.....

2 XILINX®

' Y] P
ol | O F)lg

KCPSM3
8-bit Micro Controller

for Spartan-3,
Virtex-1l and Virtex-1IPRO

For Spartan-11(E) and Virtex(E) please use KCPSM
Virtex-11 and Virtex-1IPro are also supported by KCPSM2

Ken Chapman
Xilinx Ltd
October 2003

110011001100110051007 1M1Tﬂ'ﬂﬂmﬂﬂﬁl G -,-_ ,-
mnm 110011001100110011001100110011 0011 : 1100110811

Contents

Understanding KCPSM3 52 CONSTANT Directive
28 ADDCY o
1 Title 53 NAMEREG Directive
29 SUB L
2 Contents page 30 SUBCY 54 ADDRESS Directive o
3 Limitations 55 ~KCPSM and KCPSM2 Compatibility
; 31 COMPARE 56 PicoBlaze Comparison
546 \évggts';l SK_CPSMﬁ? 32 SRO, SR1, SRX, SRA, RR P
- IS sma 33 SLO, SL1, SLX, SLA, RL
7 Size and Performance 34 OUTPUT Interrupts and worked example
8 KCPSM3 Architecture
35 INPUT .
9-11 KCPSMS3 Feature Set 57 Interrupt Handling
36 STORE) .
12 Constant (k) Coded 37 FETCH 58 Basics of Inte'rrupt Handling
13 Using KCPSM3 (VHDL) 59 Example Design (VHDL)
14 Connecting the Program ROM Interface Signals 60 Interrupt Serwce_ Routine
15 Verilog and System Generator 61 Interrupt Operation
38 READ and WRITE STOBES 62 Timing of Interrupt Pluses
Instruction Set 39 RESET
16 KCPSM3 Instruction Set KCPSM3 Assembler Hints and Tips
17 JUMP
18 CALL 40 KCPSM3 Assembler - Basic usage. 63 CALL/RETURN Stack
19 RETURN fé ﬁssemtt::er E.rlrors 64 Sharing program space
20 RETURNI ssembler Fies 65-66 Design of Output Ports
21 ENABLE/DISABLE INTERRUPT 43 ROM_form.vhd File 67-68 Design of Input Ports
44 ROM_form.v File g P
22 LOAD 4 ROM ' Fil 69 Connecting Memory
23 AND Go omtorm.coe Fe 70 Simulation of KCPSM3
24 OR <flename=>.fmt File 71-75 VHDL Simulation
25 XOR 47 <filename>.log file
26 TEST 48 constant.txt & labels.txt Files
27 ADD 49 pass.dat files

50-51 Program Syntax

KCPSM3 Manual 2

Limitations

Limited Warranty and Disclaimer. These designs are provided to you “as is”. Xilinx and its licensors make and you receive no
warranties or conditions, express, implied, statutory or otherwise, and Xilinx specifically disclaims any implied warranties of
merchantability, non-infringement, or fithess for a particular purpose. Xilinx does not warrant that the functions contained in these
designs will meet your requirements, or that the operation of these designs will be uninterrupted or error free, or that defects in
the Designs will be corrected. Furthermore, Xilinx does not warrant or make any representations regarding use or the results of
the use of the designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost profits, cost or procurement of
substitute goods or services, or for any special, incidental, consequential, or indirect damages arising from the use or operation
of the designs or accompanying documentation, however caused and on any theory of liability. This limitation will apply even if
Xilinx has been advised of the possibility of such damage. This limitation shall apply not-withstanding the failure of the essential
purpose of any limited remedies herein.

This module is not supported by general Xilinx Technical support as an official Xilinx Product.

Please refer any issues initially to the provider of the module.

Any problems or items felt of value in the continued improvement of KCPSM3 would be gratefully received by the author.
Ken Chapman

Senior Staff Engineer - Applications Specialist
email: chapman@xilinx.com

The author would also be pleased to hear from anyone using KCPSM or KCPSM2 with information about your application and
how these macros have been useful.

KCPSM3 Manual 3

What iIs KCPSM3 ?

KCPSM3 is a very simple 8-bit microcontroller primarily for the Spartan-3 devices but also suitable for use in Virtex-1l and Virtex-
IIPRO devices. Although it could be used for processing of data, it is most likely to be employed in applications requiring a
complex, but non-time critical state machine. Hence it has the name of ‘(K)constant Coded Programmable State Machine’.

This revised version of popular KCPSM macro has still been developed with one dominant factor being held above all others -
Size! The result is a microcontroller which occupies just 96 Spartan-3 Slices which is just 5% of the XC3S200 device and less
than 0.3% of the XC3S5000 device. Together with this small amount of logic, a single block RAM is used to form a ROM store
for a program of up to 1024 instructions. Even with such size constraints, the performance is respectable at approximately 43 to

66 MIPS depending on device type and speed grade.

KCPSM3
el |[N_PORT[7:0] OUT_PORT[7:0] |r——
Interface to logic —— INTERRUPT PORT _ID[7:0)] [e—
RESET READ_STROBE|——— | Interface to logic
Block Memory —p CLK WRITE_STROBE
(Program) INTERRUPT_ACK)
INSTRUCTION[17:0] INSTRUCTION[17:0] ADDRESS[9:0] e

— ADDRESSI[9:0]
—D CLK

One of the most exciting features of the KCPSM3 is that it is totally embedded into the device and requires no external support.
The very fact that ANY logic can be connected to the module inside the Spartan-3 or Virtex-1l device means that any additional
features can be added to provide ultimate flexibility. It is not so much what is inside the KCPSM3 module that makes it useful,

but the environment in which it lives.

KCPSM3 Manual 4

KCPSM3 i1s small!

KCPSM3 is supplied as VHDL and as a pre-compiled soft macro which is handled by the place and route tools to merge with the
logic of a design. In large devices, the KCPSM3 is virtually free! The potential to place multiple KCPSM3 within a single design is
obvious. Whenever a non time critical complex state machine is required, this macro is easy to insert and greatly simplifies design.

This plot from the FPGA Editor viewer shows the
macro in isolation within the XC3S200 Spartan-3
device.

96 Slices

5% of XC3S200
Spartan-3 device

~87MHzin -4
Speed Grade

~43.5 MIPS

KCPSM3 Manual 5

KCPSM3 is small!

This plot from the Xilinx Floorplanner shows the same implementation of KCPSM3 in an XC3S200 Spartan-3 device. This makes it
easier to appreciate the actual logic resources required by the macro without the interconnect obscuring the detail.

¥
EE XN NN
Er
FEFFIrr
sesssrr

KCPSM3 Manual 6

The placement in this Floorplanner view was achieved using a
simple area constraint in the project UCF file.

| NST processor_* LOC=SLI CE_XO0YO: SLI CE_X19Y4;

Such constraints are not required in normal designs and it has only
been used in this case because so little of the device is occupied.
Experiments have shown that placement constraints have very little
effect on performance.

The FPGA Editor view shown
to the right was the result
when no constraints were
used. The size is still 96
slices but this is now a little
less obvious! The
performance was actually a
little higher than when using
the area constraint indicating
that a ‘tidy’ design is not
always the fastest!

Size and

Performance

The following device resource information is taken from the ISE reports for the KCPSM3 macro in an XC3S200 device. The reports
reveal the features that are utilised and the efficiency of the macro. The 96 ‘slices’ reported by the MAP process in this case may
reduce to the minimum of 89 ‘slices’ when greater packing is used to fit a complete design into a device.

XST Report MAP Report

LUT1 2 Nunmber of occupied Slices : 96 out of 1920 5%
LUT? 6 109 LUTS Nunber of Bl ock RAMs 1 out of 12 8%
LUT3 68 (55 slices) Total equival ent gate count for design: 74,814
LUT4 33 12 x KCPSM3 can fit into the XC3S200 device (40% of the logic

slices remaining). An equivalent gate count of 897,768 gates in a

icel
MJUXCY 39 Carry and MUX logic 200,000 gate device!
MUXF5 9 :
XORCY 35 (Free with LUTS)
TRACE Report
FD 24 .
Devi ce, speed: xc3s200, -4 (PREVIEW 1. 22 2003-03-16)

FDE 2 : : .
FDR 30 76 Flip_flops M ni num period: 11.403ns
FDRE 8 (Free with LUTS) (Maxi mum frequency: 87.696Mz)
FDRSE 10 ™~
FDS 2 43.8 MIPS
RAML6X1D 8 —— Register bank (8 slices) TRACE Report for Virtex-11PRO
RAMB2X1S 10— Call/Return Stack (10 slices)
RAMBAX1S 8 ——Scratch Pad Memory (16 slices) | peyi ce, speed: xcvp2, -7 (ADVANCED 1.76 2003-03- 16)

Total = 89 Slices

KCPSM3 Manual 7

M ni mum period: 7.505ns
(Maxi mum frequency: 133.245MHz) 66.6 MIPS

KCPSM3 Architecture

16 Registers Port PORT_ID[7:0]
8-bit Address .
Control [READ_STROBE
~ sF_|s7 —» WRITE_STROBE
— £ [s6
DI) OUT PORT(7:0]
n_porTrzol NN M) S
sA | s2 ALU
s9] sl Arithmetic
s8 | sO Logical
Shift
kk Rotate
Scratch Pad PARITY
I 18 bit instruction word Memory *
64-Bytes
B S bit data path g ss ZERO& 4B et
CARRY <4
I 8 bit port address flags Shadow Flags
I 10 bit program address INTERRUPT —p» Interrupt ll
Constants INTERRUPT _ACK <4—— Control
—P
Program Program _
INSTRUCTION[17:0] » aaa Control
Program >
Operational —p»
ROM/RAM —
control & P

-' 1024 words RESET — Igztcrgg;[:]on Program
CLK —p g aaa/ pp/ss/kk Counter

Stack

KCPSM3 Manual 8

KCPSM3 Feature Set

Features new to KCSPM3

KCPSM3 is a very simple processor architecture and anyone familiar with PSM, KCSPM or KCSPM2 will recognise that this is
just the latest in a close family of 8-bit programmable state machines (see ‘PicoBlaze Comparison’). The motivation to develop
this variant was the release of Spartan-3 devices and the highly constructive feedback from so many users of its predecessors.

Spartan-3 has adopted the 18Kbit Block RAM elements previously seen in the Virtex-1l devices. This enables KCPSM3 to
support programs up to 1024 locations which overcomes the most commonly encountered limit of KCPSM with Spartan-11(E).

At the risk of making KCPSM3 appear more complex than previous versions, some additional features have been included to
address the most popular requests. COMPARE and TEST instructions enable register contents to be interrogated without
changing their contents. The TEST instruction also calculates PARITY, useful for many communication applications. A 64-byte
internal scratch pad memory allows many more variables to be held internally, more intuitive programs to be written and will
typically eliminate requirement for memory attached to the 1/O ports. Finally, an interrupt acknowledgement signal is provided.

The additional features make KCPSM3 26% larger than KCPSM and 14% larger than KCPSM2. However, It is expected that the
additional features will enable more efficient programs to be written and for designs to require less peripheral logic.

Program Size

KCPSM3 supports a program up to a length of 1024 instructions utilising one block memory. Requirements for larger program
space are typically addressed by using multiple KCPSM3 processors each with an associated block memory to distribute the
various system tasks. Programs requiring significantly more memory are normally the domain of a full data processor such as
MicroBlaze with its C-language programming support.

16 General Purpose Registers.

There are 16 general purpose registers of 8-bits specified as ‘sO’ through to ‘sF’ which may be renamed in the assembler code.
All operations are completely flexible about the use of registers with no registers reserved for special tasks or having any priority
over any other register. There is no accumulator as any register can be adopted for this task.

KCPSM3 Manual 9

KCPSM3 Feature Set

The Arithmetic Logic Unit (ALU) provides many simple operations expected in an 8-bit processing unit.

All operations are performed using an operand provided from any register (sX). The result is returned to the same register.

For operations requiring a second operand, a second register can be specified (sY) or a constant 8-bit value (kk) can be
supplied. The ability to specify any constant value with no additional penalty to program size or performance enhances the
simple instruction set i.e. the ability to ‘ADD 1’ is the same as a dedicated INCREMENT operation.

Addition (ADD) and Subtraction (SUB) have the option to include the carry flag as an input (ADDCY and SUBCY) for the support
of arithmetic operations requiring more than 8-bits.

LOAD, AND, OR and XOR bit-wise operators provide ability to manipulate and test values.

Comprehensive SHIFT and ROTATE group.

COMPARE and TEST instructions enable register contents to be tested without altering their contents and determine PARITY.

Flags and Program Flow Control

The results of ALU operations determine the status of the ZERO and CARRY flags. The ZERO flag is set whenever the ALU
result has all bits reset (00,5). The CARRY flag is set when there is an overflow from an arithmetic operation. It is also used to
capture the bit moved out of a register during shift and rotate instructions. During a TEST instruction, the carry flag is used to
indicate if the 8-bit temporary result has ODD PARITY.

This status of the flags can be used to determine the execution sequence of the program using conditional and non-conditional
program flow control instructions. JUMP commands are used to specify absolute addresses (aaa) within the program space.
CALL and RETURN commands provide sub-routine facilities for commonly used sections of code. A CALL is made to an
absolute address (aaa) and an internal program counter stack preserves the associated address required by the RETURN
instruction. The stack supports up to 31 nested subroutine levels.

Reset

The RESET input forces the processor back into the initial state. The program will execute from address ‘000’ and interrupts will
be disabled. The status flags and CALL/RETURN stack will also be reset. Note that register contents are not affected.

KCPSM3 Manual 10

. KCPSM3 Feature Set

KCPSM3 effectively has 256 input ports and 256 output ports. The port being accessed is indicated by an 8-bit address value
provided on the ‘PORT_ID’. The port address can be specified in the program as an absolute value (pp), or may be indirectly
specified as the contents of any of the 16 registers ((sY)).

During an ‘INPUT’ operation the value provided at the input port is transferred into any of the 16 registers. An input operation is
indicated by a pulse being output on the READ_STROBE. It is not always necessary to use this signal in the input interface
logic, but it can be useful to indicate that data has been acquired by the processor. During an ‘OUTPUT’, the contents of any of
the 16 registers are transferred to the output port. An output operation is indicated by a pulse being output on the
WRITE_STROBE. This strobe signal will be used by the interface logic to ensure that only valid data is passed to external
systems. Typically, WRITE_STROBE will be used as a clock enable or write enable (see ‘READ and WRITE STROBES)).

Scratch Pad Memory

This is an internal 64 byte general purpose memory. The contents of any of the 16 registers can be written to any of the 64
locations using a STORE instruction. The complementary FETCH instruction allows the contents of any of the 64 memory
locations to be written to any of the 16 registers. This allows a much greater number of variables to be held within the boundary
of the processor and tends to reserve all of the I/O space for real inputs and output signals.

The 6-bit address to specify a scratch pad memory location can be specified in the program as an absolute value (ss), or may be
indirectly specified as the contents of any of the 16 registers (sY). Only the lower 6-bits of the register are used, so care must be
taken not to exceed the 00 - 3F;, range of the available memory.

Interrupt

The processor provides a single INTERRUPT input signal. Simple logic can be used to combine multiple signals if required.
Interrupts are disabled (masked) by default, and are then enabled and disabled under program control. An active interrupt forces
KCPSM3 to initiate a ‘CALL 3FF’ (a subroutine call to the last program memory location) from where the user can define a
suitable jump vector to an Interrupt Service Routine (ISR). At this time, a pulse is generated on the INTERRUPT_ACK output,
the ZERO and CARRY flags are automatically preserved and any further interrupts are disabled. The ‘RETURNI’ instruction
ensures that the end of an ISR restores the status of the flags and specifies if future interrupts will be enabled or disabled.

KCPSM3 Manual 11

Constant(k) Coded

The KCPSM3 is in many ways a machine based on Constants.......

Constant Values
Constant values may be specified for use in most aspects of a program....

» Constant data value for use in an ALU operation.

» Constant port address to access a specific piece of information or control logic external to KCPSM3.
» Constant address values for controlling the execution sequence of the program.

» Constant address values for accessing internal scratch pad memory.

The KCPSMS instruction set coding has been designed to allow constants to be specified within any instruction word. Hence
the use of a constant carries no additional overhead to the program size or its execution. This effectively extends the simple
instruction set with a whole range of ‘virtual instructions’.

Constant Cycles

All instructions under all conditions will execute over 2 clock cycles.
Such constant execution rate is of great value when determining the execution time of a program particularly when embedded
into a real time situation.

Constant Program Length

The program length is 1024 instructions and therefore conforms to the 1024x18 format of a single Spartan-3, Virtex-Il or
Virtex-1IPRO Block RAM. This means that all address values are specified as 10-bits contained within the instruction coding
(the assembler supports line labels to simplify the writing of programs). The fixed memory size promotes a consistent level of
performance from the module. See also ‘Sharing Program Space’.

KCPSM3 Manual 12

Using KCPSM3 (VHDL)

The principle method by which KCPSMS3 will be used is in a VHDL design flow. The KCPSM3 macro is provided as source VHDL
(kespm3.vhd) which has been written to provide an optimum and predictable implementation in a Spartan-3 or Virtex-11(PRO)
device. The code is suitable for implementation and simulation of the macro. It has been developed and tested using XST for
implementation and ModelSim for simulation. The code should not be modified in any way.

conmponent kcpsnB
Port (address : out std _|ogic_vector(9 downto 0);
instruction : in std | ogic_vector(17 downto 0);
port id : out std |ogic vector(7 downto 0);
wite strobe : out std _|ogic;

VHDL Component out _port : out std |ogic vector(7 downto 0);
declaration of KCPSM3 read_strobe : out std_ | ogic;
in_port : in std_|ogic_vector(7 downto 0);
interrupt : in std_|l ogic;
interrupt _ack : out std_l ogic;
reset : in std_|ogic;

clk : in std logic);

end conponent;

processor: kcpsnB
port map(address => address_si gnal
instruction => instruction_signal,
port_id => port_id_signal,
VHDL Component write_strobe => wite_strobe_signal,
instantiation of KCPSM3 out _port => out_port _signal
read_strobe => read_strobe_signal,
in_port => in_port_signal,
interrupt => interrupt_signal,
i nterrupt _ack => interrupt_ack_signal,
reset => reset_signal
cl k cl k_signal);

KCPSM3 Manual 13

Connecting the Program ROM

The principle method by which KCPSM3 program ROM will be used is in a VHDL design flow. The KCPSM3 assembler will
generate a VHDL file in which a block RAM and its initial contents are defined (see assembler notes for more detail). This
VHDL can be used for implementation and simulation of the processor. It has been developed and tested using XST for
implementation and ModelSim for simulation.

conponent prog_rom

Port (address : in std_|logic_vector(9 downto 0);
VHDL Component instruction : out std |ogic vector(17 downto 0);
declaration of program ROM clk : in std_logic);

end conponent;

program prog_rom
VHDL Component port map(address => address_si gnal,

instantiation of program ROM I nstruction => instruction_signal,
clk => clk_signal);

Note - The name of the program ROM (shown as ‘prog_rom’ in the above examples) will depend on the name of your program.

For example, if your program file was called ‘phone.psm’, then the assembler will generate a program ROM definition file called
‘phone.vhd’.

To aid with development, a VHDL file called ‘embedded_kcpsm3.vhd’ is also supplied in which the KCPSM3 macro is
connected to its associated block RAM program ROM. This entire module can be embedded in the design application, or simply
used to cut and paste the component declaration and instantiation information into your own code.

Note: It is recommended that ‘embedded_kcpsma3.vhd'’ is used for the generation of an ECS schematic symbol.

KCPSM3 Manual 14

Verilog and System Generator

Although the primary design flow is VHDL, KCPSM3 can be used in any design flow supported by Xilinx. The assembler also
generates program memory definition files suitable for Verilog and the Simulink based System Generator design flows.

<filename>.v - The assembler generates a Verilog file in which a block RAM and its initial contents are defined (see assembler
notes for more detail). This Verilog can be used for implementation and simulation of the processor. The kcspm3.ngc file will be
used to define the processor.

kcpsm3.ngc - The NGC file provided was generated by synthesising the kcpsma3.vhd file with XST (without inserting 1/0
buffers). This file can be used as a ‘black box’ in a Spartan-3, Virtex-1l or Virtex-IIPRO design, and it will be merged with the
rest of your design during the translate phase (ngdbuild). Note that busses are defined in the style ‘IN_PORT<7:0>" with
individual signals ‘in_port_0’ through to ‘in_port_7'.

<filename>.m - The assembler generates a m-function used to define the contents of a System Generator memory block within
the MATLAB Simulink environment. (see System Generator documentation for more information on this design flow).

<filename>.coe - The COE file generated by the assembler is suitable for use with the Xilinx Core Generator. The file defines
the initial contents of a block ROM. The files generated by Core Generator can then be used as normal in your chosen design
flow and connected to the kcpsm3 ‘black box’ in your design (see assembler notes for more details).

Simulation Models

If the NGC file is used in the design flow, then some form of back annotated description will be required for simulation of your
design in order to fill in the ‘black box’ details. The following command can be used to generate a Verilog simulation model (see
the Xilinx online manuals for more details - Synthesis and Simulation Design Guide - section 6).

ngd2ver kcspnB.ngd si m nodel kcpsnB8.v

KCPSM3 Manual 15

KCPSMS3 Instruction Set

‘X’ and 'Y’ refer to the definition of the storage registers‘s intherangeOto F.
‘kk’ represents a constant value in the range 00 to FF.
‘aaa represents an address in the range 000 to 3FF.
‘pp’ represents a port address in the range 00 to FF.

‘ss represents an internal storage address in the range 00 to 3F.

Program Control Group

JUMP aaa
JUMP Z, aaa
JUWMP NZ, aaa
JUMP C, aaa
JUMP NC, aaa

CALL aaa

CALL Z, aaa
CALL NZ, aaa
CALL C, aaa
CALL NC, aaa

RETURN
RETURN Z
RETURN NZ
RETURN C
RETURN NC

Note that call and return supports
up to a stack depth of 31.

KCPSM3 Manual 16

Arithmetic Group

ADD sX, kk
ADDCY sX, kk
SUB sX, kk
SUBCY sX, kk
COWPARE sX, kk

ADD sX, sY
ADDCY sX, sY
SUB sX, sY
SUBCY sX, sY
COVPARE sX, sY

Interrupt Group

RETURNI ENABLE
RETURNI DI SABLE

ENABLE | NTERRUPT
DI SABLE | NTERRUPT

L ogical Group

LOAD sX, kk
AND sX, kk
OR sX, kk
XOR sX, kk
TEST sX kk

LOAD sX, sY
AND sX, sY
OR sX, sY
XOR sX, sY
TEST sX, sY

Storage Group

STORE sX, ss
STORE sX, (sY)
FETCH sX, ss
FETCH sX, (sY)

Shift and Rotate Group

SRO sX
SR1 sX
SRX sX
SRA sX
RR sX

SLO sX
SL1 sX
SLX sX
SLA sX
RL sX

I nput/Output Group

I NPUT sX, pp

I NPUT sX, (sY)
QUTPUT sX, pp
QUTPUT sX, (sY)

JUMP

Under normal conditions, the program counter (PC) increments to point to the next instruction. The address space is fixed to
1024 locations (000 to 3FF hex) and therefore the program counter is 10 bits wide. It is worth noting that the top of memory is
3FF hex and will increment to 000.

PC PC
LI T T Tl e—L 1T T 1TTTTT]+1 Normallnstruction

The JUMP instruction may be used to modify this sequence by specifying a new address. However, the JUMP instruction may be
conditional. A conditional JUMP will only be performed if a test performed on either the ZERO flag or CARRY flag is valid. The
JUMP instruction has no effect on the status of the flags.

Condition
not valid PC

LI T T T Tl]+
PC _—
HEEEEEEEEN JUVP aaa
— New Address JUVP Z, aaa
[alalalala]ala]ala]a]

— JUVP NZ, aaa
Unconditional or JUMP C, aaa
condition valid JUMP NC, aaa

Each JUMP instruction must specify the 10-bit address as a 3 digit hexadecimal value. The assembler supports labels to simplify
this process.

Bit11 Bit10 Condition
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 if Zero
11010 alalalalalala|a|a]|a 0 1 if NOT Zero
1 0 if Carry
Bit12 0 - UNCONDITIONAL 1 1 if NOT Carry

1 - CONDITIONAL

KCPSM3 Manual 17

CALL

The CALL instruction is similar in operation to the JUMP instruction in that it will modify the normal program execution sequence by
specifying a new address. The CALL instruction may also be conditional. In addition to supplying a new address, the CALL
instruction also causes the current program counter (PC) value to be pushed onto the program counter stack. The CALL instruction
has no effect on the status of the flags.

Stack Condltlpn PC
. not valid
Unconditional or LIT T T TITT Tl +1
condition valid IFI)CI T I‘/ CALL aaa
e CALL Z, aaa
New Address :
~— CALL Nz, aaa
— lalalalalalalalalala] CALL C aaa
Unconditional or CALL NC, aaa

condition valid

The program counter stack supports a depth of 31 address values. This enables nested ‘CALL’ sequences to a depth of 31 levels
to be performed. However, the stack will also be used during an interrupt operation and hence at least one of these levels should
be reserved when interrupts are enabled. The stack is implemented as a separate cyclic buffer. When the stack becomes full, it
simply overwrites the oldest value. Hence it is not necessary to reset the stack pointer when performing a software reset. This also
explains why there are no instructions to control the stack and why no other memory needs to be reserved or provided for the
stack.

Each CALL instruction must specify the 10-bit address as a 3 digit hexadecimal value. The assembler supports labels to simplify
this process.

Bit11 Bit10 Condition
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 if Zero
1l1]0|l0fO0 alalalalalala|a|a]|a 0 1 if NOT Zero
1 0 if Carry
Bit12 0 - UNCONDITIONAL 1 1 if NOT Carry

1 - CONDITIONAL

KCPSM3 Manual 18

RETURN

The RETURN instruction is the complement to the CALL instruction. The RETURN instruction may also be conditional. In this case
the new program counter (PC) value will be formed internally by incrementing the last value on the program address stack. This
ensures that the program will execute the instruction following the CALL instruction which resulted in the subroutine. The RETURN
instruction has no effect on the status of the flags.
Condition
not valid

~_ = +1 RETURN
RETURN Z

» — RETURN Nz
Unconditional or RETURN C
condition valid RETURN NC

It is the responsibility of the programmer to ensure that a RETURN is only performed in response to a previous CALL instruction

such that the program counter stack contains a valid address. The cyclic implementation of the stack will continue to provide
values for RETURN instructions which can not be defined.

Bit11 Bit10 Condition
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 if Zero
1{011(0] 1 0Ol0oj]o|jOfOoflO|lO]l]0O]0O0]O 0 1 if NOT Zero
1 0 if Carry
Bit12 0 - UNCONDITIONAL 1 1 if NOT Carry

1 - CONDITIONAL

KCPSM3 Manual 19

RETURNI

The RETURNI instruction is a special variation of the RETURN instruction which should be used to conclude an interrupt service
routine. The RETURNI is unconditional and therefore will always load the program counter (PC) with the last address on the
program counter stack (the address is not incremented in this case since the instruction at the address stored will need to be
executed). The RETURNI instruction restores the flags to the condition they were in at the point of interrupt. The RETURNI also
determines the future ability of interrupts using ENABLE and DISABLE as an operand.

Stack

Preserved
CARRY CARRY
| |<—| I INTERRUPT ENABLE
PC ENABLED 7
LITTTTITTT]] — Preserved |:|
ZERO ZERO —
IO’
D I D DISABLE

It is the responsibility of the programmer to ensure that a RETURNI is only performed in response to an interrupt. Each RETURNI
must specify if further interrupt is to be enabled or disabled.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RETURNI ENABLE i{1(1{0(0|0|O0O|O0O|O|O|OfO|JOfO|OfO]|O |1

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RETURNI DISABLE i{1(1{0(0]0|/O0O|O0O|O|O|OfO|OfO|O|O]|O|O

KCPSM3 Manual 20

ENABLE/DISABLE INTERRUPT

These instructions are used to set and reset the INT_ENABLE flag. Before using ENABLE INTERRUPT a suitable interrupt

routine must be associated with the interrupt address vector (located at address 3FF). Interrupts should never be enabled whilst
performing an interrupt service routine.

ENABLE

ll’
INT_ENABLE I:l <

‘O’

DISABLE

Interrupts are masked when the INT_ENABLE flag is low. This is the default state of the flag following device configuration or a
KCPSM3 reset. The INT_ENABLE is also reset during an active interrupt.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ENABLE INTERRUPT (1| 1(1|1(0|0(O0O|O0O|O|O]|O[O|O|O|OfO]|0O|1

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DISABLE INTERRUPT (1| 1f(21|1(0|0(O|O|O|O|O[O|O|O|O0OfO]|O|O

KCPSM3 Manual 21

LOAD

The LOAD instruction provides a method for specifying the contents of any register. The new value can be a constant, or the
contents of any other register. The LOAD instruction has no effect on the status of the flags.

sX Constant
LI T T T T | —— [klkIk]k[k[k[k]k]

Since the LOAD instruction does not effect the flags it may be used to reorder and assign register contents at any stage of the
program execution. The ability to assign a constant with no impact to the program size or performance means that the load
instruction is the most obvious way to assign a value or clear a register.

The first operand of a LOAD instruction must specify the register to be loaded as register ‘s’ followed by a hexadecimal digit. The
second operand must then specify a second register value in a similar way or specify an 8-bit constant using 2 hexadecimal digits.
The assembler supports register naming and constant labels to simplify the process.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LOAD sX,kk ofojl]olo|lo]Oo|x|x|x|x|k|]k|k|[k]|]k|]k|[k]Kk

~ J

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LOAD sX,sY olofofofOof1|{x|x|x|x]ylyl|ly|ly|O|O|O]|O

KCPSM3 Manual 22

AND

The AND instruction performs a bit-wise logical ‘AND’ operation between two operands. For example 00001111 AND 00110011
will produce the result 00000011. The first operand is any register, and it is this register which will be assigned the result of the
operation. A second operand may also be any register or an 8-bit constant value. Flags will be effected by this operation. The AND
operation is useful for resetting bits of a register and performing tests on the contents (see also TEST instruction). The status of
the ZERO flag will then control the flow of the program.

sX sX Constant
(Il |«=— [IITTTTT] AND [kl klk[Kk[klk[k[k]
sX sX sY
(Il |«=— [IITTTTT] AND HEEEEEEN
Set if all bits of result are zero.
CARRY | 0 ZERO ? Reset in all other cases.

Each AND instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also form the
destination for the result. The second operand must then specify a second register value in a similar way or specify an 8-bit
constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AND sX,kk olol1|Oo| 1|0 |x|x|x|x|k|k|k]|k|[k[k]|[k]K

\ - >y
~" —~—

sX Constant
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AND sX,sY olfof1f(of1 |1 |{x|x|x|x]|]ylyl|ly|ly|O|O|O]|O

KCPSM3 Manual 23

OR

The OR instruction performs a bit-wise logical ‘OR’ operation between two operands. For example 00001111 OR 00110011 will
produce the result 00111111. The first operand is any register, and it is this register which will be assigned the result of the
operation. A second operand may also be any register or an 8-bit constant value. Flags will be effected by this operation. OR
provides a way to force any bits of the specified register to be set which can be useful in forming control signals.

sX sX Constant
(Il /]|« [II1TTTTTT] OR [kl klk[Kk[klk[k[k]
sX sX sY
(Il /]|« [II1TTTTTT] OR HEEEEEEN
Set if all bits of result are zero.
CARRY | 0 ZERO ? Reset in all other cases.

Each OR instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also form the
destination for the result. The second operand must then specify a second register value in a similar way or specify an 8-bit
constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OR sX,kk olol1l1|o0lO0o|x|x|x|x|k|lk|k]|]k|k|k]k]|[k
sX Constant
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OR sX,sY ofof1f{1fOof1|{x|x|x|x]|]ylyl|ly|ly|O|O|O]|O
sX sY

KCPSM3 Manual 24

XOR

The XOR instruction performs a bit-wise logical ‘XOR’ operation between two operands. For example 00001111 XOR 00110011
will produce the result 00111100. The first operand is any register, and it is this register which will be assigned the result of the
operation. A second operand may also be any register or an 8-bit constant value. Flags will be effected by this operation. The XOR
operation is useful for inverting bits contained in a register which is useful in forming control signals.

sX sX Constant
LI/ /| <=— [Tl] XOR [kl klk[Kk[klk[k[k]
sX sX sY
LI/ /| <=— [Tl] XOR HEEEEEEN
Set if all bits of result are zero.
CARRY | O ZERO ? Reset in all other cases.

Each XOR instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also form the
destination for the result. The second operand must then specify a second register value in a similar way or specify an 8-bit
constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
XOR sX,kk olol1|1|1]o|x|x|x|x|k|k|k]|k|[k[k]|[k]K

\ - >y
~" —~—

sX Constant
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XOR sX,sY olfof1 (1|1 |1|{x|x|x|x]|]ylyl|ly|ly|O|O|O]|O

KCPSM3 Manual 25

TEST

The TEST instruction performs a bit-wise logical ‘AND’ operation between two operands. Unlike the ‘AND’ instruction, the result of
the operation is discarded and only the flags are affected. The ZERO flag is set if all bits of the temporary result are low. The
CARRY flag is used to indicate the ODD PARITY of the temporary result. Parity checks typically involve a test of all bits, i.e. if the
contents of 's5’ = 3D (00111101), the execution of TEST s5,FF will set the CARRY flag indicating ODD parity. Bit testing is typically
used to isolate a single bit. For example TEST s5,04 will test bit2 of the ‘s5’ register which would set the CARRY flag if the bit is
high (reset if the bit is low) and set the ZERO flag if the bit is low (reset if the bit is high).

Temporary sX Constant
LI T/l]le—— Il [T T[] AND [klkfk[k[k[k[k[k]
Temporary sX sY
L7/l |l<— [Il T][] AND [[T TTT]]
CARRY | 2 Set |ft‘h(1ere are an odd number of bits ZERO o Set if gll bits of temporary result are zero.
: set to ‘1’ in the temporary result. : Reset in all other cases.

Each TEST instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. The second operand must
then specify a second register value in a similar way or specify an 8-bit constant using 2 hexadecimal digits. The assembler
supports register naming and constant labels to simplify the process.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TEST sX,kk ol1(0f(O0| 1|0 |x|x|x|x|k|k|k]|k|[k[k]|[k]K

~ J

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TEST sX,sY of1(o0f(Oof1 |1 |{x|x|x|x]ylyl|ly|ly|O|O|O]|O

KCPSM3 Manual 26

ADD

The ADD instruction performs an 8-bit addition of two operands. The first operand is any register, and it is this register which will be
assigned the result of the operation. A second operand may also be any register or an 8-bit constant value. Flags will be effected
by this operation. Note that this instruction does not use the CARRY as an input, and hence there is no need to condition the flags
before use. The ability to specify any constant is useful in forming control sequences and counters.

sX sX Constant

[Tl |e=— [T TP 4+ [kIklklklklkiclk]

sX sX sY

(il | <— iy + et

Set if result of addition exceeds FF. Set if all bits of result are zero.
CARRY | 7?7 Reset in all other cases. ZERO ? Reset in all other cases.

Each ADD instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also form the
destination for the result. The second operand must then specify a second register value in a similar way or specify an 8-bit
constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADD sX,kk ol1(1(o0|O0jOo|x|x|x|x|k|]k|k]|k|[k[k]|[k]KkK

\ - >y
~" —~—

sX Constant
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD sX,sY of1f(1f({ofOof1|x|x|x|x]|]ylyl|ly|ly|O|O|O]|O

KCPSM3 Manual 27

ADDCY

The ADDCY instruction performs an addition of two 8-bit operands together with the contents of the CARRY flag. The first operand
is any register, and it is this register which will be assigned the result of the operation. A second operand may also be any register
or an 8-bit constant value. Flags will be effected by this operation. The ADDCY operation can be used in the formation of adder
and counter processes exceeding 8 bits.

sX sX Constant CARRY
[(ITTTT T T T)le——— [ILTTTTTT] + [kIcIx[x[kIkx] + [
sX sX sY CARRY
(TTTT T T T e— [ILITITITTTT] + LLITITTTITTY +04
Set if result of addition exceeds FF. Set if all bits of result are zero.
CARRY | 7?7 Reset in all other cases. ZERO ? Reset in all other cases.

Each ADDCY instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also
form the destination for the result. The second operand must then specify a second register value in a similar way or specify an
8-bit constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADDCY sX,kk ol1(1|o| 1|0 |x|x|x|x|k|]k|k]|k|[k[k]|[k]K

\ - >y
~" —~—

sX Constant
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDCY sX,sY of1f(1f(of1 |1 |{x|x|x|x]|]ylyl|ly|ly|O|O|O]|O

KCPSM3 Manual 28

SUB

The SUB instruction performs an 8-bit subtraction of two operands. The first operand is any register, and it is this register which will
be assigned the result of the operation. The second operand may also be any register or an 8-bit constant value. Flags will be
effected by this operation. Note that this instruction does not use the CARRY as an input, and hence there is no need to condition
the flags before use. The CARRY flag indicates when an underflow has occurred. For example, if ‘sO5’ contains 27 hex and the
instruction SUB s05,35 is performed, then the stored result will be F2 hex and the CARRY flag will be set.

sX sX Constant
(Tl |e— [T TP - [kIklklklklkiclk]
sX sX sY
(il |l <— ity - et

Set if result is negative.
Reset in all other cases.

Set if all bits of result are zero.

CARRY | ? Reset in all other cases.

ZERO ?

Each SUB instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also form the
destination for the result. The second operand must then specify a second register value in a similar way or specify an 8-bit
constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SUB sX,kk ol 111|000 |x|x|x|x|k|]k|k]|k|k[k]|[k]KkK

\ - >y
~" —~—

sX Constant
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SUB sX,sY of1f(1f{1({O0of1|{x|x|x|x]|]ylyl|ly|ly|O|O|O]|O

Y B

sX sY

KCPSM3 Manual 29

SUBCY

The SUBCY instruction performs an 8-bit subtraction of two operands together with the contents of the CARRY flag. The first
operand is any register, and it is this register which will be assigned the result of the operation. The second operand may also be
any register or an 8-bit constant value. Flags will be effected by this operation. The SUBCY operation can be used in the formation
of subtract and down counter processes exceeding 8 bits.

sX sX Constant CARRY
[(TTTTTTT]e——— [ITTTTTTT] - [k[xIk[k[kI«[x[x] - []
sX sX sY CARRY
[(TTTTTTT]e—— [ITTTTTTT] - CIIITTTTTT] - 0[]
Set if result is negative. Set if all bits of result are zero.
CARRY | ? Reset in all other cases. ZERO ? Reset in all other cases.

Each SUBCY instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also
form the destination for the result. The second operand must then specify a second register value in a similar way or specify an
8-bit constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SUBCY sXkk Ol 111 1]0o|x|x|x|x|k|]k|k]|k|k[k]|k]KkK

\ - >y
~" —~—

sX Constant
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SUBCY sX,sY o111 (1|1 |{x|x|x|x]ylyl|ly|ly|O|O|O]|O

KCPSM3 Manual 30

COMPARE

The COMPARE instruction performs an 8-bit subtraction of two operands Unlike the ‘SUB’ instruction, the result of the operation is
discarded and only the flags are affected. The ZERO flag is set when all the bits of the temporary result are low and indicates that
both input operands were identical. The CARRY flag indicates when an underflow has occurred and indicates that the second
operand was larger than the first. For example, if ‘'sO5’ contains 27 hex and the instruction COMPARE s05,35 is performed, then
the CARRY flag will be set (35>27) and the ZERO flag will be reset (35#£27).

Temporary sX Constant

LI T T I «<— [T 111111] - [klkfklelkfk{cl[k]
Temporary sX sY

(it rfrl)l «<— 11ty - LI iifll

Set if ‘sY’ or ‘kk’ is greater than ‘sX’.
Reset in all other cases.

Set if operands are equal.
Reset in all other cases.

CARRY | ? ZERO ?

Each COMPARE instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. The second operand
must then specify a second register value in a similar way or specify an 8-bit constant using 2 hexadecimal digits. The assembler
supports register naming and constant labels to simplify the process.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
COMPAREsXkk [Oof1|0|l21|O0|]O0|x|x|x|x|k|k|[k|[k|k]|Kk]K]KkK

~ J

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
COMPAREsX,ssY |0 1|0 |1 |0 |1 |x|x|x|x|y]|lyl|ly|ly|O|O]|O]|O

KCPSM3 Manual 31

SRO, SR1, SRX, SRA, RR

The shift and rotate right group all modify the contents of a single register. All instructions in the group have an effect on the flags.

sX CARRY - :
Set if all bits of result are zero.
SRO sX o= IITTTTTTF»] ZERO | 7? Reset in all other cases.
sX CARRY
SRisX 2" [[TTTTHFH»] ZERO |0
] sX CARRY . .
Set if all bits of result are zero.
SRX sX |—>| |)
> [[[T 1]] ZERO ? Reset in all other cases.
sX CARRY
SRA sX) |:| Set if all bits of result are zero.
> [[[T 111 ZERO ? Reset in all other cases.
sX CARRY
RR sX LN T ZERO o Set if all bits of result are zero.
| D : Reset in all other cases.

Each instruction must specify the register as ‘s’ followed by a hexadecimal digit. The assembler supports register naming to
simplify the process.

Bit2 Bitl Bit0O Instruction

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 SRO sX
1{olololo|lo|x|x]|x]|x|]O|O|O|O]|1 1 1 1 SR1 sX
0 1 0 SRX sX

= ~ ~ 0 0 0 SRA sX

sX 1 0 0 RR sX

KCPSM3 Manual 32

SLO, SL1, SLX, SLA, RL

The shift and rotate left group all modify the contents of a single register. All instructions in the group have an effect on the flags.

CARRY sX : '
Set if all bits of result are zero.
SLO sX [l TTTTTTT &0 ZERO | 7? Reset in all other cases.
CARRY sX
SL1 sX [« TTTTTTT &1 zERO | 0O
CARRY sX Set if all bits of result are zero
SLX sX |<_—| '
DH [T T TT] ZERO ? Reset in all other cases.
CARRY sX KJ
SLA sX Set if all bits of result are zero.
D' LTI ZERO ? Reset in all other cases.
CARRY sX . .
RL sX T KJ ZERO o Set if all bits of result are zero.
D | : Reset in all other cases.

Each instruction must specify the register as ‘s’ followed by a hexadecimal digit. The assembler supports register naming to
simplify the process.

Bit2 Bitl Bit0 Instruction
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 SLO sX
1{olololo|lo|x]|x]|x|x|O]O|O|O|O 1 1 1 SL1sX
1 0 0 SLX sX
= ~ ~ 0 0 0 SLA sX
sX 0 1 0 RL sX

KCPSM3 Manual 33

OUTPUT

The OUTPUT instruction enables the contents of any register to be transferred to logic external to KCPSMS3. The port address (in
the range 00 to FF) can be defined by a constant value or indirectly as the contents of any other register. The Flags are not
affected by this operation.

Port Value sX PORT _ID Address Constant

[TTT T I /Tl | «—[TTTTTTT] LITTTTTTT]| <4———/[plplplplplplplp]
Port Value sX PORT_ID Address sY

[TTT T I /Tl | «—[TTTTTTT] [TTT T I /Tl | «—[TTTTTTT]

The user interface logic is required to decode the PORT _ID port address value and capture the data provided on the OUT_PORT.
The WRITE_STROBE is set during an output operation (see ‘READ and WRITE STROBES’), and should be used to clock enable
the capture register or write enable a RAM (see ‘Design of Output Ports’).

Each OUTPUT instruction must specify the source register as ‘s’ followed by a hexadecimal digit. It must then specify the output
port address using a register value in a similar way or specify an 8-bit constant port identifier using 2 hexadecimal digits. The
assembler supports register naming and constant labels to simplify the process.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OUTPUT sX,PP 1{ojl1|1(Oo|Oo|x|[x|x|x|plp|lP|lpPlPlP]|P]|P

\ - >y
~" —~—

sX Constant PORT_ID
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OUTPUT sX,(sY) 110|121 |0|1|x|x|x|x|yl|lyl|lyl|ly|]O]|]O]O]|O

~ 7/ ~ -/
Y B

sX sY

KCPSM3 Manual 34

INPUT

The INPUT instruction enables data values external to KCPSM3 to be transferred into any one of the internal registers. The port
address (in the range 00 to FF) can be defined by a constant value or indirectly as the contents of any other register. The Flags are
not affected by this operation.

sX Port Value PORT _ID Address Constant

[T T T/l | «—[TTTTTTT] LITTTTTTT]| <4———/[plplplplplplplp]
sX Port Value PORT _ID Address sY

[T T T/l | «—[TTTTTTT] [TTT T I /Tl | «—[TTTTTTT]

The user interface logic is required to decode the PORT _ID port address value and supply the correct data to the IN_PORT. The
READ_STROBE is set during an input operation (see ‘READ and WRITE STROBES’), but it is not always necessary for the
interface logic to decode this strobe. However, it can be useful for determining when data has been read, such as when reading a
FIFO buffer (see ‘Design of Input Ports’).

Each INPUT instruction must specify the destination register as ‘s’ followed by a hexadecimal digit. It must then specify the input
port address using a register value in a similar way or specify an 8-bit constant port identifier using 2 hexadecimal digits. The
assembler supports register naming and constant labels to simplify the process.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
INPUT sX,PP ojlo|loOf1|Oo|O0|x|x|x|[x|p|pP|lpP|PIlP|P|PI|P

\ - >y
~" —~—

sX Constant PORT_ID
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INPUTsX,(sY) [O[O|O0O |1 |0 |1 (x|[x|x|X|Yy|Yy|[Yy|y|O]|O]|O|O

~ 7/ ~ -/
Y B

sX sY

KCPSM3 Manual 35

STORE

The STORE instruction enables the contents of any register to be transferred to the 64-byte internal scratch pad memory. The
storage address (in the range 00 to 3F) can be defined by a constant value or indirectly as the contents of any other register. The
Flags are not affected by this operation.

Scratch pad Scratch pad
memory memory
3F 3F
sX sX
ﬁlllllllll /7IIIIIIIII
Constant sY
i address i address
: [olo[s[s[s[s]s[s] : [T T TTT]
00 00

Each STORE instruction must specify the source register as ‘s’ followed by a hexadecimal digit. It must then specify the storage
address using a register value in a similar way or specify a 6-bit constant storage address using 2 hexadecimal digits. The
assembler supports register naming and constant labels to simplify the process. Although the assembler will reject constants
greater than 3F, it is the responsibility of the programmer to ensure that the value of ‘sY’ is within the address range.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STORE sX,PP 11011110 X|Xx|Xx|Xx|[O0O]lO|s]|s|s]|s]|s]|s
sX Constant address
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STORE sX,(sY) 110|111 |12 |x|x|x|x|yl|lyl|ly|ly|]OoO]O]O]|O
sX sY

KCPSM3 Manual 36

FETCH

The FETCH instruction enables data held in the 64-byte internal scratch pad memory to be transferred any of the internal
registers. The storage address (in the range 00 to 3F) can be defined by a constant value or indirectly as the contents of any
other register. The Flags are not affected by this operation.

Scratch pad Scratch pad
memory memory
3F 3F
sX sX
IIIIIIIII<—\ IIIIIIIII<—\
Constant sY
address address
[olo[s[s[s[s]s[s] ‘ HEEEEEE ‘
00 00

Each FETCH instruction must specify the destination register as ‘s’ followed by a hexadecimal digit. It must then specify the
storage address using a register value in a similar way or specify a 6-bit constant storage address using 2 hexadecimal digits.
The assembler supports register naming and constant labels to simplify the process. Although the assembler will reject
constants greater than 3F, it is the responsibility of the programmer to ensure that the value of ‘sY’ is within the address range.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FETCH sX,PP ololO| 1|10 |Xx|x|[x|X]O|[O|Ss|s|s|s]|s]|s

\ - >y ~— —
~" ~

sX Constant address
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FETCHsX,(sY) |O|OfO |2 |2 |1 |x|x|x|[x|Yy|Yy|Yy|Yy[O]O]|O]|O

~ J ~ /

KCPSM3 Manual 37

READ and WRITE STROBES

These pulses are used by external circuits to confirm input and output operations. In the waveforms below, it is assumed that the
content of register sk is 47, and the content of register sA is 42.

CLk_| L1 L1 L] | [R S LI L1 L
ADDRESS[9:0] __18A X 18B X 18C X 18D X 18E X 18F
INSTRUCTION[17:0] _X inst18A X__INPUT s2,(sE) inst18C X__OUTPUT sA,65 inst18E X
PORT_ID[7:0] _X X a7 X 65
OUT_PORT[7:0] _X X X 42
WRITE_STROBE /T
READ_STROBE /A
KCPSM3 captures zata into s2 Use WRITE_lTROBE to clock
register on this clock edge. enable external circuit and

capture data on this clock edge

PORT_ID[7:0] is valid for 2 clock cycles providing additional time for external decoding logic and enabling the connection of
synchronous RAM. The WRITE_STROBE is provided on the second clock cycle to confirm an active write by KCPSM3. In most
cases, the READ_STROBE will not be utilised by the external decoding logic, but again occurs in the second cycle and indicates
the actual clock edge on which data is read into the specified register.

Note for timing critical designs, your timing specifications can allow 2 clock cycles for PORT_ID and data paths, and only the
strobes need to be constrained to a single clock cycle. Ideally, a pipeline register can be inserted where possible (see ‘Design of
Input Ports’, ‘Design of Output Ports’ and ‘Connecting Memory’).

KCPSM3 Manual 38

RESET

KCPSM3 contains an internal reset control circuit to ensure the correct start up of KCPSM3 following device configuration or
global reset (GSR). This reset can also be activated within your design.

reset
The KCPSMS reset is sampled synchronous to the clock and used to EDS EDS
form a controlled internal reset signal which is distributed locally as)
required. A small ‘filter’ circuit (see right) ensures that the release of the internal_reset
internal reset is clean and controlled. —l— — —
Release of Reset after configuration.
CLK _esR=2 | || [| L[| [1 -/ -5 [1T °LJ L
internal _reset \
ADDRESS[9:0] 000 X 001 X 002 X 003 X 004
INSTRUCTION[17:0] inst000 X inst001 X inst002 X inst003 X

Application of user reset input The reset input can be tied to logic ‘0" if not required and the ‘filter’ will still be used to
ensure correct power-up sequence.

clk | | -0 - -4 -4 -7 -7 7 [J7 >4 L
RESET ___ / \
internal _reset / \
ADDRESS[9:0] __123 X124 X 000 X 001 X 002
INSTRUCTION[17:0] _X inst123 Xinst124 X insto00 X inst001 X

KCPSM3 Manual 39

KCPSM3 Assembler

The KCPSM3 Assembler is provided as a simple DOS executable file together with three template files. Copy all the files
KCPSM3.EXE, ROM_form.vhd, ROM_form.v and ROM_form.coe into your working directory.

Programs are best written with either the standard Notepad or Wordpad tools. The file is saved with a ‘.psm’ file extension (8
character name limit).

Open a DOS box and navigate to the working directory. Then run the assembler ‘kcpsm3 <filename>[.psm]’ to assemble your
program. It all happens very fast!!
0 erspon s N 101 x;
[[Ve [rewt Fgmat Heip PR K L X Ky Zdad
Ol | W S0 ga |- | B

sTomific Lights Comtrol Frogomm

Programmahles State Hachine

Proqran USAge

sKar Chaprasrn - Kiline Lid - Saptanbar 20002 hepand CF §lemome >0 pem
sRsdified to NOFSA] - Juram 2000
H whsape
sFortw

ChEilename? shouwld he H alpha—numerical characters o lesa.
[.pam] FilLi o i v cammand 1ine hiil miase

corartmnt BS_light poct, 80

corartmnt EW_light port, 40

CONSERLE prasr switch_pern, 40

conrtmnt wsit_light poct, 10

conrtesnt men_light_pore, 10rbatOs=grasn men, baclerad men

RS A) conplete.

: CiwDESTGH™ .1 1~ECFEHI™ >
sFagirtears

nEmag w5 NS laghtrrbacd=Rad, bBatl=dnbac, BatO=Craan
namrag KV lightrrbitiefed, bitleintar, bitOscraam
nEmrag rh,wsit lightrbacO=wmat lighe

sInitim]l welvaw wred wat wp of ocotpuots

wtwrt:> lowed RIS lighitw, O Rad

domed EW_lighita, 04 Rad

dewd wnat_laghe, COrode

cutput RS lightw RS light port
cutput LW lights, EW_light port
coutput wmit_light, wsit_light poat

1o 20,02 <filename>.vhd <filename>.v <filename>.coe <filename>.m
cutput =0, men_light poctiFRed men on

amsble intsrroptransbles preaxr switch to work "|

! a Spartan-3/Virtex-1l Block RAM program ROM definition files

Fir Heslpy, prests Fi

KCPSM3 Manual 40

Assembler Errors

The assembler will stop as soon as an error is detected. A short message will be displayed to help determine the reason for the
error. The assembler will also display the line it was analyzing when it detected the problem. The user should fix each reported
problem in turn and re-execute the assembler.

(JUMP MZ, inner_short:s;inner loop complete after 1884 clock cuycles
SUB =1, Bl:outer loop 250x1664 clock cycles
JUMP HZ, inner_short:inner loop complete after 1,808,880 clock cycles

SUB s2, @1
JUMP NZ. outer_short
Previous Progress RETURN

ADDRESS 3EB

]
sLhong delay for sequencing of lights.
sapprox 38 seconds at 18MH=

delay_3@sec: LOAD s3. 1E

\
Line being processed —» inner_long: CALL delay_isecond

ERROR — Address iz not 3—digits: delay_lsecond
Error message —»

Provide a correct absolute addressz in range B8 to 3IFF or
a matching line label. Hote that labhels are casze sensitive.

Pleaze correct and try again.

KCPSM3 complete.

C:SDESIGH™ .11xkcpsm3~ASSEMB™ >

Since the execution of the assembler is very fast, it is unlikely that you will be able to ‘see’ it making progress and the display
will appear to be immediate. If you would like to review everything that the assembler has written to the screen, the DOS output
can be redirected to a text file using....... kcpsm3 <filename>[.psm] > screen_dump.txt

KCPSM3 Manual 41

Assembler Files

The KCPSMS3 assembler actually reads four input files and generates 15 output files. These are described in more detail on the
following pages.

<filename>.psm } Program file

passl.dat

—» Ppass2dat | assembler intermediate
pass3.dat } processing files
pass4.dat | (may be useful for debugging)

ROM_form.vhd —p

ROM_ form. v —> KCPSM3.EXE
ROM _form.coe ——p

passb.dat
o <filename>.vhd <filename>.log
ROM deflnlthn <filename>.v constant.txt Assempler
files for a variety , report files
<filename>.coe labels.txt

of design flows
<filename>.m

- Formatted version of
ROM definition files{ <filename>.hex <filename>.fmt } user input file

for other utilities <filename>.dec

Note - All output files are overwritten each time the assembler is executed.

The ‘hex’ and ‘dec’ files provide the program ROM contents in unformatted hexadecimal and decimal which is useful for
conversion to other formats not supported directly by the assembler. There is no further description in this manual.

KCPSM3 Manual 42

ROM_ form.vhd File

This file provides the template for the VHDL file generated by the assembler and suitable for synthesis and simulation. This file
is provided with the assembler and must be placed in the working directory.

The supplied ROM_form.vhd template file defines a Single Port Block RAM for Spartan-3, Virtex-II or Virtex-1IPRO configured
as a ROM. You can adjust this template to define the type of memory you want. The template supplied includes some

additional notes on how the template works

ROM form.vhd

entity {nanme} is

end {nane};

attribute INNT_00 of ram 1024 x 18 :
attribute INNT_01 of ram 1024 x 18 :
attribute INIT_02 of ram 1024 x_18 :

architecture low | evel _definition of {nane}

| abel
| abel
| abel

i S

is
is
S

e
{0
"

Port (address : in std_logic_vector(9 downto 0);
instruction : out std _|ogic vector(17 downto 0);
clk : in std_|ogic);

NI T_00}";
NI T _O1}";
NI T 02}";

The assembler reads the ROM_form.vhd
template and simply copies the
information into the output file
<filename>.vhd. There is no checking of
syntax, so any alterations are the
responsibility of the user.

The template contains some special text strings contained in {} brackets. These are { begi n t enpl at e}, {name}, and a
whole family of initialisation identifiers such as {INIT_01}. The assembler uses {begin template} to identify where the VHDL
definition begins. It then intercepts and replaces all other special strings with the appropriate information. {name} is replaced with

the name of the input program ‘.psm’ file.

KCPSM3 Manual 43

ROM form.v File

This file provides the template for the Verilog file generated by the assembler and suitable for synthesis and simulation. This file
is provided with the assembler and must be placed in the working directory.

The supplied ROM_form.v template file defines a Single Port Block RAM for Spartan-3, Virtex-II or Virtex-1IPRO configured as a
ROM. You can adjust this template to define the type of memory you want. The template supplied includes some additional
notes on how the template works

ROM_form.v
nodul e {nane} (address, instruction, clk);
i nput [9:0] address; The assembler reads the ROM_form.v template and
i nput cl k; simply copies the information into the output file
<filename>.v. There is no checking of syntax, so any
output [17:0] instruction; alterations are the responsibility of the user.

def param ram 1024 _x_18. 1 NI T_00
def paramram 1024 _x_18. I NI T_01
def param ram 1024 _x_18. I NI T_02

256' h{| NI T_00} ;
256' h{I NI T_01};
256' h{ I NI T_02};

The template contains some special text strings contained in {} brackets. These are { begi n t enpl at e}, {name}, and a
whole family of initialisation identifiers such as {INIT_01}. The assembler uses {begin template} to identify where the Verilog
definition begins. It then intercepts and replaces all other special strings with the appropriate information. {name} is replaced with
the name of the input program ‘.psm’ file.

KCPSM3 Manual 44

ROM form.coe File

This file provides the template for the coefficient file generated by the assembler and suitable for the Core Generator. This file is
provided with the assembler and must be placed in the working directory.

The supplied ROM_form.coe template file defines a Dual Port Block RAM for Spartan-3, Virtex-Il or Virtex-1IPRO in which the
A-port is read only and the B-port is read/write. You can adjust this template to define the type of memory you want Core

Generator to implement.

ROM_form.coe

conponent _nanme={ nane};
w dt h_a=18;

dept h_a=1024;

menory_initialization_radi x=16;
gl obal _init_val ue=00000;
menory_initialization_vector=

KCPSM3 Assembler

<filename>.coe

The assembler reads the ROM_form.coe template and simply copies the
information into the output file <filename>.coe. There is no checking of syntax,
SO any alterations are the responsibility of the user.

The template may contain the special text string {name} which the assembler
will intercept and replace with the name of the program file. In this example
you can see that {name} has been replaced with ‘simple’.

It is vital that the last line of the template contains the key words...
menory_initialization_vector=

These are used by the Core Generator to identify that the data values

follow, and the assembler will append the 1024 values required. Indeed,

the template could simply contain this one line provided the Core

Generator GUI is used to define all other parameters.

conponent _nane=si npl e;
w dt h_a=18;
dept h_a=1024,

menory_initialization_radi x=16;
gl obal _init_val ue=00000;
menory_initialization_vector=

01400, 23412, 09401, 100A0, 00018, 35401, 34000, 00000,

KCPSM3 Manual 45

<filename>.fmt File

When a program passes through the assembler additional files to the ‘.vhd’ and ‘.coe’ files are produced to be of assistance to
the programmer. One of these is called ‘<filename>.fmt’. This file is the original program but formatted to look nice. Looking at
this file is also an easy way to see that everything has been interpreted the way you had expected.

<filename>.psm

constant nax_count, 18;count to 24 hours

namereg s4, counter_reg; define register for counter
constant count_port, 12

start: load counter_reg,00;initialise counter

| oop: out put counter_reg, count _port

add counter _reg, 01;i ncrenent

| oad sO, counter_reg

sub s0, max_count;test for nax val ue

junmp nz, |l oop; next count

junp start;reset counter

» Formats labels and comments

* Puts all commands in upper case

* correctly spaces operands

* Gives registers an ‘sX’ format
 Converts hex constants to upper case

1,

Y
‘/ Write your PSM program
quickly and then use KCPSM3

to make a nice formatted
version for you to adopt as

KCPSM3 Assembler your own.
<filename>.fmt

CONSTANT nmax_count, 18 ;count to 24 hours
NAMEREG s4, counter _reg ;define register for counter
CONSTANT count _port, 12

start: LOAD counter_reg, 00 ;initialise counter

| oop: QUTPUT counter _reg, count port

ADD counter_reg, 01 ; 1 ncrement
LOAD sO, counter_reg
SUB s0O, nax_count ;test for nmax val ue
JUWP NZ, | oop ; next count
JUWP start ;reset counter

KCPSM3 Manual 46

<filename>.log File

The ‘.log’ file provides you with the most detail about the assembly process which has been performed. This is where you can
observe how each instruction and directive has been used. Address and op-code values are associated with each line of the
program and the actual values of addresses, registers, and constants defined by labels are specified.

<filename>.log

KCPSM3 Assenbler log file for program ' sinple.psm.
Generated by KCPSM3 version 1.01
Ken Chapman (Xilinx Ltd) 2003.
Addr Code
000 CONSTANT nmax_count, 18 ;count to 24 hours
000 NAMEREG s4, counter _reg ;define register for counter
000 CONSTANT count _port, 12
000 00400 start: LOAD counter_reg[s4], 00 ;initialise counter
001 2C412 | oop: OUTPUT counter_reg[s4], count_port[12]
002 18401 ADD counter_reg[s4], 01 ;1 ncr ement
003 01040 LOAD sO, counter _reg[s4]
004 18018 ADD sO, max_count[18] ;test for max val ue
005 35401 JUMP NZ, | oop[001] ; next count
006 34000 JUMP st art[000] ;reset counter
Instruction Comment
Op-Code Values contained in [] brackets indicate
the value associated with the label
Address Label

i.e. ‘loop’ is resolved to be address ‘001".

KCPSM3 Manual 47

constant.txt & labels.txt Files

These two files provide a list of the line labels and their associated addresses, and a list of constants and their values as defined
by ‘constant’ directives in the program file. These can be useful during the development and testing of larger programs.

constant.txt
Tabl e of constant values and their specified constant |abels.

18 nmax_count
12 count _port

- - W v
Constant
Label
labels.txt
Value Tabl e of addresses and their specified | abels.
000 start
001 || oop
T T
Line
Label
Address

KCPSM3 Manual 48

pass.dat Files

These are really internal files to the assembler and represent intermediate stages of the assembly process. These files will
typically be ignored, but may just help in identifying how the assembler has interpreted the program file syntax. The files are

automatically deleted at the start of the assembly process. If there is an error detected by the assembler, the ‘.dat’ files will
only be complete until the point of the last successful processing.

Part of passl.dat

LABEL -
| NSTRUCTI ON- add
OPERANDL- count er _reg
OPERAND2- 01
COMVENT- ; i ncr enment The example shown here is related to the line

The ‘.dat. Files segment the information from each line into the
different fields. Each pass resolves more information.

ADD counter_reg, 01 ;increnent
Part of passb.dat

It can be seen that passl has purely segmented the fields of the
ADDRESS- 002 line. In the final pass5, you can see that the assembler has
L ABEL - resolved all the relevant information.
FORMATTED- ADD counter_reg, 01
LOGFORMAT- ADD counter _reg[s4], 01
| NSTRUCTI ON- ADD
OPERANDL- count er _reg
OP1 VALUE-s4
OPERAND2- 01
OP2 VALUE-01
COVMENT- ; i ncr enent

KCPSM3 Manual 49

Program Syntax

Probably the best way to understand what is and is not valid syntax is to look at the examples and try the assembler. However
there are some simple rules which are of assistance from the beginning.

No blank lines - A blank line will be ignored by the assembler and removed from any formatted files. If you would like to keep a
line use a blank comment (a semicolon).

Comments - Any item on a line following a semi-colon (;) will be ignored by the assembler. Whilst comments are useful, it is
helpful if they are kept concise otherwise you will have very long lines and find it difficult to print out programs and log files.

Registers - All registers should be defined as the letter ‘s’ immediately followed by one hexadecimal digit the range 0 to F. The
assembler will accept any mixture of upper and lower case characters and automatically convert them to the ‘sX’ format where ‘X’
is one of 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. The NAMEREG directive can be used to assign new register names.

Constants - A constant must be specified using hexadecimal. Data values and Port Addresses in range 00 to FF. Memory store
values in the range 00 to 3F and program addresses in the range 000 to 3FF. The assembler will accept any mixture of upper and
lower case characters and automatically convert them to upper case.

Labels - Labels are any text string which the user defines. Labels are case sensitive for additional flexibility. Labels must not
contain any spaces although the under-score character is supported. Valid characters are ‘0’ to ‘9’, ‘a’ to ‘z’, and ‘A’ to ‘Z’. Again it
is helpful for labels to be reasonably concise if only for the formatting of a program to be reasonable. Labels which could be
confused with hexadecimal values or register specifications are rejected by the assembler.

Line Labels - A label is used to identify a program line for reference in a JUMP or CALL instruction and should be followed by a
colon (). The following example shows the use of a label to identify a program line and its use later in a JUMP instruction.

@ QUTPUT counter _reg, count_port
ADD counter_reg, 01 ;1 ncrement

LOAD s0O, counter _reg
X ;test for max val ue
; next count

KCPSM3 Manual 50

Program Syntax

Instructions - The instructions should be of the format described in the “KCPSM3 instruction set” page of this document. The
assembler is very forgiving over the use of spaces and <TAB> characters, but instructions and the first operand must be separated
by at least one space. Instructions with two operands must ensure that a comma (,) separator is used.

The assembler will accept any mixture of upper and lower case characters for the instruction and automatically convert them to
upper case. The following examples all show acceptable instruction specifications, but the formatted output shows how it was

expected.

| oad s5, 7E

AddCY s8, SE

ENABLE i nt errupt
Qutput S2, (S8)
junmp Nz, 2a7

ADD sF, step_val ue

| NPUT S9, 28
sl 1 se

store S8, (Sf)

Most other syntax issues will be solved by reading the error messages provided by the assembler.

KCPSM3 Manual 51

Assembler

>

LOAD s5, 7E

ADDCY s8, sE
ENABLE | NTERRUPT
QUTPUT s2, (s8)
JUMP NZ, 2A7

ADD sF, step_val ue
| NPUT s9, 28

SL1 sE

STORE s8, (sF)

CONSTANT Directive

The assembler supports three assembler directives. These are commands included in the program which are used purely by the
assembly process and do not correspond to instructions executed by KCPSM3.

The CONSTANT directive provides a way to assign an 2-digit hexadecimal value to a label. In this way the program can declare
constants such as port and storage addresses and particular data values needed in the program. By defining constant values in

this way it is often easier to understand their meaning in the program rather than using absolute values in the program lines. The
following example illustrates the directive syntax and its uses.

CONSTANT | i ght port, 03 ;i ght sensor port

CONSTANT | i ght _sensor, 01 ;bit0 is |ight sensor

CONSTANT tenp_sensor, 40 ;tenperature sensor port

NAMEREG sF, |ight_count_nsb ; 16-bit |ight pul se counter Note - A constant is global.

NAMEREG sE, |ight_count | sb Even if a constant is defined at

NAMEREG sD, new_tenp ;current tenperature the end of the program file, it

CONSTANT , 2E ; peak tenperature nenory can be used in instructions
light _test: INPUT sl1, |ight port ;test for light anywhere in the program.

TEST s1, |ight_sensor

JUWP Z, tenp_test cjunmp if no |ight

ADD |ight_count _Isb, 01 . i ncrement counter Constant names must not

ADDCY | i ght count_msb, 00 contain any spaces although the

tenp_test: |NPUT new tenp, tenp_sensor ;read tenperature under-score character is

FETCH s2, supported. Valid characters are

COVMPARE s2, new._tenp . conmpare with peak val ue 0"t0°9","a’to 'Z', and A" to °Z.

JUMP NC, |ight test ;new value is smaller

STORE new_t enp, ;wWrite new peak val ue

JUWP |ight test

‘' ght port‘and‘tenp sensor‘are used to specify port addresses. This is particularly useful when defining the hardware
interface, and allows the program to be developed before the 1/0 addresses are fully defined. ‘I i ght _sensor’is being used to
specify a data constant which in this case identifies which bit is to be tested. ° " defines a scratch pad memory location
which is then used to hold a variable.

KCPSM3 Manual 52

NAMEREG Directive

The NAMEREG directive provides a way to assign a new name to any of the 16 registers. In this way the program can refer to
‘variables’ by name rather than as absolute register specifications. By haming registers in this way it is often easier to understand
the meaning in the program without the need for so many comments. It can also help to prevent inadvertent reuse of a register
with associated data corruption.

Important - The NAMEREG directive is applied in-line with the code by the assembler. Before the NAMEREG directive, the
register will be named in the ‘sX’ style. Following the directive, only the new name will apply. It is also possible to rename a
register again (i.e. NAMEREG counter_reg, hours) and only the new name will apply in the subsequent program lines.

CONSTANT | i ght_port, 03 ;i ght sensor port
CONSTANT | i ght _sensor, 01 ;bit0 is |ight sensor
CONSTANT tenp_sensor, 40 ;tenperature sensor port

NAMEREG sF, |ight_count_nsb ; 16-bit |ight pul se counter
NAMEREG sE, |ight_count | sb

NAMVEREG sD, new tenp ;current tenperature Register names must not
CONSTANT peak_tenp, 2E ; peak tenperature nenory contain any spaces although

light _test: INPUT sl1, |ight_port ;test for light the under-score character is
TEST s1, |ight_sensor supported. Valid characters are
JUWP Z, tenp_test ;junp if no Iight ‘0'to ‘9", ‘a’ to ‘z’, and ‘A’ to ‘Z’.
ADD |ight _count _Isb, 01 ;i ncrenent counter

ADDCY |i ght _count _nsb, 00

tenp_test: |INPUT new tenp, tenp_sensor ;read tenperature
FETCH s2, peak_tenp
COVWPARE s2, new_ tenp ;conpare with peak val ue
JUWP NC, |ight_test ;new value is smaller
STORE new tenp, peak_tenp ;wWrite new peak val ue
JUWP |ight test

The register ‘sD’ has been renamed to be ‘new t enp* and is then used in multiple instructions making it clear what the
meaning of the register contents actually are.

KCPSM3 Manual 53

ADDRESS Directive

The ADDRESS directive provides a way force the assembly of the following instructions commencing at a new address value. This
is useful for separating subroutines into specific locations, and vital for handling interrupts. The address must be specified as a 3-
digit hexadecimal value in the range ‘00’ to ‘3FF’.

In the following code segment, the ADDRESS directive defines the address for the interrupt vector.

JUW NZ, inner_Ilong
RETURN
;I nterrupt Service Routine
| SR LOAD wait_light, 01 ;register press of switch
OQUTPUT wait_light, wait_light_port ;turn on |ight
RETURNI DI SABLE ;continue |ight sequence but no nore interrupts
ADDRESS 3FF ;I nterrupt vector
JUWP | SR
;end of program

The log file clearly shows that the ADDRESS directive has forced the last instruction into the highest memory location in the
program RAM. This is the address to which the program counter is forced during an active interrupt.

3E3 357El JUWP NZ, inner_|ong[3El]

3E4 2A000 RETURN

3E5 ;I nterrupt Service Routine

3E5 O00A01 ISR LOAD wait _|ight[sA], 01 ;register press of switch

3E6 2CA10 OUTPUT wait _light[sA], wait_light_port[10] ;turn on |ight

3E7 38000 RETURNI DI SABLE ;continue |ight sequence but. ..
3FF ADDRESS 3FF ;I nterrupt vector

3FF 343E5 JUWP | SR 3E5]

3FF ;end of program

KCPSM3 Manual 54

KCPSM and KCPSM2 Compatibility

KCPSM and KCPSM2 are very much ‘brothers’ with many similarities (see ‘PicoBlaze Comparison’). However, each has been
tuned to the specific device architecture so there are differences.

Common points

The KCPSMS3 assembler has slightly different rules concerning which labels for lines, constants, and registers are acceptable.
Therefore, it may be necessary to adjust some of the user names in your program code. Typically, labels are nicely ‘descriptive’
and this issue will not be encountered.

The KCPSM3 macro has an INTERRUPT_ACK output signal which the previous versions did not have. It is not vital to use this
signal in your design, but should be included in the component port definitions.

The internal scratch pad memory will often mean that external memory connected to I/O ports can be removed. This will simplify
the logic design and require the code to reflect the use of STORE and FETCH instructions in place of INPUT and OUTPUT.

KCPSM to KCPSM3

KCPSM3 is in every way a superset of of KCPSM so there will be very few issues migrating a KCPSM based design and code.
The address range of KCPSM3 supports a program which is four times larger than KCPSM and therefore all programs will be
able to fit. Code will need to reflect that absolute address values need to be specified with 3 hexadecimal digits (not 2). The use
of line labels will mean that most cases will be handled automatically by the assembler, but special care should be taken with
ADDRESS directives. Most critical is that the interrupt vector will need to be located at ‘3FF’ (not FF).

KCPSM2 to KCPSM3

KCPSM3 has 16 registers compared with the 32 registers of KCPSM2. The default register names used in KCPSM2 are ‘s00’ to
‘s1F’ and will need to be modified to conform to the default names ‘sQ’ to ‘sF’ available in KCSPM. Although the use of
NAMEREG directives will be helpful, some fundamental changes will almost certainly be required to compensate for the lower
number of available registers. The internal scratch pad memory provides 64 locations which should more than compensate for
the lower number of registers but obviously requires a change to the coding style. The program address range and interrupt
vector are identical.

KCPSM3 Manual 55

PicoBlaze Comparison

This chart shows a comparison of the features offered by the FPGA variants of PicoBlaze. XAPP387 describes the CoolRunner

implementation of an 8-bit micro controller which was also based on the original KCPSM processor.

KCPSM

KCPSM2

KCPSM3

Target Devices

Spartan-1l, Spartan-lIE,
Virtex, Virtex-E

Virtex-Il, Virtex-1IPRO

Spartan-3,
Virtex-Il, Virtex-1IPRO

Program Size

256 instructions
(256x16 Block RAM)

1024 instructions
(1024x18 Block RAM)

1024 instructions
(1024x18 Block RAM)

Registers 16 32 16
Scratch-Pad Memory - - 64 Bytes
Size 76 Slices 84 Slices 96 Slices
CALL/RETURN stack 15 levels 31 levels 31 levels

Features and Comments

Smallest and oldest!
Very well used and proven.
Relatively small program
space.

Register rich.
Virtex-11 devices only.
Can not migrate design
directly to Spartan-3.

COMPARE and TEST
instructions, PARITY test,
Scratch-pad memory,
INTERRUPT_ACK signal

As with most things, there is a clear trend for PicoBlaze to become larger as more features are added. The author welcomes all
feedback regarding this trend to determine the size acceptable for a programmable state machine (PSM).

KCPSM3 Manual 56

Interrupt Handling

Effective interrupt handling is a skillful task and this document does not attempt to explain how and when an interrupt should be
used. The information supplied should be adequate for the capability of KCPSM3 to be assessed and for interrupt based
systems to be created.

Default State - By default the interrupt input is disabled. This means that the entire 1024 words of program space can be used
without any regard to interrupt handling or use of the interrupt instructions.

Enabling Interrupts - For an interrupt to take place the ENABLE INTERRUPT command must be used. At critical stages of a
program execution where an interrupt would be unacceptable, a DISABLE INTERRUPT can be used. Since an active interrupt
will automatically disable the interrupt input, the interrupt service routine will end with a RETURNI instruction which also includes
the option to ENABLE or DISABLE the interrupt input as it returns to the main program.

What happens during an interrupt? The program counter is pushed onto the stack and the values of the CARRY and ZERO
flags are preserved (to be restored by the RETURNI instruction). The interrupt input is automatically disabled. Finally the
program counter is forced to address 3FF (last program memory location) from which the next instruction is executed.

Preserved
Stack CARRY CARRY
PC New Address
Preserved
¢ L PP PP «—— [a]afafafafafafafafa] ZERO ZERO
Effects of an active interrupt. INT_ENABLE
D l (01

KCPSM3 Manual 57

Basics of Interrupt Handling

Since the interrupt will force the program counter to address ‘3FF’ it will generally be necessary to ensure that a jump vector to a
suitable interrupt service routine (ISR) is located at this address otherwise the program will ‘roll over’ to address zero.

In most cases an ISR will be provided. The routine can be located at any position in the program and jumped to by the interrupt
vector located at the ‘3FF” address. The ISR will perform the required tasks and then end in RETURNI with ENABLE or
DISABLE.

Simple Example - The following example illustrates a very simple interrupt handling routine.......
The KCPSM3 is generally involved with generating waveforms to an output by writing the values ‘55’ and ‘AA’ to the
‘waveform_port’ (port address 02). It does this at regular intervals by decrementing a register (sO) based counter 7 times in a

loop.

When an interrupt is asserted, the KCPSM3 breaks off from the waveform generation and simply increments a separate counter
register (SA) and writes the counter value to the ‘counter_port’ (port address 04).

Interrupt_event KCPSM3
[
= IN_PORT[7:0] OUT_PORTI[7:0]
PORT_ID[7:0
INTERRUPT PORT_ID[7:0] - o2) oE
_ b = L/ Counter
= — RESET READ_STROBE|— (D Q
—p CLK WRITE_STROBE o —
INTERRUPT_ACK PORT IDL
= —D CE Waveforms
= INSTRUCTION[17:0] ADDRESS[9:0] e

KCPSM3 Manual 58

Example Design (VHDL)

The following VHDL shows the addition of the data capture registers and interrupt control to the processor. Note the simplified port
decoding logic through careful selection of port addresses. The complete VHDL file is supplied as ‘kcpsma3_int_test.vhd'.

| O registers: process(clk)
begi n

if clk'event and cl k="1" then

-- waveformregister at address 02

if port_id(1)="1 and wite_strobe="1" then
wavef orns <= out port;

end if;

interrupt _control: process(clk)

-- Interrupt Counter register at address 04 RRdlL

if port_id(2)="1 and wite_strobe="1" then
counter <= out_port;
end if;

if clk'event and cl k="1"'" then

if interrupt_ack="1" then
interrupt <= '0";
el sif interrupt_event="1" then
interrupt <= "'1";
el se
interrupt <= interrupt;
end if;

end if;
end process |1 O registers;

end if;
end process interrupt_control;

KCPSM3 Manual 59

Interrupt Service Routine

In the assembler log file for the example, it can be seen that the interrupt service routine has been force to compile at address
‘2B0’, and that the waveform generation is located in the base addresses. This makes it easier to observe the interrupt in action in
the operation waveforms. This program is supplied as ‘int_test.psm’ for you to assemble yourself.

Main program delay loop where
most time is spent

Interrupt Service Routine

«— | (located at address 2B0 onwards)
2B0

2B0

Interrupt vector set at address 3FF
280 }/ and causing JUMP to service routine

KCPSM3 Manual 60

Interrupt Operation

The waveforms below taken from an actual ModelSim-XE simulation show the operation of KCPSM3 when executing the example
program at the time of an interrupt. The VHDL test bench used to generate these waveforms is supplied as ‘testbench.vhd'.

By observing the address bus, it is possible to see that the program is busy generating the waveforms and even shows the
‘waveforms’ port being written the ‘AA’ pattern value. Then whilst in the delay loop which repeats addresses ‘005’ and ‘006’ it
receives an interrupt pulse.

It can be seen that KCPSM3 took a few clock cycles to respond to this particular pulse (see ‘timing of interrupt pulses’) before
forcing the address bus to ‘3FF’ and issuing an INTERRUPT_ACK pulse. From ‘3FF’, the obvious JUMP to the service routine
located at ‘2B0’ can be seen to follow and a new counter value (in this case ‘03’) is written to the ‘counter’ port.

Interrupt Service
Delay loop vector Routine
N AL
A Y
clk 1 J_I_I_LI_LI_I_I_LI_IJ_I_I_LI_I_I_I_I_LI_I_I_IJ_LI_IJ_LI_LI_I_I_L L]
address iliE] 004 __)EEE 0 O0G IEE_EII PE2 T0E
instruction I 0008 [ACO0T __ Ja5405 ji0o01 ja540h 250 = ; T =
write_strobe IR N
counter [ENIEN
waveforms ERNEG_:G_—_ Y

interrupt
interrupt_event

interrupt_ack

_/
. Event sets Point of Acknowledge
Write to ‘waveforms’ port interrupt interrupt clears interrupt Write to ‘counter’ port

The operation of a KCPSM3 interrupt can also be observed. It can be seen that the last address active before the interrupt is ‘006’.
The JUMP NZ instruction obtained at this address (op-code 35405) is not executed. The flags preserved are those which were set
at the end of the instruction at the previous address (SUB s0,01). The RETURNI has restored the flags and returned the program

to address ‘006’ in order that the JUMP NZ instruction can at last be executed.

KCPSM3 Manual 61

Timing of Interrupt Pulses

It is clear from the previous simulation waveforms that the constant two cycles per instruction is maintained at all times. Since this
includes an interrupt, the use of single cycle pulse for interrupt can be risky. However, the following waveform can be used to
determine the exact cycle on which the interrupt is observed and the true reaction rate of KCPSM3.

Interrupt sampled on clock edge associated
with change of address

|

CLK LI LI 1L I LI L[L rLrv
INTERRUPT [
INTERRUPT_ACK /—\
ADDRRESS[9:0] —05 X 006 X 06X 006 X X 250
INSTRUCTION[17:0] _X 1C001 X 35405 X 1ci:001 :X 35.5405 X 342B0 X

2 cycles

It is therefore advisable that an interrupt signal should be active for a minimum of two KCPSMa3 rising clock cycle edges. It is
generally advisable to use the INTERRUPT_ACK signal in a similar way to that demonstrated in the example to ensure that an
interrupt is not missed.

When using logic to combine multiple sources of interrupt, a typical interrupt service routine will read a specific port to determine
the reason for interrupt. In this case, the READ_STROBE and PORT_ID can be decoded and used to clear the external interrupt
register.

KCPSM3 Manual 62

CALL/RETURN Stack

KCPSM3 contains an automatic embedded stack which is used to store the program counter value during a CALL instruction or
interrupt and restore the program counter value during a RETURN or RETURNI instruction. The stack does not need to be
initialised or require any control by the user. However, the stack can only support nested subroutine calls to a depth of 31.

This simple program can calculate the sum of all integers up to a certain value, i.e. ‘sum_of value’ when value=5 is
1+2+3+4+5=15. In this case, the sum of integers up to the value 31 (1F hex) is calculated to be 496 (01FO0 hex). This is achieved
by using a recursive call of a subroutine and results in the full depth of the call/return stack being utilised. Obviously, this is not a
particularly efficient implementation of this algorithm, but it does fully test the stack.

Increasing value to 20 (32 decimal) will result in incorrect
NAVEREG sO, total |ow operation of KCPSM3. The stack is a cyclic buffer, so the
NAVEREG s1, total :hi gh ‘bottom’ of the stack will be overwritten by the ‘top’ of the
NAVEREG s8, val ue stack during the 32nd nested CALL instruction.

start: LOAD val ue, :find sumof all values to 31

LOAD total | ow, 00 ;clear 16-bit total
LOAD total _high, 00
CALL sum to_val ue ;cal cul ate sum of all nunbers up to val ue

QUTPUT total high, 02 ;Result will be 496 (01F0 hex)
QUTPUT total |ow, 01
JUWP start

; Subroutine called recursively

sumto value: ADD total |ow, value ;perform 16-bit addition
ADDCY total high, 00
SUB val ue, 01 ; reduce value by 1
RETURN Z ;finished if down to zero
CALL sum to_val ue ;recursive call of subroutine
RETURN ;definitely finished!

KCPSM3 Manual 63

Sharing Program Space

For ease of design and possibly to meet system performance requirements, it is often desirable to use multiple KCPSM 3 macros in the same
device. Each KCPSM3 is designed to work with a single Block RAM which provides 1024 |ocations in the Spartan-3 and Virtex-11 devices.
For many control and state machine applications, this program size may be found to be excessive and lead to wasted block memory
resources.

Since block RAM isdual port, it is quite possible to connect two KCPSM3 macros to the same block memory.....
/

/
9
Memory address
RAMB16_S18 S18
range 000 to 1FF — 5
WEA DOPA 18 KCPSM3
- 16 instruction
10 | \opra DOA address —C
—p CLKA :
Aspect Ratio Both processors use an address range 000
2048%9 to 1FF and only use the lower 9 address
1 C lines. Interrupts will still work, but the
vee WEA 2 KCPSM3 interrupt vector must be placed at address
- DOPA 18 1FF (the last effective memory location).
- 16 instruction
10 | \opra DOA address —C
—p CLKA
Memory address
range 200 to 3FF
/
/
9

Concept acknowledgement : Steve Knapp (Xilinx Inc.)

KCPSM3 Manual 64

Design of Output Ports

Being thoughtful about your interface circuit design will enable the logic to remain compact and performance to be maintained.
The following diagrams show suitable circuits for output ports, input ports and connection of memory. If you are using a
synthesis tool, it is advisable to check that your code is not describing a circuit which is more complex than is really required and
that the synthesis tool is implementing the correct logic.

Simple Outputs

v

For 8 or less simple output ports try to assign ‘one-hot’ addresses and then PORT_ID3 CE
make sure that your design only decodes the appropriate PORT_ID signal. — et &
This greatly reduces the logic for address decoding which is advantageous
for lower cost and performance. It also reduces the loading on the PORT _ID -7
bus which is often critical to overall system performance.
PORT_lDz'—D CE] port o
Use of CONSTANT directives in the program make the code readable and — et ——
help ensure that the correct ports are used. N
PORT_IDl.—I |_/\ CE port B

CONSTANT Port_A, 01 °Q

CONSTANT Port_B, 02 -7

CONSTANT Port _C, 04 KCPSM3

CONSTANT Port D, 08 pORT_ID0®) oE

_ OUT_PORT[7:0] L/ Port_A

’ OUT_PORT]7:0] DQ

QUTPUT sO, Port _A PORT_ID[7:0] N

QUTPUT s1, Port_B PORT_ID[7:0]

QUTPUT s2, Port _C

OUTPUT s4, Port_D D WRITE_STROBE

Note that all blocks share a common clock

KCPSM3 Manual 65

Design of Output Ports

Fully Decoded Outputs and high performance WR'TE—STROBE
gating (cycle 2)
When there is a requirement to address blocks of memory and many simple ports, a
large number of the 256 output port locations may be used requiring the PORT _ID _D—CE Port A
addresses to be more fully decoded. If performance is critical, then careful design DQ -
will again be advantageous. —b
The key observation is that during a write gre— e OV ORI
operation the PORT_ID and OUT_PORT - RAM32X 1S (x8)
are provided for 2 clock cycles with the Address
WRITE_STROBE only active during the Decoding ._D— WE
second of the two cycles (see read and (cycle 1)
write strobes). Although time D Or=
specifications can be used to cover the 01000000 B0 1 A[4:0]
2-cycle paths, it is often easier to insert PORT_IDIZ0] D— ENA '
pipeline stages and split the address -+ —P WCLK
decoding effort as shown here. 001"
Port Mapping PORT_ID[7:5] :}_ EN_SP RAM16X1D (x8)
Dual Port (16 bytes) - 00 to OF + .—D_ WE
Single Port (32 bytes) - 20 to 3F ‘0000’ D SPO fum
PORT_ID[7:4] EN_DP _
Port_A -40 :>_ [3:01 A[3:0]
-
KCPSM3 | | | b weLk
OUT PORT[7:0] OUT_PORT[7:0] PORT_ID[4:0] PIPE_PORT_IDI401} | [
| PORT_ID[7:0] - | — gee DPO fm=
PORT_ID[7:0] ‘Connecting Memory’ = DPRA[3:0]
—D WRITE_STROBE

Note that all blocks share a common clock

KCPSM3 Manual 66

Design of Input Ports

The connection of input ports leads to the definition of a multiplexer. Obviously the size of this multiplexer is proportional to the
number of inputs and having many inputs can lead to issues with performance unless care is taken with the description of this

multiplexer structure.
Simple Inputs

For 8 or less simple input ports the single multiplexer is ideally suited to connect the various input

Note that all blocks share a common clock

] PORT_ID[L:0]

Source_D — signals to the IN_PORT. It is advisable to check the results of synthesis to ensure that the
- special MUXF5 and MUXF6 are being employed to make the most efficient multiplexer structure.
-

Source_C KCPSM3

IN_PORTI[7:0

T — ORI IN_PORTI7:0]

Source_8 Tt PORT_ID[7:0
— PORT_ID[7:0] =2

Source A — READ_STROBE |—
ey T

/

Because the PORT _ID is valid for 2 clock cycles
the multiplexer can be registered to maintain
performance.

In the majority of cases, the actual clock cycle at

which an input is read by the processor isn'’t critical.

Therefore the paths from the sources can typically
be registered such as using the 1/O registers when
coming from actual device pins. This will help
simplify time specifications, avoid reports of ‘false
paths’ and lead to reliable designs.

KCPSM3 Manual 67

CONSTANT Source_A, 00
CONSTANT Source_ B, 01
CONSTANT Source_C, 02
CONSTANT Source D, 03

| NPUT sO, Source_A
| NPUT s1, Source_B
I NPUT s2, Source_C
I NPUT s3, Source_D

The multiplexer means that the best
addresses to assign for input ports are
normal binary encoding.

IMPORTANT

Failure to include a register anywhere in
the path from PORT_ID to IN_PORT is
the most common reason for observing
significantly lower clock rates than
indicated in the ‘Size and Performance’

section of this manual. So make sure
you have one!

Design of Input Ports

Occasionally it will be important that a circuit providing data to KCPSM3 to know that it has been read. The obvious example is a
FIFO buffer which will then prepare the next data to be read.

Source C
— [
. Note that all blocks share a common clock
PORT _ID decode and Source_B
READ_STROBE gating - KEPSMS
may be combined by + el et [N PORT/[7:0]
removing the flip-flop if Source_A -+ PORT_ID[7:0]
performance is adequate. - PORT_ID[7:0] =] PORT_ID[1:0]
-
- A ~ FIFO —D READ_STROBE l
EN F FIFO_data
= data_out L —
:®_ read
-
—P
CLk | L1 L4 [1 ©L_1
) The data path from the FIFO is quite separate to the
XX 00
PORT _ID[7:0] A R XX read acknowledgement circuit.
IN_PORTJ[7:0] _X XX X 3A X XX
In this example the FIFO is assigned the address
READ_STROBE /2 ‘00", Initially the FIFO is providing data with the value
‘3A’. The act of reading the port causes the FIFO to
EN_F / - provide the next data of value ‘7B’.
FIFO_data 3A A___78B

KCPSM3 Manual 68

Connecting Memory

The connection of memory (Dual port is ideal for communication with other modules) is the most common cause for reduction in
system performance. Observing where pipeline registers can be inserted, splitting the input multiplexer and careful allocation of

port addresses all contribute to improving system performance.
PORT_ID6 :Di CE
——L_F e Port_B

Source_D Normal inputs Small Cg;nblnaéorlal n;}ulﬂplexer o
[can be registered ~ 'eduired toread synchronous e —
memory during second cycle

Source_C /
- / KCPSM3 MD:D CE | pora
1
—

— 0 -N1
PORT_ID[7:0)] s
Source_A 1 P WRITE_STROBE RAMI6X1D (x8)
—— PORT_ID7 n |) WE
a)
2 - \ i D SPO =
[a)]
= o} . . PORT_ID[3:0
e o Single PORT_ID line used to DI3:0] A[3:0] _
% select combinatorial MUX.
a — WCLK T
Can not register address DPO =
because MemMOry iS (€20 e DPRA[3:0]
Port Manoin on first cycle
: |
:npu; gource_g\ i 82 (F;e?d/ \tNFEItet ”’]Aemggy (16 bytes) - 80 to 8F Register output of distributed RAM to make ‘synchronous
Input Source_C i 02 Output Port_B i 40 read’ style. This breaks the 2-cycle path mid-way. Block
nput Source_~ - utput=ort b - memory is ‘synchronous read’ by default.

Input Source_D - 03 N . . .
[] = Additional places to insert flip-flops if really necessary for performance.

KCPSM3 Manual 69

Simulation of KCPSM3

KCPSM3 is supplied as a VHDL macro together with an assembler. No tools are currently supplied for the direct simulation of
code. However, this immediate lack of simulation tools does not appear to have deterred many thousands of Engineers from
using PicoBlaze macros over the past few years. Common reasons for this acceptance of this situation are:-

Interaction with hardware

It is very common for PicoBlaze to be highly interactive with the hardware in which it is embedded. With virtually continuous
interaction between the processor and the input and output ports, it would be difficult to simulate these interactions in a purely
software isolated environment. In a similar way, the simulation of the hardware design requires the stimulus from the processor.
So in many cases, the simulation of the processor will become part of the hardware simulation using a tool such as ModelSim.
The following pages illustrate how the KCPSM3 macro can be used directly in a VHDL simulation and describes some features
within the coding of the macro which enhance the simulation of the PSM software execution as well as the 1/0 ports.

It would all be too slow!

Hardware is very fast in that it can work every clock cycle. Hardware simulators are required to display results in pico-seconds
and nano-seconds. In contrast, PicoBlaze is often employed in operations which are less time critical or deliberately slow in
comparison. For example, a real time clock is impractical to simulate using a hardware simulator or a software simulator and
UART based communication, even at high baud rates, is desperately slow relative to a 50MHz clock.

The solution in these cases is quite simply to use the hardware directly as the testing and debugging medium. It is quite
possible to recompile a small design in less than a minute to make iterative changes to code and hardware. The key to success
is to start with very simple experiments and only make small changes and additions each iteration. The dual port block RAM
can be exploited to provide a development platform with a rapid way to download new programs. One method is to use the
user port on the JTAG controller and a reference design for this is described by Kris Chaplin in his Tech Xclusive article which
can be found at.. http://www.xilinx.com/support/techxclusives/techX-home.htm

Other tools are available

Some Engineers that have used PicoBlaze over the years have been busy writing their own development tools. One company,
Mediatronix, has been kind enough to make a full PicoBlaze Integrated Design Environment (IDE) available to other designers at
no charge simply by downloading it from the ‘tools’ section of their web site..... http://www.mediatronix.com

Many thanks to Mediatronix!

KCPSM3 Manual 70

VHDL Simulation

The ‘kcpsm3.vhd’ file is written in a style which is suitable for simulation as well synthesis. The default template used in the
generation of the program ROM VHDL file also includes the necessary definition of a block RAM for simulation. Therefore no
special steps need to be taken to simulate KCPSMS3 as part of your design or in a smaller test case.

Signals

All of the signals forming connections to and from the KCPSM3 macro and the program ROM should be available to you via
your simulator. ModelSim makes signals available as illustrated below.

IR
View allows you to display further - wave / File Edit iew indow
windows although some may open tsthench .

- structure structure enables you to

automatically. - signals identify the processor in your .
-variables design and signals will then
- process display a list of all the i
signals within the processor receive

macro. H ko
W vital_primitives

=101]

ﬁMDdElSiI‘I‘I XF I1 5.7c - Custom Xilinx ¥ersion
File Edit { Yiew) Compile Simulate Toaols | Help

| = B ™ J & J 100 ps 5] =1 RURTY File Edit Wiew Add Tools ‘Window
workspace x| i 0010011110 Led
T — I Diesign Ut j # Loading C: Modeltech_se 5 FoiwindZs in
dlurizim, sorcu(gorcy_w]
testhench testhench # Loading C: AModeltech_re_ 5 7o/wind2
Lk uart_clock dlurizirm. inefine_v]
kcpsmao # Lu:-e_u:!ing C:/Modeltech_wxe 5. 7Fodwindds |-
: dlfunizimn. fdreelfdrze_v] ;l
program_rom uclack (lov # Loading C:Modeltech_xe_5.7c/wina2: A
tranzmit uart_txlme dlurizim.ramE=1d[ram16x1d_v] !”r—p"'r'r |
; 4 # Loading C: Modeltech_se 5 FoiwindZs InkerrLpk
ECEe uart_(m dlfurizim. ramB4=1 zrambda] s_v] intermupt_ack AryEEEEl i
M rko wpkg # Loading C:/Modelech_xe_B. 7fwind2s -
W vital_primitives wital_prirnil dlurizim. musfBmu=fS_wv]
B vcomponents YCOMpONE # Loading C: AModeltech_xe 5. 7c/wind2.
At wmimirs s30T Al =, 0T A]

sim:/testbenchiuut/processor

KCPSM3 Manual 71

VHDL Simulation

Select the signals you

require and then via the - Add The Format menu allows you to display the bus signals in
Add menu include them - Wave hexadecimal which relates directly the information in the
in the wave display. - Selected Signals assembler ‘.log file'.

- Format

@signals
File Edit \iew @ Tooks Window

address 000011110 N
instruction DI -=+ wave - default ~=1ol x|
port_id Qao0ao1a File Edit Wew Insert (Format) Tools Window

urte-tobe : S HS S BRM LXKl R & QPR LRI
oul_port 00000000
read_strobe 1]
in_port Q00000
inkerrLpk
interrupt_ack Atestbenchclk

testhench/uut/processor/address 094 | 006 J3FF J3FC| J3FD J3FE T |
Jtesthench/uut/processorfnstruction TE101 24000 - 180071 JTAQOD 38001 |
Jtesthench/uut/processzor/port_id 01 /o oo [(I T

=10 x| - Radix

- Hexadecimal

rezet

Ateztbench /uutdproc write_ztrobe
sim:/testhenchi/uut/processor 20 o0 [fe0 {E f [foo |
Aeztbench/uut/pro readstrobe
((00 [J00 Y00 §od | ¥00 Jo0 JOO[
‘Double click’ on any signal —
name to open the wave Srat i eskmis il
signal properties window.] Frset)
Cazier llrm 7-
Here you can change the _—F =y e =
Display Name to remove Rk et I
the hierarchy information A]| 7000 ps
from the display (see next e S I3 EN i ||
page). i B e y
I~ Dpdead ™ Difeet Erirs_ |

i Cwcsl |
KCPSM3 Manual 72 o | ores] s |

VHDL Simulation

- File Once you have the wave display the way you like it, don’t forget to save it as a
- Save Format ‘.do’ File. Use Load Format to read in your wave format in another session.

=10l x|

File) Edit Wew Insert Format Tools Window

EEE % BEH fkﬁéhﬂ h i ® S @B EF O ELEEEL 3

[

... b UG
14000 : &[] 3 ! : LT I|||-||:|
1]
I}
oD 70 o0 i:}u:u] SIS (5 v T N N 3 B I 111 00
I}
0] oo ﬁ[l 5] (i) {oo {00 JoC {0 (i8] {od
1
1
I} L
Y |
Now poodps | 0 s 284400 ns
Curzor 1 (3000 ps :
+ [Y d =
| 284102182 ps to 284624692 ps | y
The ‘.do’ file is a simple text file. Once you can see the format of the commands, it may be easier to add and format other
signals by directly editing this file.
add wave -noupdate -format Literal -1|abel {KCPSMB address} -radi x hexadeci mal /testbench/uut/processor/address

KCPSM3 Manual 73

VHDL Simulation

Although it is possible to simulate a KCPSM3 design purely by
reference to the signals, the actual operation of the program is
difficult to follow. For this reason, the ‘kcpsm3.vhd’ includes a process
called ‘simulation’ specifically to enhance simulation. The useful
output of this code is in the form of variables.

Variables I variables -0 x|

Select the variables you require.

- Add
- Wave
- Selected Variables

[

1| Ir

sim:/testbench/uut/processor

011a1an
000aaa

Concept acknowledgement : Prof. Dr.-Ing. Bernhard Lang.
University of Applied Sciences,
Osnabrueck, Germany.

As with selecting signals, view (4d) yindon
_|al x| first use structure to — low_level definiion ——
Gle Edt yew Window identify the processor in ku:3_u:u|:u:l:ude b0 21,20
testhench = your design. kopsm3_status 2. C 1}
Lt Then use process to select : At | ooonnono
the process which has
progra_rarm been called ‘simulation’. s2_contents
tfaf"@“ N 53 contents
[BCENE { z 00000700
H ko \ ;IEIEI h=-
W vital_primitives File Edit ‘ew Window -
E vcomponents ber
W vital_timing ter
H textio e
B =td logic_unsigred
W std_logic_arith
H nurneric_std
B std_logic_ 1164 :
B standard | gim:ftestbenchiuut/processar 00000000
[+

F

KCPSM3 Manual 74 sim:/testbenchiuut/processor/simulation

VHDL Simulation

kcpsm3_opcode - Represents the current instruction as a text string which makes the code execution very easy to follow.
For example, the snap shot below has decoded ‘3599F’ as the instruction ‘JUMP C,19F'.

Variable names

kcpsm3_status - The status of the ZERO and CARRY flags are represented as text. The status ‘NZ, C’ is displayed at the
time of the '‘JUMP C,19F’ in the snhap shot below indicates that the condition has been met. The status will also include
‘Reset’ when the ‘internal_reset’ is active (see page 39).

s0_contents through to sf_contents - These provide a ‘std_logic_vector’ representing the contents of each register. The
shap shot shows the contents of ‘s2’ and ‘s3’ being updated by the associated ‘SUB’ and ‘SUBCY’ instructions.

spmO00_contents through to spm3f_contents - These provide a ‘std_logic_vector’ representing the contents of each
location of the scratch pad memory.

1

19F
F.CPS3 inzstruction J593F el 3599F
KCPSM3 opcode JUMPCI9F)i 3 QUMPCIoF | | [&
KCPSM3 status NZ, C ZNc T T ol T T 1
F.CPSM3 22_contents 1F
F.CP53 £3_contents FC
F.CP5M3 5pml0_conte... | OF
KLPSkE spml1_conte... | 00]
KCPSMS3 port. i 3 A A N1/ R N

PSH ite_=trobe
out_part 07 (A A N (7 A A I AN O 1=

ead_strobe

!

|

E

P53 in_part g

F

Once the variables are included in the wave display they can be formatted (name and radix) in just the same way as signals
and the format saved in your ‘.do’ file.

KCPSM3 Manual 75

