
 PicoBlaze C Compiler 2009-12-30

 User Manual Revision 1

 © 2008-2009, Zbyněk Křivka
http://www.vlam.cz

UNIS spol. s r.o, R&D; ÚTIA CAS ČR; VUT Brno, FIT, DIFS

PBCC:
PicoBlaze C Compiler

User Manual

Zbyněk Křivka
krivka@fit.vutbr.cz

Report for
Virtual Laboratory of Microprocessor Technology Application

2C06008 supported by MŠMT

 PicoBlaze C Compiler (PBCC) 2009-12-30
 User Manual Revision 1

© 2008-2009, Zbyněk Křivka 2/13
http://www.vlam.cz

Content
Terminology... 3

Introduction .. 4

Architecture.. 4

SDCC Front-end... 5
PBCC Back-end ... 5

PBCC Usage... 5

Compiling System.. 5
Command-line parameters ... 6

PBCC Front-end Command-line Parameters ... 6

PBCC Back-end (Pharo) Command-line Parameters...7

Example.. 8

Simulation Tips .. 9
Binary Image and VHDL ... 9

PBCC Compilation from Source Code .. 9
Source code policy ... 10

Specific Syntax and Semantic of PBCC .. 10
C99 Extensions in SDCC Front-End.. 10
Warnings and Error Messages.. 11
PBCC Target code.. 11

Debug Support.. 11

Retargetability .. 11

KCPSM3 versus pBlazeIDE Assembler .. 11
Function Libraries .. 11

Low-level functions.. 11
LCD Driver .. 12

Arithmetic Operations .. 13
Problems and errors.. 13

Conclusion.. 13

Acknowledgement.. 13

References .. 13

 PicoBlaze C Compiler (PBCC) 2009-12-30
 User Manual Revision 1

© 2008-2009, Zbyněk Křivka 3/13
http://www.vlam.cz

Revisions

No. Date Author Revision description
1 2009-12-30 Z. Křivka First draft

Abstract

PicoBlaze-3 is 8-bit soft-core processor developed by Xilinx Company used for simple state
control application in IP cores in FPGAs. This document describes the development of C
compiler. In details, the implementation covers only basic aspects of language C because of
the complexity that cannot be handled in such small processor. To deal with the standard
syntax and some semantics of C, we use SDCC framework focused on 8-bit CPUs. As the
user manual, this document describes the command line interface of the compiler (abbrev.
PBCC). For more details about the architecture and implementation of PBCC, see PicoBlaze
C Compiler report.

Keywords

Compiler, parser, language C (ANSI-C), 8-bit processor, PicoBlaze, KCPSM3, SDCC,
Squeak Smalltalk, Front-end, Back-end

Terminology
JSON format = easy to use text-based format to load and store data in structures
(heterogeneous) and lists (homogeneous); Suitable for interlanguage/interplatform structural
data in programming languages such as JavaScript, C/C++, Smalltalk, Python, etc. (see [4])

IR = intermediate/internal representation (e.g. 3-address code)

IS = Instruction-set

PBCC = PicoBlaze C Compiler

SDCC = Small Device C Compiler

 PicoBlaze C Compiler (PBCC) 2009-12-30
 User Manual Revision 1

© 2008-2009, Zbyněk Křivka 4/13
http://www.vlam.cz

Introduction

Xilinx PicoBlaze version 3 (for FPGA Spartan 3, [1]) is very tiny and simple soft-core
processor by Xilinx. It provides one interrupt, small amount of memory, and the limited
instruction set with the basic arithmetical-logic instruction and branching. This processor can
be programmed in the specific assembler defined by Xilinx. More specifically, there are two
dialects of the assembler for version 3. First, official assembler used by VHDL and HEX
generator (KCPSM3), and the second, assembler accepted by pBlazeIDE graphical simulator
of this processor (see PicoBlaze manual [2]).

Architecture
As there are several compiler frameworks such as GCC, clang for LLVM, and SUIF2, we use
existing C front-end that handles target-independent optimizations and focuses on back-end
design, implementation, and optimization. We have chosen to extend Small Device C
Compiler (SDCC).

The high-level design of PBCC is shown in Figure 1. The SDCC front-end starts with
SDCPP (adopted GCC preprocessor) and GNU Bison to make syntax-directed translation of
C source into IR (list of iCodes consisting of 3-address code with additional high-level
information such as type information).

As there is no solid interface for a back-end implementation in SDCC and the
documentation of this part is totally insufficient, we introduce a new interface between SDCC
front-end and PBCC back-end that is implemented by export and import of JSON file format
of IR. Furthermore, to enable rapid prototyping, better abstraction support, and debugging
comfort, we develop PBCC back-end from scratch in Pharo Smalltalk environment (see [6,
10]). The back-end separation and from-scratch development is also supported by extremely
low memory resources and non-standard minimalistic target IS architecture that misses native
data stack and some arithmetic instructions such as multiplication that must be efficiently
simulated. In the end, PicoBlaze C Compiler is composed of several chained command-line
tools (see [8, 9]).

Figure 1. PicoBlaze C Compiler (PBCC) Architecture composing of front-end and back-end

connected by IR in JSON format. For the classical list of compilation phases, see [4].

Summary of additional compiler features:

• control flow graph analysis – the absence of indirect function calls and small amount of
memory allow the generation of full control flow graph and using global optimization
algorithms;

 PicoBlaze C Compiler (PBCC) 2009-12-30
 User Manual Revision 1

© 2008-2009, Zbyněk Křivka 5/13
http://www.vlam.cz

• due missing native data stack, it is simulated and used for the storing of activation
records (stack frames) for static function calls;

• due to the very low memory capacity, only the most essential global types, macros,
variables, and functions will be implemented as the torso of standard C library. With so
small architecture, modularity is a useless luxury, so PBCC supports source-code level
inclusion only (no modularity);

• as there is no application binary interface by the manufacturer and no linkable code is
generated, linker tool is not necessary;

SDCC Front-end
SDCC framework is an open-source C cross-compiler (written in C) developed primarily for
8-bit MCU with several back-end implementations for different MCUs (Microchip PIC, Intel
8051, Motorola HC08, etc.). In comparison with GCC and SUIF2, SDCC uses low-level 3-
address intermediate representation (IR), called iCodes. Moreover, for every investigated
framework, its IR assumes the support of a native data stack.
 The standard C language (from 1999) is augmented by some embedded system
specific properties and syntax extensions such as embedded assembler code, interrupt handler
declaration, or the specification of variable location and address. Some features are added by
pragma (optimization control).

For more details about SDCC framework, see report SDCC Framework (in Czech) or
official SDCC documentation ([7]).

PBCC Back-end
The back-end internal architecture is based on iterative transformation of multi-level IR (ML
IR) towards the optimized target code representation based on resource profiling information
to handle essential requirements on the memory unassumingness. The implementation of IR
and transformations uses the combination of interpreter and visitor design pattern.

Further, non-native operations (e.g. multiplication) are either (1) outsourced by
external peripherals, or (2) simulated by PicoBlaze IS (quit memory consuming). Today’s
implementation supports the first one only.

The resulting assembler code (ASM) is together with VHDL/Verilog templates
compiled by KCPSM3 Assembler into the resulting hardware description of PicoBlaze
containing the program hard-coded in its memory. Finally, the hardware description can be
interconnected with the rest of the embedded system such as external operations
implementation, synthesized to a bit-stream, and downloaded into an FPGA chip.

PBCC Usage
Primarily, PBCC is design as a command-line tool that can participate as a component of a
bigger compilation system. Included batch files support Windows platform at the moment.
We plan also to support the Unix-based platforms.

Compiling System
The tool chain provides the complete compilation service from C source code to the
PicoBlaze-3 assembler that can be simulated or to the HEX file that can be downloaded into
FPGA.

1) The compilation of C source code into PicoBlaze-3 Assembler (by PBCC)

 PicoBlaze C Compiler (PBCC) 2009-12-30
 User Manual Revision 1

© 2008-2009, Zbyněk Křivka 6/13
http://www.vlam.cz

a. SDCC-based Front-end (tool sdcc and its command-line parameters are
described in the SDCC manual or SDCC Framework report) produces 3-
address code (iCode instructions) in JSON format;

b. PBCC Back-end (implemented in Pharo Smalltalk that is quiet non-typical
environment to be used as a command-line tool) processes JSON format of
iCode instructions and generates the target code (PicoBlaze-3 Assembler).

2) The compilation from PicoBlaze-3 Assembler to HDL description (VHDL or Verilog)
of the processor with the corresponding memory content image (KCPSM3)

Now, the user can integrate the processor into a new FPGA design (using Xilinx Design Tools
such as Xilinx ISE or Xilinx EDK) or just use it as a new processor code for existing one
(using for example QDevKit for FITKit demonstration board).

Command-line parameters
This section describes the command-line parameters of the tools in the PBCC Compilation
System. First, we describe the compilation system based on a batch file pbcc.bat .

Second, we describe PBCC specific parameters of SDCC front-end (Phase 1a). In
addition, we repeat the most useful arguments used by SDCC. Third, we introduce all
supported and planed arguments of PBCC back-end (1b) using Pharo Smalltalk Virtual
Machine.

In the end, we give some tips about the simulation of the resulting PicoBlaze-3
Assembler code and creating FPGA bitstream with the PicoBlaze-3 processor using integrated
development tools such as Xilinx ISE or QDevKit. As the PicoBlaze processor is developed
by Xilinx company, we are focused on the FPGAs from Xilinx too.

The main compilation batch file is pbcc.bat with the following usage:

pbcc.bat source.c [kcpsm3|pblazeide] [pause]

The first parameter is the filename of the source code (“ .c ” extension is mandatory) to be
compiled. Next parameter chooses the dialect (kcpsm3 is default) to generate. The last
parameter (pause) enables pauses between each phase of the compilation system (for
debugging purposes; implicitly no pauses). To ensure valid paths linking to the required tools
modify four environment variables in the batch file (paths are relative with respect to the
current directory of the batch file):

@SET SDCC_PATH="..\sdcc\bin_vc" ; directory of sdcc.exe and sdcpp.exe
@SET PBCC_PATH="..\pbcc" ; directory of Pharo VM and its image
@SET ASM_PATH="..\KCPSM3\Assembler" ; directory of KCPSM3.exe
@SET SIMUL_PATH="..\pbcc" ; directory of pBlazeIDE (pBlazIDE.exe)

The result of the compilation chain executed by pbcc.bat is the HEX file of the same name
as the input C file (e.g. source.hex). There are created also some temporary files useful for
the debugging (%PBCC_PATH%\source.json and %ASM_PATH%\source.psm if used kcpsm3

argument).

PBCC Front-end Command-line Parameters
The list of SDCC arguments is augmented by several new one to support new PicoBlaze port
(or JSON IR export if you want).

 PicoBlaze C Compiler (PBCC) 2009-12-30
 User Manual Revision 1

© 2008-2009, Zbyněk Křivka 7/13
http://www.vlam.cz

--json

enables the output of iCode instructions in JSON format to be processed outside the SDCC

--json-file=“filename.json”

sets the filename used to save the exported iCode instructions in JSON format

PBCC Back-end (Pharo) Command-line Parameters
Next, we list the complete list of supported parameters of PBCC back-end to generate target
code in PBCC compilation system. The arguments are case-insensitive. They are passed to
Pharo Smalltalk Virtual Machine without checking or changing. The syntax of the arguments
has to be satisfied carefully; otherwise unexpected behavior can appear.

--input=input.json

specifies the input filename of the imported iCode instructions in JSON format that are
generated by PBCC front-end (Default: funstructDump.txt)

--output=output.asm

sets the output filename with the target code (PicoBlaze-3 Assembler) (Default: output.asm)

--errorLog=error.log

sets the filename of log to notify the compilation and Virtual Machine errors (Default:
error.log)

--warningLog=warning.log

sets the filename of log to notify compilation warnings (Default: warning.log)

--log=log.log

sets the filename of log for statistics and additional information (Default: log.log)

--dontClose

means that Pharo Smalltalk environment will not be closed after the compilation process
executed from the command line. This is useful for back-end debugging and development.
(Default: false)

--dontProcess

means that Pharo Smalltalk environment is only opened and no action according to its
arguments is done. This is useful for back-end debugging and development. (Default: false)

--target=PicoBlaze3
chooses the target platform. Now, only PicoBlaze3 processor is supported by the PBCC
back-end. For other target platforms, see SDCC manual. (Default: PicoBlaze3)

--dialect= kcpsm3|pblazeide
selects the assembler dialect for the chosen target platform (see argument --target) as there
are some minor differences between the PicoBlaze-3 Assembler for HDL/HEX production
(KCPSM3) and for the simulation (pBlazeIDE). (Default: pblazeide)

Future plans (Command-line Parameters)
NOT SUPPORTED: --version

 PicoBlaze C Compiler (PBCC) 2009-12-30
 User Manual Revision 1

© 2008-2009, Zbyněk Křivka 8/13
http://www.vlam.cz

The log file contains the version information (version, revision, date) after the translation.

NOT SUPPORTED: --debug
Adds the annotation to the output target code (e.g. in DWARF format, probably in an extern
file) to support the source code level debugging of C language. (Default: false)

NOT SUPPORTED: --verbose
generates even more detailed reports into log files including detailed comments directly into
the resulting assembler with the emphasis on the human readability. (Default not specified
yet)

NOT SUPPORTED: --inline-dialect= kcpsm3|pblazeide
selects the assembler dialect for the inline assembler in C source code (can be different from -

-dialect argument) (Default: pblazeide)

NOT SUPPORTED: --simulate=program.asm
executes the command-line simulation of the specified assembler file. This argument has to be
augmented by the configuration of the simulation (see argument --simulationConfigura-

tion)

NOT SUPPORTED: --simulationConfiguration=simulation.cfg
passes all necessary configuration (in XML or INI format) to the command-line simulation
such as the program file, starting code line, processor initial state, memory initial content,
inputs, storage for outputs, etc.

NOT SUPPORTED: --opt=code|memory
chooses the target-dependent optimization to be focused on the size of the instruction code
(code) or the amount of memory (memory). (Default: no such optimizations yet)

NOT SUPPORTED: --stackSize=0-64|dynamic
sets the maximal size of the simulated data stack. The dynamic approach means that it is
limited by hardware conditions. (Default: dynamic)

NOT SUPPORTED: --ISR-function-number=::DIGIT::
specifies the number of the interrupts in the interrupt table/vector (ISR table). (Default: 1)

Example
Download the 32-bit Windows binary package from the webpage of VLAM project. We
assume that you preserve the directory structure in the package and you decompress it in the
root of system disc (C:).

1a) SDCC compiler execution (for more inspiration, see pbcc.bat):

C:\pbcc\sdcc\bin_vc\ sdcc.exe -c –IC:\pbcc\sdcc\device\include\picoBlaze

-mpicoBlaze --all-callee-saves --json --json-file=" <json-output-file>"

<program.c>

1b) PBCC Back-end execution:

 PicoBlaze C Compiler (PBCC) 2009-12-30
 User Manual Revision 1

© 2008-2009, Zbyněk Křivka 9/13
http://www.vlam.cz

C:\pbcc\pharo\ Pharo.exe pbcc.image --input=< json-output-file> --output=< asm-
output-file.asm> --errorLog=error.log

2) After the execution of the back-end you maybe notice a blink of the graphical user
interface of Pharo Smalltalk. You should ignore it (or see --dontClose argument of the back-
end).

Now, you can simulate the PicoBlaze-3 Assembler in pBlazeIDE (see section Simulation
Tips) or continue the translation process by KCPSM3 to get VHDL and HEX files useful to
generate bitstream for FPGA (see section Binary Image and VHDL).

Simulation Tips
pBlazeIDE (pBlazIDE.exe, see [3]) is a simulation environment with the graphical user
interface for Microsoft Windows. It can simulate several different assembler dialects such as
Picoblaze I, II, 3, and CR.

To simulate the dialect pblazeide produced by PBCC, execute the GUI of the
simulator, check menu Settings that item PicoBlaze 3 is selected. Now, we can import the
generated assembler file (*.psm) by menu File�Import to satisfy the specific syntax
requirements of pBlazeIDE. Warning: Do not use menu File�Open until the file is saved
from pBlazeIDE. To initialize the simulation process and escape editing mode, use menu
Simulation�Simulation. The simulation toolbar provides basic stepping features for
simulation and debugging such as reset, step one, step over, breakpoints, etc (see menu
Simulation).

Binary Image and VHDL
To use Xilinx PicoBlaze-3 processor and the program written in its assembler (PicoBlaze-3,
*.psm) you have to generate binary image of the instruction memory and HDL (Hardware
Description Language) templates that can be integrated in your hardware design.

KCPSM3.exe (see [1, 2]) is a command-line tool processing the PicoBlaze-3
Assembler and producing the HEX and HDL (VHDL or Verilog) files. The only argument is
the filename with the assembler. Next, files ROM_form. { vhd |v |coe } are required. It generates
several resulting files (approx. 15; for more details, see PicoBlaze manual) including ROM
content and some statistics (the list of labels, the list of constants, etc.).

PBCC Compilation from Source Code
As there is new major version of SDCC (2.9.0), we are porting the whole front-end project to
this version. Then, we will introduce step-by-step tutorial to compile the SDCC source codes
including PicoBlaze-3 port in Visual Studio 2008 C++ Express (Free Edition).

The Back-end project in Monticello is private at the moment. The minimalistic image
is based on the PharoKernel [11] project to save space and computation time during the
production compilation. This image does not support execution with graphical user interface
and Pharo debugging environment.

Nevertheless, in the future public development version of the image of Pharo, the source code
can be read directly from the image. Next version of the back-end will be probably made
public in Squeaksource.com (Web-based version control system for Squeak/Pharo Smalltalk
environments).

 PicoBlaze C Compiler (PBCC) 2009-12-30
 User Manual Revision 1

© 2008-2009, Zbyněk Křivka 10/13
http://www.vlam.cz

For example, you can open Pharo development image in the development mode by --

dontProcess argument. Then, you can explore the code in System Browser or debug the
execution of some code in Workspace:

PbccLauncher new startUpWith: (Dictionary newFrom:

{'--DONTCLOSE' -> true.
 '--DIALECT'->'kcpsm3'.
 '--INPUT'->'demo.json'}) handleErrors: false.

Source code policy
As the compiler is still in the rapid development, we do not provide the source code of the
modification of SDCC (GPL license) yet, but we will do that before the end of the project
(summer 2011). On the other hand, back-end part of the compiler is contained in Pharo image.
The binary package includes the Pharo Virtual Machine (MIT license) and the image with
back-end code.

Specific Syntax and Semantic of PBCC
Since SDCC works as a PBCC’s front-end, it analyses standard C99 language (see command-
line arguments to modify the version of the standard processed by SDCC). We shortly revise
essential changes and updates in SDCC with respect to the C99. We focus on explaining
PicoBlaze-specific syntax and semantics modifications with respect to SDCC.

C99 Extensions in SDCC Front-End
To accomplish specific requirements of embedded systems, SDCC introduces several new
keywords to handle hardware specific problems in high-level C language (see [7]).

__reentrant (NOT SUPPORTED YET!)
This keyword placed behind the function declaration denotes a function that can be called by
other functions. That is, we have to deal with auto/local variables and recursion properly
including the standard work with the data stack. By default, a function is not reentrant.

interrupt (?1) using (?2)
This pair of keywords denotes the function that works as an interrupt handler. PicoBlaze
processor supports only one interrupt, that is, (?1) parameter is always constant (We plan the
simulation of interrupt vector in the future). using parameter denotes used registers (bank
number) in the interrupt handler.
 Example: void interrupt_handler(void) interrupt

 { /* the handler definition */ }

__asm … __endasm;
The pair of keywords encloses the inline assembler code (processor-specific). SDCC makes
no validation of this code. PBCC checks the syntax and the registers usage (including the
references to local variables by “_ID” notation).

__data __at (?1) (NOT SUPPORTED YET!)
This keyword denotes the absolute address (?1) of the memory location of the program entity
such as variable, literal, and function.

 PicoBlaze C Compiler (PBCC) 2009-12-30
 User Manual Revision 1

© 2008-2009, Zbyněk Křivka 11/13
http://www.vlam.cz

Warnings and Error Messages
Every tool in the compilation system has its own messaging system to inform the user about
the problems, warning, and statistics.
 SDCC and KCPSM3 as third party tools just warnings and error into standard error
output and specified logging files (if required).
 The back-end stores all statistics (the number of generated instructions) into log file
(.log), warnings (the insufficient memory problem) into warning log file (.wrn), and errors
(input cannot be opened, internal errors) into error log file (.err). The old files are always
replaced during the new compilation.
 In addition, the resulting assembler file contains details in comments such as original
names of objects stored in the register or memory cell.

PBCC Target code
See implementation documentation in Czech (details of the structure, naming conventions,
data stack simulation, etc.).

Debug Support
In analogy with the compilation system phases, the debugging is performed in various levels
too:

1. The debugging of SDCC Framework (Front-end) and of PicoBlaze port in MS Visual
C Express

2. The analysis of iCodes in JSON format
3. The debugging of Back-end in Pharo Smalltalk (see --dontClose/--dontProcess)
4. The instruction-based software simulation (pBlazeIDE) and cycle-based hardware

debugging (ModelSim) of the target code (PicoBlaze-3 Assembler)

Retargetability
According to developed methodology, we introduced few user-defined retargetability options
(--target and --dialect arguments). For more details, see Czech documentation of SDCC
and PBCC implementation.

KCPSM3 versus pBlazeIDE Assembler
Both dialects can be generated by PBCC. For more details, see PicoBlaze-3 Manual [2, page
69] or pBlazeIDE web page (http://www.mediatronix.com/Directives.htm).

Function Libraries
We have chosen a minimalistic subset of standard C library to support some basic functions
such as character class tests <ctype.h> , time and date function <time.h> , basic mathematical
functions <math.h> , and some utility functions <stdlib.h> .
 We also make an abstraction of few processor-specific features (low-level functions)
such as communication with ports (INPUT, OUTPUT), handling the interrupts
(enable/disable), etc.

Low-level functions
Processor Interrupt <intr.h> :
void pbcc_set_interrupt_handler(void *(void))
void pbcc_set_interrupt(bool enable)

 PicoBlaze C Compiler (PBCC) 2009-12-30
 User Manual Revision 1

© 2008-2009, Zbyněk Křivka 12/13
http://www.vlam.cz

inline void pbcc_enable_interrupt()
inline void pbcc_disable_interrupt()
inline bool pbcc_enabled_interrupt()

Input/Output port <port.h> :
unsigned char pbcc_input_char(unsigned char port)
unsigned short pbcc_input_short(unsigned char port)
void pbcc_output_char(unsigned char port, unsigned char cdata)
void pbcc_output_short(unsigned char port, unsigned short sdata)

…
Delay <delay.h> :
void delay(unsigned char c);

Mathematical Functions <math.h>
Arguments and returned values are decimal types.
unsigned int pow(unsigned int, unsigned int);
unsigned int sqrt(unsigned int, unsigned int);

Integer Type Limits <limits.h>
The numbers given in parentheses are values for the PicoBlaze C Compiler/for typical 32-bit
Unix system.

CHAR_BIT bits in char (8/8)
CHAR_MAX max value of char (+127/+127 or +255)
CHAR_MIN min value of char (–128/–128 or 0)
INT_MAX max value of int (+32 767/+32 767)
INT_MIN min value of int (–32 768/–32 768)
LONG_MAX max value of long (+2 147 483 647)
LONG_MIN min value of long (–2 147 483 648)
SCHAR_MAX max value of signed char (+127/+127)
SCHAR_MIN min value of signed char (–128/–128)
SHRT_MAX max value of short (+32 767/+32 767)
SHRT_MIN min value of short (–32 768/–32 768)
UCHAR_MAX max value of unsigned char (+255/+255)
UINT_MAX min value of unsigned int (+65 535/+65 535)
ULONG_MAX max value of unsigned long (+4 294 967 295/+4 294 967 295)
USHRT_MAX min value of unsigned short (+65 535/+65 535)

LCD Driver <lcd.h>
void LCD_init()
void LCD_clear()
void LCD_set_cursor()
macro: LCD_wr(arg)

As a part of this driver, we introduce subset of functions from Input/Output <stdio.h> .

 PicoBlaze C Compiler (PBCC) 2009-12-30
 User Manual Revision 1

© 2008-2009, Zbyněk Křivka 13/13
http://www.vlam.cz

Arithmetic Operations
Since Xilinx PicoBlaze-3 implements no multiplication or division operation, we deal with
these operators in a special way. For more details, see report about the simulation of
arithmetic operations in PicoBlaze and the providing support for external operations (in
Czech).

Problems and errors
Please, feel free to contact us (main contact: krivka@fit.vutbr.cz) whenever you find an error
or problem (please, first, consult SDCC and PBCC manuals).

Conclusion
As the project is run only by one person, it is already useful to do some basic programming in
language C. Although we do not provide all features as old PCCOMP compiler yet, we are
working on it. During 2009, we introduced several optimizations such as register allocation
using coloring or analysis of inline assembler.

Acknowledgement
This work has been supported by the Czech Ministry of Education, Youth and Sports grant
MŠMT 2C06008 "Virtual Laboratory of Microprocessor Technology Application" (visit
website http://www.vlam.cz) and the Research Plan No. MSM 0021630528.

References
1. Xilinx . PicoBlaze Product Brief. [Online] [Visited: 2008/11/13]

http://www.xilinx.com/bvdocs/ipcenter/data_sheet/picoblaze_productbrief.pdf.
2. Xilinx, PicoBlaze 8-bit Embedded Microcontroller: User Guide for Spartan-3,

Spartan-6, Virtex-5, and Virtex-6 FPGAs, UG129 (v2.0, January 28, 2010) [Online]
[Visited: 2010/01/30]
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf.

3. Mediatronix. pBlazeIDE version 3.74 Beta. [Online] [Visited: 2008/11/13]
http://www.mediatronix.com/pBlazeIDE.htm.

4. Andrew W. Appel and Jens Palsberg: Modern Compiler Implementation in Java,
Second Edition, Cambridge University Press, 2002, 501 p., ISBN: 0-5218-2060-X.

5. JSON. [Online] [Visited: 2008/12/22] http://www.json.org.
6. Pavel Křivánek, Zbyněk Křivka: Smalltalk Squeak. [Online] [Visited: 2008/12/22]

http://www.squeak.cz.
7. SDCC Compiler User Guide, Revision 5340, 2008 [sdccman.pdf].
8. Ota Jirák, Zbyněk Křivka: Design and Implementation of Back-end for PicoBlaze C

Compiler, In: Proceedings of the IADIS International Conference Applied Computing
2009, Rome, IT, IADIS Press, 2009, pp. 135-138, ISBN 978-972-8924-97-3.

9. Ota Jirák, Zbyněk Křivka: Simulation-based Debugging of 8-bit Softcore Processor,
In: Proceedings of XXXI th International Autumn Colloquium Advanced Simulation of
Systems, Ostrava, CZ, MARQ, 2009, pp. 68-73, ISBN 978-80-86840-47-5.

10. Pharo Open Source Smalltalk. [Online] [Visited: 2010/02/06] http://www.pharo-
project.org.

11. Pavel Křivánek: PharoKernel – pharo. [Online] [Visited: 2010/02/06]
http://code.google.com/p/pharo/wiki/PharoKernel.

