

consuming very less device available in the two types of FPGAs.

Design Information
Target Device: xc3s500e-4fg320(Spartan3e)

Device Utilization Summary

Logic Utilization used available utilization
Number of Slices 292 4656 6%

Number of Slice Flip
Flops 416 9312 4%

Number of 4 input
LUTs 459 9312 4%

Number of bonded IOBs 77 232
33%

Number of GCLKs 1 24
4%

Table: 3. 5 Device utilization summary of interconnection Spartan3e

Figure: 3. 20 RTL schematics of shared bus interconnection

Design and Verifications of WISHBONE Interconnections

 69

3.3.8. ChipScope Pro Result

The real time debugging signal in ChipScope Pro is given in Figure: 3. 21. The

figure shows Master0 request for the bus by asserting ECYC_OBUF signal. Arbiter first

grants the access of bus to Master0. Master0 generates eight phases of block write and

read signals and read and writes to and from memory.

Design Information
Target Device: xc2vp30-7ff896 (Virtex-II Pro)

Device Utilization Summary

Logic Utilization used availabl
e utilization

Number of Slices 295 13,696 2%
Number of Slice

Flip Flops 416 27,392 1%

Number of 4 input
LUTs 472 27392 1%

Number of bonded
IOBs 77 556

13%

Number of GCLKs 1 16
6%

Table: 3. 6 Device utilization summary in Virtex-II Pro

Figure: 3. 21 ChipScope Pro results of real time signals of interconnection

Design and Verifications of WISHBONE Interconnections

 70

The value of data is 32’hA5A5A5A0. Then arbiter grants the access to Master1

and so on. The arbiter grant signal is EGNT. The data read and write by Master1,

Master2 and Master3 are 32’hA5A5A5A1, 32’hA5A5A5A2, and 32’ hA5A5A5A3

respectively. Figure: 3.19 also shows that all the WISHBONE signals are following the

timing diagram as discussed in chapet-2. The corresponding acknowledge, cycle, strobe

and write signals are EACK_0BUF, ECYC_0BUF, ESTB_0BUF and EWE_0BUF.

3.3.9. Benchmarking Results

The benchmarking of the shared bus interconnection system is done in Xilinx Spartan-3e

and Virtex-II Pro FPGA. The design utilizes 292 slices in Spartan-3e and 295 slices in

Virtex-II Pro to form the interconnection, which are almost same values. The max sped of

the design in Spartan-3e is 118.312 MHz and that in Virtex-II Pro is 219.896 MHz.

Table 3.7

32 bit Shared bus interconnection benchmark results

MFG & Type Part Number Size Max Speed

Xilinx Spartan3e XC3S500e-4fg320 292 slices 118.312 MHz

Xilinx Virtex II
Pro

Xc2vp30 -7ff896 295 slices 219.896 MHz

Table: 3. 7. 32-bit shared bus interconnection benchmark results

Design and Verifications of WISHBONE Interconnections

 71

3.4. Conclusions

Two types of interconnection topology have been created and its related design issues

are discussed. Initially a Slave core of 16-bit output of 8-bit granularity has taken and

the issues related to making it WISHBONE compatible has been discussed. A 32-bit

point-to-point and shared bus interconnection are designed and related issues are

discussed. The verification of the design is done using XILINX ISE simulator. Finally, by

using ChipScope Pro provided by Xilinx the proper functionality of the designed systems

are observed

The following conclusions are made from the above discussion:

• WISHBONE interface requires a very little logic overhead to implement the

entire interface. This gives rise to a highly portable system design that works with

standard, synchronous and combinatorial logic primitives available in most of the

FPGA and ASIC devices.

• The benchmarking results show that it also utilizes a very less logic to form the

interconnection. The minimum size requires for implementing point-to-point

interconnection is approximately 40 slices and for shared bus interconnection is

292 slices. Both the interconnection supports an operating frequency of more than

100 MHz. It is also observed that the maximum operating frequency of the design

depends on the target device technology. For high speed FPGA like Virtex-II Pro

the frequency is higher than the low speed FPGA Spartan3e. Hence, it supports

variable timing specification.

Low cost, portable and time to market SOC can be designed successfully using

WISHBONE bus interface.

 72

 Proposed SOC Design Methodology

 Hardware Gateway of SOC

Architecture

 Descriptions of IP Cores

 Conclusions

Chapter 4

SOC Architecture and Design
Methodology

SOC Architecture and Design Methodology

 73

After complete verification and benchmarking of two Wishbone bus

interconnections, this chapter illustrates the methodology for a portable SOC design for

laboratory applications. For this purpose a suitable SOC architecture has been taken and

the IP cores are collected from the Open Core site. Finally, these cores are integrated to

form the SOC. The cores specifications, internal architecture, CPU bus cycles are

explained in this chapter.

4.1 Proposed SoC Design Methodology
This section presents a description of design methodology adopted to implement a

SoC using Wishbone bus interface for laboratory applications. The complete design

methodology shown in Figure: 4.1 are consists of hardware design flow and software

design flow. These flows are described individually in the next section. The hardware

design flow is started with a collection of a set of IP cores and integrating them for a

chosen application, then arriving at the simulation step for verification of the entire SOC

design. Synthesis and implementation is done afterwards for ensuring the proper

hardware mapping & routing of SOC in FPGA. An application required to run in the

SOC hardware is being done by the software design flow. This can run in parallel with

the hardware design platform. Finally, the hardware model and software applications are

implemented in the real hardware. A complete verification and monitor checking is being

done for ensuring proper functionality of the system.

4.1.1 Hardware Design Flow

The SOC design steps begins with a collection of Open Core Project Aquarius

[23] aiming initially for an implementation of simple SOC architecture consisting of a

32-bit RISC processor (SuperH-2 compatible) and a set of peripherals for data

transmission with PC. The first step is to configure and adoption of the processor model

and the selection of any additional peripherals needed for the design. A set of IP cores of

32-bit RISC CPU Aquarius [], parallel input output (PIO), memory, system controller

and UART, were collected in a project directory and kept back for the future applications.

After the selection of IP cores and integrating same to desired SOC architecture, different

steps of the hardware design can be achieved in parallel, such as external hardware

interfacing, simulation and synthesis of the design. Aquarius developer provides a test

SOC Architecture and Design Methodology

 74

bench with the project. A set of test bench have been developed in order to simulate the

hardware model. Icarus Verilog [19] tool is used to run this test bench to check the results

obtained are accurate to our application.

Figure: 4. 1 Design Methodology

A gate level net list is generated from a set of given RTL code for modeling the SOC

architecture into hardware. This is achieved by the synthesis step. Xilinx-Synthesis-Tool

[20] is used to compile the RTL behavior of SOC to generate a gate level net list for the

FPGA. Finally, implementation step is done where the gate level net list generated in the

previous step is used by Xilinx [20] place and route tools to do mapping, placing &

routing for target FPGA. A bit-stream file is generated to program the FPGA with the

SOC Architecture and Design Methodology

 75

hardware model obtained in the complete flow. The additional hardware needed for the

application is developed and connected with the FPGA.

4.1.2 Software Design Flow
Software design flow usually runs in parallel to the hardware design flow. This

section explains the design flow for software applications and the tools provided for

designer to choose for the work.

The simulator of Verilog-HDL codes and the compiler/assembler of the

application code development run on the UNIX environment. Cygwin [21] is selected as

the preferred environment for this purpose. To simulate verification program and to

develop the application program, the SuperH-2 [22] assembler and compiler are

necessary. GNU tool chain is preferred which can be used by the designer for software

development. The other steps involve compilation, debugging and implementation of the

software on the hardware. The project in Open Core provided with simple and useful

resources for logic verification and application code development. Application codes are

developed in C and compiled with GCC compiler. Debugging the application is an

important step in the software development flow, to validate the results obtained with the

program in the SOC. This is done by GNU GDB [24] debugger. Finally, by using

monitor program the code is downloaded to SOC model dumped in the FPGA.

4.2 Hardware Gateway of SoC Architecture

Figure: 4. 2 Hardware gateway of SOC architecture

SOC Architecture and Design Methodology

 76

The SOC architecture for laboratory application is shown in Figure: 4.2. This

architecture utilizes processor and peripherals from the Aquarius [23] project designed by

Thorn Aitch published in Open Core [4] under GPL license. The architecture consists of

a 32-bit SuperH-2 [22] compatible CPU MASTER, a memory unit (RAM and ROM

unit), a universal asynchronous receiver transmitter, a system controller and a parallel

input output. The cores are connected to each other through WISHBONE interface with a

point-to-point interconnection scheme. The next section describes about the detail

specifications and structures of IP cores used for building this SOC architecture.

4.3 Descriptions of IP Cores

4.3.1 CPU

I. Specification

• 32-bit 5-stage pipelined CPU
• Instruction set is compatible with SuperH-2 [22]. (Renesas /Toshiba make)

• Instruction set supporting Power-on-reset, IRQ, NMI, address and DMA error.

• Bus interface is compatible with Wishbone.

• Sixteen 32-bit general purpose registers (R0-R16), SR, GBR, VBR, PR, PC.

• 32-bit x 16-bit multiplier and accumulator for DSP functionality.

• Low power sleep mode.

II. Structure of CPU

Figure: 4.3 shows the block diagram of the top modules of Aquarius CPU having

Wishbone compliant bus signal. The CPU is a RISC processor based on superH-2 [22]

Instruction set architecture. This synthesizable core written in Verilog and can be

implemented in FPGA. This is published under GPL license in Open Core site [4]. The

SuperH-2 is a 5-stage pipelined architecture with sixteen 32-bit general purpose registers.

It can handle interrupt requests like non-maskable interrupt (NMI) and interrupt request

(IRQ). In a lower hierarchy it comprises a memory access controller, a data path unit, a

multiply unit and a decoder unit [23].

SOC Architecture and Design Methodology

 77

Memory
Access

Controller

mem.v

Decoder

decode.v

Data Path

datapath.v

Wishbone
Bus

Interrupt
Address Error

IF/MA
commands SLOT

controls

status

Multiplier

mult.v

Instruction controls

Data

Address and Data

CPU

cpu.v Memory
Access

Controller

mem.v

Decoder

decode.v

Data Path

datapath.v

Wishbone
Bus

Interrupt
Address Error

IF/MA
commands SLOT

controls

status

Multiplier

mult.v

Instruction controls

Data

Address and Data

CPU

cpu.v

The memory access controller sends fetched instruction bit field to the decoder

unit, in turn decoder unit decodes the instruction bit fields and throws many control

signals for execution and data read/write access towards data path unit, multiplication

unit and memory access controller. As Aquarius CPU uses a non-Harvard bus, the

simultaneous instruction fetch and read/write access may create bus contention. Memory

access controller handles such bus contention and informs to decoder unit. Memory

access controller sense the Wishbone ACK signal and generates processor’s bus cycle

boundary signal termed as SLOT.

The data path unit supports sixteen general purpose registers (R0-R15), Status

Registers (SR), Global Base Registers (GBR), Vector Base Register (VBR), Procedure

Register (PR), and Program Counter (PC). It also provides necessary operation resources,

ALU, divider, comparator, and shifter, temporary register, busses, and interfaces to/from

multiply and memory access controller unit.

The decoder unit acts as a CPU controller and plays important role for the

instruction ID stage. It issues command to memory access controller to fetch instruction

and receive the instructions and decodes the instruction field and allows operations Ex,

MA and WB stages toward data path, multiplication unit and memory access controller.

These operations are processed with its pipeline at each slot edge until reaching to the

target stage of the instruction. The decoder unit is also designed to handle pipeline

stalling conditions, single and multi-cycle instructions with interrupt and address error.

Figure: 4. 3 Block diagram of CPU

SOC Architecture and Design Methodology

 78

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

Instruction-1

Instruction-2

Instruction-3

Instruction-4

Instruction-5

Instruction-6

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

Instruction-1

Instruction-2

Instruction-3

Instruction-4

Instruction-5

Instruction-6

Multiply unit consists of 32-bit x 16-bit multiplier and its control circuits. It also

has the multiply and accumulate registers (MACH/MACL) which hold the final results of

the multiplier. A 16 bit x 16 bit multiply operation is executed in one clock cycle and a

32 bit x 32 bit multiply operation is done in two clock cycle. The CPU input output

signals are given in Table: 4.1.

Class Signal Name Direction Meaning Notes

System
Signals

CLK
RST

Input
Input

System clock
Power On Reset

Wishbone
Bus
Signals

CYC_O
STB_O
ACK_I
ADR_O[31:0]
DAT_I[31:0]
DAT_O[31:0]
WE_O
SEL_O[3:0]
TAG0_I (IF_WIDTH)

Output
Output
Input
Output
Input
Output
Output
Output
Input

Cycle Output
Strobe Output
Device Acknowledge
Address Output
Read Data
Write Data
Write Enable
Byte Lane Select
Fetch Width

Hardware
Event
(interrupt)

EVENT_REQ_I[2:0]
EVENT_INFO_I[11:0]
EVENT_ACK_O

Input
Input
Output

Event Request
Event Information
Event Acknowledge

SLEEP SLP Output Sleep Pulse

Table: 4. 1 Input Output Signals of CPU

Pipeline stage

All the instructions in the CPU are executed in pipeline stages as shown in the Figure:

4.4. The CPU supports five stages of pipelining. These are instruction fetch, decode, and

execute memory access and write back [23].

Figure: 4. 4 Pipeline stages of CPU

SOC Architecture and Design Methodology

 79

1) IF : Instruction fetch (F)

In this stage CPU fetches instruction code from memory. Depending upon the bus width,

the IF stage fetch the number of instructions. The instruction length is 16 bit. So in a 32-

bit bus width, IF stage fetches 2 instructions.

2) ID: Decode(D)

The ID stage controls the whole CPU operation by decoding fetched instructions.

The ID stage issues many control signals to perform Ex, MA and WB operations towards

data path, and memory access controller units. If multiplication operation is required, it

activates the multiplication unit. The signals shift to each stage in pipeline and activates

the corresponding each stage. ID also issues IF stage for next instruction and IF forward

new instruction to the corresponding ID stages. It also control the operation during

hardware event exceptions.

3) EX: Execute

After getting control from the ID stage, the EX stage performs register-register

operation or calculate address for next MA stage. This is done by data path unit.

Executions of multiplication commands are handled by multiplier unit.

4) MA: Memory Access

If memory access gets control signal by ID stage, then the MA reads/writes data

to/from memory. Due to non-Harvard bus used in the CPU, the MA has the highest

priority than IF stage to avoid bus contention.

5) WB: Write Back

If WB is invoked by ID stage, then WB writes back the memory read data to the

registers (R0-R16).

Pipeline stages of instructions

Figure: 4.5 shows the pipelining stages of some typical instructions. It shows all

instructions do not always need 5 stages for execution. The register-register operation

requires 3 stages; IF, ID and EX. All the operation register read, write, ALU operation,

executed in EX stage. The instruction for storing into memory requires 4 stages; IF, ID,

SOC Architecture and Design Methodology

 80

D

D

F

F

D

D

E

E M W

F D E

F D E

F D E M W

F

Power on Reset
Exception Sequence

1st Instruction

2nd Instruction

D

D

F

F

D

D

E

E M W

F D E

F D E

F D E M W

F

Power on Reset
Exception Sequence

1st Instruction

2nd Instruction

EX and MA. In EX stage memory address is calculated and the data is prepared for

storing. Load memory instructions has 5 stage, IF, ID, EX, MA and WB. Address of

memory is calculated in EX stage and written back in WB stage. Multiplication related

instruction has an extra multiplier stage i.e., IF, ID, EX and M stage for multiplier. The

branch instructions executes in 3 cycles. In first pipeline the address of the branch target

is calculated, the 2nd pipeline issues instruction fetch of branch target and increments PC.

The third issues fetch of the next instructions of branch target and increment PC.

Figure: 4. 5 pipeline stages of instructions

How IF and ID stage works

As shown in the Figure: 4.6 the ID stage controls the whole operation of the CPU.

The ID stage issues the EX, MA and WB stages along with the IF stage of the following

instruction.

Figure: 4. 6 IF Issue

SOC Architecture and Design Methodology

 81

IF_DR

EVENT_REQ
EVENT_INFO

IF_DR_EVT

IR

0 1

INSTR_STATE[15:0]

INSTR_STATE_SEL

Combinational
Logic DELAY_SLOT

MASKINT
IBIT

INSTR_SEQ[3:0]

INSTR_SEQ

+1

4’b0000

Huge Truth Table

Control Signals

Init=4’b0001

DISPATCH
1 0

DISPATCH

Init=`POWER_ON_RESET

IF_DR

EVENT_REQ
EVENT_INFO

IF_DR_EVT

IR

0 1

INSTR_STATE[15:0]

INSTR_STATE_SEL

Combinational
Logic DELAY_SLOT

MASKINT
IBIT

INSTR_SEQ[3:0]

INSTR_SEQ

+1

4’b0000

Huge Truth Table

Control Signals

Init=4’b0001

DISPATCH
1 0

DISPATCH

Init=`POWER_ON_RESET

During the last sequence of power on reset, the IF stages of first and second

instructions are issued by the last two decode stages in the exception sequence. Similarly

the IF stages of all followed instructions are issued and the corresponding ID stage get

next instruction from IF stage and keeps the process continuing.

Decoder Unit

 Figure: 4.7 show the structure of decoder unit. It consists of a huge truth table that

takes input from INSTR_STATE and INTR_SEQ and generates all control signals for

other blocks of CPU. The INSTR_STATE contains the instruction code that is processed

in the decoder to generate control signals. The initial reset of the INSTR_STATE is get to

power on reset (16’hf700). The INSTR_STATE [15:0] basically get the data from the

fetched instruction code IF_DR. But if any interrupt or hardware exception event is

detected, the INSTR_STATE is replaced by IR_DR_EVT signal created by

corresponding exception code EVENT_REQ [2:0] and EVENT_INFO [11:0].

 Figure: 4. 7 Block Diagram of Decoder Unit

SOC Architecture and Design Methodology

 82

ID (1)

ID (2)-1 ID (2)-2

ID (3) ID_STALL

(1)IF_DR

IR *

ID (4)

(2)

(2)*

* (3) *

(3)*

(4)

*

SLOT

0 0 1 0 0 0INSTR_SEQ

ID (1)

ID (2)-1 ID (2)-2

ID (3) ID_STALL

(1)IF_DR

IR *

ID (4)

(2)

(2)*

* (3) *

(3)*

(4)

*

SLOT

0 0 1 0 0 0INSTR_SEQ

DELAY_SLOT, MASKINT, IBIT are the controls for masking interrupt or hardware

exception. The decoder requests for instructions, memory controller updates IF_DR

irrespective of instruction sequence and latch the values of IF_DR in IR register, if CPU

needs to handle multiple-cycles instructions such as memory waits and pipeline stalls.

The default value of INSTR_SEQ at power on reset is 4’b0001 else it gets a value of

4’b000, the multi cycle instruction increments INSTR_SEQ to perform multiple pipeline

operations. IF_DR_EVT and INSTR_SEQ resets to zero.

Figure: 4.8 show the basic operation of ID stage. At system reset INSTR_SEQ is

zero, when IF_DR get an instruction ID (1) stage creates the control signal by using the

truth table and corresponding control signals sent to the other units of CPU. Then IF_DR

is updated by second instruction ID (2) which is a multi-cycle instruction. Hence

INSTR_SEQ becomes ‘1’, the ID (2) stage will be completed in multiple cycle and

during this IF_DR is latched in IR. After decoding of each instruction slot asserted to

indicate the completion of pipeline bus cycle. The third instruction creates conflict and ID

(3) stalls and no operation is done in this stage. Finally the forth instruction is decoded as

shown in Figure: 4.8.

Control Signal Shifting

The decoder unit generates many control signals by huge truth table to control other

blocks of the CPU. These signals control the operation of ID stage, EX, MA and WB

Figure: 4. 8 Basic Operation of ID Stage

SOC Architecture and Design Methodology

 83

D1 E1 M1 W1

D2 E2

E3 M3

EX
_e

ee ee
e

D3

W
B_

w
w

w

WB1_www WB2_www

w
w

w

ID
_d

dd

D1 E1 M1 W1

D2 E2

E3 M3

EX
_e

ee ee
e

D3

W
B_

w
w

w

WB1_www WB2_www

w
w

w

ID
_d

dd

Decoder

EX controls WB controls

CLK&SLOT CLK&SLOT

CLK&SLOT

CLK&SLOT

EX_eee

eee

WB_www

WB1_www

WB2_www

www

ID controls

ID_ddd

Decoder

EX controls WB controls

CLK&SLOT CLK&SLOT

CLK&SLOT

CLK&SLOT

EX_eee

eee

WB_www

WB1_www

WB2_www

www

ID controls

ID_ddd

stage. In order to perform corresponding operation the signal should be shifted to EX,

MA or WB stage.

Figure: 4.9 shows the shifting of control signals and Figure: 4.10 shows the circuits for

shifting operation to be performed in HDL level by using flip flops. With synchronous to

clock pulse and slot edge the decoder generated EX signals updated to EX stage. EX

stage decides the MA controls by issuing MA signals and deciding the address of

memory and data to be written in the MA stage. For WB operation 3 stages of flip flops

are used.

Figure: 4. 9 Shifting of Control Signal

Figure: 4. 10 Circuit diagram for Shifting Operation

SOC Architecture and Design Methodology

 84

D1 E1 M1 W1

D2 E2

E3 M3

R
ea

d
R

1

D3

W
rit

e
to

 R
1

Write
to R1

ID
_d

dd

MOV.L @R0, R1

ADD R1, R2

Detect
Register
Conflict

(D2)

R
ea

d
R

1

Forced to NOP

NEXT_ID_STALL ID_STALL

REG_CONF
IF_STALL

MAC_STALL

D1 E1 M1 W1

D2 E2

E3 M3

R
ea

d
R

1

D3

W
rit

e
to

 R
1

Write
to R1

ID
_d

dd

MOV.L @R0, R1

ADD R1, R2

Detect
Register
Conflict

(D2)

R
ea

d
R

1

Forced to NOP

NEXT_ID_STALL ID_STALL

REG_CONF
IF_STALL

MAC_STALL

Pipeline Stall

The pipeline stalling can happen due to following reason:

• Wait states on Instruction fetch (IF) or Data access(MA),

• Conflict IF and MA

• Multiplication contention and

• Register contention.

Memory access is synchronized to all pipeline slots. If there is no memory access or

memory access without wait state then SLOT=1, indicates the pipeline do not stall.

However, if there is memory access with wait states then SLOT=0 and pipeline stalls.

This can be controlled by clock gating the SLOT signal. Simultaneous access of IF and

MA may create conflicts and make the pipeline stalls. Memory access controller informs

pipeline stalling to decoder by a signal IF_STALL. Similarly multiplication may create

pipeline stall, and MAC_STALL signal is used to inform decoder about the stalling.

Some memory load instruction may use same register for loading data. As an

example MOV.L@R0, R1 and ADD R1, R2 both creates control signals to write back to

R1 simultaneously. This type of conflicts indicated to decoder by REG_CONF signal.

Decoder uses the circuit given in Figure: 4.11 to identify the register conflict. Hence, R1

conflicts and ID stage of ADD creates stall operation.

 Figure: 4. 11 Circuit of Detecting Register Conflict

SOC Architecture and Design Methodology

 85

In Figure 4.12 IF_STALL, MAC_STALL and REG_CONF are OR with each other to

create the NEXT_ID_STALL. NEXT_ID_STALL high indicates the ID continues by at

least next slot. When NEXT_ID_STALL becomes ‘1’, it forces the ID stage to NOP,

means no execution of instruction will be done in this ID stage. NEXT_ID_STALL is ‘1’

indicates ID STALL will be ‘1’ in the next slot.

Figure: 4. 12 Pipeline Control during Memory Load Contention

SOC Architecture and Design Methodology

 86

STB

IF cycle

ACK

IF cycle MA cycle

SLOT

W
IS

H
BO

N
E

IF ID EX

if ID

IF

MA

EX

ID

no cycle

if

STB

IF cycle

ACK

IF cycle MA cycle

SLOT

W
IS

H
BO

N
E

IF ID EX

if ID

IF

MA

EX

ID

no cycle

if

If any of these signals are asserted then the ID stalls. The pipeline control during memory

load contention is shown in figure 4.11. In the slot4 there is a register contention due to

MOV and ADD instructions which makes REG_CONF high. It makes

NEXT_ID_STALL high and in next slot ID_STALL becomes high. The ID at slot4 is

stalled and continued in slot5. The slot6 forwards write back data of MOV.L to EX stage

of ADD. This is called Register forwarding. The corresponding Wishbone bus transaction

is also shown in the Figure: 4.12.

Memory Access Controller Unit

Memory Access Controller sends the fetched instructions to the decoder for

decoding operations. This operations is performed by Instruction Fetch cycle (IF) and

memory access cycle (MA). The CPU bus cycle width is decided by SLOT signal which

is generated by the Memory Access Cycle. These bus cycle operations are described in

this section.

Wishbone ACK and CPU’s SLOT

SLOT signal created in memory access control unit follows the Wishbone’s ACK signal

and indicates the pipeline slot edges.

Figure: 4. 13 Wishbone ACK and CPU’s SLOT

SOC Architecture and Design Methodology

 87

To control the pipeline stall from MA cycle all the flip flop in the CPU are gated with

SLOT signal. Figure 4.13 shows the wave form of the SLOT is similar to the ACK,

except that the SLOT is asserted if no memory access cycle is encountered. During

memory accessed operation the SLOT signal wave form follows to ACK signal.

Instruction Fetch Cycle

The decoder unit requests instruction fetch to the memory access control unit by

issuing IF_ISSUE signal. The instruction fetch starts in the next slot after assertion of

IF_ISSUE. During this time the IF_AD [31:0] and IF_JP should be valid state. The

address value of the fetched instruction is given by IF_AD[31:0].

Figure 4.14 shows the waveform of an instruction fetch cycle. Initially when

IF_ISSUE is asserted, the IF_AD contains the address of second instruction IF(2). At the

next slot the instruction fetch starts and the value is latched to IF_DR. WISHBONE

Signal initiates a single read cycle reflects the data transfer by asserting the STB signal.

ADR contains the address of IF(2). DAT_I read the IF(2) value and latch this value in

IF_DR of decoder for decoding. The ACK shows the termination of this cycle.

If instruction fetch is created by jump or branch instruction, the fetch should access the

memory even if the internal fetch buffer is valid. Hence jumping operation should inform

such state to memory access control unit by asserting IF_JP and IF_ISSUE at a time.

IF_DR [15:0] is valid at the next slot of corresponding IF cycle. The second assertion in

IF_ISSUE in the Figure: 4.14 reflect the same situation. Due to branch instruction IF_DR

gets IF(3) after second IF cycle is completed.

Memory Access Cycle

Similar to instruction fetch, MA starts at next slot of MA_ISSUE becomes high. Some

attribute information such as access size MA_SZ [1:0], access direction MA_RW,

address MA_AD [31:0] and if write access, write data MA_WD [31:0] should be valid

when MA_ISSUE is high.

SOC Architecture and Design Methodology

 88

STB

IF cycle

ACK

IF cycle IF cycle

SLOT

W
IS

H
BO

N
E

if(1) ID EX

IF(2) ID

IF(3)

EX

ID

no cycle

if(4) ID

EX

IF_ISSUE

Internal IF

IF(2) IF(3)ADR

IF(5)

IF(5)

IF(2) IF(3)DAT_I IF(5)

EX

BRA

slot -

target

ID

IF_JP

IF_AD IF(2) IF(3) IF(4) IF(5)

IF_BUS

IF(2) IF(3) IF(4)IF_DR IF(1)

STB

IF cycle

ACK

IF cycle IF cycle

SLOT

W
IS

H
BO

N
E

if(1) ID EX

IF(2) ID

IF(3)

EX

ID

no cycle

if(4) ID

EX

IF_ISSUE

Internal IF

IF(2) IF(3)ADR

IF(5)

IF(5)

IF(2) IF(3)DAT_I IF(5)

EX

BRA

slot -

target

ID

IF_JP

IF_AD IF(2) IF(3) IF(4) IF(5)

IF_BUS

IF(2) IF(3) IF(4)IF_DR IF(1)

Figure: 4. 14 Instruction Fetch Cycle

SOC Architecture and Design Methodology

 89

STB

IF cycle

ACK

IF cycle IF cycle

SLOT

W
IS

H
BO

N
E

IF(1) ID EX

Internal IF

MA_ISSUE

MA cycle
Internal IF

IF(1) IF(3)ADR IF(5)

IF(1) IF(3)DAT_I

MOV (load)

MA_WR / MA_SZ
MA_AD / MA_DW

MA(1) WB

if(2) ID EX

IF(3) ID EX

if(4) ID EX

IF(5) ID

if(6)

Internal IF

MA(1)

MA(1) IF(5)

MA(1)or DAT_O

No conflict

MA(1)

MA(1)

MA(1)

In case of WRITE : MA_DW

In case of READ : MA_DR

STB

IF cycle

ACK

IF cycle IF cycle

SLOT

W
IS

H
BO

N
E

IF(1) ID EX

Internal IF

MA_ISSUE

MA cycle
Internal IF

IF(1) IF(3)ADR IF(5)

IF(1) IF(3)DAT_I

MOV (load)

MA_WR / MA_SZ
MA_AD / MA_DW

MA(1) WB

if(2) ID EX

IF(3) ID EX

if(4) ID EX

IF(5) ID

if(6)

Internal IF

MA(1)

MA(1) IF(5)

MA(1)or DAT_O

No conflict

MA(1)

MA(1)

MA(1)

In case of WRITE : MA_DW

In case of READ : MA_DR

Figure: 4.15 shows the memory access cycle where during EX stage MA is invoked due

to assertion in MA_ISSUE to complete the load instruction n. During this time the

attribute information MA_SZ, MA_AD are valid. The EX stage calculate the address of

memory access, places it in ADR, and invokes the memory access as shown in DATI

Wishbone signals.

Figure: 4. 15 Memory Access Cycle

SOC Architecture and Design Methodology

 90

STB

Internal IF

ACK

Internal IF IF cycle

SLOT

W
IS

H
BO

N
E

if(1) ID EX

IF Cycle

IF_ISSUE

MA cycle

IF(2)ADR IF(4)

IF(2)DAT_I

MOV (load) MA(1) WB

IF(2) ID EX

if(3) ID EX

IF(4) ID

if(5)

Internal IF

MA(1)

MA(1) IF(4)

MA(1)or DAT_O

(ID)

-

Conflicted

MA_ISSUE

IF_STALL

NEXT_ID_STALL

ID_STALL

STB

Internal IF

ACK

Internal IF IF cycle

SLOT

W
IS

H
BO

N
E

if(1) ID EX

IF Cycle

IF_ISSUE

MA cycle

IF(2)ADR IF(4)

IF(2)DAT_I

MOV (load) MA(1) WB

IF(2) ID EX

if(3) ID EX

IF(4) ID

if(5)

Internal IF

MA(1)

MA(1) IF(4)

MA(1)or DAT_O

(ID)

-

Conflicted

MA_ISSUE

IF_STALL

NEXT_ID_STALL

ID_STALL

For a memory write operation then MA_DW should have valid data when MA_ISSUE is

high and for memory read operation MA_DR, should be valid in the next slot of MA

cycle.

IF_MA conflict

When IF_ISSUE and MA_ISSUE are asserted at the same time, IF_MA is conflicted.

This happens when IF gets an instruction from external memory. When IF_MA conflicts,

the memory access signal asserts IF_STALL signal and gives information to the decoder

unit.

Figure: 4. 16 IF_MA Conflict

SOC Architecture and Design Methodology

 91

IF ID EX

ID

ID EX

MA

MA

ID EX

TAS.B

if ID- - -

CYC

IF cycle No cycle No cycleInternal IF MA READ MA WRITE

ACK

STB

MA_ISSUE

KEEP_CYC

IF ID EX

ID

ID EX

MA

MA

ID EX

TAS.B

if ID- - -

CYC

IF cycle No cycle No cycleInternal IF MA READ MA WRITE

ACK

STB

MA_ISSUE

KEEP_CYC

The MA cycle has a priority over IF cycle during IF_MA conflict. Figure: 4.16 shows

when IF_ISSUE and MA_ISSUE are asserted simultaneously, IF_STALL signal goes

high. The decoder makes the NEXT_ID_STALL high. ID_STALL becomes high in the

next slot. As shown in Wishbone signals the MA cycle MA (1) is started first and after

completion, memory access control unit begins IF cycle.

Read Modify Write Cycle (TAS.B instruction)

Read modify write cycle performs read and write operation in a single cycle.

During this operation cycle signal CYC is asserted for the read and write operations and

does not allow any bus-arbitration. TAS.B instruction in SuperH-2 allows read-modify-

write cycle. The operation is forced by decoder towards memory access control unit by

asserting KEEP_CYC signal high. Figure: 4.17 illustrate the timing diagram where the

assertion in MA_ISSUE and KEEP_CYC signal indicates the starting of a read-modify-

write cycle. During this period CYC remains high until the completion of read-write

operations.

Figure: 4. 17 Read modify write cycle

SOC Architecture and Design Methodology

 92

Data Path Unit

The data path of the CPU performs the operations like ALU, Comparator, shifter,

and divider. The block diagram of the data path of the CPU is given in Figure: 4.18. The

data path consists of 32-bit general purpose registers (R0-R15). It also has four internal

buses, X-bus, Y-bus, Z-bus and W-bus. All these buses can handle 32 bit data. X-bus and

Y-bus are used to handle data from each register source and such as (R0-R15), PR, PC,

Temp, Const, SR, VBR and GBR. Z-bus is used to handle data from results of ALU or

shifter. The data from memory load or data to be written back to registers use W-bus as

path for data transfer. The register forwarding is possible by directing paths from W to Y

buses. As the data path unit is fully controlled by the decoder unit, no state machines are

used in designing the data path unit. The status registers of data path unit also supports T

bit, Q bit and M bit. These bits are status bits for ADDC/ SUBC/ADDV/SUVV, SETT,

COMPResult etc. Data path unit also supports a set of interfaces to/from memory access

controller unit and multiplier unit to perform data transaction between them.

Multiplier Unit

Multiply unit consists of 32-bit x 16-bit multiplier and its control circuit. Figure 4.19

shows the block diagram of the multiplier unit. A 32-bit x 32-bit multiplication is done in

two clock cycle and a 16-bit x 16-bit multiplication is executed in one cycle. The block

diagram consists of two latches M1, M2 and 32-bit x 16-bit multiplier and 32-bit Adder.

Two multiply and accumulator registers MACH and MACL are used to hold the final

results. The decoder unit sends two kinds of multiplication command to multiplication

unit. MULCOM1 is one of the signal which is used for latching input data

MACIN1[31:0] and MULCOM2[7:0] is the another one which latch the other input data

MACIN2[31:0] and operation class. The MULCOM2(7) means latch signal.

MULCOM2[6:0] is {INSTR-STATE[14:12], INSTR-STATE[3:0]}. MULCOM2[7] is

zero indicates NOP.

SOC Architecture and Design Methodology

 93

16

R0

R1

X Y

R15

ALU

Z

ADR

DATO

Aligner

M
em

or
y

MA_DR

AlignerSign
Extend

EX MA WB
W

M1

M2 ADD
64bit

Shifter
Sign Ex

M
A

C
H

If 16bit saturate operation,
saturate result 32’h0001
is ored to MACH. M

A
C

L
16MUL

32*16

mem.v

mulｔ.v

IF_AD
MA_AD

MA_DW

IF_DR

MAC.L

MA_DR

PC

+2

INC
sign8
zero8
zero4

sign12

decode.v

CONST

CONST

SR

VBR

PR

GBR

MACIN1

MACIN2

SFT

CMP

R0 or WBUS
CONST

@(R0,Rn)
@(disp,GBR)

TEMP

16

R0

R1

X Y

R15

ALU

Z

ADR

DATO

Aligner

M
em

or
y

MA_DR

AlignerSign
Extend

EX MA WB
W

M1

M2 ADD
64bit

Shifter
Sign Ex

M
A

C
H

If 16bit saturate operation,
saturate result 32’h0001
is ored to MACH. M

A
C

L
16MUL

32*16

mem.v

mulｔ.v

IF_AD
MA_AD

MA_DW

IF_DR

MAC.L

MA_DR

PC

+2

INC
sign8
zero8
zero4

sign12

decode.v

CONST

CONST

SR

VBR

PR

GBR

MACIN1

MACIN2

SFT

CMP

R0 or WBUS
CONST

@(R0,Rn)
@(disp,GBR)

TEMP

Figure: 4. 18 Block Diagram of Data Path Unit

SOC Architecture and Design Methodology

 94

MB A(31)

B(31)

B[15:0]

1’b0:B[30:16]

BH
(16)

MUL
31
x

16

ADD
64
+
64

16

M
A

C
H

M
A

C
L

MACH
MACL

C

D

M1

M2

M1

M2

PM
(48)

ADDRESULT

If MACH had not initialized at the operation beginning,
The lower 32bit of D should be zeros.

33
+/-
33

ADD
32
+
32

ABH
(47)

P2

P3

P2 and P3 are Zero except for…
if SHIFT P2 = 1’b0:A[31] & B[30:0]
if ~SIZE P2 = 17’h00000:A[15] & B[14:0]
if SHIFT P3 = 1’b0:B[31] & A[30:0]
if ~SIZE P3 = 17’h00000:B[15] & A[14:0]

If ~SIZE 17’h00000:P1:ABH[29:15]
if ~SHIFT 1’b0:ABH[46:15]
if SHIFT 1’b0:P1:ABH[45:15]

if ~SIGN, add
if SIGN, sub

ABH[14:0]

if SHIFT

if ~SHIFT

1’b0:B[14:0]

AH
(31)

A[30:0]

16’h0000:A[14:0]

ABH2
(33)

MB A(31)

B(31)

B[15:0]

1’b0:B[30:16]

BH
(16)

MUL
31
x

16

ADD
64
+
64

16

M
A

C
H

M
A

C
L

MACH
MACL

C

D

M1

M2

M1

M2

PM
(48)

ADDRESULT

If MACH had not initialized at the operation beginning,
The lower 32bit of D should be zeros.

33
+/-
33

ADD
32
+
32

ABH
(47)

P2

P3

P2 and P3 are Zero except for…
if SHIFT P2 = 1’b0:A[31] & B[30:0]
if ~SIZE P2 = 17’h00000:A[15] & B[14:0]
if SHIFT P3 = 1’b0:B[31] & A[30:0]
if ~SIZE P3 = 17’h00000:B[15] & A[14:0]

If ~SIZE 17’h00000:P1:ABH[29:15]
if ~SHIFT 1’b0:ABH[46:15]
if SHIFT 1’b0:P1:ABH[45:15]

if ~SIGN, add
if SIGN, sub

ABH[14:0]

if SHIFT

if ~SHIFT

1’b0:B[14:0]

AH
(31)

A[30:0]

16’h0000:A[14:0]

ABH2
(33)

Figure: 4. 19 Block Diagram of Multiplier Unit

4.3.2 PIO: Parallel Input and Output

I. Specification

• 32-bit Input registers.

• 32-bit Output registers.

II. Structure of PIO

The Parallel I/O (PIO) has two 32-bit registers to control Port Pins. There are 4

byte-size registers for PORT Output and 4 byte-size registers for PORT Input. In order to

access PORT input the registers have to read and to access PORT outputs the registers

have to be written. Each registers can be accessed by byte, word or long operand size.

The data is written to the write operation is done in the positive edge of clock pulse.

During power on reset, PORT output registers are reset to 0x00. The PIO registers with

its address are shown in Figure: 4.20. Table 4.2 shows the input output signals of the PIO.

SOC Architecture and Design Methodology

 95

Class Signal Name Direction Meaning Notes

System
Signals

CLK
RST

Input
Input

System clock
Power On Reset

Wishbone
Bus
Signals

CE
WE
SEL[3:0]
DATI[31:0]
DATO[31:0]

Input
Input
Input
Input
Output

Chip Select (Module Select)
Write Enable
Byte Lane Select
Data Input (Write Data)
Data Output (Read Data)

STB

PORT PI[31:0]
PO[31:0]

Input
Output

Port Input
Port Output

Table: 4. 2 Input Output Signals of PIO

[PORT Output] Address=0xABCD0000 W only reserved

31(7) 30(6) 29(5) 28(4) 27(3) 26(2) 25(1) 24(0)
reserved reserved reserved reserved reserved reserved reserved reserved

[PORT Output] Address=0xABCD0001 W only KEYYO (KEY Matrix Y-axis Output)

23(7) 22(6) 21(5) 20(4) 19(3) 18(2) 17(1) 16(0)
reserved reserved reserved KY4 KY3 KY2 KY1 KY0

[PORT Output] Address=0xABCD0002 W only LCDCON (LCD Control Output)

15(7) 14(6) 13(5) 12(4) 11(3) 10(2) 9(1) 8(0)
reserved reserved reserved reserved reserved E R/W RS

[PORT Output] Address=0xABCD0003 W only LCDOUT (LCD Write Data Output)

7(7) 6(6) 5(5) 4(4) 3(3) 2(2) 1(1) 0(0)
DW7 DW6 DW5 DW4 DW3 DW2 DW1 DW0

[PORT Input] Address=0xABCD0000 R only reserved

31(7) 30(6) 29(5) 28(4) 27(3) 26(2) 25(1) 24(0)
reserved reserved reserved reserved reserved reserved reserved reserved

[PORT Input] Address=0xABCD0001 R only KEYXI (KEY Matrix X-axis Input)

23(7) 22(6) 21(5) 20(4) 19(3) 18(2) 17(1) 16(0)
reserved reserved reserved KX4 KX3 KX2 KX1 KX0

[PORT Input] Address=0xABCD0002 R only reserved

15(7) 14(6) 13(5) 12(4) 11(3) 10(2) 9(1) 8(0)
reserved reserved reserved reserved reserved E R/W RS

[PORT Input] Address=0xABCD0003 R only LCDIN (LCD Read Data Input)

7(7) 6(6) 5(5) 4(4) 3(3) 2(2) 1(1) 0(0)
DR7 DR6 DR5 DR4 DR3 DR2 DR1 DR0

Figure: 4. 20 Registers of PIO

SOC Architecture and Design Methodology

 96

4.3.3 Serial Input Output (UART)

I. Specification

• 8-bit, 1 stop-bit, non-parity serial communication device

• Wishbone compatible interface

• 4-byte transmit and receive FIFO

• Handshaking signals CTS and RTS

II. Structure of PIO

The UART is a simple asynchronous serial communication device from the Open

Core site and it has been made wishbone compliant. It is an 8-bit, 1 stop-bit, non-parity

serial communication device. In the lower module it has a receiver unit, a transmitter unit

and a baud rate generator. The transmitter unit is used to take bytes of data and send it

serially to the host and at the destination receiver unit is used to process the bits into

complete bytes. A 4 byte transmit and receive FIFO is used to process and store the data

at transmitter and receiver end. It has two baud rate registers UARTBGO, UARTBG1 to

determine proper baud rate to communicate with PC. Figure: 4.21 show the registers and

its address which can control the functionality of the UART. Two band rate registers.

During power on reset these registers are reset to zero.

Table: 4. 3 UART Input Output Signals

Class Signal Name Direction Meaning Notes

System
Signals

CLK
RST

Input
Input

System clock
Power On Reset

Wishbone
Bus
Signals

CE
WE
SEL[3:0]
DATI[31:0]
DATO[31:0]

Input
Input
Input
Input
Output

Chip Select (Module Select)
Write Enable
Byte Lane Select
Data Input (Write Data)
Data Output (Read Data)

STB

UART RXD
TXD
CTS
RTS

Input
Output
Input
Output

Receive Serial Data
Transmit Serial Data
Clear To Send
Request To Send

SOC Architecture and Design Methodology

 97

UARTCON and UARTRXD/TXD can be accessed by byte operation and size.

UARTCON has 2 flags; TXF and RXE. When transmitter buffers are full the TXF flag is

set, if TXF is clear transmit data can be written to the buffers. UARTRXD and

UARTTXD are the receive buffer and transmit buffer registers, which have same address.

UARTRXD is accessed during read operation and UARTTXD is accessed during write

operation.

 [UART] Address=0xABCD0100 R/W UARTBG0 (Baud rate Generator Div0)

31(7) 30(6) 29(5) 28(4) 27(3) 26(2) 25(1) 24(0)
B07 B06 B05 B04 B03 B02 B01 B00

[UART] Address=0xABCD0101 R/W UARTBG1 (Baud rate Generator Div1)

23(7) 22(6) 21(5) 20(4) 19(3) 18(2) 17(1) 16(0)
B17 B16 B15 B14 B13 B12 B11 B10

[UART] Address=0xABCD0102 R only UARTCON (TXF=full_o, RXE=empty_o)

15(7) 14(6) 13(5) 12(4) 11(3) 10(2) 9(1) 8(0)
reserved reserved Reserved reserved reserved reserved TXF RXF

[UART] Address=0xABCD0103 R only / UARTRXD, W only / UARTTXD

7(7) 6(6) 5(5) 4(4) 3(3) 2(2) 1(1) 0(0)
TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

Figure: 4. 21 UART Registers and its address

Table 4.4 shows some examples of baud rate setting.

Baud Rate [bps] f (CLK) [MHz] UARTBG0 UARTBG1
1200 20 0x12 (18) 0xCF (207)
2400 20 0x12 (18) 0x67 (103)
4800 20 0x12 (18) 0x33 (51)
9600 20 0x12 (18) 0x19 (25)

Table: 4. 4 Baud Rate Settings Example

4.3.4 System Controller (SYS)

I. Specification

• Hardware Event Exception such as NMI, IRQ, CPU Address Error,

DMA Address Error, Manual Reset

• SLEEP and Low Power Control.

SOC Architecture and Design Methodology

 98

II. Structure of SYS

The System Controller (SYS) is used to generate and emulate exceptions of

hardware event like NMI, IRQ and CPU address error and manual reset. It has 12 bit

Interval Timer to generate IRQ. It also controls the priority level among the requests of

hardware exception. The SYS has two 32-bit length registers INTCTL and BRKADR.

The both registers can only accessed by long word operand size. The INTCTL is reset to

0x00000FFF and the BRKADR is reset to 0x00000000 when power on reset. It also

controls the priority level of the hardware exception. The system controller detects

address error by Wishbone bus signals. Figure 4.22 shows the system controller registers

and its address. The input output signals are shown in Table 4.5.

Class Signal Name Direction Meaning Notes

System
Signals

CLK_SRC
CLK
SLP
WAKEUP
RST

Input
Output
Input
Input
Input

System clock Source
CLK , which stops at SLEEP
SLEEP request from CPU
Wakeup Request
Power On Reset

Wishbone
Bus
Signals

CE
WE
SEL[3:0]
ACK
DATI[31:0]
DATO[31:0]
STB
ADR[31:0]

Input
Input
Input
Input
Input
Output
Input
Input

Chip Select (Module Select)
Write Enable
Byte Lane Select
Bus Acknowledge
Data Input (Write Data)
Data Output (Read Data)
Strobe (Bus monitor to BRK)
Address (Bus monitor to BRK)

STB

Hardware
Events

EVENT_REQ[2:0]
EVENT_INFO[11:0]
EVENT_ACK

Output
Output
Input

Event Request
Event Information (IRQ)
Event Acknowledge from CPU

Table: 4. 5 System Controller Input Output Signals

[SYS] Address=0xABCD0200 R/W INTCON (Interrupt Control)

31 30 29 28 27 26 25 24
E_NMI E_IRQ E_CER E_DER E_MRS reserved TMRON BRKON

23 22 21 20 19 18 17 16
ILVL3 ILVL2 ILVL1 ILVL0 IVEC7 IVEC6 IVEC5 IVEC4

15 14 13 12 11 10 9 8
IVEC3 IVEC2 IVEC1 IVEC0 TMR11 TMR10 TMR9 TMR8

7 6 5 4 3 2 1 0
TMR7 TMR6 TMR5 TMR4 TMR3 TMR2 TMR1 TMR0

SOC Architecture and Design Methodology

 99

[SYS] Address=0xABCD0204 R/W BRKADR (Break Address)

31 30 29 28 27 26 25 24
ADR31 ADR30 ADR29 ADR28 ADR27 ADR26 ADR25 ADR24

23 22 21 20 19 18 17 16
ADR23 ADR22 ADR21 ADR20 ADR19 ADR18 ADR17 ADR16

15 14 13 12 11 10 9 8
ADR15 ADR14 ADR13 ADR12 ADR11 ADR10 ADR9 ADR8

7 6 5 4 3 2 1 0
ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0

Figure: 4. 22 System Controller (SYS) Registers

INTCTL: Interrupt Control Register

 E_NMI Emulate NMI. Write only bit. Read 0 only.

When you write 1, NMI exception sequence will start.

 E_IRQ Emulate IRQ. Write only bit. Read 0 only.

When you write 1, IRQ exception sequence will start

if the IRQ priority level is higher than I bit in SR.

The priority level and the vector number of the IRQ is
specified

by ILVL3-ILVL0 and IVEC7-IVEC0 bits in INTCTL
register.

 E_CER Emulate CPU Address Error. Write only bit. Read 0 only.

 When you write 1, CPU Address Error exception will start.

 E_DER Emulate DMA Address Error. Write only bit. Read 0 only.

When you write 1, DMA Address Error exception will
start.

 E_MRES Emulate Manual Reset. Write only bit. Read 0 only.

 When you write 1, Manual Reset exception will start.

 TMRON When 1, 12 bit Interval Timer starts.

When 0, the Interval Timer stops.

SOC Architecture and Design Methodology

 100

BRKON When 1, start to compare BRKADR with WISHBONE
address, and if these are equal, request NMI.

 ILVL3-ILVL0 IRQ priority level to be requested (makes EVENT_INFO[11:8])

 IVEC7-IVEC0 IRQ vector number to be requested (makes EVENT_INFO[7:0])

 TMR11-TMR0 12 bit Interval Timer. When 0x000, it requests IRQ.

BRKADR : Break Address Register

 ADR31-ADR0 Break address to be compared to WISHBONE address.

 It is valid only when BRKON=1.

4.3.5 On chip memory

I. Specification

• 8 KB RAM and 8 KB ROM

II. Structure of SYS

The on chip memory is a simple memory module configured as ROM and RAM. The

total size is 16 kb. The memory module has 8KB ROM and 8KB RAM. Xilinx BRAM is

used as a memory module during FPGA implementation. The bit pattern of ROM is

specified by “rom.v” description. The memory module’s input output signals are shown

in Table: 4.6.

Class Signal Name Direction Meaning Notes

System
Signals

CLK
RST

Input
Input

System clock
Power On Reset

Wishbone
Bus
Signals

CE
WE
SEL[3:0]
ADR[13:0]
DATI[31:0]
DATO[31:0]

Input
Input
Input
Input
Input
Output

Chip Select (Module Select)
Write Enable
Byte Lane Select
Address
Data Input (Write Data)
Data Output (Read Data)

STB

Table: 4. 6 On-chip Memory Input Output Signals

SOC Architecture and Design Methodology

 101

4.4 Conclusions
A SOC architecture proposed which consisting of 32-bit RISC CPU, UART, PIO,

System controller and on chip memory. These cores were collected from Open Core site.

A design methodology is described is used to implement this SOC architecture on FPGA.

The design methodology consists of hardware and software design flow. The hardware

design flow implement the SOC architecture into target FPGA. Software design flow is to

develop application program which can be ported in the system to verify the final

functionality of the system. Finally, the internal structures of the cores were discussed.

 102

 Integration of IP Cores

 Verification of SOC

 Synthesis results

 FPGA Implementation

 ChipScope Pro Result

 Conclusions

Chapter 5

SOC Integration, Verification and
FPGA Implementation

SOC Integration, Verification and FPGA Implementation

 103

After defining the SOC architecture model and the design methodology to design

the SOC, the next step is to integrate all the IP cores to form the final architecture. The

steps of integrating the IP cores are described in this section. A test bench is used to

verify the top module of SOC using Xilinx ISE Simulator. A set of real time debugging

signals are presented to illustrate the internal architecture functionality of the SOC. The

steps involving FPGA implementation of the SOC architecture in Virtex–II Pro FPGA is

demonstrated. Finally, application codes are developed and ported on to SOC architecture

by a monitor program to observe, the SOC functionality.

5.1 Integration of IP Cores
After the completion of both the hardware flow and the software flow, we obtained

a hardware model of SOC architecture. The next step is to implement the SOC model on

a target FPGA and to port application software on the SOC to verify the functionality of

the model. One of the most important tasks in this process is to integrate all the cores

collected. Hence there is a need of a top module HDL code which comprises a structural

modeling of the IP cores used for the implementation. All the Verilog files of the cores

are collected and a top module HDL code is written where Wishbone is the main

communicating interface between the IP cores and all the IP cores are interconnected

with the point to point interconnection. The 32-bit RISC CPU is the master for all the

components. All other component cores are configured as slaves to this master processor.

The integration process of point to point interconnection is easier than other types of

interconnection architectures described earlier. A set of steps has been considered for the

final integration is as follows:

1) Each slave component is defined by a specific address value. As the design uses a 32-

bit address space, the CPU can access the slaves by their respective addresses. To

implement this in the top module an address decoder is designed whose function is to

decode the address of slaves and enable the corresponding CE signal of the slave. As

described in the IN/OUT signals earlier, each slave is provided by a CE input signal

in the design. This helps in avoiding the address conflict and selecting the

corresponding slave according to the requirements. The peripheral devices are located

in 0xABCDxxxx area. The address map of the peripherals is shown in the Table: 5.1.

SOC Integration, Verification and FPGA Implementation

 104

2) The second issue is the CPU must get proper data when the corresponding slave is

enabled. Hence all the outputs of the slaves are passed through an OR gate and

connected to the Data Input (DATI) of the CPU. The data output of the CPU DATO

is directly connected to all the data input of the slaves.

3) All the memory RAM and ROM connected to the CPU has 32-bit data width. When

CPU fetches instruction from 32-bit width memory, CPU can get 2 instructions. If the

device data width is 16-bit, only one instruction can be sent to CPU at one fetch

cycle. This may happen when CPU fetches its instruction from 16-bit width external

bus. Hence, CPU must be informed by Wishbone glue logic about the instruction

fetch space’s width. If the address space is 32-bit width, Wishbone should return

IF_Width equals to1, else should return IF_Width as 0. All these have to be done

Address Devices Size Access Cycle IF Width Notes

0x00000000-0x00001FFF ROM 8KB 1cyc 32bit A

0x00002000-0x00003FFF RAM 8KB 1cyc 32bit B

0x00004000-0x0000FFFF Shadow of 0x00000000-0x00003FFF

0x00010000-0x00011FFF ROM 8KB 4cyc 32bit Shadow of A

0x00012000-0x00013FFF RAM 8KB 4cyc 32bit Shadow of B

0x00014000-0x0001FFFF Shadow of 0x00010000-0x00013FFF

0x00020000-0x00021FFF ROM 8KB 1cyc 16bit Shadow of A

0x00022000-0x00023FFF RAM 8KB 1cyc 16bit Shadow of B

0x00024000-0x0002FFFF Shadow of 0x00020000-0x00023FFF

0x00030000-0x00031FFF ROM 8KB 4cyc 16bit Shadow of A

0x00032000-0x00033FFF RAM 8KB 4cyc 16bit Shadow of B

0x00034000-0x0003FFFF Shadow of 0x00030000-0x00033FFF

0x00040000-0xABCCFFFF Shadow of 0x00000000-0x0003FFFF

0xABCD0000-0xABCD00FF PIO 8KB 4cyc 32bit

0xABCD0100-0xABCD01FF UART 8KB 4cyc 32bit

0xABCD0200-0xABCD02FF SYS 8KB 4cyc 32bit

0xABCD0300-0xFFFFFFFF Shadow of 0x00000000-0x0003FFFF

Table: 5. 1 Address Map of the Peripherals

SOC Integration, Verification and FPGA Implementation

 105

before ACK_I signal is asserted. All the CPU instruction should be verified in a

various memory access cycle and instruction fetch size. So the memory access cycle

and instruction fetch width are determined by its address. WISHBONE ACK and

TAGO_I (IF-Width) are generated in the top module Verilog file. A FSM is written

to generate proper memory access cycles.

4) A provision is made during FPGA implementation to interface a LCD and a keyboard

with the PIO. Hence several LCD and key control signals are mapped to PIO module.

All the input output signals of the top module of the SOC are given in Table: 5.2.

Class Signal Name Direction Meaning Notes

System Signals

Parallel I/O Port

CLK_SRC Input System clock

RST_n Input Power On Reset Negated

LCDRS Output LCD Register Select PO[8]

LCDRW Output LCD Read/Write PO[9]

LCDE Output LCD Enable Signal PO[10]

LCDDBO[7:0] Output LCD Data Bus Output PO[7:0]

LCDDBI[7:0] Input LCD Data Bus Input PI[7:0]

KEYYO[4:0] Output KEY Matrix Y Output PO[20:16]

KEYXI[4:0] Input KEY Matrix X Input PI[20:16]

UART RXD Input Receive Serial Data

TXD Output Transmit Serial Data

CTS Input Clear To Send

RTS Output Request To Send

Table: 5. 2 Top module Input Output Signals

Whenever an instruction requires use of the peripheral, the address decoder

decodes the address and enables the corresponding peripherals. Then this peripheral takes

part in the bus transaction with the CPU Master.

SOC Integration, Verification and FPGA Implementation

 106

5.2 Verification of SOC
A verification step plays an important role in SOC design flow. The peripheral

cores used are pre-verified cores, which function accurately. Hence, a test bench is

written in Verilog that verifies the CPU’s operation. The instructions of the CPU are

simulated considering bus transactions, signal levels and register contents, etc. This is

done by using an open source simulator Icarus Verilog [19].

5.2.1 Verification Environment

The environment used for verifying the instructions are described in this section.

The verification program and application program has been developed with the help of

GNU [24] assembler and C compiler for Super H-2. SuperH-2 assembler/compiler and

simulator for Verilog HDL runs on the UNIX environment. Hence Cygwin [21] is

selected as a preferred environment so that all the UNIX based tools can be operated in

windows platform. Hence the packages like GNU “Binutils”, “GCC”, “Newlib” and

“GDB” are downloaded and installed in the Cygwin environment. Three script files

“asm”, “sim”, “genrom” have been provided in the with the project in Open Core site. A

verification program is written which contains the CPU instructions. The S-Format object

file for this program is created by using “asm” script. After compiling the “genrom” file,

a “genrom” executable file is created which converts the S-Format object file to “rom.v”

file. The “rom.v” is the rom module which contains the CPU verification instructions.

After the “rom.v” file has been created the entire Verilog source file for CPU, UART,

SYS and PIO, integrated in a top module, and collected in the home directory of Cygwin

environment along with the script files and test bench file. Finally, with the help of “sim”

script simulation is accomplished using Icarus Verilog simulator. The writing of test-

bench and the outputs simulation are discussed in the next section.

5.2.2 Test Bench Development
A test bench is a model which is used to verify the correctness of the design. It generally

consists of three parts. It generally consists of three parts:

• To Generate of stimulus for simulation

• To apply the stimulus to “design under test” (DUT), and

• To monitor the output and compare with the expected values.

SOC Integration, Verification and FPGA Implementation

 107

A test bench is written for the top module of proposed SOC architecture to verify the

CPU operation for a set of assembly language program. The test bench contains a clock

generator, a reset generator and a set of input pattern generator. As only CPU’s

functionality is only monitored, therefore the LCD data input LCDDBI is made equal to

zero. CTS signal of UART is mapped to ‘0’. The “top” module is instantiated in the test

bench by module instantiation. RXD is supplied by a start bit of ‘0’ followed by 8-bit of

data and a stop bit of ‘1’. Finally, all the observed signals are monitored using $fdisplay

function and written to a result file which is opened by $fopen Verilog function. Icarus

Verilog supports only text mode of output viewer. Hence to view the output a wave form

GTKWave [26] is used. The following line should be included in the test bench in order

to view the output in GTKWave.

initial

 begin

 $dumpfile ("test.vcd");

 $dumpvars (0, test);

end

where “test.vcd” is the file generated after simulation of the test bench file “test.v”.

Upon simulation the Icarus Verilog generates a Value Change Dump (VCD) file.

GTKWave open this VCD file to show the wave form of the simulation. GTKWAVE is

supported by all the platforms including Linux and Windows. Table: 5.3 contain a list of

assembly language instructions. It also lists the corresponding hex code, the bus

transaction and output values. As an explanation for the instruction, “LDC R0, SR” the

hex code is E0FF, the instruction loads the value of R0 to the SR (Status Register) where

the X-Bus and Z-Bus of data path carries the values of R0 and SR respectively.

Sl.

No.

ASM Instruction

Hex

Code

X-

Bus

Y-

Bus

Z-Bus

Output

1 MOV #0XFF , R0 E0FF 0XFF R0 R0 = 0XFF

2 MOV.L _P01234567, D10C MAAD R1= 01234567

SOC Integration, Verification and FPGA Implementation

 108

R1

3 MOV.L

_P89ABCDEF, R2

D20C MAAD R2= 89ABCDEF

4 LDC R0, SR 400E R0 SR SR= 0XFF

5 MOV.L 0X3F3, R0 D014 MAAD R0= 3F3

6 STC SR, R3 0302 SR R3 R3= 0XFF

7 LDC R1, GBR 411E R1 GBR GBR=01234567

8 STC GBR, R4 0412 GBR R4 R4=01234567

9 LDC R2, VBR 422E R2 VBR VBR=89ABCDEF

10 STC VBR, R5 0522 VBR R5 R5= 89ABCDEF

11 ADD # 4, R5 7504 R5 4 R5 R5= 89ABCDF3

12 MUL.L R1, R5 0517 MACL=

CDDB5BC5

13 NOP 0009

Table: 5. 3 Assembly Instruction with Hex Code, Bus transaction and Output.

5.2.3 Simulation Results
 The simulation results are shown in the GTKWave viewer in Figure: 5.1. The

simulation result shows the WISHBONE signals and internal signals of CPU for the

given assembly language instructions.

It is observed from the waveforms that, the system works on positive edge of

clock pulse (CLK) when reset (RST) is active low. The cycle (CYC) indicates the single

and block read/write cycles. CYC high indicates a block read/write cycle is uninitiated.

During CYC is high, CPU makes strobe (STB) high to inform Slave that a valid bus

transaction is initiated. Write enable (WE) high indicates a write operation else a read

operation is initiated. As a response Slave responds the CPU Master by asserting the

ACK signal as shown in the figure. The select signal (SEL0 is continuously high

indicating “F” in the SEL bus of the waveform. The address signal (ADR) show the 32-

bit address bus of the system, and DATI and DATO show the 32-bit data bus of the

system. All the CPU signal descriptions are given in chapter-4.

SOC Integration, Verification and FPGA Implementation

 109

CPU transaction for some of the instructions listed in Table: 5.3 are explained as follows:

• For the instruction E0FF, IF_ISSUE =”1” indicates instruction fetch started and

memory access controller sends the instruction to INSTR_STATE [15:0] of the

decoder unit. In the next clock pulse as no interrupt or hardware exception

happens, the instruction is latched to instruction register IR [15:0]. Hence, IR

[15:0] =”E0FF”. The valid data to be written is at MA_DW= 0xFF.When CLK is

asserted the data is moved to R0 as shown in the figure below.

• For the instruction code D10C and D20C, the long data move to R1 and R2

respectively. The data in the R1 is placed in DATI and DATI placed the data to

WBUS of data path. It is observed from the waveform that first WBUS gets a R1

value of “01234567” and then updated to R2 value of “89ABCDEF”.

Figure: 5. 1 Simulation result of CPU and WISHBONE Bus Transactions

SOC Integration, Verification and FPGA Implementation

 110

• Similarly for instruction code 411E, the value of R1 is loaded to GBR. The data

path uses Z-bus to contain the value of GBR and X-Bus to contain the value of R1

and we can see from the figure that after IR [15:0] = 411E, GBR updated with a

value of “01234567”.

• For the ADD instruction, the immediate value “4” is added to the content of R5.

During IR [15:0] = 7504 YBUS contain the immediate value “4” and XBUS

contains the old value of R5= “89ABCDEF”. After the instruction is completed

the value of R5 (XBUS) is incremented by “4” and gets updated to new value

“89ABCDF3”.

• For the MUL instruction R1 and R5 are multiplied. The R1 value from YBUS and

R5 value from XBUS are transferred to multiplier latch M1 and M2. Hence, M1=

“89ABCDF3” and M2=”01234567”. In the next clock pulse when ACK is high

M1 and M2 multiplied and the output register MACL contains the value of

“CDDB5BC5”.

• It is also observed that during when MA_ISSUE and IF_ISSUE are both high

(IF_MA conflict), memory access (MA) gets a priority than instruction fetch (IF).

In the final instruction “NOP” no operation is performed by the CPU.

• We can also observe that all the chip enable signal of peripherals such as, CEPIO,

CEUART, CESYS are low. The assertion in CEMEM indicates CPU memory

transactions are only taken place.

5.3 Synthesis results

One of the important steps in hardware design flow described earlier is synthesis

of the top module design. The synthesis is the process where RTL level code is converted

to real hardware. For this a synthesis tool is required. Xilinx XST is used to compile the

RTL behavior of the design to generate a gate level net list for the FPGA. Xilinx Virtex-

II pro FPGA is used as a platform for synthesis. The operating frequency is set as 20

MHz.

The synthesis has been done with taking constraints of minimum area and

maximum speed. Table: 5.4 and Table: 5.5 show the synthesis results of the designed

SOC with area and speed constraints. Table: 5.6 show the comparison of device

SOC Integration, Verification and FPGA Implementation

 111

utilization for the area and speed constraints. It is observe that with area optimization the

design consumes 97% of the available resources and in case of speed optimization

synthesis the device utilization is 100%.

Design Information
Target Device: xc2vp30-7ff896

Device Utilization Summary
Logic Utilization used available utilization

Number of Slices 2847 13696 20%

Number of Slice Flip Flops 1378 27392 5%

Number of 4 input LUTs 5131 27392 18%

Number of bonded IOBs 37 556 6%

Number of BRAMs 32 136 23%

Number of MULT18X18s 2 136 1%

Number of GCLKs 2 16 12%

Number of DCMs 1 8 12%

Table: 5. 4 Synthesis Results with Area Optimization

Design Information
Target Device: xc2vp30-7ff896

Device Utilization Summary
Logic Utilization used available utilization

Number of Slices 2925 13696 21%

Number of Slice Flip Flops 1415 27392 5%

Number of 4 input LUTs 5558 27392 20%

Number of bonded IOBs 37 556 6%

Number of BRAMs 32 136 23%

Number of MULT18X18s 2 136 1%

Number of GCLKs 2 16 12%

Number of DCMs 1 8 12%

Table: 5. 5 Synthesis Results with Speed Optimization

SOC Integration, Verification and FPGA Implementation

 112

Table: 5. 6 Comparison of Synthesis Results

The maximum operating frequency in Virtex-II Pro platform is also listed in

Table: 5.6. The final observation from this table is that the operating frequency of the

implemented SOC design increases in speed optimized synthesis at the cost of the device

utilized.

5.4 FPGA Implementation

5.4.1 FPGA development tool and board

The final step in hardware design flow is to implement the design in to a FPGA

device. FPGA is a hardware logic emulator, where the verification speed is faster than

vector logic simulation and the CPU in FPGA can execute very large and long programs

quickly, so the verification quality will be improved. A Xilinx Virtex–II Pro (XC2VP30)

is used for final hardware implementation of the SOC. Some external circuits are being

designed which consists of LCD display, hex key board and RS-232 interface. This helps

to verify the hardware functionality smoothly.

5.4.2 Interface Board Circuit Diagram
Figure: 5.2 shows the block diagram of the FPGA implementation system in which an

interface board is used to interface with the FPGA board. The interface board consists of

a 5x5 hex key pad, a LCD and a RS 232 interface. In real experiment we have used two

different boards, one for LCD and Keypad and other one for UART and other circuit

connection. Some of the PIO terminals are configured in the top module to use as an

input and output terminal of the system. The keypads and LCD terminals are connected

Synthesis Slices Consumed Frequency

Area

20MHz

2847 97% 153.672 MHz

Speed

20MHz

2925 100% 221.715 MHz

SOC Integration, Verification and FPGA Implementation

 113

to the port inputs and outputs of the SOC. The keypad helps in sending input data and to

view the output result LCD is used.

Figure: 5. 2 Block Diagram of Experimental Set-Up for FPGA Implementation

Figure: 5.3 shows the circuit diagram of interface board which consists of a 5x5 keypad,

LCD module and RS-232 interface for cross cable connection. The bus interface is bi-

direction, so 74LS241 buffers are used to interface LCD terminals with the FPGA. 100

ohm registers are inserted between 74LS241 [27] output and FPGA input to make the

FPGA terminal voltage tolerant. MAX232 IC [28] with a DB-9 connector with cross-

cable connection is used to implement serial I/O functionality of SOC. The key matrix

5x5 contains 25 numbers of keys to input hex data, and some commands. To avoid

conflicts on FPGA output pins when multiple keys are pushed, 1kohm registers are

connected in series with the output pins. Figure: 5.4 show the experimental set up of

FPGA implementation.

SOC Integration, Verification and FPGA Implementation

 114

Figure: 5. 3 Circuit diagram of interfacing board

SOC Integration, Verification and FPGA Implementation

 115

Figure: 5. 4 Experimental Set-Up pf FPGA Implementation

5.4.3 FPGA Configuration
The final step in hardware design flow is FPGA implementation. The gate level

net list generated during the synthesis step is used by Xilinx place and route tools to

perform mapping, placing, and routing for target FPGA. For this a user constraints file

(UCF) has been made where assignment, timing constraints are specified. Xilinx uses

block ram to serve as a ROM and RAM module. Hence the instructions have to be

converted in to ASCII file and block ram should be initialized with these values. The

INIT statement uses “INST” directive followed by memory module name and its initial

values written in UCF files to initialize a block ram.

All the application code written in C after compilation generates an S-Format

object file. By using a “genram” script file given in Open Core project site this S-Format

file can be converted to block ram INIT statement.

SOC Integration, Verification and FPGA Implementation

 116

Then Place and route is done using Xilinx ISE tools and finally, after the place and route

is over, Xilinx Impact tool is used to generate a bit stream file to program the FPGA.

Finally, the FPGA implementation of the SOC architecture has been completed

successfully.

5.5 ChipScope Pro Result
The real time signal of the CPU showing only the chip enable of peripherals high

is given in Figure: 5.5. It is observed that whenever the chip enable of memory

(CEMEM) is low and a trigger is given to the “GET” in the keypad, the corresponding

chip enable of UART (CEUART) is high indicates the UART peripheral is enabled and

waits for the data to be transmitted by the programmer.

5.6 Conclusion
The cores are integrated in a point-to-point interconnection with a specific address

map. After integration the SOC functionality is verified in simulation level and found that

it functions accurately for a given assembly instructions. Finally, the FPGA

implementation of SOC architecture is done and found that it is utilizing 97 % of

resources available in Xilinx Virtex-II Pro FPGA with a minim slice count of 2847. It is

also observed that it can be operated in a maximum frequency of 221.715 MHz in the

specified FPGA architecture.

Figure: 5. 5 Real time chip enable signal of UART during serial transmission with PC

 117

 Application Programs

 Monitor Program Application

 Digital Clock Application

 Audio Processing Application

 Conclusions

Chapter 6

 Application Development for SOC

Application Development for SOC Architecture

 118

The final stage of SOC design flow is the real time functionality verification of

designed SOC architecture. A set of applications are developed in order to verify the

functionality. The application includes are monitor program, and clock application.

Finally, an AC97 WISHBONE compatible controller core is designed and integrated with

SOC for audio processing application.

6.1 Application Programs

One of the important flows in SOC design methodology is development of

application program which when loaded on the SOC architecture implemented in FPGA

performs some specific operations. The application program development requires a

software environment to develop it. Cygwin [21] is selected as the preferred environment

for this purpose. SuperH-2 assembler, compiler and debugger are used to build the

application program. Application program written in ‘C’ is compiled by GNU GCC [24]

and then debug by GNU GDB debugger. Finally by using monitor program provided by

Open Core the application is loaded in the SOC architecture and the functionality of SOC

is verified. The monitor program is converted to ASCII values and the values are written

to BRAM during FPGA implementation. Two programs written in C used for the

application development are

• Monitor program for memory editing and program loading.

• Timer application code for verification of functionality of the SOC.

While compiling the ‘C’ codes a start up program (crt0.s) and linker script (sh.x)

provided in Open Core project site is used along with a C complier header file files. A

make file is used to compile and link the C files.

6.2 Monitor Program Application

6.2.1 Algorithm for monitor program

The monitor program along with LCD display, keyboard and RS-232 interface

circuit performs debugging operation such as memory editor and program loader from PC

to SOC architecture. It also has additional capabilities like jumping to program and

debugging features such as setting of break point and reading registers. To write the

monitor program many functions are created in “C” and in a main program this functions

are called. Some of the functions are written below in the Table: 6.1.

Application Development for SOC Architecture

 119

Service Functions

Utility functions set Break point Set and show register value

Command Command handler take input command pressing key

Error and Illegal Indicates address error and illegal instruction

NMI_handler Handle non moskable interrupt

Irq_handler Handle IRQ

Get_S format Get S-format and return Top address of the binary value

Get_byte_rx_echo Get byte from Rx with echo

Hex2asc Converts the hex values to ascii values

Asc2hex Converts the ascii values to hex values.(nibble)

Key utilities

WaitNms It creates a delay of N ms

Key_scan () Output push key code

Key_wait_on Wait until key on

Key_wait_off Wait until key off

UART utility functions

Uart_tx Take input data to transmit

Uart_rx Output receive data

Uart_rx_echo Receive Rx with echo to Tx

Uart_rx_flush Flush RxD FIFO

Uart_set_baudrate Set baudrate value

LCD utility functions

Lcd_disp_long LCD displays long Hex data (8 digit)

Lcd_cursor Cursor on/off

Lcd_erase Erase one line from the position

Lcd_messge Print a message from current position

Lcd_disp Display one character on current position

Lcd_pos Set LCD display position

Lcd_ready Wait until LCD ready

Lcd_rd LCD read

Lcd_wr, Lcd_init LCD write, LCD initialize

Table: 6. 1 List of Functions used in Monitor Program

Application Development for SOC Architecture

 120

The flowchart of the monitor program written in “C” is given in Figure: 6.1

Application Development for SOC Architecture

 121

Figure: 6. 1 Flow Chart of Monitor Program.

Application Development for SOC Architecture

 122

6.2.2 How Monitor Program Works

The working procedure of how the monitor program works in real time environment is

described as follows. The corresponding LCD outputs in pictorial form are presented in

Figure: 6.2.

A. Memory editor:

a. Power On Reset (Start Up):

It shows a long-word sized data in the LCD. In the top line the left 8 hex numbers

shows memory address and right 8 hex numbers shows the data at this addresses.

b. Increment Address:

The “INC” key on the hex key pad increases the address by 4-byte and the

corresponding data at this address appears at the right side hex numbers.

c. Decrement Address:

The “DEC” key on the key pad decreases the address by ‐4‐byte, and the

corresponding data at this address appears at the right side hex numbers.

d. Enter And Set Address:

In order to view a data at other address location, enter a 4-byte address at the

bottom and push “ADR” key and the data will appear at the right side of the

top line. If address entered is not multiple of 4, the lower 2-bits of address are

cleared to 0, to avoid address error.

e. Enter And Write Data:

In order to change the data displayed in an address location, enter the new

data at the bottom line and press “DAT” key will update the new data and

increases the address by 4-byte. To verify the data written press “DEC” key.

B. Program Loader.

f. Program Loading From PC

g. Loading

h. Finish Loading

The S-Format (S3) object file can be downloaded to PC via RS-232 interface. The

default baud rate used for this is 1200 bps. The baud rate can be changed by changing

UARTBG0 and UARTBG1 register values in monitor program. The S-Format

records comprises S0 (comment), S3 (actual object), and S7 (end of record). By using

Application Development for SOC Architecture

 123

the Makefile and “asm” script file the S-Format file can be generated. Pressing

“GET” key in the key pad, the FPGA system waits for sending data. The data can be

sent to FPGA by using hyper terminal application of PC. During the transfer of

objects the top address of every record is shown in the LCD. If any check sum error is

found by the monitor, the transfer will stop. When S7 is received by the monitor, the

program loading is stopped.

C. Run

i. Target Address Set And Goes To Program

j. Running Program

An application code for LCD display is developed and the S-Format file is loaded to

the FPGA system. This program is located at 0x00003000 (vector table present here)

and to start the program jump to the actual address 0x00003008 by pressing “ADR”

key. To start running the program “RUN” button is used and the LCD displays some

preset characters such as “SOC @ NIT RKL”. “RST” is used to make the system

power on reset.

D. Debug Utility

k. Select Register Reading And Check All CPU Registers

Pressing “UTL” and “1” key all register content can be checked.

l. Enter Break Address

Pressing “UTL” key and “2” and the break address from the key pad t

m. Set Break Point, Try A Break,

n. Break Happens.

Pressing ‘UTL’ key and entering “2” and the break address from the key pad can

be sent to the FPGA system. Then pressing DAT confirms the break operation. If

a value 0x00003800 is set as break point, then accessing 0x00003800 monitor

reports BRK has happened.

Application Development for SOC Architecture

 124

Figure: 6. 2 Monitor output presented in a pictorial form

Application Development for SOC Architecture

 125

6.3 Digital Clock Application
After the monitor program is verified an application example of digital clock is

verified in the SOC architecture. The digital clock uses IRQ from interval timer. The

timer request IRQ and the IRQ routine controls the internal software counter to display

time. The program vector table is located from address 0x00002000 but actual program

starts by jumping to the address 0x00002400 by monitor program. The clock “DAT” key

is pushed two times to enter hour and minute. Finally, the clock starts after pushing the

DAT key.

Figure: 6. 3 Output of Real Time Clock Application

Figure: 6.3 shows the output of real time clock which shows the current time

Application Development for SOC Architecture

 126

6.4 Audio Processing Application
A new application is developed whose function is to create a SOC platform for

audio processing. A SOC platform in FPGA has already been built which is having

capability of processing 32-bit data and communicating with the PC and e applications

can be developed using C and run on the proposed SOC architecture. In order to perform

audio processing application in FPGA, two major things are required and those are, an

interface between analog world of audio components (headphones and microphones) and

digital world of FPGA. Virtex-II Pro FPGA board is equipped with an AC97 Audio Codec

chip LM4550 [25] which serves as an interface between FPGA and analog world components.

The second one is an IP core that will control the AC97 audio codec by sending and

receiving appropriate signals between the FPGA and analog world. Hence for processing

the audio signal the SOC architecture should support an AC97 audio codec controller.

For this purpose an AC97 controller core is required to be integrated with the proposed

SOC architecture.

Figure: 6. 4 Block diagram of LM4550 audio codec.

Application Development for SOC Architecture

 127

Therefore, an AC97 core is designed and made WISHBONE compatible. The details

of the internal structure of the core with its verification results for a loop back tests

are presented in this section.

6.4.1 AC97 Codec

The block diagram shown in Figure: 6.4 present an idea of how AC97 audio codec

functions in real time environment. The AC’97 codec on Virtex-II Pro board is used for

providing a path to capture all types of analog signal that can be processed digitally. The

features of this codec are

• full duplex stereo ADCs and DACs and analog mixers

• 4 stereo and 4 mono inputs.

• Each mixer input has separate gain, attenuation and mute control

• The AC’97 provides a stereo headphone amplifier as one of its stereo

outputs.

Incoming audio from microphone
The incoming audio data from the microphone is amplified by +20 db by an on-chip

amplifier. The amplified data is fed to one of the two 18-bit sigma-delta ADCs

(ΣΔADCs) which samples the analog data at 48 kHz, digitizes the sample voltages and

produce an output sequences of 18-bit two's complement numbers (termed as PCM data).

Each pair (left and right channel) of PCM samples is packaged along with other status

data into a 256-bit frame which is then transmitted serially at 12.288 MHz

(= 256 * 48Khz) to the FPGA via the SDATA-IN pin.

Outgoing audio to headphones
The FPGA transmits a 256-bit frame of serial data to the AC97 chip via the SDATA-

OUT pin. Each frame contains two 18-bit fields with PCM data for the left and right

audio channels. The PCM data is converted to two 48 kHz analog waveforms by the

sigma-delta digital-to-analog converters (ΣΔDACs). The analog waveforms are amplified

and sent to the stereo headphones.

Application Development for SOC Architecture

 128

Figure: 6.5 shows the AC link serial interface protocol where SDATA_OUT and

SDATA_IN signal carries AC link outgoing frames and AC link incoming frames

respectively. SDATA_IN is an output signal from the AC97 controller and input to the

codec. Output frames are consists of one Tag SLOT and twelve data SLOTs. Output

frame starts with a low-to-high transition of SYNC which should be clocked from the

controller on a rising edge of BIT_CLK (not shown in the figure).Each frame consists of

256-bits with each of the twelve data SLOTs containing 20-bits. The first bit of SLOT 0

is designated as “valid frame”. If this bit is 1, it indicates that the current output frame

contains at least one slot of valid data and the codec will check further tag bits for valid

data in the expected data SLOTs. SLOT 1 is used by a controller to indicate both the

address of a target register in the codec and whether the access operation is register read

or register write. SLOT 2 is used to transmit 16-bit control data to the codec when the

access operation is “write”. SLOTs 3 and 4 are 20-bit fields used to transmit PCM data

to the left and right channels of the stereo DAC when the codec is in Primary mode or

Secondary mode 1. SLOTs 7 and 8 are 20-bit fields used to transmit PCM data to the left

and right channels of the stereo DAC when the codec is in Secondary mode 2. Any

unused bits should be stuffed with zeros. SLOTs 6 and 9 are 20-bit fields used to

transmit PCM data to the left and right channels of the stereo DAC when the codec is in

Secondary mode 3. Any unused bits should be stuffed with zeros. SLOTs 5, 10, 11, 12

are reserved SLOTs, are not used by the codec and should all be stuffed with zeros by

the AC97 Controller.

Figure: 6. 5 AC link serial interface protocol

Application Development for SOC Architecture

 129

SDATA_IN signal is an input to the AC97 Digital Audio Controller and an output from

the codec. Input Frames consists of one Tag SLOT followed by twelve Data SLOTs.

SLOT 1 echoes (in bits 18 – 12) the 7-bit address of the codec control/status register

received from the controller as part of a read-request in the previous frame. By default,

data is requested in every frame, corresponding to a sample rate equal to the frame rate

(SYNC frequency) – 48 kHz when XTAL_IN = 24.576 MHz.

The SLOT 2 returns 16-bit status data read from a codec control/ status register.

The codec sends the data in the frame following a read-request by the controller. This

SLOT 3 and SLOT 4 contain sampled data from the left and right channel of the stereo

ADC. The signal to be digitized is selected using the Record Select register (1Ah) and

subsequently routed through the Record Select Multiplexer and the Record Gain

amplifier to the ADC. This is a 20-bit SLOT and the digitized 18-bit PCM data is

transmitted in MSB justified format. The remaining 2 LSBs are stuffed with zeros. Slots

5-12 of the AC Link Input Frame are reserved slot not used for data by the codec and are

always stuffed with zeros.

6.4.2 Wishbone compatible AC97 Controller core design and Verification
AC97 codec follows the AC serial link protocol to send or receive the PCM data.

Therefore, an AC97 controller core is required to keep up with the codec's data rates.

With considering these design criteria, AC97 controller is being designed that has the

following components:

Top: This module is the top module that includes instances of the AC97_top and recorder

blocks. This also has the WISHBONE bus interface.

AC97_Top: This block is a wrapper around the AC97_interface and AC97_commands.

This module has three ports: a ready output which indicates that a new sample is ready,

and two 8-bit data ports, one for incoming PCM data and one for outgoing PCM data.

AC97_Interface: This block has ports for incoming and outgoing 18-bit stereo PCM data.

It provides interface to the AC97 codec and transmit and receive the 256-bit serial data

streams.

AC97_Commands: This block generates commands to write to the AC97 command

registers for performing the appropriate initialization. The various commands are

Application Development for SOC Architecture

 130

selecting the amplifier gains, selecting the microphone as the input source, setting

headphone volume.

Recorder: This module checks the basic functionality of head phone and microphone. In

playback mode, it loops incoming samples from microphone back to the outgoing data

stream, so that voice can be listened in the headphone.

Figure: 6.6 show the block diagram of AC97 controller module. The core is made

wishbone compatible and it supports the WISHBONE signals such as, DATI, DATO, CE

(STB) and SEL. AC97 controller receives the serial audio data from microphone at

ac97_sdata_in and inputs it to AC97_top module that coverts the input to 8-bit PCM data

and sends to audio_in_data output signal which is connected to the lower 8-bit of DATO

output terminal.

Figure: 6. 6 Block Diagram of AC97 Controller Core

The 8-bit PC data from DATI input is latched to the recorder input terminal

from_ac97_data at raising edge of clock pulse. The recorder sends the data to the

ac97_top module. The ac97_top module adds the appropriate command address to this

data and serially sends it to the output terminal ac97_sdata_out where a head phone can

be used to hear the audio input.

 To perform the real time experiment the design is implemented in Xilinx Virtex-II

Pro and a loop back test is performed to verify the module’s functionality. In loop back

test the PCM data output at the DATO terminal is fed back to the DATI terminal so that

the audio input from the microphone at ac97_sdata_in can be heard with a head phone at

Application Development for SOC Architecture

 131

ac97_sdata_out. The verification of the functionally of the core for loop back test is

observed using Xilinx ChipScope Pro tools.

Figure: 6.7 shows the real time signals of the loop back test performed. The audio signal

at ac97_sdata_in is converted to 8-bit PCM data by A97_Top module and available at

left_in_data which is again latched to the input of the recorder module at the rising edge

of clock pulse. During playback mode the recorder module the data is routed to the

to_ac97_data_mux0000 terminal of AC97_Top module. AC97_Top module adds the

PCM data with appropriate command address and the audio signal can available for

hearing at ac97_sdata_out. Hence it is observed from the figure that the data input and

output are same set of PCM data.

Figure: 6. 7 real time signals of AC 97 Controller for the loop back test performed

Figure: 6. 8 SOC Architecture for Audio Processing Application

Application Development for SOC Architecture

 132

Finally the A97 controller core is integrated to the proposed SOC architecture and the

address of the core is defined at 0xABCD03xxx. Figure: 6.8 show the new SOC

architecture for audio processing application. Table: 6.2 show the device utilization

summary for a Virtex-II Pro FPGA board.

6.5 Conclusions
 Applications such as monitor programming, real time clock are developed and the

functionality of the designed SOC architecture was by verified by porting application

code to the FOGA system. Finally an audio processing SOC architecture was designed

and implemented in Xilinx Virtex-II Pro FPGA platform.

Table: 6. 2 Device Utilization Summary for Audio Processing application

Design Information
Target Device: xc2vp30-7ff896 (Virtex-II Pro)

Device Utilization Summary
Logic Utilization used available utilization

Number of Slices 3028 13696 20%

Number of Slice Flip Flops 1564 27392 5%

Number of 4 input LUTs 5448 27392 18%

Number of bonded IOBs 73 556 6%

Number of BRAMs 32 136 23%

Number of MULT18X18s 2 136 1%

Number of GCLKs 3 16 12%

Number of DCMs 1 8 12%

 Conclusions

 Scope for Future Work

Chapter 7

Conclusions

 133

7.1 Conclusions
The recent advances in silicon technology now enable new levels of system

integration onto a single chip and allow building of chips consisting of millions of

transistors. With the evolution of technology and the increase in demands of more

powerful products System-on-chip (SOC) design has moved from leading edge to main-

stream design practice. Hence, there is a need of SOC design methodologies that are

reliable and requires shorter time to market. After a complete literature survey we

observe that “Design-reuse” is the key factor behind SOC design. This thesis investigated

two design methodologies such as PBD and open core based SOC design methodology.

PBD design is an emerging technology that utilizes previously design platform of

abstraction level to design the SOC, but it requires a library of platform which can only

be possible in industry environment. On the other hand open core SOC design utilizes

standard WISHBONE bus interface for design reuse and help in plug and play integration

of freely available IP cores to produce low cost, reliable, time-to-market SOC design.

The complete Wishbone literature has been reviewed and compared with two standard

bus interface AMBA and CoreConnect and the following conclusions are made:

• It is a standard interface available freely and can be used SOC integration without

any additional cost.

• It supports variable interconnection and variable time-specification.

• It supports single Read/Write; block Read/Write bus cycles. It also supports

RMW cycle as compared to split transaction of AMBA and core connect to share

memory used in multiprocessor SOC environment.

• It can be coded using any hardware description language like VHDL and Verilog

and for implementation it takes simple logic gates supported by most of the

FPGA and ASIC devices.

Two small system designs have been developed using both point-to-point and share-bus

interconnections. The issues related to design and integration of point-to-point and shared

bus interconnections are discussed and verification of the designs has been done using

Xilinx ISE Simulator. Here two types of FPGA devices have been used as emulation

platforms for validation of the functionality of the systems.

 134

The following points are observed from these experiments:

• Point-to-point interconnection is the simplest interconnection architecture where

a single Master communicates with many Slaves. An address decoder is used by

the Master to decode the Slaves to communicate. The minimum size required to

form this system is 40 slices in FPGA. The operating frequency is more than

100 MHz. Operating frequency depends on the target platform. For high speed

FPGA like Virtex-II Pro the operating frequency is higher than that of low

speed FPGA Spartan3e with almost same implementation size.

• The shared bus interconnection is very useful for more than one Masters. It

requires an arbiter which grants the access to the requesting Master. For this a

round robin arbiter has been chosen than a priority arbiter. Multiplexor bus

logic is used for interconnection logic as multiplexors are supported by most of

the FPGA and ASIC devices.

It is observed that the operating frequency of this type of interconnection is more than

100 MHz and depends on the target platform technology. In Virtex-II Pro the frequency

is higher than the Spantan3e FPGA but it uses an approximately 292 slices to implement

the interconnection in the two FPGAs.

Finally, SOC architecture is proposed and the design methodology for designing

the SOC is presented. The SOC design utilizes reusable IP cores from Open Core. The

various issues related to the integration, verification, and FPGA implementation in

Virtex-II Pro has been discussed. It is observed from the area optimized synthesis results

that the SOC is utilizing 97% of the available resources of FPGA. In case synthesis is

done using speed optimization the device utilization is 100 %. The power consumption as

calculated by Xilinx XPower is 43 mw. The operating frequency is 20 MHz but it can be

operated to a maximum frequency of 221.715 MHz in Virtex –II Pro FPGA Platform. The

final validation of the SOC architecture has been done by developing a monitor program

in C which performs memory editing and program loading from the PC to FPGA. An

interrupt clock program is developed that displays the current time. An audio processing

SOC platform has been made by integrating an AC97 controller core to the proposed

SOC architecture and the device utilization is 3028 slice count. We have successfully

 135

implemented the proposed SOC architecture and developed a few applications that

validate the SOC concept.

7.2 Scope for Future Work

Solving the problems faced by industry in designing System on Chip research like:

1. More complex architectures like multi master multi slave configuration using

shared bus interconnection can be designed.

2. Verification of the complete SOC system using professional verification

techniques like Constraint random coverage driven methods.

3. Adding more complex IP’s in both digital and Analog arena like Ethernet and

high speed ADC’s will give more applications for designed SoC.

4. Designing better Testability features to SoC.

 136

References:

[1] Resve Saleh, Steve Wilton, System-on-chip: Reuse and integration, Proceedings

of the IEEE vol.94, No.6, June 2006.

[2] M. Keating and P. Bricaud , Reuse Methodology Manual: For System-on-a-Chip

Designs, 3rd ed. MA: Kluwer,2002.

[3] S.Titri, N.Izebdjen, L.Sahli, D.Lazib, F.Louiz, Open Cores based System on Chip

Platform for Telecommunication Applications: VOIP , IEEE conference 2007

[4] Open Cores project site http://www.opencores.org

[5] Wishbone Specification site www.opencores.org/downloads/wbspec_b3.pdf

[6] Aquarius user manual site http://www.opencores.org/project,aquarius

[7] E. Ostúa, J. Juan Chico, J. Viejo, M. J. Bellido, D. Guerrero, A. Millán & P. Ruiz-

de-Clavijo, A SOC DESIGN METHODOLOGY FOR LEON2 ON FPGA.

[8] Open Collector site http://collector.hscs.wmin.ac.uk

[9] Lesley Shannon, Paul Chow, SIMPPL: An Adaptable SoC Framework using a

Programmable Controller IP Interface to Facilitate Design Reuse, IEEE

Transactions ON VLSI SYSTEMS, vol. 15, No.4, April 2007.

[10] Mohamed A. Salem,Jamil Khatib, “An introduction to open-source hardware

development”, EEDesign.com

[11] www.arm.com

[12] www.ibm.com

[13] www.itrs.com

[14] http://www.computerhistory.org/semiconductor/timeline/1974-digital-watch-is-

first-system-on-chip-integrated-circuit-52.html

[15] Surviving the SoC Revolution by Henry Chang, Merrill Hunt, Larry Cooke,

Pub.Date: July 2008, Publisher: Springer-Verlag New York, LLC, ISBN:

0792386795

[16] Daniel Akerlund, Master’s thesis, Implementation of 2x2 NoC with Wishbone

Interface, Royal Institute of Technology (KTH), Sweden, Nov-2005.

[17] Open Cores SoC Bus Review, Rudolf Usselmen, www.opencores.org, Jan 2009.

[18] http://www.pldworld.com/_hdl/2/_ip/-silicore.net/index.htm

 137

[19] Icarus Verilog Manual, http://www.icarus.com/eda/verilog/

[20] www.xilinx.com

[21] www.cygwin.com

[22] www.renesas.com

[23] Aquarius user manual site http://www.opencores.org/project,aquarius

[24] www.gnu.org

[25] LM45550 User Manual, www.fairchildsemi.com/ds/LM/LM4550.pdf

[26] GTK Wave User Manual, gtkwave.sourceforge.net.

[27] 74LS 242 User Manual, www.alldatasheet.com/view.jsp?Searchword=74LS242

[28] MAX 232 User Manual, focus.ti.com/lit/ds/symlink/max232.pdf

[29] P.Coussy, E.Casseau, P.Bomel, A. Baganne, E.Martin, Constrained algorithmic

IP design for system –on-chip, Integration, The VLSI Journal, Elseveir-2007.

[30] Hartwig Jeschke, Efficiency measures for SOC concepts, Journal of Systems

Architecture, pages 1039–1045, Elseveir-2008.

[31] David W. Hsiao , Amy J.C. Trappey , Lin Ma, Pei-Shun Ho, An integrated

platform of collaborative project management and silicon intellectual property

management for IC design industry, Journal of Information Sciences, Elseveir-

2009.

 138

DISSEMINATION OF THE RESEARCH WORK :

1. A. K. Swain and K. K. Mahapatra “Low Cost System on Chip design for Audio

Processing”, International MultiConference of Engineers and Computer

Scientists- DATICS-IMECS’10, Hong Kong, 17-19 March, 2010 [ACCEPTED].

	Ayas_frontr_pages_final
	Ch-1_SOCOverview
	Ch2_WISHBONE
	ch3_Intercon
	ch4_SOC_ARCH
	Chapter5_SOC_FPGA
	ch6_Application
	Chapter7_Conclusions

