

Author: Igor Mohor

IgorM@opencores.org

Rev. 1.7

September 23, 2003

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 2 of 50

Copyright (C) 2001, 2002 OPENCORES.ORG and Authors.

This document is free; you can redistribute it and/ or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 3 of 50

Revision History
Rev. Date Author Description

0.1 02/02/01 Igor Mohor First Draft

0.2 05/04/01 IM Trace port added

0.3 16/04/01 IM WP and BP number changed, trace modified

0.4 01/05/01 IM Title changed, DEBUG instruction added, scan
chains changed, IO ports changed

0.5 05/05/01 IM TSEL and QSEL register changed

0.6 06/05/01 IM Ports connected to the OpenRISC changed

0.7 14/05/01 IM MODER register changed, trace scan chain
changed; SSEL register added

0.8 18/05/01 IM RESET bit and signal added; STALLR changed to
RISCOP

0.9 23/05/01 IM RISC changed to OpenRISC; WISHBONE
interface added, SPR and memory access added

0.10 01/06/01 IM Meaning of Instruction status and Load/store
status changed in all registers; more details added
to Appendix A

0.11 10/09/01 IM Register and OpenRISC scan chain operation
changed

1.0 19/09/01 IM Some registers deleted

1.1 15/10/01 IM WISHBONE interface added; RISC Stall signal is
set by breakpoint and reset by writing 0 to
RISCOP register

1.2 03/12/01 IM Chain length changed so additional CRC checking
can be performed

1.3 21/01/02 Jeanne
Wiegelmann

Document revised.

1.4 07/05/02 IM Register MONCNTL added.

1.5 10/10/02 IM WISHBONE Scan Chain changed to show state of
the access.

1.6 06/11/02 IM TRST_PAD_I changed from active low signal to
active low signal.

1.7 23/09/03 Simon Srot Mutliple CPU support added, WB 16-bit and 8-bit
access possible through WBCNTL register use.

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 4 of 50

Contents
1... 6

INTRODUCTION... 6

2... 7

IO PORTS.. 7

2.1 EXTERNAL DEVICE PORTS .. 7
2.2 OPENRISC PORTS... 8
2.3 WISHBONE INTERFACE PORTS ... 9
2.4 BOUNDARY SCAN CHAIN PORTS ... 10

3... 11

REGISTERS.. 11

3.1 REGISTERS LIST .. 11
3.2 MODER (MODE REGISTER) ... 12
3.3 TSEL (TRIGGER SELECT REGISTER) ... 12
3.4 QSEL (QUALIFIER SELECT REGISTER).. 14
3.5 SSEL (STOP SELECT REGISTER) ... 16
3.6 RISCOP (OPENRISC OPERATION REGISTER)... 18
3.7 RISCSEL (RISC SELECT REGISTER) ... 19
3.8 RECSEL (RECORD SELECTION REGISTER) ... 20
3.9 MONCNTL (MONITOR CONTROL REGISTER) .. 21
3.10 WBCNTL (WISHBONE CONTROL REGISTER) ... 22

4... 23

OPERATION... 23

4.1 VISIBILITY OF INTERNAL SIGNALS .. 23
4.2 JTAG INTERFACE WITH THE TAP CONTROLLER AND INSTRUCTIONS ... 24
4.2.1 EXTEST (IR=0000) ... 24

4.2.2 SAMPLE/PRELOAD (IR=0001).. 25

4.2.3. IDCODE (IR=0010).. 25

4.2.4 CHAIN_SELECT (IR=0011).. 26

4.2.5 INTEST (IR=0100) .. 26

4.2.6 CLAMP (IR=0101) .. 26

4.2.7 CLAMPZ (IR=0110).. 27

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 5 of 50

4.2.8 HIGHZ (IR=0111) ... 27

4.2.9 DEBUG (IR=1000)... 27

4.2.10 BYPASS (IR=1111).. 27

4.3 SCAN CHAINS.. 28
4.4 WATCHPOINTS AND BREAKPOINTS ... 29
4.5 TRACE... 30
4.5.1 Trigger .. 30

4.5.2 Qualifier.. 31

4.5.3 Stop Recording... 31

4.5.4 Sample Configuration (data selection for recording) ... 31

4.5.5 Operation Modes ... 32

4.5.5.1 Post Event Recording ..32
4.5.5.2 Prior Event Recording ...32
4.5.5.3 Post - prior event recording ...32

4.5.6 Reading Out Recorded Samples... 33

4.5.7 Stalling the OpenRISC.. 33

4.6 STALLING THE OPENRISC .. 34
4.7 RESETTING THE OPENRISC .. 34
4.8 ENABLING/DISABLING DEBUG MODE... 34
4.9 WISHBONE INTERFACE (MEMORY ACCESS) .. 34
4.10 OPENRISC DEBUG INTERFACE (SPR)... 35
4.11 SELECTING DIFFERENT CPUS.. 36

5... 37

ARCHITECTURE .. 37

5.1 JTAG INTERFACE WITH TAP CONTROLLER.. 39
5.2 SCAN CHAINS.. 40
5.2.1 Global BS (Boundary Scan) Chain... 40

5.2.2 OpenRISC Debug Interface Scan Chains.. 40

5.2.3 OpenRISC Test Chain... 42

5.2.4 Trace Scan Chain... 42

5.2.5 Register Scan Chain .. 42

5.2.6 WISHBONE Scan Chain .. 44

5.2.7 Optional Scan Chains.. 45

5.3 OPENRISC DEBUG INTERFACE ... 46
5.4 TRACE... 47
5.5 OBSERVING INTERNAL SIGNALS .. 47

APPENDIX A .. 49

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 6 of 50

Introduction

The Development Interface is used for development purposes (Boundary Scan testing and
debugging) and is as such an interface between the OpenRISC, peripheral cores, and any
commercial debugger/ emulator or BS testing device. The external debugger or BS tester
connects to the core via a fully IEEE 1149.1 compatible JTAG port. The Development
Interface also contains a trace buffer and support for tracing the program flow, execution
coverage, and profiling the code.

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 7 of 50

IO Ports

2.1 External Device Ports

Port

W
id

th

D
ire

ct
io

n

Description

TCK_PAD_I 1 Input Test Clock is the clock for the JTAG interface.

TMS_PAD_I 1 Input Test Mode Select is the signal that controls the TAP
machine sequence in the JTAG interface.

TDI_PAD_I 1 Input Test Data Input is the input data for the JTAG
interface.

TDO_PAD_I 1 Output Test Data Out is the output data from the JTAG
interface.

TRST_PAD_I

1 Input
Test Reset is an active high input signal that
asynchronously resets the TAP machine in the
JTAG interface.

DIROUT 32 Output

Direct Outputs are outputs from different blocks and
are development port independent. Which blocks
(signals) are connected to the DIROUT is selectable
with the DIRSEL signals. It is up to the system
integrator to connect the signals he wishes to be
observed to the DIROUT signals.

DIRSEL 3 Input
Direct Signals Selection select signalsfor the output
multiplexer so many different signals can be
connected to the DIROUT signals.

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 8 of 50

Port

W
id

th

D
ire

ct
io

n

Description

FORCESTALLIN 1 Input Force Stall Input is an external signal that stalls the
OpenRISC.

STALLSTAT 1 Output
Stall Status Output is connected to the board. It is
used for telling “the world” that the OpenRISC is
stalled.

Table 1: External Device Ports

2.2 OpenRISC Ports

Port

W
id

th

D
ire

ct
io

n

Description

RISC_CLK_I 1 Input RISC Clock signal.

WP_I 11

Input Watchpoint Status is an input signal that reports the
OpenRISC watchpoint generation.

BP_I 1 Input Breakpoint Status is an input signal that reports the
OpenRISC breakpoint generation.

RISC_DATA_I 32

Input Data Input transfers the data from the OpenRISC to
the development interface.

RISC_DATA_O 32

Output Data Output transfers the data from the development
interface to the OpenRISC.

RISC_ADDR_O 32

Output Address of the special-purpose register to be read or
written.

OPSELECT_O 3 Output Operation Select asynchronously selects the
operation of the OpenRISC debug port.

LSSTATUS_I 4 Input Load/Store Status synchronously shows the status
of the Load/Store unit.

ISTATUS_I 4 Input Instruction Status synchronously shows the status of
the Instruction Fetch unit.

RISCSTALL_O 1 Output CPU Stall synchronously stalls the OpenRISC’s

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 9 of 50

Port

W
id

th

D
ire

ct
io

n

Description

core.

RESET_O 1 Output
Reset Output is connected to the OpenRISC
(OpenRISC’s reset logic). When set, the OpenRISC
is reset.

RISCSTALLALL
_O

1 Output CPU Stall synchronously stall all unselected CPUs

RISCSEL_O 8 Output CPU select signals (one hot), selects the CPU

Table 2: OpenRISC Ports

2.3 WISHBONE Interface Ports

Port

W
id

th

D
ire

ct
io

n

Description

WB_CLK_I 1 Input Clock Input (WISHBONE clock).

WB_RST_I 1 Input Reset Input (WISHBONE reset).

WB_ACK_I 1 Input Acknowledgment Input indicates a normal cycle
termination.

WB_ADR_O 32

Output Address Output array.

WB_CYC_O 1 Output Cycle output encapsulates a valid transfer cycle.

WB_DAT_I 32

Input Data Input array.

WB_DAT_O 32

Output Data Output array.

WB_ERR_I 1 Input Error acknowledgment input indicates an abnormal
cycle termination.

WB_SEL_O 4 Output Select Output indicates which bytes are valid on the
data bus.

WB_STB_O 1 Output Strobe Output indicates a valid transfer.

WB_WE_O 1 Output Write Enable indicates a Write Cycle when asserted
high.

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 10 of 50

Port

W
id

th

D
ire

ct
io

n

Description

WB_CAB_O 1 Output Consecutive Address Burst indicates a burst cycle.

Table 3: WISHBONE Interface Ports

2.4 Boundary Scan Chain Ports

Port

W
id

th

D
ire

ct
io

n

Description

CAPTURE_DR_O 1 Output CaptureDR state of the TAP controller

SHIFT_DR_O 1 Output ShiftDR state of the TAP controller

UPDATE_DR_O 1 Output UpdateDR state of the TAP controller

EXTEST_SELECTED_O 32 Output EXTESTSelected instruction external
test selected

BS_CHAIN_I 1 Input BS_CHAIN_I hooks for boundary scan
chain

BS_CHAIN_O 1 Output BS_CHAIN_O hooks for boundary scan
chain

Table 4: Boundary Scan Chain Ports

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 11 of 50

Registers

This section specifies all registers in the Development Interface.

3.1 Registers List

Name

A
dd

re
ss

W
id

th

A
cc

es
s

Description

MODER 0x0 32 R/W Mode Register

TSEL 0x4 32 R/W Trigger Selection for the Trace Buffer

QSEL 0x8 32 R/W Qualifier Selection for the Trace Buffer

SSEL 0xC 32 R/W Stop Select Register

RISCOP 0x10 32 R/W OpenRISC Operation Register

RISCSEL 0x14 32 R/W Risc Select Register

RECSEL 0x40 32 R/W Record Selection

MONCNTL 0x44 32 R/W Monitor Control

WBCNTL 0x48 32 R/W Wishbone Control Register

Table 5: Register List

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 12 of 50

3.2 MODER (Mode Register)

Bit #

A

cc
es

s

Description

31:18

Reserved

17 R/W CONTIN – Continuous Mode

0 = Recording is suspended while the trace buffer is full

1 = Old samples are overwritten with new samples once the trace
buffer is full

16 R/W ENABLE – Trace Enable

0 = Trace is disabled

1 = Trace is enabled

15:1

Reserved

0 R TRACE PRESENT – Trace Present

0 = Trace not present (Development Interface does not include trace)

1 = Trace present (Development Interface includes trace)

Table 6: MODER Register

Reset Value:

MODER: 00000000h

3.3 TSEL (Trigger Select Register)

Bit #

A

cc
es

s

Description

31:30 R/W TRIGOP – Trigger Operation

00 = Any (trigger is always active)

10 = All valid groups in the TSEL register are OR-ed

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 13 of 50

Bit #

A

cc
es

s
Description

11 = All valid groups in the TSEL register are AND-ed

29:24

Reserved

23 R/W ISTRIGVALID – Instruction Status Trigger valid

0 = Don’t care (Instruction Status Trigger is not valid)

1 = Instruction Status Trigger valid

22:21 R/W ISTRIG – Instruction Status Trigger

00 = No instruction fetch in progress

01 = Normal instruction fetch

10 = Executing branch instruction

11 = Fetching instruction in delay slot

20 R/W LSSTRIGVALID – Load/Store Status Trigger Valid

0 = Don’t care (Load/Store Status Trigger is not valid)

1 = Load/Store Status Trigger valid

19:16 R/W LSSTRIG – Load/Store Status Trigger

0000 = No load/store instruction in execution

0001 = Reserved for load doubleword

0010 = Load byte and zero extend

0011 = Load byte and sign extend

0100 = Load halfword and zero extend

0101 = Load halfword and sign extend

0110 = Load singleword and zero extend

0111 = Load singleword and sign extend

1000 = Reserved for store doubleword

1001 = Reserved

1010 = Store byte

1011 = Reserved

1100 = Store halfword

1101 = Reserved

1110 = Reserved

1111 = Reserved

15:14

Reserved

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 14 of 50

Bit #

A

cc
es

s
Description

13 R/W BPTRIGVALID – Breakpoint Trigger valid

0 = Don’t care (BP trigger not valid)

1 = BP trigger valid

12 R/W BPTRIG – Breakpoint Trigger

0 = Breakpoint does not start recording the trace unit

1 = BP[0] starts recording the trace unit

11 R/W WPTRIGVALID – Watchpoint Trigger valid

0 = Don’t care (WP Trigger not valid)

1 = WP Trigger valid

10:0 R/W WPTRIG – Watchpoint Trigger

00000000000 = Watchpoints do not start recording the trace unit

00000000001 = WP[0] starts recording the trace unit

00000000010 = WP[1] starts recording the trace unit

.

11111111111 = Any WP[10:0] starts recording the trace unit

Table 7: TSEL Register

Reset Value:

TSEL: 00000000h

3.4 QSEL (Qualifier Select Register)

Bit #

A

cc
es

s

Description

31:30 R/W QUALIFOP – Qualifier Operation

00 = Any (Qualifier is always active, all samples will be recorded)

10 = All valid groups in the QSEL register are OR-ed

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 15 of 50

Bit #

A

cc
es

s
Description

11 = All valid groups in the QSEL register are AND-ed

29:24

Reserved

23 R/W ISTQUALIFVALID – Instruction Status Qualifier valid

0 = Don’t care (Instruction Status Qualifier not valid)

1 = Instruction Status Qualifier valid

22:21 R/W ISTQUALIF – Instruction Status Qualifier

00 = No instruction fetch in progress

01 = Normal instruction fetch

10 = Executing branch instruction

11 = Fetching instruction in delay slot

20 R/W LSSQUALIFVALID – Load/Store Status Qualifier valid

0 = Don’t care (Load/Store Status Qualifier not valid)

1 = Load/Store Status Qualifier valid

19:16 R/W LSSQUALIF – Load/Store Status Qualifier

0000 = No load/store instruction in execution

0001 = Reserved for load doubleword

0010 = Load byte and zero extend

0011 = Load byte and sign extend

0100 = Load halfword and zero extend

0101 = Load halfword and sign extend

0110 = Load singleword and zero extend

0111 = Load singleword and sign extend

1000 = Reserved for store doubleword

1001 = Reserved

1010 = Store byte

1011 = Reserved

1100 = Store halfword

1101 = Reserved

1110 = Reserved

1111 = Reserved

15:14

Reserved

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 16 of 50

Bit #

A

cc
es

s
Description

13 R/W BPQUALIFVALID – Breakpoint Qualifier valid

0 = Don’t care (BP qualifier not valid)

1 = BP Qualifier valid

12 R/W BPQUALIF – Breakpoint Qualifier

0 = Breakpoint does not enable recording of the current sample

1 = BP[0] enables recording of the current sample

11 R/W WPQUALIFVALID – Watchpoint Qualifier valid

0 = Don’t care (WP qualifier not valid)

1 = WP qualifier valid

10:0 R/W WPQUALIF – Watchpoint Qualifier

00000000000 = Watchpoints do not enable recording of the current
sample

00000000001 = WP[0] enables recording of the current sample

00000000010 = WP[1] enables recording of the current sample

.

11111111111 = Any WP[10:0] enables recording of the current sample

Table 8: QSEL Register

Reset Value:

QSEL: 00000000h

3.5 SSEL (Stop Select Register)

Bit #

A

cc
es

s

Description

31:30 R/W STOPOP – Stop Operation

00 = Nothing (recording cannot be stopped by selecting one of the

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 17 of 50

Bit #

A

cc
es

s
Description

following groups)

10 = All valid groups in the SSEL register are OR-ed

11 = All valid groups in the SSEL register are AND-ed

29:24

Reserved

23 R/W ISTSTOPVALID – Instruction Status Stop valid

0 = Don’t care (Instruction Status Stop is valid)

1 = Instruction Status Stop valid

22:21 R/W ISTSTOP – Instruction Status Stop

00 = No instruction fetch in progress

01 = Normal instruction fetch

10 = Executing branch instruction

11 = Fetching instruction in delay slot

20 R/W LSSSTOPVALID – Load/Store Status Stop valid

0 = Don’t care (Load/Store Status Stop is valid)

1 = Load/Store Status Stop is valid

19:16 R/W LSSSTOP – Load/Store Status Stop

0000 = No load/store instruction in execution

0001 = Reserved for load doubleword

0010 = Load byte and zero extend

0011 = Load byte and sign extend

0100 = Load halfword and zero extend

0101 = Load halfword and sign extend

0110 = Load singleword and zero extend

0111 = Load singleword and sign extend

1000 = Reserved for store doubleword

1001 = Reserved

1010 = Store byte

1011 = Reserved

1100 = Store halfword

1101 = Reserved

1110 = Reserved

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 18 of 50

Bit #

A

cc
es

s
Description

1111 = Reserved

15:14

Reserved

13 R/W BPSTOPVALID – Breakpoint Stop valid

0 = Don’t care (BP Stop not valid)

1 = BP Stop is valid.

12 R/W BPSTOP – Breakpoint Stop

0 = Breakpoint does not stop recording

1 = BP[0] stops recording

11 R/W WPSTOPVALID – Watchpoint Stop valid

0 = Don’t care (WP Stop not valid)

1 = WP Stop valid

10:0 R/W WPSTOP – Watchpoint Stop

00000000000 = Watchpoints do not stop recording

00000000001 = WP[0] stops recording

00000000010 = WP[1] stops recording

.

11111111111 = Any WP[10:0] stops recording
Table 9: SSEL Register

Reset Value:

SSEL: 00000000h

3.6 RISCOP (OpenRISC Operation Register)

Bit #

A

cc
es

s

Description

31:3

Reserved

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 19 of 50

Bit #

A

cc
es

s
Description

2 R/W RISCSTALLALL – Stall all unselected CPUs

0 = normal operation

1 = Stall all unselected CPUs

1 R/W RESET – Reset OpenRISC

0 = normal

1 = reset

0 R/W RISCSTALL – OpenRISC Stall

0 = normal operation

1 = Stall OpenRISC. Risc can also set this bit by BP_I signal.
Table 10: RISCOP Register

Reset Value:

RISCOP: 00000000h

3.7 RISCSEL (RISC Select Register)

Bit #

A

cc
es

s

Description

31:8

Reserved

7:0 R/W RISCSEL – Select one CPU

00000001b = Selecst CPU 0 (RISCSEL[0] is active)

00000010b = Selects CPU 1 (RISCSEL[1] is active)

00000100b = Selects CPU 2 (RISCSEL[2] is active)

00001000b = Selects CPU 3 (RISCSEL[3] is active)

00010000b = Selects CPU 4 (RISCSEL[4] is active)

00100000b = Selects CPU 5 (RISCSEL[5] is active)

01000000b = Selects CPU 6 (RISCSEL[6] is active)

10000000b = Selects CPU 7 (RISCSEL[7] is active)

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 20 of 50

Bit #

A

cc
es

s
Description

00000000 = NO CPU selected (RISCSEL[7:0] not active)
Table 11: RISCEL Register

Reset Value:

RISCSEL: 00000000h

3.8 RECSEL (Record Selection Register)

Bit #

A

cc
es

s

Description

31:7

Reserved

6 R/W RECINSTR – Record Instruction in the Execution Pipeline

0 = Don’t save INSTR to the trace buffer

1 = Save INSTR to the trace buffer

5 R/W RECWRITESPR – Record Writing SPR

0 = Don’t save WRITESPR to the trace buffer

1 = Save WRITESPR to the trace buffer

4 R/W RECREADSPR – Record Reading SPR

0 = Don’t save READSPR to the trace buffer

1 = Save READSPR to the trace buffer

3 R/W RECSDATA – Record Store Data

0 = Don’t save SDATA to the trace buffer

1 = Save SDATA to the trace buffer

2 R/W RECLDATA – Record Load Data

0 = Don’t save LDATA to the trace buffer

1 = Save LDATA to the trace buffer

1 R/W RECLSEA – Record LSEA (Load/Store Effective Address)

0 = Don’t save LSEA to the trace buffer

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 21 of 50

Bit #

A

cc
es

s
Description

1 = Save LSEA to the trace buffer

0 R/W RECPC – Record PC (Program Counter)

0 = Don’t save PC to the trace buffer

1 = Save PC to the trace buffer
Table 12: RECSEL Register

Reset Value:

RECSEL: 00000000h

3.9 MONCNTL (Monitor Control Register)

Bit #

A

cc
es

s

Description

31:4

Reserved

3:0 R/W CLK_SEL – Clock Selection

Selects which clock signal is monitored by controlling monitor
multiplexer.

Table 13: MONCNTL Register

Reset Value:

MONCNTL: 00000000h

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 22 of 50

3.10 WBCNTL (Wishbone Control Register)

Bit #

A

cc
es

s

Description

31:2

Reserved

1:0 R/W ACCESS_WIDTH – Wishbone access width selector

00b = 32-bit access seleced

01b = 16-bit access selected

10b = 8-bit access selected

11b = Reserved
Table 14: MONCNTL Register

Reset Value:

WBCNTL: 00000000h

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 23 of 50

Operation

This section describes the operation of the Development Interface. It discusses the
visibility of internal signals, the JTAG interface with the TAP controller and supported
instructions, scan chain configuration, watchpoints and breakpoints, trace, memory, SPR
and GPR interface, and finally how to enter and exit the DEBUG mode.

4.1 Visibility of Internal Signals

The state of several internal signals can be monitored through the DIROUT[31:0] signals.
The monitoring is development port independent. You can use the DIRSEL[2:0] signals to
select which set of signals the multiplexer connects to the output pins. It is up to the system
integrator to choose which signals need to be observed and how to connect them to the
multiplexer. He also must decide whether to use dedicated pins for the DIROUT and
DIRSEL signals or to multiplex them with some other pins.

Figure 1: Selection of Observed Signals

Data0[31:0]

Data1[31:0]
DIROUT[31:0]

DIRSEL[2:0]

MUX

Data7[31:0]

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 24 of 50

4.2 JTAG Interface with the TAP Controller and
Instructions

The JTAG Interface is fully IEEE Std.1149.1 compliant and supports the following
instructions:

Table 15: TAP Instruction Set

Which instructions will be supported remains TBD.

4.2.1 EXTEST (IR=0000)

The EXTEST instruction connects the selected chain, which is in TEST mode, between the
TDI and TDO. During EXTEST instruction, the boundary-scan register is accessed to drive
test data off-chip via the boundary outputs and to receive test data in-chip via the boundary
inputs. The bit code of this instruction is defined as all zeroes by IEEE Std. 1149.1.

CaptureDR state: The outputs from the system logic (test vector) are captured.

ShiftDR state: The captured test vector is shifted out via TDO output while a new test
vector is shifted in via the TDI input.

Instruction Code

EXTEST 0000

SAMPLE/PRELOAD

0001

IDCODE 0010

CHAIN_SELECT 0011

INTEST 0100

CLAMP 0101

CLAMPZ 0110

HIGHZ 0111

DEBUG 1000

BYPASS 1111

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 25 of 50

UpdateDR state: The data shifted in via TDI is applied to Output and Control cells
(output pins are driven with 0, 1, or highZ).

4.2.2 SAMPLE/PRELOAD (IR=0001)

The SAMPLE/PRELOAD instruction allows the IC to remain in its functional mode and
to select the boundary-scan register to be connected between TDI and TDO. During this
instruction, you can access the boundary-scan register via a data scan operation to take a
sample of the functional data entering and leaving the IC. The instruction is also used to
preload test data into the boundary-scan register before loading an EXTEST, CLAMP, or
CLAMPZ instruction. This instruction should only be used for production tests.

CaptureDR state: The inputs from the system logic (test vector) are captured.

ShiftDR state: The captured test vector is shifted out via TDO output while a new test
vector is shifted in via TDI input.

UpdateDR state: No changes.

4.2.3. IDCODE (IR=0010)

The IDCODE instruction allows the IC to remain in its functional mode and selects the
device identification register (ID register) to be connected between TDI and TDO. The
device identification register is a 32-bit read-only register containing information
regarding the IC manufacturer, device type, and version code. Accessing the device
identification register does not interfere with the operation of the IC. Also, access to the
device identification register should be immediately available via a TAP data-scan
operation, after power-up of the IC, or after the TAP has been reset by using the optional
TRSTn pin or by otherwise moving to the Test-Logic-Reset state.

CaptureDR state: The ID value is captured from the ID register.

ShiftDR state: The captured ID value is shifted out via TDO output.

UpdateDR state: The data shifted in via TDI is ignored (ID is a read-only register).

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 26 of 50

4.2.4 CHAIN_SELECT (IR=0011)

With the CHAIN_SELECT instruction, different scan chains can be connected between
the TDI and TDO while the IC remains in the same mode. On reset, scan chain 0 is
selected by default (for Boundary Scan testing purposes).

CaptureDR state: A fixed value 5’b01100 is loaded into the shift register (for testing
purposes).

ShiftDR state: The scan chain identification number is shifted in via TDI, while the
fixed value is shifted out via TDO.

UpdateDR state: The identified scan chain is connected between the TDI and TDO.

4.2.5 INTEST (IR=0100)

The INTEST instruction is used for internal testing (IC, core, or some other parts). The
selected scan chain connects between TDI and TDO and is put into TEST mode.

CaptureDR state: Both, the input signals (from the system logic) and the output
signals (from the core) are captured.

ShiftDR state: The captured data is shifted out via TDO output while new test data
(from the system logic) is shifted in via the TDI input.

UpdateDR state: The data shifted in via TDI is applied to the core inputs.

Run/Test-Idle state: For each cycle in the Run/Test-Idle state, one clock pulse is
applied to the core (for single step).

4.2.6 CLAMP (IR=0101)

The CLAMP instruction is used for setting all the outputs to the pre-loaded values (values
that remain from the previous shifting or are loaded with the SAMPLE/PRELOAD
instruction). The bypass register is connected between the TDI and TDO.

CaptureDR state: A logical 0 is captured in the bypass register.

ShiftDR state: Input data shifted in via TDI is shifted out via TDO after a one-clock
delay.

UpdateDR state: No changes.

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 27 of 50

4.2.7 CLAMPZ (IR=0110)

Same as CLAMP instruction. The difference lies in that the 3-state outputs are placed in
their inactive state. This instruction is used during the production test (each output can be
put in inactive state regardless of its data value).

4.2.8 HIGHZ (IR=0111)

The HIGHZ instruction sets all outputs (including two-state as well as three-state types)
of an IC to a disabled (high-impedance) state and selects the bypass register to be
connected between TDI and TDO. During this instruction, data can be shifted through the
bypass register from TDI to TDO without affecting the condition of the IC outputs.

CaptureDR state: A logical 0 is captured in the bypass register.

ShiftDR state: Input data shifted in via TDI is shifted out via TDO after a one-clock
delay.

UpdateDR state: No changes.

4.2.9 DEBUG (IR=1000)

The DEBUG instruction must be used when the debugging is in progress (OpenRISC,
register, or trace scan chain must be previously selected). After a read or write is performed
in DEBUG mode, the result is known in the same shift cycle (while address and data are
shifted in, the result is already shifted out). There is no need to perform an additional cycle
to shift out the results (it will not work).

4.2.10 BYPASS (IR=1111)

The BYPASS instruction keeps the IC in a functional mode and selects that the bypass
register will be connected between TDI and TDO. It allows serial data to be transferred
through the IC from TDI to TDO without affecting the operation of the IC. The bit code
of this instruction is defined as all ones by IEEE Std. 1149.1. Usage of an unimplemented
instruction will result in the BYPASS instruction.

CaptureDR state: A logical 0 is captured in the bypass register.

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 28 of 50

ShiftDR state: Input data shifted in via TDI is shifted out via TDO after a one-clock
delay.

UpdateDR state: No changes.

4.3 Scan Chains

For BS testing, OpenRISC debugging, trace operation, observation of other cores (at the
connection to the WISHBONE), identification of the chip version, etc., you can use
several scan chains:

Global boundary scan chain

OpenRISC Debug Interface scan chain 0, 1, 2, 3

OpenRISC test chain

Trace scan chain

Register scan chain

Optional scan chains

To select a chain, issue a CHAIN_SELECT instruction followed by the chain’s unique ID
value (and CRC). All of the following instructions apply to the selected chain:

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 29 of 50

Chain ID Description

Global BS Chain 0000 For boundary scan testing

OpenRISC Debug Interface
Scan Chain 2

0001 For OpenRISC debugging:

OPSELECT_O = 100b for read

OPSELECT_O = 101b for write

OpenRISC Test Chain 0010 For OpenRISC testing (factory
tests)

Trace Scan Chain 0011 For tracing the program flow

Register Scan Chain 0100 For internal register access

WISHBONE Scan Chain 0101 For WISHBONE access

OpenRISC Debug Interface
Scan Chain 0

0110 For OpenRISC debugging:

OPSELECT_O = 000b for read

OPSELECT_O = 001b for write

OpenRISC Debug Interface
Scan Chain 1

0111 For OpenRISC debugging:

OPSELECT_O = 010b for read

OPSELECT_O = 011b for write

OpenRISC Debug Interface
Scan Chain 3

1000 For OpenRISC debugging:

OPSELECT_O = 110b for read

OPSELECT_O = 111b for write

Optional Scan Chains (can
be connected to any core,
register, counter, etc.)

1001 - 1111

For additional testings

Table 16: Chains Identification

Note: Not all instructions are supported when certain scan chains are selected.

4.4 Watchpoints and Breakpoints

Watchpoints WP[10:0] and breakpoints BP[0] are output signals from the OpenRISC
debug module and input signals to the SoC/OpenRISC Development Interface. They are
also connected to the output pads and can be used for informing external devices when
certain events occur (i.e. they can set a trigger, enable/disable a device, put a device into
SLEEP mode, etc.).

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 30 of 50

Watchpoints and breakpoints are used as triggers or/and qualifiers for the trace module.

4.5 Trace

Trace is the block that records the OpenRISC activities to the internal buffer (executed
instructions, loaded/stored data, program counter, SPR access, etc.). The trace has a 1024
x 36 (n x 36) buffer built-in to store all information needed for program tracing,
execution coverage, and profiling (measuring the time that subroutines need for their
execution). Recording starts as soon as both trigger and qualifier occur. When the buffer
is full, the recording can be suspended or old samples can be overwritten. The recorded
data is read out through the trace scan chain.

In order to start tracing, enable the trace and set the following:

The trigger (TSEL register on page 12)

The qualifier (QSEL register on page 14)

The configuration of the sample – the kind of information to be stored in the buffer
(RECSEL register on page 20)

The stop condition (SSEL register on page 16)

The operation mode (MODER register on page 12).

The following shortly explains the purpose of trigger, qualifier, and sample configuration
to prevent mixing their use:

The trigger starts the trace (once started, it might record the samples).

The qualifier defines which samples are going to be saved.

The sample configuration defines which parts of the sample are going to be stored
(i.e. either PC or PC and instruction address).

4.5.1 Trigger

The trace is enabled for recording as soon as the trigger occurs and remains active until
disabled. The trigger can be a certain watchpoint, breakpoint, load/store status,
instruction status or their combination. For this purpose, you need to set the trigger
selection register (TSEL register on page 12).

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 31 of 50

Note that very complex conditions might occur when using watchpoints and breakpoints
as a trigger. Conditions for the occurrence of certain watchpoints and breakpoints need to
be set at OpenRISC level (for details, please refer to the OpenRISC 1000 System
Architecture Manual).

4.5.2 Qualifier

The qualifier defines which samples will be stored to the buffer. This is very useful when
only a selection is to be stored (for example only write accesses to a specific address).
The qualifier is defined in the QSEL register (page 14).

Note that very complex conditions might occur when using watchpoints and breakpoints
as qualifier. Conditions for the occurrence of certain watchpoints and breakpoints need to
be set at OpenRISC level (for details, please refer to the OpenRISC 1000 System
Architecture Manual).

4.5.3 Stop Recording

The trace will stop recording when the following conditions are met:

The buffer is full and the trace is set to normal mode (the CONTIN bit in the
MODER register is not set). In this case, the recording is only suspended and will
continue as soon as a sample is read out from the buffer (the buffer is not full).

The trace is disabled (the ENABLE bit in the MODER register is set to 0).

The stop condition occurs (described in the SSET register on page 16).

4.5.4 Sample Configuration (data selection for recording)

When the OpenRISC makes a step, the PC, instruction address, load/store date, etc.
change. The RECSEL register (page 20) defines which information will compose a
sample to be written to the buffer.

The sample is watchpoint and breakpoint independent.

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 32 of 50

4.5.5 Operation Modes

By setting the MODER, TSEL, QSEL, and SSEL registers, you can define several modes
of operation. The most important modes are explained below:

Post event recording: trace starts recording after an event occurred

Prior event recording: trace records samples until a certain event occurs

Post – prior event recording: trace records samples between two events.

4.5.5.1 Post Event Recording

First, in the TSEL register, define the event that will activate the trigger. Thereupon, trace
starts recording after the trigger-activating event occurred. If you want all samples to be
stored to the buffer, set the qualifier to ANY; otherwise, choose the events you want to
record (i.e. write to an address, read of the SPR, etc.). Once the buffer is full, two conditions
can occur:

If the CONTIN bit in the MODER register is set to 0, recording is suspended and the
OpenRISC stalled. Once the stored sample is read (and therefore cleared) from the
buffer, the operation resumes.

If the CONTIN bit is set to 1, old samples are overwritten. To stop recording, disable
trace – set the ENABLE bit (in the MODER) to 0. Then, the samples can be read out.

4.5.5.2 Prior Event Recording

To start recording immediately prior to a certain event, set the ENABLE bit to 1 and set
trigger to ANY. In the SSEL register, define the event upon which recording is to stop.
To always overwrite old samples, set the CONTIN bit to 1. Once the defined event
occurs, recording stops automatically. The samples can then be read out.

4.5.5.3 Post - prior event recording

This is a combination of the previous two modes: Trace records samples that occur
between two specific events. The start event sets the trigger and starts recording while the
stop event stops recording. To not overwrite samples when the buffer is full, set the
CONTIN bit to 0.

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 33 of 50

4.5.6 Reading Out Recorded Samples

The recorded data can be read out through the trace scan chain (please refer to the trace
scan chain section on page 42). Prior to reading the data, you must select the trace scan
chain.

Each sample written to the buffer is 40 bits wide:

32-bit data

4 bits for data type identification (information about the nature of the 32 bits– PC,
load/store address, instruction address, etc.)

3 reserved bits

1 valid bit (marks valid samples)

This 40-bit sample is part of the trace scan chain as seen in Figure 6. The CRC bits and
the valid bit are added to the sample while it is read out. The valid bit signals whether the
sample is valid or not. This is useful because the samples can be read out any time and
even if nothing was recorded. When a valid sample is read out, the pointer to the sample
in the buffer is incremented automatically.

4.5.7 Stalling the OpenRISC

The OpenRISC clock is also used to clock the recording to the trace buffer. When a
sample needs to be recorded, the trace asserts the CPUSTALL signal and stalls the
OpenRISC for 8 clock cycles. Once the OpenRISC stops, the trace uses OPSELECT
signals to change the data on the DATAIN lines. Samples are sequentially written to the
trace buffer. After the last sample is written, CPUSTALL is de-asserted.

The OpenRISC is also stalled when the buffer is full and the trace is in normal operation
mode (the CONTIN bit in the MODER is set to 0). When space is cleared in the buffer
(data is read out), the stall signal is de-asserted.

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 34 of 50

4.6 Stalling the OpenRISC

The OpenRISC can be stalled in three ways:

You deliberately set bit 0 of the RISCOP register to 1 (page 18). Clearing this bit
again restarts the RISC.

A breakpoint automatically stops the OpenRISC and sets bit 0 of the RISCOP register
to 1. Clearing this bit again restarts the RISC.

Trace stalls the OpenRISC.

4.7 Resetting the OpenRISC

The Development Interface puts the OpenRISC to reset by setting the RESET bit in the
RISCOP register to 1. Clearing this bit to 0 deactivates the reset signal.

4.8 Enabling/Disabling DEBUG Mode

After reset, DEBUG mode (and OpenRISC stalling) is always enabled. Software can disable
this mode by setting the Disable External Force Watchpoint DXFW bit in the debug mode
register DMR (in the OpenRISC). For more details, please refer to the OpenRISC 1000 System
Architecture Manual. Once the DEBUG mode has been disabled, the FORCEDBGIN input is
ignored.

4.9 WISHBONE Interface (Memory Access)

The WISHBONE scan chain (WISHBONE master interface) enables writing to/ reading
from the memory. On access, all cycles must be finished by asserting an acknowledge or
error signal.

The access width is set in the WBCNTL register.

32-bit access:

WB_SEL_O[3:0] = 1111b

WB_DATx[31:0] are used

16-bit access (WB_ADR_O[1:0] = 00b):

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 35 of 50

WB_SEL_O[3:0] = 1100b

WB_DAT_x[31:16] are used

16-bit access (WB_ADR_O[1:0] = 10b):

WB_SEL_O[3:0] = 0011b

WB_DAT_x[15:0] are used

8-bit access (WB_ADR_O[1:0] = 00b):

WB_SEL_O[3:0] = 1000b

WB_DAT_x[31:24] are used

8-bit access (WB_ADR_O[1:0] = 01b):

WB_SEL_O[3:0] = 0100b

WB_DAT_x[23:16] are used

8-bit access (WB_ADR_O[1:0] = 10b):

WB_SEL_O[3:0] = 0010b

WB_DAT_x[15:8] are used

8-bit access (WB_ADR_O[1:0] = 11b):

WB_SEL_O[3:0] = 0001b

WB_DAT_x[7:0] are used

4.10 OpenRISC Debug Interface (SPR)

The OpenRISC debug chain enables writing to and reading from the debug interface
(SPR). 64KB of the memory space is located at the offset 0x0 (0x00000000 to
0x0000FFFF). On access to any location within this range, the SPRs is accessed.

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 36 of 50

Reserved

SPR

Table 17: Memory Space

According to the OpenRISC 1000 System Architecture Manual, the SPR registers address
has a width of 16 bits. Five MSB are reserved for the group ID (GID), others define the
register index within that group.

4.11 Selecting different CPUs

RISCSEL_O and RISCSTALLALL_O signals have been added to the Debug Interface to
support more than one OpenRISC CPU (in general also other CPUs can be connected to
the Debug Interface). It is meant, that this signals are used to enable muxing of all the
signals going from/to CPU and Debug Interface (BP_I, RISC_DATA_I,
RISC_DATA_O, RISC_ADDR_O, OPSELECT_O, LSSTATUS_I, LSATTUS_O,
RISCSTALL_O). The muxing of signals is not part of the Debug Interface and is the
responsibility of the system integrator.

RISCSEL_O signals are controlled from RISCSEL register and RISCSTALLALL_O
signal is controlled from RISCOP register.

Normally, if just one CPU is connected to the Debug Interface this signals are not
necessary and can be ignored.

0xFFFFFFFF

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 37 of 50

Architecture

The Soc/ OpenRISC Development Interface architecture is based on IEEE Std. 1149.1
Standard Test Access Port and Boundary Scan Architecture. Other signals are added to
provide additional flexibility.

The interface consists of several parts (blocks):

JTAG interface with the TAP Controller

OpenRISC Debug Interface

Trace

Global BS (Boundary Scan) chain

OpenRISC test chain

Block scan chains

WISHBONE scan chain

Optional scan chains

Block for monitoring internal signals

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 38 of 50

Fig

Figure 2: Development Interface

Optional Scan Chains

Global BS Chain

Register Scan Chain

RISC Debug
Scan Chain

TDI

TDO

TCK

TMS

TRSTn

JTAG
Interface

with the TAP
Controller

Trace Scan Chain

RISC Test Chain

RISC

Debug

Interface

RISC

+

RISC

Development

Interface

Trace

Registers

Peripher.

Blocks

Block Scan Chains

RISC

Memory

WISHBONE Scan Chain

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 39 of 50

5.1 JTAG Interface with TAP Controller

The interface is fully IEEE Std. 1149.1 compliant. It is used for interfacing the chip to the
external debugger.

Figure 3: TAP Controller

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 40 of 50

5.2 Scan Chains

5.2.1 Global BS (Boundary Scan) Chain

This chain allows access to the entire OpenRISC periphery and is used for the boundary
scan testing (interconnect test). The chain is automatically selected after the reset. When in
BS TEST mode, two tests can be run: EXTEST when connections between BS devices are
tested and INTEST when the IC functionality is tested.

5.2.2 OpenRISC Debug Interface Scan Chains

The OpenRISC Debug Interface scan chains are used for interfacing to the OpenRISC
debug support. Using this chain, which is 74 bits long, data can be read from/ written to the
registers that are used for debugging purposes (watchpoint generation, breakpoint
generation, memory read/ write, SPR, GPR, etc.). The chain for shifting in is different from
the chain for shifting out:

Chain for shifting in: 32-bit address, R/W bit, 32-bit data, 8-bit CRC1, 1 reserved bit

Chain for shifting out: 33 bits set to 0x0, 32-bit data, and 9-bit field used for CRC2

While shifting in is in progress on the first chain, shifting out is in progress on the second
chain.

A read operation is performed when all data (address, data, RW, and CRC1) has been shifted
in and input CRC1 equals to the internally calculated CRC. During the next shifting process,
read data is latched and can be shifted out. The next CRC2 is shifted out jointly with the
data.

When a write operation needs to be performed, the shifted-out CRC2 and the shifted-in
CRC1 concur (one TCK clock delay). This is done so that debugging software can detect an
occurring error condition and repeat the sequence. The write operation is also performed
when the input CRC1 equals to the internally calculated CRC.

Two CRC codes are also shifted in and out:

CRC1 is shifted in (Figure 4: OpenRISC Debug Interface Scan Chain (data shifted
in)). The host calculates it from the address, the R/W bit, and data that is sent in.

CRC2 is shifted out (Figure 5: OpenRISC Debug Interface Scan Chain (data shifted
out)). It is calculated from the address, the R/W that were shifted in, and data that is

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 41 of 50

shifted out (data read from the register) when a read operation is in progress, or from
a delayed CRC1 when a write operation is in progress.

After CRC1 has been shifted in, it is compared to the internally calculated CRC. If both
CRC codes do not match, the TDO is set to 0 when the TAP is in the UpdateDR stage. If
they do match, the TDO is set to 1. In this case, a read or write cycle is performed (after
the UpdateDR stage).

Figure 4: OpenRISC Debug Interface Scan Chain (data shifted in)

Figure 5: OpenRISC Debug Interface Scan Chain (data shifted out)

 73 65 64 33 32

CRC2

TDI TDO

Data

 0

0x0

73

Res.

CRC1

R/W

 72 65 64

TDI

33

TDO

Data

Address

 0

 32 31

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 42 of 50

5.2.3 OpenRISC Test Chain

When this chain is selected, issuing the INTEST commands can test the OpenRISC
functionality. Since the definition of the appropriate test chain is the system integrator’s
responsibility, the factory needs to perform the test.

5.2.4 Trace Scan Chain

The trace scan chain is used for reading the content of the trace buffer. The chain is 48
bits long – 8 bits for CRC, 36 bits for the recorded samples, 3 bits reserved for future use,
and one bit for the sample valid status.

Figure 6: Trace Scan Chain

5.2.5 Register Scan Chain

The register scan chain is used for writing and reading the data to/ from the registers used in
this development interface. The chain is 47 bits long. The chain for shifting in differs from
the chain for shifting out:

Chain for shifting in: 5-bit address, R/W bit, 32-bit data, 8-bit CRC1, and 1 reserved
bit

Chain for shifting out: 6 bits set to 0x0, 32-bit data, and 9-bit CRC2

While shifting in is in progress on the first chain, shifting out is performed on the second
chain.

A read operation is performed after all data (address, data, RW, and CRC1) has been
shifted in and when the input CRC1 equals to the CRC calculated internally. Read data is

 4 3 1

0x0

V
al

id

CRC

47 40 39 0

TDO

TDI
Data

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 43 of 50

latched and can be shifted out in the next shifting process. The new CRC2 is shifted out
together with the data.

When a write operation needs to be performed, the CRC2 that is shifted out equals the
CRC1 that is shifted in (one TCK clock delay). This is done so that debugging software
can detect an error condition and repeat the sequence. The write operation is also
performed when the input CRC1 equals the one that is internally calculated.

Two CRC codes are shifted in and out:

CRC1 is shifted in (Figure 7: Register Scan Chain (data shifted in)). The host
calculates it from the address, R/W bit, and data that is sent in.

CRC2 is shifted out (Figure 8: Register Scan Chain (data shifted out)). The host
calculates it from the address, the R/W that are shifted in, and data that is shifted out
(data read from a register) when a read operation is in progress, or from delayed
CRC1 when a write operation is in progress.

When the CRC1 is shifted in, it is compared to the internally calculated CRC. If both
CRC codes do not match, the TDO is set to 0 when the TAP is in the UpdateDR stage. If
they do match, the TDO is set to 1. In this case, a read or write cycle is performed (after
the UpdateDR stage).

Figure 7: Register Scan Chain (data shifted in)

Figure 8: Register Scan Chain (data shifted out)

CRC2

46 38 37

TDI TDO

Data

 0

0x0

 6 5

 46

Res CRC1

TDO

TDI

 45 38 37

Data

Address

 0

 5 4

R/W

 6

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 44 of 50

5.2.6 WISHBONE Scan Chain

The WISHBONE scan chain is used for interfacing WISHBONE slave devices – cores
(memory). The chain is 74 bits long. The one for shifting in differs from the one for
shifting out:

Chain for shifting in: 32-bit address, R/W bit, 32-bit data, 8-bit CRC, 1 reserved bit

Chain for shifting out: 1 bit indicating legal WISHBONE access (when access is
finished with wb_err_i signal set to 1, this bit is set), 1 bit indicating that
WISHBONE access is still in progress, 31 bits set to 0x0, 32-bit data, 9-bit CRC

While shifting in is in progress on the first chain, shifting out is performed on the second
chain simultaneously.

No matter what WISHBONE access width is selected in WBCNTL register, chain is
always 74 bit long. If 16-bit access is selected in WBCNTL, bits 48 to 33 carry the data,
if 8-bit access is selected, bits 40 to 33 carry the data.

A read operation is performed after all data (address, data, RW, and CRC1) have been
shifted in and when the input CRC1 equals to the CRC that is calculated internally. Read
data is latched and can be shifted out in the next shifting process. New CRC2 is shifted
out simultaneously with the data. Bit Access Fail indicates legal (when set to 0) or illegal
(when set to 1) access to the WISHBONE slave device. Bit InProgress indicates that
access is still in progress (not finished by acknowledge or error signal). In this case any
following accesses are ignored. After 256 WISHBONE clock cycles, bit InProgress and
wb_cyc_o signal are cleared and the core is ready for next access.

When a write operation needs to be performed, the shifted-out CRC2 equals the shifted-
in CRC1 (one TCK clock delay). This is done so that debugging software can detect an
error condition and repeat the sequence. The write operation is also performed when the
input CRC1 equals the one calculated internally.

Two CRC codes are also shifted in and out:

CRC1 is shifted in (Figure 9: WISHBONE Scan Chain (data shifted in)). The host
calculates it from the address, R/W bit, and data that are sent in.

CRC2 is shifted out (Figure 10: WISHBONE Scan Chain (data shifted out)). It is
calculated from the address, the R/W that were shifted in, data that is shifted out (data
read from register) when a read operation is in progress, or from a delayed CRC1
when a write operation is in progress.

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 45 of 50

When the CRC1 has been shifted in, it is compared to the CRC that is internally
calculated. If both CRC codes do not match, the TDO is set to 0 when the TAP is in the
UpdateDR stage. If they do match, the TDO is set to 1. In this case, a read or write cycle
is performed (after the UpdateDR stage).

Figure 9: WISHBONE Scan Chain (data shifted in)

Figure 10: WISHBONE Scan Chain (data shifted out)

5.2.7 Optional Scan Chains

Optional scan chains can be used for both observing and controlling. Currently, they are
reserved for future demands.

74

Res.

CRC1

R/W

 72 65 64

TDI

33

TDO

Data

Address

 0

 32 31

2

 1

 1

 1

33 32

CRC2

 73 65 64

TDI TDO

Data

 0

0x0

A
cc

. F
ai

l

In
Pr

og
r.

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 46 of 50

5.3 OpenRISC Debug Interface

The OpenRISC Debug Interface is used for interfacing the external devices (debugger) to
the OpenRISC debug facilities.

Figure 11: OpenRISC Debug Interface

RISC Debug Interface
Scan Chain

WP

BP

11

FORCESTALLIN

STALLSTAT

RISC Debug

Interface

RISCSTALL (RISC stall)

RESET (RISC reset)

32

WPIN (Watchpoint status)

BPIN (Breakpoint status)

DATAIN (Data input)

DATAOUT (Data output)

ADDR (Address) STALLSTATIN (Stall stat. Inp.)

11

32

32

RISC + RISC

Debug Module

ADDR (Address)

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 47 of 50

5.4 Trace

Trace records selected samples to the trace buffer. The samples are read and passed to the
external debugger using the trace scan chain.

Figure 12: Trace

5.5 Observing internal signals

Through the DIROUT[31:0], you can monitor the state of several internal signals. The
monitoring is development port independent. Select with the DIRSEL[2:0] which set of
signals is connected. It is up to the system integrator to decide which signals need to be
observed and how to connect them to the multiplexer. He also has to decide whether to use

Trace

OPSELECT

Load/Store Address

Load/Store Data

Instruction

Real Time Clock

Register Scan
Chain

Program Counter

Trace Scan
Chain TDI

TDO

TCK

TMS

TRSTn

JTAG

Interface

with the

TAP

Controller

Registers

WPIN, BPIN, LSSTATUS, ISTATUS

Trigger, Qualifier

CPUSTALL

Trace

Control

Trace

Buffer

RISC +

RISC Development Interface

DATAIN

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 48 of 50

dedicated pins for the DIROUT and DIRSEL signals or to multiplex them with some other
pins.

Figure 13: Selection of Observed Signals

Data0[31:0]

Data1[31:0]
DIROUT[31:0]

DIRSEL[2:0]

MUX

Data7[31:0]

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 49 of 50

Configuring Trace

Assuming you want to record all store data operations once the program enters the
subroutine X, there are many ways to do so. Here is one example:

First, select the trace scan chain. The following events take place:

The Instruction SELECT_CHAIN is shifted in to the TAP controller (see Table 15:
TAP Instruction Set on page 24)

The trace scan chain ID must be shifted in to the TAP controller (see Table 16:
Chains Identification on page 29)

Then, put the development port to DEBUG mode. The following events take place:

Instruction DEBUG is shifted in to the TAP controller (see Table 15: TAP Instruction
Set on page 24)

Set the trigger:

In the OpenRISC, set the watchpoint 0 to be asserted when the program executes the
jump to the subroutine X. Please refer to the OpenRISC 1000 System Architecture
Manual for more information.

Set value 0xC0000801 to the TSEL register. This way, you instruct the trace to start
recording when the WP0 occurs.

Set the qualifier:

http://www.opencores.org/

Open Cores SoC/OpenRISC Development Interface 10/14/2003

http://www.opencores.org/

Rev 1.7 Page 50 of 50

Set value 0xC01F0000 to the QSEL register. This way, you instruct the trace to
record only when a store data operation occurs.

Set the record selection:

Set value 0x00000008 to RECSEL so that samples will only consist of the stored
data.

Set the TRACE mode and enable it:

Set value 0x00010000 to the MODER register. This sets the trace to the normal mode
(old samples will never be overwritten) and enables the trace.

Now, start the OpenRISC. The data can be read out through the trace scan chain. If the
buffer contains valid records, the valid bit is set to 1. In case the buffer is full, the
OpenRISC will be stalled until samples are not read out.

http://www.opencores.org/

